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Overview

Introduction to Post-Quantum Cryptography

NTRU: N-th degree Truncated polynomial Ring Units

HQC: Hamming Quasi-Cyclic

CROSS: Codes and Restricted Objects Signature Scheme

Concluding remarks
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Introduction to Post-Quantum
Cryptography



Quantum computing

Today we assist to continuous advancements in the computational
capabilities of quantum computers:

• more powerful QPUs: up to 1121 qubits (Condor, IBM)
• longer coherency time: circuits w/ 5000 gates (Heron, IBM)
• higher density: 100 nm pitch between qubits (spin qubit, Intel)

There are still several limitations afflicting the current technology,
such as producing a scalable quantum memory [1], but many other
roadblocks have been solved in the past few years [2].
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Quantum computing
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The quantum threat

Grover’s algorithm [3] for quantum computers allows to finding
zeros in a function quadratically faster compared to the best
classical solution for regular computers.

Shor’s algorithm [4] solves the order finding problem with a
superpolynomial speedup w.r.t. non-quantum algorithms.

The (big) trouble

All the hard problems at the base of the widely used public-key
cryptosystems (e.g., ECC and RSA) are reducible to the order
finding problem!
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Post-Quantum Cryptography (PQC)

In 2016 the U.S. National Institute of Standards and Technology
(NIST) started a standardization process of quantum-resistant
asymmetric cryptoschemes implementing a Key Establishment
Mechanism (KEM) or Digital Signature Algorithm (DSA).

BA

Attacker

1) KeyGeneration

Public key
B

Private key
B

2) Encapsulation 3) Decapsulation

Shared key

Shared key

Ciphertext

Key Establishment Mechanism

5



Post-Quantum Cryptography (PQC)

In 2016 the U.S. National Institute of Standards and Technology
(NIST) started a standardization process of quantum-resistant
asymmetric cryptoschemes implementing a Key Establishment
Mechanism (KEM) or Digital Signature Algorithm (DSA).

BA

Attacker

1) KeyGeneration

Public key
A

Private key
A

2) Sign 3) Verify

Accept or Reject

Message + Signature

Message

Digital Signature Algorithm

5



Post-Quantum Cryptography (PQC)

In 2016 the U.S. National Institute of Standards and Technology
(NIST) started a standardization process of quantum-resistant
asymmetric cryptoschemes implementing a Key Establishment
Mechanism (KEM) or Digital Signature Algorithm (DSA).

Some numbers:
• 82 submissions
• 69 valid schemes
• 26 after 1st round
• 7 after 2nd round
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Post-Quantum Cryptography (PQC)

In 2016 the U.S. National Institute of Standards and Technology
(NIST) started a standardization process of quantum-resistant
asymmetric cryptoschemes implementing a Key Establishment
Mechanism (KEM) or Digital Signature Algorithm (DSA).

Many other national and international standardization bodies are
also working on Post-Quantum Cryptography (PQC):
• European Telecom. Standards Institute (ETSI) [5], [6]
• French Cybersecurity Agency (ANNSI) [7]
• German Federal Office for Information Security (BSI) [8], [9]
• Chinese Association for Cryptologic Research (CACR)
• Internet Engineering Task Force (IETF)
• International Organization for Standardization (ISO)
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Post-Quantum Cryptography (PQC)

This is the current situation after the conclusion of the first
standardization contest in March 2025:
• CRYSTALS-Kyber: lattice-based ML-KEM, FIPS 203
• CRYSTALS-Dilithium: lattice-based ML-DSA, FIPS 204
• SPHINCS+: hash-based SLH-DSA, FIPS 205
• FALCON: lattice-based FN-DSA, WIP
• HQC: code-based KEM, WIP
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Post-Quantum Cryptography (PQC)

Now it’s time to plan the transition to PQC [10], [11].
It is generally advised to employ a hybrid scheme combining a pre-
and post-quantum cryptoscheme.
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Post-Quantum Cryptography (PQC)

A new standardization effort seeking for an alternate digital
signature algorithm not based on structured lattice is still ongoing.
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Challenges in designing and implementing PQC

Designing a new cryptographic algorithm is a challenging task:
• parameter selection, producing adequate security proofs
• trying algebraic attacks for key/message recovery
• perf. evaluation in protocols in emulated/real environments
• explore optimization corners: sub-algorithms, vectorization

◦ in terms of latency, area, efficiency, power consumptions

• physical security evaluation: side-channel attacks, fault attacks

Ph.D. thesis contribution
We are focusing on the design of dedicated hardware accelerators
for the full PQC algorithms NTRU, HQC, and CROSS.
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NTRU: N-th degree Truncated
polynomial Ring Units



Introduction to NTRU

The N-th degree Truncated polynomial Ring Units (NTRU) is a
lattice-based KEM relying on the hardness of the Shortest Vector
Problem (SVP) – and the closely related Closest Vector Problem
(CVP) – in a n-dimensional integer lattice, both NP-hard problems.

The original work is dated back in 1998 [12], and several iterations
improved the performance and security estimation.
In the PQC contest, there were three independent submissions:
NTRU-HPS, NTRU-HRSS, Streamlined NTRU Prime

Compared to the standardized ML-KEM algorithm, NTRU can scale
the security margin more easily, but has slightly large ciphertext
sizes and a particularly slow key generation procedure.

10



Introduction to NTRU
The Shortest Vector Problem

Given k ∈ N linearly independent vectors bi ∈ Rn, with 1 ≤ i ≤ k
and k ≤ n, an instance of a lattice L is the set of points in Rn:

L := Λ(b1, b2, . . . , bk) =

{
k∑

i=1

aibi | ai ∈ Z

}
⊆ Rn

b1

b2

b1 = [4, 2], b2 = [2, 4]

b1
b2

v

b1 = [8, 2], b2 = [22, 2]

SVP in the integer lattice L ⊂ Z2
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Introduction to NTRU
The Closest Vector Problem

Given k ∈ N linearly independent vectors bi ∈ Rn, with 1 ≤ i ≤ k
and k ≤ n, an instance of a lattice L is the set of points in Rn:

L := Λ(b1, b2, . . . , bk) =

{
k∑

i=1

aibi | ai ∈ Z

}
⊆ Rn

b1

b2
u
v≡z

b1 = [4, 2], b2 = [2, 4]

b1
b2u

v

z

b1 = [8, 2], b2 = [22, 2]

CVP in the integer lattice L ⊂ Z2
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Background
Algebraic structure

NTRU makes use of arithmetic in the quotient polynomial ring

R = Z [x ] / ⟨xn − 1⟩ with (xn − 1) = Φ1Φn

n ∈ {509, 677, 701, 821} prime numbers⇒ Φ1,Φn are irreducible

Internally the scheme actually works with three polynomial rings:
Rq = Zq [x ] / ⟨Φ1Φn⟩ Sq = Zq [x ] / ⟨Φn⟩ Sp = Zp [x ] / ⟨Φn⟩

