
POLITECNICO DI MILANO
DEPARTMENT OF ELECTRONICS, INFORMATION AND BIOENGINEERING

DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

HARDWARE DESIGN AND IMPLEMENTATION OF

POST-QUANTUM CRYPTOGRAPHIC ALGORITHMS:
THE CASE OF NTRU, HQC AND CROSS

Doctoral Dissertation of:
Francesco Antognazza

Supervisor:
Prof. Gerardo Pelosi
Prof. Alessandro Barenghi
Tutor:
Prof. Cristina Silvano
The Chair of the Doctoral Program:
Prof. Luigi Piroddi

Year 2025 – XXXVI cycle

Abstract

DURING the last decade, public key cryptography received renewed attention from
academic, industrial and institutional stakeholders due to the consistent ad-
vancements in the development of more capable quantum computers, which

are deemed able to break in the near future the security guarantees provided by the cur-
rently deployed cryptographic algorithms based on the hardness of the integer factoriza-
tion or discrete logarithm problems (e.g., RSA and ECC) thanks to Shor’s algorithm.
In 2016, the U.S.A. National Institute of Standards and Technology published a call for
public key schemes resistant to quantum-computer-aided attacks, intending to replace
the vulnerable algorithms currently in use and asking the community for cryptanalysis
and optimized software and hardware implementations of the proposals. After sev-
eral rounds of selection, schemes based on lattices and forward error-correction codes
proved to be the most promising. Taking a hardware design perspective, I focused on
analyzing the key encapsulation mechanism based on the Hoffstein, Pipher, and Sil-
verman’s NTRUEncrypt encryption scheme, commonly referred to as NTRU, the key
encapsulation mechanism named "Hamming Quasi-Cyclic" (HQC), and the digital sig-
nature algorithm named "Codes and Restricted Objects Signature Scheme" (CROSS),
with a particular emphasis on the optimization of the latency and the efficiency of their
building blocks such as polynomial multipliers, random polynomial samplers and en-
coders/decoders for the Reed-Muller/Reed-Solomon concatenated code, ideating and
comparing novel specialized algorithms for the sub-procedures composing the cryp-
toschemes and providing results for both FPGA and ASIC design flows. The results
show a substantially improved latency and efficiency compared to the state-of-the-art,
and a proposed algorithmic optimization for HQC was recently included in the official
specification.

I

Sommario

DURANTE l’ultimo decennio, la crittografia a chiave pubblica ha ricevuto una rin-
novata attenzione da parte di accademia, industria, e parti istituzionali inte-
ressate a causa dei continui progressi nello sviluppo di computer quantistici, i

quali sono ritenuti in grado di violare nel prossimo futuro le garanzie di sicurezza forni-
te dagli algoritmi a chiave pubblica attualmente utilizzati che sono basati sulla difficoltà
della fattorizzazione di numeri interi estremamente grandi, o del logaritmo discreto (ad
esempio, RSA ed ECC) grazie all’algoritmo di Shor. Nel 2016, il National Institute
of Standards and Technology degli Stati Uniti d’America ha pubblicato un bando per
nuovi schemi a chiave pubblica resistenti ad attacchi per mezzo di computer quantistici
con l’intento di sostituire gli algoritmi vulnerabili attualmente in uso, e al chiedendo alla
comunità di effettuare crittoanalisi e implementazioni software e hardware ottimizzate
delle proposte. Dopo diversi round di selezione, gli schemi basati su reticoli e codici a
correzione degli errori si sono dimostrati i più promettenti. Considerando lo sviluppo
di sistemi digitali, la mia ricerca si focalizza sull’analisi del meccanismo di generazio-
ne delle chiavi di sessione basato sull’algoritmo NTRUEncrypt di Hoffstein, Pipher,
e Silverman, comunemente chiamato NTRU, il meccanismo di condivisione “Ham-
ming Quasi-Cyclic” (HQC) e dell’algoritmo di firma digitale “Codes and Restricted
Objects Signature Scheme” (CROSS), ponendo particolare enfasi sull’ottimizzazione
della latenza e dell’efficienza dei componenti chiave come moltiplicatori polinomia-
li, generatori di polinomi casuali e codificatori/decodificatori per il codice concatenato
Reed-Muller/Reed-Solomon, ideando e confrontando nuovi algoritmi specializzati per
le sotto-procedure che compongono i crittosistemi, e analizzando i risultato con flussi di
progettazione per FPGA e ASIC. I risultati ottenuti mostrano una latenza e un’efficienza
sostanzialmente migliorate rispetto ai risultati precedenti, e un’ottimizzazione algorit-
mica proposta per HQC è stata recentemente inclusa nella specifica ufficiale.

III

Contents

1 Introduction 1
1.1 Brief overview on Quantum Computers 1
1.2 Applications of Quantum Algorithms to Cryptography 2
1.3 Post-Quantum Cryptography standardization 4
1.4 Challenges of a Post-Quantum transition 8
1.5 Contributions . 12
1.6 Thesis outline . 13

2 Preliminaries and design methodology 15
2.1 Theoretical background and notation . 15

2.1.1 Vector space . 16
2.1.2 Algebraic structures . 16
2.1.3 Polynomials and Galois fields . 17
2.1.4 Complexity theory for classical computers 18

2.2 Design Methodology . 19
2.2.1 Design Tools . 19
2.2.2 Latency, area and efficiency metrics 20

3 Lattice-based cryptography 23
3.1 NTRU and LWE . 26
3.2 NTRU HPS and NTRU HRSS . 27

3.2.1 Algebraic structures and parameters sets 27
3.2.2 NTRU DPKE . 29
3.2.3 NTRU KEM . 32

3.3 Expressing NTRU hardness as lattice problems 34

4 Code-based cryptography 37

V

Contents

4.1 Syndrome Decoding Problem . 39
4.1.1 Quasi-Cyclic codes . 41
4.1.2 Restricted error vectors . 42

4.2 Hamming Quasi-Cyclic . 43
4.2.1 Algebraic structures and parameters sets 45
4.2.2 HQC PPKE . 45
4.2.3 HQC KEM . 47
4.2.4 Comparison with BIKE . 49