• large polynomial: coefficients in Zq, q ∈ {2048, 4096, 8192}
• small polynomial: coefficients in Zp = Z3

◦ fixed-weight: d ∈ {127, 255} coefficients eq. to 1 and −1
◦ variable-weight: any number of non-null coefficients

Further constraints to make a deterministic cryptographic scheme:

• gcd(p, q) = 1, p ≪ q • q > (6d + 1) p
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Background
Arithmetic in Rq = Zq/ ⟨xn − 1⟩

f = fn−1x
n−1 + . . .+ f1x + f0 ∈ R seen as [fn−1, · · · , f1, f0] ∈ Zn

Polynomial addition

Let a, b ∈ Rq, their sum c = a + b has coefficients

ck ≡q ak + bk , ∀k ∈ {0, . . . , n − 1}

Polynomial product (circular convolution)

Let a, b ∈ Rq, their product c = a · b has coefficients

ck ≡q

∑
i+j≡k mod n

ai · bj , ∀k ∈ {0, . . . , n − 1}
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NTRU KEM scheme

NTRU.KEM-KeyGeneration
Require: None
Ensure: pk = hpkd

sk = (f pkd, f
pkd
p , h

pkd
q , s ∈ {0, 1}256)

1: γ
$← {0, 1}320

2: (s, str_f, str_g)← CSPRNG(γ, {0, 1}8·(n−1) × {0, 1}β)
3: f ← CSPRNG(str_f,Lf ), g ← CSPRNG(str_g,Lg ) ▷ Sample two random small polys
4: fp ← f −1 mod (p,Φn) ▷ Inverse ring element
5: G ← p · g
6: v ← (G · f ) mod (q,Φn) ▷ Small poly by a large poly multiplication
7: vq ← v−1 mod (q,Φn) ▷ Inverse ring element
8: h← (vq · G · G ) mod (q,Φ1Φn) ▷ Two small poly by a large poly multiplications
9: hq ← (vq · f · f ) mod (q,Φ1Φn) ▷ Two small poly by a large poly multiplications

10: hpkd ← Packq(h); f pkd ← Packp(f ); f
pkd
p ← Packp(fp); h

pkd
q ← Packq(hq)

11: return pk = hpkd, sk = (f pkd, f
pkd
p , h

pkd
q , s)

Lattice Polynomials HPS HRSS
Lf f variable-weight variable-weigth+

Lg g fixed-weight (d) variable-weigth+
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NTRU KEM scheme

NTRU.KEM-Encapsulation

Require: pk = hpkd

Ensure: ctx = cpkd

K ∈ {0, 1}256

1: h← Unpackq(hpkd)

2: γ
$← {0, 1}320

3: (str_r, str_m)← CSPRNG(γ, {0, 1}8·(n−1) × {0, 1}β)
4: r ← CSPRNG(str_r,Lr ); m← CSPRNG(str_m,Lm) ▷ Sample two random small polys
5: m′ ← Lift(m) ▷ Map Lift : Sp 7→ Rq s.t. Lift(m) mod (p,Φn) = m
6: c ← (r · h +m′) mod (q,Φ1Φn) ▷ Small poly by a large poly multiplication
7: cpkd ← Packq(c); rpkd ← Packp(r); mpkd ← Packp(m)
8: K← Hash(rpkd∥mpkd)
9: return cpkd,K

Lattice Polynomials HPS HRSS
Lr r variable-weight variable-weight
Lm m fixed-weight (d) variable-weight

Lift(·) sign extension Φ1 · ((a/Φ1) mod (p,Φn))
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NTRU KEM scheme

NTRU.KEM-Decapsulation

Require: sk = (f pkd, f
pkd
p , h

pkd
q , s)

ctx = cpkd

Ensure: K ∈ {0, 1}256

1: f ← Unpackq(f pkd); fp ← Unpackq(f
pkd
p ); hq ← Unpackq(h

pkd
q ); c ← Unpackq(cpkd)

2: ▷ a = (r · h +m) · f = (r · p · fp · g +m) · f = r · p · g + f ·m ◁
3: a← (c · f ) mod (q,Φ1Φn) ▷ Small poly by a large poly multiplication
4: m← (a · fp) mod (p,Φn) ▷ Small poly by a large poly multiplication
5: m′ ← Lift(m) ▷ Map Lift : Sp 7→ Rq s.t. Lift(m) mod (p,Φn) = m
6: r ← ((c −m′) · hq) mod (q,Φn) ▷ Large poly by a large poly multiplication
7: rpkd ← Packp(r); mpkd ← Packp(m)
8: K1 ← Hash(rpkd∥mpkd); K2 ← Hash(s∥cpkd)
9: if (r ,m) ̸∈ Lr × Lm ∨ c ̸≡ 0 mod (q,Φ1) then K = K2 else K = K1

10: return K

line 3: since a ∈ Rq, no actual mod q is performed
line 4: performing modp removes the first term containing

the randomness r , obtaining f · fp ·m
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Multiplication in Rq = Zq/ ⟨xn − 1⟩ – Comba algorithm

Comba multiplication

Require: a ∈ Rq, b ∈ Rq

Ensure: c ∈ Rq | c = a · b
1: c← 0
2: for j ← 0 to n − 1 do
3: for i ← 0 to j do
4: t ← t + aj−i · bi
5: cj ← cj + t ▷ To memory
6: for j ← 0 to n − 2 do
7: for i ← 0 to j do
8: t ← t + an−1−j+i · bn−1−i
9: cn−1−j ← cn−1−j + t ▷ To memory

10: return c

Employs a single scalar
multiplier and an adder.

0

a

b

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

0

c

order of computation
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Multiplication in Rq = Zq/ ⟨xn − 1⟩ – x-net algorithm

a and c in stored in flip-flops. One coefficient of b processed per
CC by n multiply-and-accumulate units (MACs).

x-net multiplication

Require: a ∈ Rq, b ∈ Rq

Ensure: c ∈ Rq | c = a · b
1: c← 0
2: for j ← 0 to n − 1 do
3: c← c + bj · a ▷ n parallel MACs
4: a←a · [0, 1, 0, . . . , 0] mod xn − 1 ▷ Rotation
5: return c

MUL

ADD
j

0

a

b

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8 order of com
putation

15



Multiplication in Rq = Zq/ ⟨xn − 1⟩ – x-net algorithm

MUL

ADD

MUL

ADD

MUL

ADD

load

1

0

j

Poly multiplication with n coefficients performed in n CC.
If a ∈ Sp:
• scalar multiplications replaced with a 3-input multiplexer
• three scalar mul. results computed only once and distributed

15



Lift Sp 7→ Rq

Lift operation in NTRU-HRSS [13] – Φ1 · ((a/Φ1) mod (p,Φn)) without multiplications

Require: a ∈ Sp
Ensure: b ∈ Rq | (b) mod (p, Φn) = a
1: for i ← 0 to n − 2 do
2: ci ← (1− i) mod p ▷ c ← (1/Φ1) mod (p, Φn) for NTRU parameters
3: for i ← 0 to p − 1 do
4: di ←

〈
x i c̄ , a

〉
▷ inner-product of a with the rotated reversal map of c

5: for i ← p to n − 1 do
6: di ← di−p −

∑p−1
j=0 ai−j

7: d0 ← d0 − dn−1 mod p
8: b0 ← −d0
9: ▷ multiplication by Φ1 replaced by additions ◁

10: for i ← 1 to n − 1 do
11: di ← di − dn−1 mod p
12: bi ← di−1 − di mod q
13: return b

2 poly multiplications as 8n scalar additions/subtractions

16



Embedding E1 : Rq 7→ Sq and E2 : Rq 7→ Sp

Moving from ring R to S is efficiently performed subtracting the
coefficient with highest grade xn−1 to all the others.

If S = Sp the coefficient-wise reductions modulo p are computed
with a pipelined Mersenne prime reduction algorithm (only adds).

highest grade coeff

SUB

Mersenne

prime
reducer

out

in

Multiple coefficients can be processed in parallel.
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Sample random polynomial in Sp

Variable-weight small polynomials

Two strategy for sampling each small ternary coefficients:
• reduce an 8-bit number modp via Mersenne prime algorithm:

constant execution time, approximated uniform distribution
• rejection of the single invalid encoding of a random 2-bit

string: fewer bits from PRNG, perfect uniform distribution

In both cases, the parallel computation of more than one coefficient
is limited only by the pressure onto the PRNG.
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Sample random polynomial in Sp

Fixed-weight small polynomials

Generate a polynomial with the first d coefficients set as 1, and the
following d coefficients set as -1, then scramble it

When caches are not in use, the Fisher-Yates shuffle algorithm is
safe to use as memory has a constant time access.
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Operations schedule
Top-Level Design configuration

SRAM 0

SRAM 1

Keccak

point-to-point
network

Compute
unit 0

Compute
unit 1

Compute
unit n

FSA
Operation
schedule

start
done
cfg

start
done
cfg

start
done
cfg

Top-Level Design (TLD) configuration implementing a KEM primitive.

We employed four Simple Dual-Port memories, which are connected
in every moment to a specific compute unit (e.g., polynomial
multiplier) by global Finite State Automata (FSA) following a fixed
schedule of operations.

19



Operations schedule
Schedule for NTRU.KEM-Encapsulation

c

h

r

rh

m

NTRU-HPS (q = 2048, n = 509)

m

rh

c

m'

h

r

NTRU-HRSS (q = 8192, n = 701)

Schedule of the NTRU.KEM-Encapsulation with a x-net multiplier.
The x axis represents the latency (number of clock cycles).
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Operations schedule
Schedule for NTRU.KEM-Decapsulation

4050324024301620810

f

c

fp

a

811072906480567048604050

m'

hq

r

NTRU-HPS (q = 2048, n = 509)

Schedule of the NTRU.KEM-Decapsulation (HPS variant) with a x-net
multiplier. The HRSS variant includes also the Lift operation.
The x axis represents the latency (number of clock cycles).
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Experimental results
Design Space Exploration on FPGA

We synthesized the KEM-Encapsulation and KEM-Decapsulation in
separate top-level modules on a AMD ZYNQ UltraScale+ FPGA.

The fully decoupled arithmetic components allowed us to conduct a
Design Space Exploration (DSE) considering:
• all the four parameter sets defined by HPS and HRSS variants
• either x-net and Comba polynomial multiplier algorithms
• variable-weight sampler based either on rejection or modulo

algorithms
• varying the degree of computing parallelism per arithmetic

component
The solutions with lowest latency and Area-Time product (highest
efficiency) were compared with the State of the Art.
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Experimental results
Comparison with the state-of-the-art

NTRU.KEM-Encapsulation
Sec. NTRU Work Freq. Area Latency AT
lvl. Variant eSlice µs prod.
1 hps2048509 This work 400 6647 10.9 72.4

3

hps2048677
This work 400 7968 14.8 117

[14] 250 7642 14.8 113

hrss701
This work 400 9007 7.2 64.8

[14] 300 8404 7.4 62.1
sntrup761 [15] 289 9760 17.3 168

5 hps4096821
This work 400 9318 17.9 166

[14] 250 9591 18.3 175
NTRU.KEM-Decapsulation

Sec. NTRU Work Freq. Area Latency AT
lvl. Variant eSlice µs prod.
1 hps2048509 This work 350 74640 13.3 992

3

hps2048677
This work 350 98251 17.6 1729

[14] 300 14067 25.1 353

hrss701
This work 350 102504 21.7 2224

[14] 300 16008 29.4 470
sntrup761 [15] 285 10028 38.6 387

5 hps4096821
This work 350 118965 21.4 2545

[14] 300 16243 34.0 552
21



Experimental results
ASIC synthesis

Synthesis using a 40 nm tech library and slow process corner 1.15V@40°C

NTRU.KEM-Encapsulation
Mul. NTRU Area (103 µm2) Latency
type Variant add sample Keccak q pack k gen Rp ×Rq q unp. lift Total Freq. µs

x-net

hps2048509 0.66 2.76 39.12 1.12 2.64 90.40 1.41 - 140.19 700 6.2
hps2048677 0.68 2.97 39.16 1.11 2.67 120.44 1.41 - 170.44 700 8.4
hps4096821 0.73 2.95 39.28 0.82 2.68 161.21 1.07 - 211.05 700 10.2
hrss701 0.83 1.36 40.24 1.26 2.67 148.91 1.54 1.87 201.15 700 4.1

Comba

hps2048509 0.39 2.92 41.56 1.14 1.63 1.22 1.39 - 51.52 750 349.2
hps2048677 0.42 3.01 40.06 1.13 1.65 1.30 1.40 - 50.30 750 616.1
hps4096821 0.44 3.00 40.29 0.82 1.67 1.31 1.07 - 49.91 750 904.7
hrss701 0.47 2.40 40.96 1.35 1.68 1.36 1.52 1.22 52.43 750 660.4

NTRU.KEM-Decapsulation

Mul.
type

NTRU
Variant

Area (103 µm2)

add Keccak k1 k2 Rq ×Rq unpack validat. lift Total Latency
gen. gen. mult. p q Freq. µs

x-net

hps2048509 0.78 40.60 0.68 2.67 268.95 1.02 1.54 0.21 - 320.06 650 7.1
hps2048677 0.81 40.10 0.72 2.70 359.13 1.06 1.52 0.26 - 410.03 650 9.4
hps4096821 0.81 38.96 0.71 2.66 495.69 1.07 1.17 0.28 - 517.80 650 11.5
hrss701 0.91 40.71 0.72 2.71 507.23 1.05 1.66 0.25 1.72 561.02 650 11.7

Comba

hps2048509 0.42 41.46 0.67 1.64 1.59 1.08 1.51 0.31 - 51.45 750 1047.1
hps2048677 0.45 40.70 0.71 1.68 2.38 1.05 1.48 0.29 - 50.74 750 1847.6
hps4096821 0.46 40.14 0.72 1.68 2.49 1.07 1.17 0.30 - 50.08 750 2713.5
hrss701 0.50 40.33 0.71 1.69 2.66 1.09 1.63 0.31 1.14 52.26 750 1983.4
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HQC: Hamming Quasi-Cyclic



Introduction to HQC

Hamming Quasi-Cyclic (HQC) is a KEM scheme which is relying on
the hardness of the syndrome decoding problem on a double
circulant quasi-cyclic random code.