4.3 Codes and Restricted Objects Signature Scheme 51
4.3.1 Algebraic structures and parameters sets 51
4.3.2 CROSS ZK protocol . 54
4.3.3 CROSS digital signature . 56

5 Cryptographic hash functions 65
5.1 Merkle-Damgård construction . 66
5.2 Sponge construction . 67

5.2.1 Keccak scheme . 69
5.2.2 SHA-3 hardware designs . 70

6 Element generation 75
6.1 Pack and unpack vectors into and from bit strings 76
6.2 Sampling random vectors . 78
6.3 Sampling random vectors with fixed Hamming weight 80
6.4 Hardware designs . 84

6.4.1 NTRU . 85
6.4.2 HQC . 86
6.4.3 CROSS . 88

7 Arithmetic 91
7.1 Addition . 91

7.1.1 Modular arithmetic . 92
7.1.2 Vector space and polynomials . 92

7.2 Multiplication . 94
7.2.1 Modular arithmetic . 94
7.2.2 Vector space and polynomials . 96

7.3 Arithmetic in NTRU . 98
7.3.1 Polynomial addition/subtraction 98
7.3.2 Polynomial multiplication . 99
7.3.3 Ring embed and lift . 106

7.4 Arithmetic in HQC . 108
7.4.1 Polynomial addition/subtraction 109
7.4.2 Polynomial multiplication . 110

7.5 Arithmetic in CROSS . 113

VI

Contents

7.5.1 Vector addition/subtraction and point-wise multiplication 113
7.5.2 Vector exponentiation . 115
7.5.3 Vector-matrix multiplication . 116

7.6 Arithmetic in lattice-based schemes . 118

8 Top-level design 131
8.1 NTRU . 134

8.1.1 Operation scheduling . 135
8.1.2 Design synthesis and implementation 136

8.2 HQC . 142
8.2.1 Encoders and decoders for Reed-Solomon and Reed-Muller codes 142
8.2.2 Operation scheduling . 154
8.2.3 Design synthesis and implementation 157

8.3 CROSS . 162
8.3.1 Arithmetic unit . 162
8.3.2 Merkle and seed trees . 165
8.3.3 Operation scheduling . 167
8.3.4 Design synthesis and implementation 169

9 Conclusions 171

Bibliography 173

Acronyms 187

VII

List of Figures

1.1 Representation of the Key Establishment Mechanism 5
1.2 Second round candidates in the NIST PQC standardization 6

3.1 Integer lattice L ⊂ Z2 . 24
3.2 Babai’s closest vertex algorithm in L ⊂ Z2 25

4.1 Working principle of an Error Correction Code 38
4.2 Overview of HQC’s working principle and use of the fixed public code . 44
4.3 Simplified example of CROSS seed and commitment trees 57

5.1 Merkle-Damgård construction . 67
5.2 Sponge construction . 68
5.3 Keccak state representation . 69

6.1 Sampler unit of CROSS elements . 89

7.1 Scheduling of operations in the Comba multiplier 100
7.2 Scheduling of operations in the parallelized schoolbook multiplier 102
7.3 Structure of the parallelized schoolbook multiplier x-net 103
7.4 Structure of the parallelized schoolbook multiplier x-net for NTRU . . . 106
7.5 Structure computing the NTRU embed functions 107
7.6 Addition of a polynomial in Rw to another one in R 109
7.7 Optimization in multiplications by a fixed operand 110
7.8 Multiplication of a polynomial in Rw by another one in R 112
7.9 x-net architectures tailored for multiple polynomial rings 121
7.10 Comparison of x-net designs for lattice-based schemes 125
7.11 Multiplexers introduced by the unified parallelized schoolbook multiplier 126

IX

List of Figures

7.12 Comparison of Comba designs for lattice-based schemes 129

8.1 Overview of module instantiation in the top-level design 132
8.2 Example of memory port binding . 133
8.3 Example of variable liveness analysis 134
8.4 Schedule of operations for the NTRU.KEM scheme 135
8.5 Reed-Solomon encoder to codewords in systematic form 144
8.6 Syndrome polynomial computation . 145
8.7 Minimal length LFSR generated by the Berlekamp-Massey Algorithm . . 147
8.8 Enhanced Parallel Inversionless Berlekamp-Massey Algorithm architecture 148
8.9 Enhanced Chien Search and Error Evaluation architecture 149
8.10 Hadamard transform layer and its butterfly unit 151
8.11 Pipelined comparison tree . 152
8.12 Encoding and decoding of a concatenated ECC 152
8.13 Schedule of operations for the HQC.KEM scheme 155
8.14 Arithmetic unit for CROSS . 162

X

List of Tables

1.1 NIST security categories for PQC standardization process 5

3.1 Differences between NTRU-HPS and NTRU-HRSS 29
3.2 Size of keys and ciphertext of NTRU-HPS and NTRU-HRSS 33

4.1 HQC parameter sets . 47
4.2 Comparison of BIKE and HQC . 50
4.3 CROSS parameter sets . 53

5.1 Keccak instances in SHA-3 . 70
5.2 Resistance comparison of NIST’s Secure Hash Algorithms 71
5.3 Keccak FPGA cores . 73

6.1 Comparison of fixed-weight vector samplers 84
6.2 Comparison of fixed-weight vector samplers for HQC 86
6.3 FPGA synthesis results for vector samplers in CROSS 90

7.1 Comparison of polynomial multiplication algorithms 98
7.2 Performance of hqc256 polynomial multipliers 114
7.3 FPGA synthesis for vector subtraction and point-wise multiplication . . . 114
7.4 FPGA synthesis results for exponentiation of CROSS vectors 115
7.5 FPGA synthesis results for vector-matrix multiplications in CROSS . . . 117
7.6 Comparison of polynomial rings of some lattice-based schemes 119
7.7 Number of multiplications in lattice-based schemes 120
7.8 Synthesis results for a x-net multiplier on FPGA 123
7.9 Synthesis results for a x2-net multiplier on FPGA 124
7.10 Unified multiplier synthesis results . 127