HQC doesn’t need an efficient decoder for the quasi-cyclic code,
hence there’s no need to obfuscate a known good code.
This is not the case for BIKE and Classic McEliece, the other two
code-based PQC schemes in the final round of the PQC contest.

NIST announced that will standardize HQC as an general-purpose
KEM algorithm as an alternative to ML-KEM (CRYSTALS-Kyber).
In comparison to ML-KEM, HQC produces larger ciphertexts and is
slightly slower, but is backed by a different hard problem.
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Introduction to HQC
The 2-Quasi Cyclic Syndrome Decoding Problem

The Syndrome Decoding Problem – search variant

• H ∈ F(n−k)×n
q of a q-ary [n, k, d ] public random linear code

• e ∈ Fn
q the secret error vector having Hamming weight < w

• s = eH⊤ ∈ Fn−k
q the syndrome associated to the error e

Given pk = (H, s), find a vector e ∈ Fn
q such that s = eH⊤.

If the weight w of the error e is low enough, there is a single
solution which is hard to find.

The double circulant quasi-cyclic variant employs a parity-check
matrix composed by two matrices defined just by their first row.
The other rows are a cyclic rotation of the previous ones.

The community believes that this variant retains the hardness.
Currently the best attacks are the same for the generic codes.
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Background

Algebraic structure: binary polynomial ring

• R: polynomial ring F2[x ]/⟨xp − 1⟩, where p is a prime number

• ω(a): Hamming weight of a ∈ R (number of non-zero coeffs)
• Rw : set of all polynomials in R with Hamming weight w

a=a0+a1x+. . .+ap−1x
p−1 ∈ R stored as vector a=[a0, a1, . . . , ap−1]

Moderate Density Parity Check code =⇒ w ≈ √p
a ∈ Rw is represented as a vector of indexes of non-zero coeffs.
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• Rw : set of all polynomials in R with Hamming weight w

polynomial addition (+)

Coefficient-wise addition: XOR (⊕) boolean operator
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p−1

a+ b = (a0 ⊕ b0) + (a1 ⊕ b1)x + . . .+ (ap−1 ⊕ bp−1)x
p−1

[a0 ⊕ b0, a1 ⊕ b1, . . . , ap−1 ⊕ bp−1]

24



Background

Algebraic structure: binary polynomial ring

• R: polynomial ring F2[x ]/⟨xp − 1⟩, where p is a prime number
• ω(a): Hamming weight of a ∈ R (number of non-zero coeffs)
• Rw : set of all polynomials in R with Hamming weight w

polynomial subtraction (−)
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• ω(a): Hamming weight of a ∈ R (number of non-zero coeffs)
• Rw : set of all polynomials in R with Hamming weight w

polynomial multiplication (·)
Cyclic convolution: ci=

⊕
j+k≡i mod p aj⊗bk , i , j , k∈{0, . . . , p−1}

a = a0 + a1x + . . .+ ap−1x
p−1

b = b0 + b1x + . . .+ bp−1x
p−1
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...
...

...
...

(ap−1 ⊕ b1) + (ap−1 ⊕ b2)x + . . .+ (ap−1 ⊕ b0)x
p−1

if a∈Rw , b∈R, asymptotic complexity Θ(pw)=Θ(p
√
p)=Θ(p1.5)
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Background

Error correction code

(s)

• quasi-cyclic random [2p, p, d ] code with a public parity-check
matrix H = [Ip | rot(h)]

• public [neni ≈ p, keki , dedi ] fixed code generated by a
shortened Reed-Solomon (RS) [ne , ke , de ] external code with a
duplicated Reed-Muller (RM) [ni , ki , di ] internal code.

H =


1 0 0 · · · 0 h0 hp−1 hp−2 · · · h1
0 1 0 · · · 0 h1 h0 hp−1 · · · h2
0 0 1 · · · 0 h2 h1 h0 · · · h3
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · 1 hp−1 hp−2 hp−3 · · · h0


h is a random vector generated from the public key seed
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HQC KEM scheme

HQC.KEM-KeyGeneration
Require: None
Ensure: pk = (φ ∈ {0, 1}320 , s ∈ R)

sk = (γ ∈ {0, 1}320 , σ ∈ {0, 1}k , φ ∈ {0, 1}320 , s ∈ R)

1: σ
$← {0, 1}k

2: (γ, φ)
$← {0, 1}320 × {0, 1}320

3: h← CSPRNG(φ,R) ▷ Sample a random dense poly
4: (x , y)← CSPRNG(γ,Rw × Rw ) ▷ Sample two random sparse polys
5: s ← x + h · y ▷ Sparse poly by a dense poly multiplication
6: return pk = (φ, s), sk = (γ, σ, φ, s)
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HQC KEM scheme

HQC.KEM-Encapsulation

Require: pk=(φ ∈ {0, 1}320, s ∈ R)
Ensure: ctx=(u ∈ R, v ∈ Fneni

2 , salt ∈ {0, 1}128), K∈{0, 1}512

1: m $← {0, 1}k , salt $← {0, 1}128

2: θ ← HashG (m∥φ∥s∥salt)
3: (e, ra, rb)← CSPRNG(θ,Rwe × Rwr × Rwr ) ▷ Sample three random sparse polys
4: h← CSPRNG(φ,R) ▷ Sample a random dense poly
5: u ← ra + h · rb ▷ Sparse poly by a dense poly multiplication
6: v← EncodeG(m) + Tr (s · rb + e) ▷ RMRS encoding, sparse poly by a dense poly mul
7: K ← HashK (m∥u∥v)
8: return ctx = (u, v, salt),K
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HQC KEM scheme

HQC.KEM-Decapsulation

Require: ctx = (u ∈ R, v ∈ Fneni
2 , salt ∈ {0, 1}128)

sk = (γ ∈ {0, 1}320 , σ ∈ {0, 1}k , φ ∈ {0, 1}320 , s ∈ R)
Ensure: K ∈ {0, 1}512

1: (x , y)← CSPRNG(γ,Rw × Rw ) ▷ Sample two random sparse polys
2: m′ ← DecodeG (Tr([v∥0p−neni ]− u · y)) ▷ RMRS decoding, sparse poly by a dense poly mul
3: θ′ ← HashG (m′∥φ∥s∥salt)
4: (e, ra, rb)← CSPRNG(θ,Rwe × Rwr × Rwr ) ▷ Sample three random sparse polys
5: h← CSPRNG(φ,R) ▷ Sample a random dense poly
6: u ← ra + h · rb ▷ Sparse poly by a dense poly multiplication
7: v← EncodeG(m) + Tr (s · rb + e) ▷ RMRS encoding, sparse poly by a dense poly mul
8: if (ctx ̸=ctx′) K ′←HashK (σ∥u∥v) else K ′←HashK (m′∥u∥v)
9: return K ′
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Polynomial adder
Addition/subtraction R× R 7→ R

In case both operands are in R:

• access data in blocks of B = 128 bits
• perform the XOR operation block-wise

operand2

result

operand1
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Polynomial adder
Addition Rw × R 7→ R

In case operand1 in Rw and operand2 is in R:
For each index i in the vector of operand1:

• determine the operand2 block index as ⌊i/B⌋
• flip a single bit of that block by generating T = 1≪(i mod B)

• cannot be easily pipelined due to read-after-write dependency!

0 1 2 3 4 5 6 7 8 9 10 11
operand2/result

544 284 302 1402 239 819 265 1053
operand1
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Polynomial multiplier: R× Rw

• One operand is always in Rw

• The low weight of polynomial (≈ √p) makes the schoolbook
shift-and-add approach interesting: Θ(p1.5) asymptotic
complexity

• There are faster algorithms based on the NTT with better
asymptotic complexity, but:

◦ the polynomial ring is not compatible with any NTT algorithm
◦ memory access pattern is challenging to optimize
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Polynomial multiplier: R× Rw
Single index processed

start block = ⌊(p − i)/B⌋
shift amount = ⌊(p − i) mod B⌋

0 1 2 3 4 5 6 7 8 9 10 11

1
barrel shifter

accumulator

operand2

1332 862 302 1402 239 819 265 1053
operand1
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Polynomial multiplier: R× Rw
Multiple indexes processed

start block = ⌊(p − i)/B⌋
shift amount = ⌊(p − i) mod B⌋

0 1 2 3 4

5

5

6

6 7 8 9 10 11

12
barrel shifter barrel shifter

6

accumulator

operand2

1332 862 302 1402 239 819 265 1053
operand1
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Polynomial multiplier: R× Rw
Multiple indexes processed

start block = ⌊(p − i)/B⌋
shift amount = ⌊(p − i) mod B⌋
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6

5

7

6 7 8 9 10 11

23
barrel shifter barrel shifter

7

accumulator

operand2
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operand1
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Sample random polynomials uniformly

Dense random polynomials in R

The elements of the binary vector h ∈ R are generated by the
SHAKE-256 algorithm (a SHA-3 eXtensible Output Function)
expanding the small 320-bits public seed.

The output is trimmed to the correct bit size, padding with zero
bits if the last block is underfilled.
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Sample random polynomials uniformly

Sparse random polynomials in Rw

The HQC specification uses the constant-time algorithm from [16]:
• runs in constant-time
• uses of an exact amount of randomness (32 · w bits)
• requires a modulo operations between a 32-bit dividend and a

generic 16-bit divisor

We used a straightforward shift-and-subtract pipelined algorithm,
not requiring DSPs to perform the operation.

At synthesis time the number of pipeline stages can be selected to
balance resources usage and timing closure.
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Public code: Reed Solomon
Encoder

The code treats a block of data as a set of F28 elements (symbols).

In a systematic encoding procedure the sequence of symbols of the
message polynomial u(x) are the prefix of the codeword, and the
error correcting symbols are the suffix:

c(x) = xne−keu(x)−
(
xne−keu(x) mod g(x)

)
A simple way to produce such special encoding is through a Linear
Feedback Shift Register [17]:
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Public code: Reed Solomon
Decoder

Consider a valid codeword c(x) affected by an unknown error e(x)
which has up to t terms:

r(x) = c(x) + e(x)

Decoding algorith overview

The decoder computes:
• the polynomial associated to the syndrome of the received

word r(x)

• both positions and values of the coefficients of e(x)
• the error-free codeword is derived as c(x) = r(x)− e(x).
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Public code: Reed Solomon
Decoder

First, the received polynomial r(x) is evaluated at each root αi of
the generator polynomial g(x) using the Horner’s method,
determining the syndrome polynomial S(x)
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Public code: Reed Solomon
Decoder

We employed the design of the Enhanced Parallel Inversionless
Berlekamp-Massey Algorithm (ePIBMA) introduced in [18].

The error locator polynomial Λ(x) and the auxiliary polynomial
B(x) are derived from the syndrome polynomial S(x)
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Public code: Reed Solomon
Decoder

Similarly, we used the Enhanced Chien Search and Error Evaluator
design from [18] to compute the error evaluator polynomial Ω(x)
from Λ(x) and B(x).
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Public code: Reed Muller
Encoder

To derive the 128-bit codewords corresponding to each 8-bit input
message, we follow the traditional message vector multiplied by the
generator matrix GRM.

GRM =


0xAAAAAAAA 0xAAAAAAAA 0xAAAAAAAA 0xAAAAAAAA
0xCCCCCCCC 0xCCCCCCCC 0xCCCCCCCC 0xCCCCCCCC
0xF0F0F0F0 0xF0F0F0F0 0xF0F0F0F0 0xF0F0F0F0
0xFF00FF00 0xFF00FF00 0xFF00FF00 0xFF00FF00
0xFFFF0000 0xFFFF0000 0xFFFF0000 0xFFFF0000
0x00000000 0xFFFFFFFF 0x00000000 0xFFFFFFFF
0x00000000 0x00000000 0xFFFFFFFF 0xFFFFFFFF
0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF


Working with 32-bits words, the presence of repeated words in GRM
yields some identical intermediate values during the multiplication.

Consequently, the size of multiplexers and the number of XOR
gates were decreased substantially.
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Public code: Reed Muller
Decoder

The operation is carried out by a Maximum Likelihood (ML)
decoder computing a fast Hadamard transform [19]

We find the maximum absolute value with a pipelined comparator
tree computing pairwise maxima, acting on a tunable-sized input
vector.
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Operation schedule
Top-Level Design configuration

SRAM 0

SRAM 1

Keccak

point-to-point
network

Encoder
RM-RS

Decoder
RM-RS

Polynomial
multiplier

FSA
Operation
schedule

start
done
param

start
done
param

start
done
param

Top-Level Design (TLD) configuration implementing a KEM primitive.