XI

List of Tables

7.11 Synthesis results for a Comba multiplier on FPGA 128

8.1 Design space exploration for the NTRU.KEM 138
8.2 Synthesis results for NTRU.KEM on FPGA 139
8.3 ASIC synthesis results for NTRU.KEM 140
8.4 Synthesis results for the RS encoder on FPGA 145
8.5 Synthesis results for the RS decoder on FPGA 149
8.6 Synthesis results for the RM encoder on FPGA 150
8.7 Synthesis results for the RM decoder on FPGA 153
8.8 Parameters of the RM/RS fixed code . 153
8.9 Synthesis results for the RM/RS encoder and decoder on FPGA 154
8.10 Synthesis results for HQC.KEM of a unified design on FPGA 158
8.11 Synthesis results for HQC.KEM client/server on FPGA 160
8.12 Logic of the FSA managing the CROSS arithmetic unit 163
8.13 FPGA synthesis results for the CROSS arithmetic unit 164
8.14 FPGA synthesis results for CROSS Merkle and seed trees 166
8.15 FPGA synthesis results for CROSS top-level designs 169

XII

List of Algorithms

1 NTRU.DPKE-KEYGENERATION . 30
2 NTRU.DPKE-ENCRYPTION . 31
3 NTRU.DPKE-DECRYPTION . 32
4 NTRU.KEM-KEYGENERATION . 33
5 NTRU.KEM-ENCAPSULATION . 34
6 NTRU.KEM-DECAPSULATION . 35
7 HQC.PPKE-KEYGENERATION . 46
8 HQC.PPKE-ENCRYPTION . 46
9 HQC.PPKE-DECRYPTION . 47
10 HQC.KEM-KEYGENERATION . 47
11 HQC.KEM-ENCAPSULATION . 48
12 HQC.KEM-DECAPSULATION . 48
13 CROSS-ID . 55
14 CROSS.KEYGENERATION . 59
15 CROSS.SIGN . 60
16 CROSS.VERIFY . 63
17 Pack vectors with elements approximately a power of two 77
18 Unpack vectors with elements approximately a power of two 77
19 Rejection sampling . 79
20 Modulo remainder sampling . 79
21 Rejection sampling with modulo . 80
22 Fixed-weight rejection sampling . 81
23 Constant time fixed-weight rejection sampling 81
24 Fixed-weight sampling via scramble 82
25 Fixed-weight sampling via sorting . 83
26 Non-uniform Fisher-Yates fixed-weight sampling 83
27 Modular addition/subtraction between vectors 93

XIII

List of Algorithms

28 Modular addition/subtraction between vectors when one operand is sparse 93
29 Barrett reduction . 94
30 Mersenne primes reduction . 95
31 Schoolbook polynomial multiplication algorithm 96
32 Karatsuba polynomial multiplication algorithm 97
33 Comba polynomial multiplication algorithm 99
34 Parallelized schoolbook polynomial multiplication algorithm 102
35 LIFT operation in NTRU-HRSS using multiplications 107
36 LIFT operation in NTRU-HRSS without using multiplications 108

XIV

CHAPTER1
Introduction

1.1 Brief overview on Quantum Computers

In recent times, research efforts pioneered by companies such as IBM, Google, Rigetti,
and Intel in the field of development of quantum computers with high qubit count and
improved reliability have spurred researchers’ interests from many different fields such
as chemistry, material science, and cryptography.

On December 4, 2023 IBM unveiled [Cas23] a 1121 qubits Quantum Processor Unit
(QPU), codename Condor, surpassing the thousand qubit integrated on a single QPU
mark, confirming the exponentially-growing qubits density provided by their underlying
superconducting technology in the last decade. On the same day, IBM also presented
Heron, a 133 qubit QPU able to improve coherency time allowing the implementation
of circuits with up to 5k quantum gates. Intel, on the other end, recently switched to a
promising silicon spin qubit quantum computer [Ney+24]. Leveraging its expertise in
semiconductor technology and their advanced manufacturing plants, Intel could produce
such a technology with an extremely high qubit density (100 nm pitch between qubits)
and in high volume.

Nonetheless, quite a large number of limitations afflicts current technology, delaying
the a practical showcase of a ‘quantum advantage’, also known as ‘quantum supremacy’.
Ideal qubits are isolated from the external environment, and maintain coherency indef-
initely, but real qubits are far from the ideal ones. Coherency time, in the range of few
tens or hundreds of µs, heavily limits the size of circuits implementable. Similarly,

1

Chapter 1. Introduction

noise-inducted errors coming due to the undesirable interaction with the environment,
require the introduction of Error-Correcting Codes (ECCs) that, along with technology-
specific constraints, impose huge overheads. Finally, there is no clear solution enabling
scalable Quantum Random-Access Memory (QRAM) key technology [JR23] in the near
future, severely limiting the capabilities of current quantum computers.

An important step towards the implementation of large-scale fault-tolerant quantum
algorithms was achieved in 2024 by [Ach+24]. In their work they established that it is
now possible to profitably apply ECC to quantum algorithms to generate reliable logical
qubits starting from a larger number of physical qubits having a higher error rate. Fur-
thermore, the superpolynomial speedup offered by Shor’s algorithm [Sho94], compared
to known classical algorithms, in the order finding problem is an exceptionally attractive
motivation for the research community to restlessly pursue the development of quantum
technologies. Moreover, the more broadly applicable Grover’s algorithm [Gro96] for
finding zeros in a function, which only provides quadratic speedup over the classical
solution, is nonetheless another appealing reason.

1.2 Applications of Quantum Algorithms to Cryptography

Generally speaking, to apply Shor and Grover algorithms and gain some advantage over
classical computers, an algorithm of interest must be reformulated and reduced to an
order finding problem, or finding zeros in a function.

In the field of cryptography, a category of algorithms referred to as Public-Key Cryp-
tography (PKC), or asymmetric cryptography, allow to ensure crucial attributes such as
confidentiality, authenticity, and non-repudiation, all without the need to be sharing a
single secret value among parties. This is made possible through the use of an un-
derlying one-way function. Public-key cryptography is at the core of many network
protocols, such as Transport Layer Security (TLS), Secure SHell (SSH), and Pretty
Good Privacy (PGP). Furthermore, many other algorithms use this ubiquitous yet in-
conspicuous technology, guaranteeing many security aspects in our daily digital life,
from shopping on online platforms to making electronic payments. As a result, public-
key cryptography remains a fundamental pillar of modern digital security, seamlessly
protecting our online interactions and transactions, often without our direct awareness.