We employed five True Dual-Port memories, which are connected in
every moment to a specific compute unit (e.g., polynomial
multiplier) by global Finite State Automata (FSA) following a fixed
schedule of operations.
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Operation schedule
Sampling order optimization

poly samplerpoly sampler

HQC specification proposed order

poly sampler poly sampler

sparse
sampler

seed
expander

dense
sampler

seed
expander

sparse
sampler

sparse
by

dense
multiplier

sparse
to

dense
adder

Performance gains from 13% to 32% over the entire cryptographic
primitive without any cost or security implications
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Operation schedule
HQC.KEM schedules

sparse
sampler

seed
expander

dense
sampler

seed
expander
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sparse
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adder

decode
RS-RM

encapsulation

seed
expander

sparse
sampler

memory
comparator

dense
sampler

seed
expander
K domain

sparse
sampler

hr2

r1

sr2sparse-by-dense
multiplier
sr2 = s⋅r2

e

cdw

seed
expander

dense
sampler

dense
sampler

seed
expander

sparse
sampler

sparse
sampler

sparse
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dense
multiplier

sparse
by

dense
multiplier

sparse
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dense
adder

sparse
to

dense
adder

seed
expander
G domain

dense
to

dense
adder

dense
sampler

encode
RS-RM

seed
expander
K domain

32



Experimental results

Designed in SystemVerilog, tested with CocoTB following the
Universal Verification Methodology (UVM).

Synthesized on an AMD Artix-7 xc7a200tfbg484-3 FPGA, and
validated it on a Digilent’s Arty A7-100T employing the (modified)
official Known Answer Tests (KAT) via a UART module.

The source code is available on Zenodo.
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Experimental results
Top-level: Key Generation

HQC keygen top-modules w/o SHAKE256 (5520 LUTs, 2810 FFs).

Parameter Design Area Frequency Latency Area-Time
set eSlice MHz µs product

hqc128
[20] 1879 179 88 165

[21] (HLS, perf.) 2849 150 270 768
This work 4267 208 30 127

hqc192
[20] 1866 189 222 415

This work 4348 207 72 314

hqc256
[20] 1866 188 437 817

This work 4272 201 138 591
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Experimental results
Top-level: Encapsulation

HQC encapsulation top-modules w/o SHAKE256 (5520 LUTs, 2810 FFs).

Parameter Design Area Frequency Latency Area-Time
set eSlice MHz µs product

hqc128

[20] (balanced) 2701 179 186 504
[20] (high speed) 3377 179 125 423
[21] (HLS, perf.) 4575 152 586 2682

This work 4326 168 79 343

hqc192
[20] (balanced) 2990 182 496 1484

[20] (high speed) 3785 196 292 1106
This work 4468 175 180 803

hqc256
[20] (balanced) 3123 182 973 3039

[20] (high speed) 3901 196 553 2160
This work 4412 187 313 1382
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Experimental results
Top-level: Decapsulation

HQC decapsulation top-modules w/o SHAKE256 (5520 LUTs, 2810 FFs).

Parameter Design Area Frequency Latency Area-Time
set eSlice MHz µs product

hqc128

[20] (balanced) 4806 192 251 1206
[20] (high speed) 5556 179 207 1154
[21] (HLS, perf.) 6130 152 1270 7787

This work 5956 167 119 709

hqc192
[20] (balanced) 5309 186 676 3590

[20] (high speed) 6051 186 498 3018
This work 7068 161 287 2026

hqc256
[20] (balanced) 5549 186 1335 7408

[20] (high speed) 6289 186 966 6076
This work 8098 151 570 4614
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Experimental results
Top-level: unified design

Comparison of the unified designs compatible with all KEM primitives for
parameter set guaranteeing a security similar to AES-1281.

Design Area Freq. KeyGeneration Encapsulation Decapsulation
scheme ref. variant eSlice MHz µs AT µs AT µs AT
Kyber [22] – 4147 220 10 40 15 62 20 85
Kyber [23] – 2758 161 24 65 32 87 42 115
HQC This work – 12471 143 39 488 82 1027 128 1597
HQC [20] balanced 10406 164 96 1000 204 2122 294 3059
HQC [20] high-speed 11167 178 89 989 126 1407 209 2333
HQC [24] – 20564 178 112 2311 225 4621 393 8087
BIKE [25] lightweight 5930 121 3826 22691 446 2646 6950 41216
BIKE [25] trade-off 9717 100 1870 18171 280 2721 4210 40909
BIKE [25] high-speed 15344 113 1681 25800 133 2037 1168 17924

C. McEliece [26] lightweight 36007 112 1161 41794 1518 54653 79286 2854841
C. McEliece [26] high-speed 48173 113 265 12789 885 42631 8584 413520

1Highlighted designs support also security margins of AES-192 and AES-256.
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Experimental results
ASIC synthesis

ASIC synthesis of top-level HQC.KEM designs using Yosys and
OpenROAD with FreePDK45 tech library and typical process corner 1.1V
@ 25°C.

Design Frequency Area
(MHz) mm2

Key generation 502 0.235
Encapsulation 390 0.280
Decapsulation 457 0.469

Unified 419 0.496
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Experimental results
Comparison with a SW execution

Comparing the execution runtime of the three KEM primitives with
a software execution of the reference C code on a Rockchip
RK3288 ARM Cortex-A17 CPU at 1.8GHz, our hardware
accelerator is from 15.6× to 19.8× faster.

This target was chosen because it is produced with a 28nm process
node technology similar to the one used for the AMD Artix-7
XC7A35T, and it has a similar bulk price of 20 US $.

Producing an ASIC version of the design on a modern process
node, the performance advantage will inevitably grow due to the
higher working frequencies.

33



CROSS: Codes and Restricted
Objects Signature Scheme



Introduction to CROSS

The Codes and Restricted Objects Signature Scheme (CROSS)
scheme is a digital signature algorithm proposed in the additional
NIST call for digital signatures relying on the NP-complete
Restricted Syndrome Decoding Problem (R-SDP).

It is built applying the Fiat-Shamir construction to transform the
CROSS-ID Zero-Knowledge (ZK) identification protocol into an
non-interactive one using a one-way function and achieving the
EUF-CMA security.
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Introduction to CROSS
The Restricted Syndrome Decoding Problem – search variant

• H ∈ F(n−k)×n
p of a p-ary [n, k , d ] public random linear code

• e ∈ En ⊂ Fn
p the secret error vector from a subgroup of Fn

p

• s = eH⊤ ∈ Fn−k
p the syndrome associated to the error e

The subgroup E is generated by the public element g of order z :

⟨g⟩ =
{
g i | i ∈ {1, . . . , z}

}
= E ⊂ F∗p

Given pk = (H, s), find a vector e ∈ En such that s = eH⊤.

The removal of the fixed-weight constraint in favor of the
restriction of the ambient space of the error vector allowed to
speed-up the computation and reduce the signature size.
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Background
Arithmetic

Algebraic structure

• E = ⟨g⟩ =
{
g i | i ∈ {1, . . . , z}

}
⊂ F∗p

• G= ⟨{b1, . . . , bm}⟩ = {
⊙m

i=1 bi
ui | bi∈En∧ui∈F⋆

z∧m<n}⊂En

Vector arithmetic modulo a prime p ∈ {127, 509}: +, −, ⊙, g (·)

a ∈ En compactly represented by an element a ∈ Fn
z , z ∈ {7, 127}

(En,⊙) isomorphic to (Fn
z ,+): a⊙ b = ga+b, a−1=g−a

M=
[
b1, . . . , bm

]⊤
with exponents of the bases, a=gaGM, aG∈Fm

z

The linear transitive maps v : En 7→ En and vG : G 7→ G are simply
v(a) = v ⊙ a = g v+a
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Background
Security levels

The underlying hard problem is tweaked by selecting:
• the error vector ambient space En or G , for R-SDP and

R-SDP(G) respectively
• a different parametrization of the random [n, k , d ] random

linear code
• the number of CROSS-ID ZK protocol repetitions t
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Background
CROSS-ID ZK protocol

CROSS-ID ZK protocol
Require: sk = e ∈ G ⊆ En

pk =
(
H ∈ F(n−k)×n

p , s = eH⊤ ∈ Fn−k
p

)
PROVER P VERIFIER V
seed $← {0, 1}λ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Commitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
e′,u′←CSPRNG(seed,G×Fn

p)
v← e⊙ (e′)−1

u← v ⊙ u′
s′ ← uH⊤

cmt0 ← Hash(s′∥v)
cmt1 ← Hash(u′∥e′) cmt0,cmt1

commitment

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . First challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

chall1
$← F∗

pchall1

1st challengey← u′ + chall1e′
digy ← Hash(y) digy

1st response

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Second challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

chall2
$← {0, 1}chall2

2nd challengeif chall2=0 then resp←y∥v
else resp← seed resp

2nd response

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
if chall2 = 0 then

y′ ← v ⊙ y
s′ ← y′H⊤ − chall1s
if Hash(y)̸=digy ∨ Hash(s′∥v) ̸=cmt0 ∨ v ̸∈G then fail

else(
e′, u′

)
← CSPRNG(seed,G× Fn

p)
y← u′ + chall1e′
if Hash(y) ̸= digy ∨ Hash(u′∥e′) ̸= cmt1 then fail
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Background
Optimization corners

The t rounds are performed in parallel, and commitments are
transmitted only if the Verifier cannot recompute them.

When the second challenge is unbalanced (w out of t binary
challenges are 1), the Prover will send more frequently the round
seed, which is far smaller than y∥v.

Warning

This requires to increase the number of protocol repetitions t to
maintain the same security, hence trades a higher execution runtime
for a smaller signature
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Background
Optimization corners

Round seeds can be generated via the expansion of a master seed
in a binary tree shape.
Analogously, cmt0 of each round can be pre-combined during the
signature generation using a Merkle tree.

seed
1

3
seed[1] seed[2]

4
seed[3] seed[4]

2
5

seed[5] seed[6]
6

seed[7] seed[8]

cmt0

11
7

cmt0[1] cmt0[2]
8

cmt0[3] cmt0[4]

12
9

cmt0[5] cmt0[6]
10

cmt0[7] cmt0[8]

CROSS seed and commitment trees
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Hardware design
Vector addition/subtraction, and point-wise multiplication

The element-wise modular operations are carried out in parallel: for
p, z ∈ {7, 127, 509}, a 64-bits word encodes 21, 9, and 7 elements.

The mod7 and mod127 reduction uses the efficient Mersenne
prime reduction, and employs only a few adders.
By contrast, for mod509 the Barrett reduction employs two integer
multiplications (the first one having a large output domain).

The operation is repeated until all the n or m < n vector elements
are processed.
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Hardware design
Vector exponentiation

Leveraging the small values of p, z and the fixed public generator g ,
the scalar operation ga mod p is performed via a look-up table.

z table entries of log2 p bits –> only 7 or 18 LUT FPGA units!

9, and 7 parallel operations can be performed each clock cycle, but
an input FIFO is necessary due to the different read/write rates.
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Hardware design
Vector-matrix multiplications

H⊤ =
[
V⊤ | In−k

]
=



V⊤
0,0 V⊤

0,1 · · · V⊤
0,n−k−1

V⊤
1,0 V⊤

1,1 · · · V⊤
1,n−k−1

...
...

. . .
...

V⊤
k−1,0 V⊤

k−1,1 · · · V⊤
k−1,n−k−1

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1



M =
[
W, Im

]
=


W 0,0 W 0,1 · · · W 0,n−m−1 1 0 · · · 0
W 1,0 W 1,1 · · · W 1,n−m−1 0 1 · · · 0

...
...

. . .
...

...
...

. . .
...

Wm−1,0 Wm−1,1 · · · Wm−1,n−m−1 0 0 · · · 1


Both matrices are serialized row-wise.
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Hardware design
Vector-matrix multiplications

Leveraging their systematic form to avoid part of the computation.

e = eGM = eG
[
W, Im

]
=

[
eGW, eG

]
Takes only O(m(n −m)) < O(mn) multiplications in Fz

s = eH⊤ = e [V | In−k ] = [ek , ek+1, . . . , en] + [e0, e1, . . . , ek−1]V⊤

Takes only O(k(n − k)) < O(n(n − k)) multiplications in Fp

Vector operator and result are transferred using 64-bits words.
Matrices V⊤ and W are accessed using 64-bits, 192-bits, or enough
bits in order to perform an entire row-by-coefficient computation.

Different levels of computational parallelism with this design choice.
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Hardware design
Arithmetic unit

Following the order of operations in the three DSA operations
(KeyGeneration, Sign, Verify), we chained the arithmetic units to
limit the memory transfers and maximize the performance.

We used two local memories to store the serialized matrices
employed during the t CROSS-ID rounds, and cache the
(expanded) round errors e′.
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Experimental results

Designed in SystemVerilog, tested with CocoTB employing the
reference software via ctypes function bindings.

Synthesized on various FPGAs of the AMD Artix-7 family, and
validated it on a Digilent’s Nexys Video employing the official
Known Answer Tests (KAT) via a UART module.

We conducted a Design Space Exploration to determine
Area/Latency trade points by varying:
• the parallelism of the matrix-vector multiplication
• the number of SHAKE-256 rounds per clock cycle
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Experimental results
Artix-7 FPGA synthesis results1
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1Credits to Patrick Karl from the Technical University of Munich.
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Experimental results
Artix-7 FPGA synthesis results1
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Experimental results
Artix-7 FPGA synthesis results1
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Experimental results
Comparison with a SW execution1

Comparing the execution runtime of the three DSA primitives with
a software execution of the reference C code on a Broadcom
BCM2837B0 ARM Cortex-A53 CPU at 1.4GHz, our hardware
accelerator produces a signature of a 59 bytes message from 2.3×
to 22.7× faster.

This target was chosen due to being the only datapoint available
right now in the SUPERCOP open cryptographic benchmarking
tool for a low-end platform produced in a similar technology node
and having a similar bulk price.