One of the most commonly used asymmetric algorithm is Rivest-Shamir-Adleman
(RSA), acronym from its inventors, who in 1977 designed an algorithm to either con-
ceal a message or create its digital signature, starting from a pair of keys, one kept
private by the owner and another made public and shared to anyone. RSA security,
preventing an agent without the private key to decipher a message or forge signatures
impersonating the owner of the keys, can be reduced to on the hardness of the Integer
Factorization Problem (IFP): given a composite integer N = p · q, where p and q are
unknown sufficiently large primes, it is hard to determine p and q. A more efficient al-
ternative to RSA is given by the algorithms belonging to the category of Elliptic Curve
(EC), such as ECDSA, ECDH, and Ed25519. Those algorithms, by contrast, depend

2

1.2. Applications of Quantum Algorithms to Cryptography

on the hardness of solving the Elliptic Curve Discrete logarithm Problem (ECDLP):
given a non-singular elliptic curve E defined over a field F, a sufficiently large point G
that generates a large cyclic subgroup in the additive group of the points of E , and a
point P in such subgroup, it is hard to find an integer k such that P = kG

Both of these difficult problems are specific instances of the Hidden Subgroup Prob-
lem (HSP) for finite abelian groups. Given only a classical computer, for appropriate
parameter choices, these problems require an impractical amount of computational re-
sources to be solved, making it virtually impossible to break these one-way functions on
conventional computers within a timeframe of a thousand years. Unfortunately, those
hard problems can be reduced to an order finding problem, enabling the use of Shor’s
algorithm and thus be solved in exponentially faster (thus, in polynomial time) by an
attacker having access to a quantum computer. Considering the current status of quan-
tum computers, it is estimated that 20 million noisy qubits are required to break RSA
2048 in 8 hours [GE21], and similarly 13 million noisy qubits to break 256-bit ECDSA
in 24 hours [Web+22]. A recent update of the document from the German Bunde-
samt für Sicherheit in der Informationstechnik (German Federal Office for Information
Security) (BSI) [BSI25] reporting the status of the development of quantum computers
stated that several technical obstacles in fault-tolerant quantum computing were recently
solved, forecasting the availability of a cryptographically relevant quantum computer in
16 years.

Symmetric cryptography is a class of algorithms that provide guarantees of confiden-
tiality more efficiently with respect to asymmetric cryptography, particularly for bulk
encryption of data, both in case of communication between two agents on an unsecure
channel and for data at rest encryption. The drawback is that the exchange of the shared
secret encryption/decryption key between the communicating agents over an insecure
communication channel still requires public key cryptography. Block ciphers belong
to this symmetric cryptography class, with Advanced Encryption Standard (AES) being
the most diffused example pervasively present in most of the devices. AES offers modes
of operations, such as Galois Counter Mode (GCM), to additionally guarantee data in-
tegrity and authenticity, and is deemed immune to Shor-based cryptanalysis attacks. A
recent work [SP24] extensively documented the impact of quantum computers on the
security of AES, estimating the physical resources required by a Grover-based algo-
rithm to break it in a reasonable amount of time, as symmetric cryptographic algorithms
are not affected by Shor’s algorithm.

Under very conservative assumptions, symmetric cryptography and Hash Message
Authentication Code (HMAC) are deemed to remain secure against the application of
Grover-like algorithms [ETS17], though with a roughly halved security margin since
their underlying hard problems can be reduced to finding roots of a generic Boolean
function. Doubling the key size is a practical and straightforward solution to secure fu-
ture communications and data communications protected via symmetric encryption, or
message authentication performed via HMACs. Conversely, PKC algorithms currently
in use cannot simply adopt this strategy due to the more effective security reduction

3

Chapter 1. Introduction

offered by a Shor-based cryptanalysis attacks.
Therefore, one of the most pressing challenges introduced by the advancements

in the hardware development of Quantum Computers is the design of new asymmet-
ric cryptographic algorithms whose security is based on hard problems not reducible
to those that quantum computers can solve exponentially faster than a classical com-
puter, i.e. IFP, ECDLP. A paradigm shift towards Quantum-Safe Cryptography, some-
times also referred as Quantum-Resistant Cryptography or Post-Quantum Cryptography
(PQC), is imperative. While numerous new proposals are being assessed, a critical effort
is currently underway to validate their security properties to avoid catastrophic effect in
case a post-quantum scheme is discovered to be insecure even against classical com-
puters. In the immediate future, the best strategy consists in the use of hybrid schemes,
which are combining a post-quantum cryptoscheme with an asymmetric scheme already
in use, to have the proof that breaking their combination requires the ability of breaking
both cryptographic schemes.

1.3 Post-Quantum Cryptography standardization

In December 2016, the National Institute of Standards and Technology (NIST), a US
government agency promoting widely adopted adopted Federal Information Processing
Standard (FIPS) such as FIPS 197 [EBB23] for the AES and FIPS 202 [PM15] for the
Secure Hash Algorithm SHA-3, announced the Post-Quantum cryptography Standard-
ization Process, a public call for Key Establishment Mechanisms (KEMs) and Digital
Signatures (DSs) with security properties against both classical and quantum-computer-
aided cryptanalysis and attacks. The submitted proposals should provide multiple secu-
rity margins via parameters selection to align to the security strengths offered by existing
NIST standards in symmetric cryptography, allowing a meaningful comparison of the
algorithms and evaluating the security/performance trade-offs. Moreover, KEM can-
didates should also satisfy the INDistinguishability under adaptive Chosen Ciphertext
Attack (IND-CCA2) property, providing a safer use in many contexts and protocols, as
it is possible to generate a key once and use it many times. The working principle of a
KEM is depicted in Figure 1.1, and a detailed overview of the security classification is
reported in Table 1.1.