Producing an ASIC version of the design on a modern process
node, the performance advantage will inevitably grow due to the
higher working frequencies.

1Credits to Marco Gianvecchio from Politecnico di Milano.
44



Concluding remarks



Concluding remarks

We presented a systematic approach for the analysis, design, and
optimization of hardware accelerators for three PQC algorithms:
the lattice-based KEM.NTRU, the code-based KEM.HQC, and the
code-based DSA.CROSS.

Leveraging the data parallelisms offered by the sub-algorithms and
the parallel schedule of operations in the KEM/DSA primitives, we
set up design-space experiments to determine the solutions with
interesting latency and efficiency figures.

The produced hardware accelerators distinguished for their low
primitive execution latency, higher efficiency, and high flexibility.
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CROSS – Experimental results
Artix-7 FPGA synthesis results2

Design Parameter Area Freq. KeyGen. Sign Verify
set eSlice MHz µs AT µs AT µs AT

This work

CROSS-RSDP-1-f 13087 119 35 467 764 10006 584 7653
CROSS-RSDP-1-b 15889 113 37 596 1444 22951 1016 16157
CROSS-RSDP-1-s 27462 115 36 1013 2858 78508 1960 53841
CROSS-RSDP-3-f 22885 110 82 1886 1905 43609 1455 33310
CROSS-RSDP-3-b 28283 108 84 2380 3230 91355 2067 58488
CROSS-RSDP-3-s 34120 105 86 2949 4984 170081 3037 103653
CROSS-RSDP-5-f 33591 105 153 5170 3762 126370 2843 95514
CROSS-RSDP-5-b 44720 101 160 7157 6297 281646 3744 167460
CROSS-RSDP-5-s 61796 101 160 9887 10153 627431 5564 343849

This work

CROSS-RSDPG-1-f 15452 100 10 163 601 9300 477 7376
CROSS-RSDPG-1-b 17396 103 10 178 1216 21154 886 15421
CROSS-RSDPG-1-s 23005 102 10 239 2433 55979 1762 40540
CROSS-RSDPG-3-f 18377 96 22 413 1260 23162 1033 18998
CROSS-RSDPG-3-b 23795 102 21 503 1604 38185 1201 28593
CROSS-RSDPG-3-s 35344 99 21 770 3103 109699 2214 78267
CROSS-RSDPG-5-f 27749 99 35 997 2223 61701 1860 51637
CROSS-RSDPG-5-b 34512 96 37 1278 2960 102183 2222 76717
CROSS-RSDPG-5-s 47332 98 36 1715 5133 242993 3613 171042

[30]
Dilithium-II

21330 185
12.2 260 98.3 2096 14.4 307

Dilithium-III 22.6 482 166.7 3555 25.4 541
Dilithium-V 30.3 646 196.3 4187 33.2 708

[31]
Dilithium-II 16091 163 115 1850 178/470 2864/7562 121 1947
Dilithium-III 18230 145 228 4156 310/850 5651/15495 221 4028
Dilithium-V 23788 140 363 8635 503/1042 11965/24787 377 8968

[38] Dilithium-V 21597 116 121 2613 2520 54424 21 453

[35]
SPHINCS+-128f-s 14571 250/500 – – 1010 14716 16 233
SPHINCS+-192f-s 15838 250/500 – – 1170 18530 19 300
SPHINCS+-256f-s 17657 250/500 – – 2520 44495 21 370

2Credits to Patrick Karl from the Technical University of Munich. 8



Assessment multiplier algorithms for HQC

We simulated different approaches for the F2[x ] multiplications
required in the code-based HQC cryptoscheme.

Block size Mult. algorithm Latency (kCC)
hqc-128 hqc-192 hqc-256

32 Comba 305.80 1256.64 3247.20
32 Karatsuba 5-terms + NTT 76.03 230.91 464.64
32 Karatsuba 5-terms + Comba 237.31 714.75 1432.32
32 Rotate and accumulate (d=1) 41.47 127.79 268.49
32 Rotate and accumulate (d=2) 20.73 63.89 134.24
32 Rotate and accumulate (d=4) 10.36 31.94 67.12

64 Comba 76.72 314.72 811.80
64 Karatsuba 5-terms + NTT 34.43 104.70 210.81
64 Karatsuba 5-terms + Comba 61.31 185.34 372.09
64 Rotate and accumulate (d=1) 20.77 63.95 134.24
64 Rotate and accumulate (d=2) 10.38 31.97 67.12
64 Rotate and accumulate (d=4) 5.19 15.98 33.56

128 Comba 19.32 78.96 203.40
128 Karatsuba 5-terms + NTT 15.42 46.97 94.65
128 Karatsuba 5-terms + Comba 16.32 49.66 100.03
128 Rotate and accumulate (d=1) 10.42 32.03 67.19
128 Rotate and accumulate (d=2) 5.21 16.01 33.60
128 Rotate and accumulate (d=4) 2.60 8.00 16.80
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Keccak core

Keccak FPGA cores synthesized on an Artix-7

Design Area Frequency SHA3-256
Ref. Type Variant LUT FF eSlice MHz CC µs AT prod. Gb/s
[39] mid-range

∗ ×1 811 490 203 178 2681 15.06 3.06 0.07
[20] mid-range ×1 1437 498 360 163 2408 14.77 5.32 0.07
[39] mid-range

∗ ×2 908 450 227 163 1353 8.30 1.88 0.13
[20] mid-range ×2 1558 466 390 167 1206 7.22 2.82 0.15
[39] mid-range

∗ ×4 1069 361 268 158 680 4.30 1.15 0.25
[20] mid-range ×4 1625 370 407 157 604 3.85 1.57 0.28
[39] mid-range

∗ ×8 1466 270 367 164 337 2.05 0.75 0.52
[20] mid-range ×8 1958 280 490 158 302 1.91 0.94 0.56
[39] mid-range

∗ ×16 2401 226 601 165 168 1.02 0.61 1.04
[20] mid-range ×16 2819 236 705 164 150 0.91 0.64 1.17
[39] mid-range

∗ ×32 4436 180 1109 161 85 0.53 0.59 2.00
[20] mid-range ×32 4797 191 1200 166 74 0.45 0.53 2.36

This work high-speed ×1 5589 2744 1398 237 29 0.12 0.17 8.85
This work high-speed ×2 10571 2736 2643 125 17 0.14 0.36 7.59
This work high-speed ×3 12700 2719 3175 74 13 0.18 0.56 5.90
This work high-speed ×4 15472 2717 3868 53 11 0.21 0.80 5.06
This work high-speed ×6 22725 2715 5682 28 9 0.32 1.83 3.32
This work high-speed ×8 20262 2714 5066 26 8 0.31 1.56 3.43
This work high-speed ×12 28782 2713 7196 14 7 0.50 3.60 2.12
This work high-speed ×24 55403 2714 13851 6 6 1.00 13.85 1.06
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