In November 2017, among the 82 candidate algorithms submitted, only 69 met the
minimum acceptance criteria. In January 2019, after a first round of evaluation based
on their security and performance, 26 candidates moved to the next evaluation phase
[Ala+19]. The proposed schemes were roughly classified by their core characteristics in
several categories: lattices, ECCs, multivariate equations, isogeny graphs, hash-based
signatures. Lattice-based candidates are the most numerous and versatile group, the
only one covering both KEM and DS categories, as depicted in Figure 1.2. The security
of Lattice-based schemes rely on the hardness of the Shortest Vector Problem (SVP)
or the Closest Vector Problem (CVP), challenges capturing the researchers’ interest for
the past 30 years. Code-based candidates belong to another promising group, and are

4

1.3. Post-Quantum Cryptography standardization

BA

Attacker

1) KeyGen

2) Encapsulation 3) Decapsulation

Public key
B

Private key
B Shared key

Figure 1.1: Representation of the Key Establishment Mechanism of a shared session key between parties
A and B over an unsecure channel wiretapped by an attacker. B initially generates a key pair,
and transmits the public key to A. A then encrypts a fully random session key with B’s public key
obtaining the ciphertext containing the encapsulated key, and sends it to B. Only B, has the private
key corresponding to the public key employed by A, is able to retrieve the shared session key.

Table 1.1: NIST security categories for PQC standardization process. Each security level defines the
computational resources, measured as the number of classical boolean operations (gates) or the size
of a quantum circuit, that are required to successful mount the described attack. δ is the quantum
circuit depth, having realistic values ranging from 240 (the number of quantum gates envisioned to be
serially performed in a year), to 264 (the number of boolean gates serially performed in a decade),
and 296 (the number of gates that atomic scale qubits with speed of light propagation times could
perform in a millennium).

Security Attack description Estimated gates cost
level quantum classical
1 key search on a block cipher with a 128-bit key 2157/δ 2143

2 collision search on a 256-bit hash function – 2146

3 key search on a block cipher with a 192-bit key 2221/δ 2207

4 collision search on a 384-bit hash function – 2210

5 key search on a block cipher with a 256-bit key 2285/δ 2272

primarily relying on the hardness of the Syndrome Decoding Problem (SDP) that also
proved its importance in the past 45 years.

In July 2020, NIST announced [Moo+20] that Classic McEliece, CRYSTALS-
Kyber, NTRU, and SABER were advancing to a third and final evaluation round in
the KEM category, and that would elect one among them to be standardized. A similar
procedure would involve CRYSTALS-DILITHIUM, FALCON, and Rainbow for the
DS category. Moreover, as most of the finalists are relying on hard problems related
to lattices, the BIKE, FrodoKEM, HQC, NTRU Prime, SIKE, GeMSS, Picnic, and
SPHINCS+ algorithms would proceed on a parallel standardization branch as alternate
candidates to promote variety in a portfolio of post-quantum algorithms in case of major
security breakdowns. This choice proved wise, considering that in July 2022, a classic
polynomial time cryptanalysis attack on SIKE [CD23] was revealed, leading to the
retrieval of the secret keys in a few hours on a standard computer. In the same year

5

Chapter 1. Introduction

Key Establishment Mechanism Digital Signature

Three Bears
SABER

Round5

NTRU Prime

NTRU
NewHope

LAC
FrodoKEM

CRYSTALS-Kyber

qTESLA
FALCON

CRYSTALS-Dilithium

lattice-based

SPHINCS+
Picnic

hash-based

Rainbow
MQDSS
LUOV

GeMSS
multivariate

SIKE
isogeny graphs

RQC

ROLLO
NTS-KEM

LEDAcrypt

HQC
Classic McEliece

BIKE
code-based

Figure 1.2: Second round candidates in the NIST Post-Quantum Cryptography standardization process,
categorized by their core characteristics. Among the 26 candidates, 17 of them are Key Establishment
Mechanisms and 9 are Digital Signatures.

Rainbow, a finalist in the DS category, was shown to be breakable by an exponential
time, although fast enough attack [Beu22], able to recover the private key for the lowest
security level using a laptop over a weekend.

The third selection round lasted two years, proving that a thorough evaluation of a
new asymmetric algorithm is exceptionally challenging [Ala+22b]. In July 2022, NIST
reported that CRYSTALS-Kyber would be standardized as the Module-Lattice-Based
Key-Encapsulation Mechanism (ML-KEM) in FIPS 203, and that in the digital signa-
tures category would proceed to standardize all the remaining proposals: CRYSTALS-
Dilithium in FIPS 204 under the name of Module-Lattice-Based Digital Signature Stan-
dard (ML-DSA), SPHINCS+ in FIPS 205 under the name of Stateless Hash-Based
Digital Signature Standard (SLH-DSA), and FALCON in FIPS 206 under the name
of Fast-Fourier Transform over NTRU-Lattice-Based Digital Signature Algorithm (FN-
DSA). In the track for alternate candidates selection, three KEMs based on the hardness
of the syndrome decoding problem BIKE [Ara+22], Classic McEliece [Ber+22], and
HQC [Agu+24a] advanced to a final fourth round of selection. The PQC standardiza-
tion was officially concluded in March 2025 when NIST announced in [Ala+25b] that
only HQC was considered for the standardization, and expected to be finalized in 2027.
Final specifications for FIPS 203 [RL23c], FIPS 204 [RL23b], and FIPS 205 [RL23d]
were released on August 13 2024, with the FIPS 206 deferred later in the year.

Regarding the digital signatures, in October 2020 NIST issued the SP 800-208 spe-
cial publication [Coo+20] to supplement the FIPS186 [RL23a] regulating the Digital
Signature Standards, introducing two stateful hash-based signature schemes eXtended
Merkle Signature Scheme (XMSS) and Leighton-Micali Signature (LMS), along with
their multi-tree variants. Relying only on the security of cryptographic hash functions,
both algorithms are confidently considered secure against both classical and quantum
attacks, but they are not suitable for general use: an accidental reuse of a key-pair for a
one-time signature on distinct messages enables an attacker to generate forgeries (valid
signatures for other messages). Consequently, a state must be carefully maintained to

6

1.3. Post-Quantum Cryptography standardization

keep track of the one-time private keys that have been used, severely limiting the ap-
plicability to some specific applications, such as firmware code signing. By contrast,
state-less hash-based signatures such as SLH-DSA are designed to be safely used as a
drop-in replacement for already in use signature schemes, and are generally considered
a more conservative choice in term of security compared to ML-DSA and FN-DSA,
although having longer signatures and taking more time to generate a signature. To
the end of determining other alternatives, in September 2022 NIST announced another
public call for general-purpose Digital Signature specifically for schemes not based on
structured lattices such as CRYSTALS-Dilithium and FALCON, although being open
to lattice-based candidates significantly outperforming them in performance or security.
In June 2023 NIST received 50 submissions, 40 of which were deemed compliant with
the submission requirements, and after a first evaluation round only 14 candidates were
selected [Mil+24] for further assessment in a second 12-18 months long review win-
dow. Notably, only two code-based DS schemes, namely CROSS and LESS, passed
the first evaluation barrier, with the former being praised for the excellent performance
and signature sizes when compared to SLH-DSA.

The draft version of NIST Interagency Report (IR) 8547 [Moo+24] published in
November 2024 outlines NIST’s planned strategy for shifting from cryptographic algo-
rithms vulnerable to quantum computing threats to those designed for a post-quantum
era. It highlights the current cryptographic standards at risk due to quantum advance-
ments, as well as the quantum-resistant alternatives to be used during the transition,
aiding federal agencies, industries, and standards organizations in updating their tech-
nology, products, services, and infrastructure to embrace post-quantum cryptography
(PQC). In January 2025 NIST released the initial public draft of the SP 800-227 [Ala+25a]
special publication which provide a detailed guidance on how to properly use KEMs,
giving some recommendations on their secure implementation. Starting from version
3.5.0 released in April 2025, the widespread software library OpenSSL [The25b] in-
cluded the support for the standardized PQC algorithms ML-KEM, ML-DSA, and SLH-
DSA, and set the hybrid KEM algorithm X25519MLKEM768 the default TLS keyshare
choice. At the same time, the release 10.0 of OpenSSH [The25a] introduced the sup-
port to the hybrid scheme mlkem768x25519-sha256 combining the quantum resistant
ML-KEM algorithm with the efficient ECDH scheme X25519.

Along with the U.S. based NIST standardization body, other national agencies are
already defining guidelines and roadmaps for the post-quantum transition. The BSI,
reported an extensive study on the current status of quantum computer development
[BSI25]. Starting from 2019 the BSI agency provides a technical guideline for the
use of cryptographic mechanisms [BSI24], particularly recommends the implementa-
tion of a KEM by means of FrodoKEM, Classic McEliece, and ML-KEM after its
final standard becomes available. For the category of digital signatures, BSI recom-
mends to use the stateful hash-based signature schemes XMSS and LMS/HSS, along
with ML-DSA and SLH-DSA after their final standards becomes available. In any case,
BSI encourage the use of hybrid solutions, and for the NIST standards the use of secu-

7

Chapter 1. Introduction

rity categories 3 and 5. The Agence nationale de la sécurité des systèmes d’information
(French Cybersecurity Agency) (ANNSI) produces French national technical guidelines
for cryptography in security products, regularly updating them to the best practices, and
certifying products using cryptography for governmental use. The ANNSI agency re-
cently released a position paper on post-quantum cryptography [ANS23], giving notice
that post-quantum safety in the form of hybrid schemes will be mandatory starting from
2025 for some specific cases, with a list of accepted algorithms that might differ from
the ones from NIST standards. Beyond 2030 it is intended to drop the requirement of
hybrid schemes in favor of plain post-quantum algorithms.

A major concern moved by all those agencies is on how hybrid schemes should be
implemented, particularly for the KEMs. The European Telecommunications Standards
Institute (ETSI) released the technical specification ETSI TS 103 744 [ETS20] which
includes two suggested KEM combiner modes CatKDF and CasKDF, both making use
of a Key Derivation Function (KDF). Some recommendation for KDF in KEMs are
provided by NIST in the special publication SP 800-56C rev.2 [BCD20]. The hybrid
schemes for digital signatures are however simpler in design, as it is sufficient to both
validate the pre-quantum and the post-quantum digital signatures.

1.4 Challenges of a Post-Quantum transition

Even if the threats posed by quantum computers appear not to be concerning in the
near future, the current situation asks for immediate action to protect against retroactive
attacks of the type ‘store now, decrypt later’ and ‘verify now, forge later’, undermining
confidentiality and authenticity properties, respectively.

The complex life-cycle of a new cryptographic standard follows some rigorous steps.
Starting from the ideation of a new cryptoscheme, an exploration of the parameters al-
low to identify several security-performance trade-offs, then assessed for few years by
cryptanalyst, which eventually may impose some modifications to the scheme parame-
ters. In case no devastating mathematical attacks are found, the performance and effi-
ciency of Software (SW) prototypes are estimated, possibly proposing pre-computations
improving the performance and new algorithms enriching the possible trade-offs. Hard-
ware (HW) accelerators are then investigated, from full HW designs, HW/SW co-design
and extensions of the Instruction Set Architecture (ISA).

In parallel Side-Channel Attacks (SCAs) are attempted to assess the practical se-
curity for in-the-field devices. These type of attacks do not rely on the mathematical
properties of the scheme as for cryptanalysis, but rather on the fact that the device exe-
cuting the algorithm is not an ideal black box and transmits sensitive information with
the environment via multiple side-channels, such as the power consumption and the
response delay. The large family of attacks can be classified as follows:

Timing attacks leverage variations in the computation runtime caused by cache mem-
ories and complex CPU instructions (e.g., division) to correlate the computation
latency with the values of sensitive material such as the private key.

8

1.4. Challenges of a Post-Quantum transition

Simple Power Analysis (SPA) inspects the power consumption of a target device dur-
ing the single execution of an operation employing the sensitive material to visually
discern the individual bits composing it.

Differential Power Analysis (DPA) uses statistical techniques over many power traces
(vertical attack) or several points of different operations in the same execution trace
(horizontal attack) to find correlations between the intermediate values dependent
on secret key and the power consumption.

Correplation Power Analysis (CPA) is a more targeted form of DPA that assumes a
power model – such as the Hamming Weight approximating the dynamic power
consumption of a switching transistor – to compute the correlations between the
predicted power consumption under the model used and actual power traces to
extract the private key.

Template attacks build detailed power models, called templates, for specific opera-
tions of a cryptographic scheme executed on a specific device, and then match
them to new traces captured on a target device identical to the one used to build the
models to deduce secrets. Instead of classical templates (e.g., Gaussian models),
attackers now often use neural networks, decision trees, or support vector ma-
chines to model the relationship between traces and secret data more effectively,
especially in complex or noisy environments.

Fault attacks intentionally induce faults during the computation on the device via glitches
in the power or clock lines, or using electromagnetic (EM) or lasers pulses. By an-
alyzing the behavior and outputs of the faulty execution and comparing them to
expected ones, attackers can deduce secret information or bypass security checks.

In many cases the power analysis can be easily transformed into a less invasive and
evident operation by merely observing the EM emissions of the device from a narrow
distance.

To hinder these powerful attacks, it is common that in-the-field devices apply several
countermeasures in forms of algorithms running in constant-time, hiding techniques,
fault-tolerant masked algorithms, or a combination of them to have a broad range of
cost/protection trade-offs. Employing constant-time algorithms safely address the tim-
ing attacks, while common hiding techniques introducing random runtime variations
via casual clock frequency variations or the introduction of random stalls just raise the
noise floor in the retrieved traces, and consequently the attacker either needs more so-
phisticated and expensive tools or must obtain more traces. Only the masking coun-
termeasure is proved to be secure in the probing model, where an attacker can observe
a limited number of intermediate values (or probes) without learning the secret. This
is obtained by splitting all the sensitive variables into multiple random shares, so that
no single share reveals information about the secret. However, masking is known to be
computationally expensive, as when considering a d shares split, some operations can

9

Chapter 1. Introduction

have O(d2) quadratic complexity, and a non negligible quantity of randomness is con-
sumed to refresh the share splitting. Glitch-resistant countermeasures such as Threash-
old Implementations (TI) [NRS08] and Domain-Oriented Masking (DOM) [GMK16]
are promising techniques used to carefully design the masked circuits to achieve the
desired probe security level. Compared to TI, DOM can arbitrary scale to high-order
masking protection while having better efficiency than the TI approach, but requires
fresh randomness during the operation of non-linear gates. The changing of the guards
technique [Dae17] tries to maximize the randomness reuse. A comprehensive survey
is provided in [CGF21], and some of the challenges in protecting PQC schemes are
reported in [Saa23].

The new post-quantum cryptographic algorithm can also be assessed in real use-
case scenarios as protocols in realistic simulated or testing environments, exciting any
subtle incompatibility. If the new cryptoscheme shows promising metrics without road-
blocking criticality, the standardization process and the update of regulations may begin,
with new Request For Comments (RFC) for updated protocols. When everything gets
approved, the incremental deployment of the new cryptographic scheme can start, with
an initial phase where the replaced algorithm is deprecated but still available to use for
legacy reasons, and then finally marked for removal. In case of cryptographic algo-
rithms, there are several complications due to the large number of national regulations
(military, commercial, etc.) that govern the use of cryptography. Moreover, as demon-
strated by the old and unsecure hash algorithms MD5 and SHA-1, is quite difficult to
deprecate in short time some cryptographic primitives, even more if deeply integrated
in hardware. As the standardization process of post-quantum cryptoschemes goes on,
employers of cryptographic primitives and network protocols should start preparing an
inventory of the cryptoscheme they are relying on, with the ultimate goal of planning
their phase out in favour of post-quantum alternatives, and even trying to improve the
cryptographic agility of their products.

With the widespread use of cryptography in many applications and protocols comes
the need of offloading the execution of the cryptographic primitives to dedicated accel-
erator, which nowadays comes at a relatively small area cost, allowing to free up Centra
Processor Unit (CPU) time to other valuable tasks. Within this context, Smart Net-
work Interface Cards (NICs) are programmable accelerators that are widely employed
in data center networking to offload some tasks from server CPUs for security or ef-
ficiency purposes. To give some use cases, this performance boost can be particularly
useful in bastion hosts where the traffic is encrypted/decrypted at the ends of two cor-
porate networks, and frequent rekeying is desired for security reasons. Analogously, a
front-end server of a three tier architecture typically manages a significant amount of
TLS encrypted connections, while acting very little on the involved data which are for-
warded to the second and third tier. In a REpresentational State Transfer (REST) based
Application Programming Interfaces (APIs), which is a very common case nowadays,
the amount of data per request is relatively limited, in turn making the overheads more
visible. Furthermore, to improve the secure management and use of cryptographic keys,

10

1.4. Challenges of a Post-Quantum transition

a commercially established practice consists in the use of physically isolated Hardware
Security Moduless (HSMs) providing a higher level of trustworthiness in terms of key
material isolation and correctness and compliance verification.

Regarding the design of hardware accelerators for the cryptoscheme, there are many
challenges derived by the large number of degrees of freedom.

Type of accelerator
Full hardware designs offer best performance, possibly exploiting any parallelism
the cryptographic algorithm may offer, at cost of an extensive design effort and
complex analysis and optimization. Hardware/software co-designs are maximizing
the design effort rewards by offloading only the most demanding sub-algorithms
composing the scheme from the CPU and interfacing with it via special purpose
registers and directly working with the centralized memory. ISA extensions are
moving the HW/SW synergy to a finer grain, accelerating particular operations in
sub-algorithms, while also being deeply integrated in the CPU architecture.

Degree of parallelism
Software implementations must comply to some set of instruction set extensions to
guarantee broad compatibility. In NIST PQC standardization, Haswell is the refer-
ence x86_64 CPU architecture from Intel from 2013 compatible with the AVX2
Single Instruction Multiple Data (SIMD) extension, enabling parallel execution of
complex instructions on 256-bits registers. In case of hardware designs, there are
no theoretical constraints on the size and number of parallel operations performed
concurrently, leaving to the designer the freedom to choose the best solution suit-
ing its needs, although many practical limitations are imposed by memories when
computational units are interconnected to them.

Design Space Exploration (DSE)
Having many degrees of freedom requires to conduct a meticulous and extensive
exploration of the possible solutions, determining many design points with per-
formance, area, and efficiency values. Determining the Pareto front allows to re-
strict the attention to only a subset of meaningful choice of trade-offs. Notably,
the exploration is conditioned by the target platform being a Field Programmable
Gate Array (FPGA) or Application Specific Integrated Circuit (ASIC), the former
largely used for prototypes or small volume production runs, and the latter having
an even higher non-recurring engineering cost barrier that can only be amortized
for very large production batches. FPGA deployments of cryptographic algorithms
are also interesting from a flexibility standpoint, as testified by the employment of
FPGAs in the automotive and telecommunication realms, where the long life cycle
of the certified deployments takes precedence on the device power budget.

Validation
The complexity of the design along with the non-standardized interfaces make the
validation process a particularly challenging task, and having a dedicated team for

11

Chapter 1. Introduction

that is not only a best practice but an actual need for extensive projects such as
cryptographic accelerators. The IEEE 1800.2 Universal Verification Methodology
(UVM) [IEE20] is a standardized methodology widely adopted by the industry and
supported by the major Electronic Design Automation (EDA) vendors such as Ca-
dence, Synopsys, and Siemens. The verification framework help testing engineers
to reuse most of the simulation code and simplifying the reproducibility.

Side-Channel Security
A discriminant factor in the evaluation of a cryptoscheme is the cost to be sus-
tained to protect the sensitive operations in the cryptographic scheme from SCA.
When comes to software-based protections, is common to assist a decrease in per-
formance by one or even more orders of magnitudes, depending on how difficult
is to protect the cryptographic algorithm. For hardware implementations such cost
can be substantially reduced due to the inherently more flexible architecture with
respect to the one of a CPU.

1.5 Contributions

Within the context of hardware accelerators, this thesis is presenting a thorough de-
scription of the essential components of two Post-Quantum cryptographic schemes in
the standardization process held by NIST from the two most prominent categories, the
lattice-based N-th degree Truncated polynomial Ring Units (NTRU) and the code-based
Hamming Quasi-Cyclic (HQC) and Codes and Restricted Objects Signature Scheme
(CROSS).

Enabled by the high flexibility of the designed components, some Design Space Ex-
ploration results will be reported for key operations, such as the multiplication between
polynomials and the generation of random polynomials, with particular focus on the
latency, occupied area, and efficiency metrics. A higher-level exploration for the NTRU
scheme is also presented, showcasing the benefits of decoupled components with the ul-
timate goal of producing from the same design a high-performance unit and a compact
solution.

The main investigation outcomes are three full hardware designs for the NTRU,
HQC, and CROSS cryptographic schemes, and a polynomial multiplier unit for lattice-
based schemes suited for a HW/SW co-design.

Many of these results were also presented in journals and international conferences
[Ant+23b; Ant+23a; Ant+24a; Ant+24b; Ant+24c; ABP25]. Throughout this thesis,
the term ‘we’ may appear to either involve the reader in the discussion, or to high-
light the contributions of the other authors of the papers, my supervisors from both
the academia and industry, notably professors Gerardo Pelosi and Alessandro Barenghi
from the Politecnico di Milano university, and Ruggero Susella from ST Microelectron-
ics. Moreover, the results concerning the CROSS design are obtained from the joint
work with Patrick Karl, Ph.D. candidate at the Technical University of Munich. Credits
to his contributions are attributed in the captions of tables and figures.

12

1.6. Thesis outline

1.6 Thesis outline

A brief outlook of the theoretical background, the notation, and methodologies used
throughout the thesis are presented in chapter 2. Lattice-based and code-based prob-
lems and cryptographic schemes are described in chapter 3 and chapter 4, respectively.
The hash functions, one of the key components guaranteeing fundamental security prop-
erties, are introduced in chapter 5. The algorithms generating elements conforming to
their defining set are presented in chapter 6. The chapter 7 describes the arithmetic al-
gorithms used by the presented cryptographic schemes. Finally, the compositions of the
top-level designs, with the description of units specific for each cryptographic scheme,
are illustrated in chapter 8, and the results are compared to the state-of-the-art.

13

CHAPTER2
Preliminaries and design methodology

This chapter provides the necessary foundation for the work presented in this thesis,
introducing to the notation used throughout this document and the methodology em-
ployed to design, implement, and evaluate the proposed solutions. A brief theoretical
background section describes the notions underpinning this research.

2.1 Theoretical background and notation

A binary string of length l ≥ 1 is denoted with a ∈ {0, 1}l. The concatenation a∥b of
two binary strings a ∈ {0, 1}l and b ∈ {0, 1}m is the l +m long string formed by the
first l binary digits of a immediately followed by the m binary digits of b. The Boolean
AND, OR, exclusive OR (XOR), and NOT operations are denoted by the symbols ∧,
∨, ⊕, and ¬, respectively.

A set is denoted by an uppercase letter in calligraphic font A, with the exception of
notable sets such as the natural numbers N, integers numbers Z, and real numbers R.
The cardinality of the setA is represented by |A|. An element a drawed with an uniform
distribution fromA is denoted as a $← A. When the procedure is made deterministic by
using a Cryptographically Secure Random Number Generator (CSPRNG) and an input
seed η ∈ {0, 1}l , l ≥ 1, we refer to it with a← CSPRNG(η,A).

With [0, 1) we denote the subset of R containing numbers i in the range 0 ≤ i < 1.
Let a, b ∈ N, then a divides b and conversely b is a multiple of a, for short a | b, if there

15

Chapter 2. Preliminaries and design methodology

exist c ∈ N such that ac = b, otherwise a ∤ b.

2.1.1 Vector space

A finite field is indicated by a blackboard bold uppercase letter F, and Fn is a vector
space of dimension n over the finite field F. A vector in a vector space is represented
by a boldface lowercase letter, e.g. v ∈ F, and is composed by n scalars in F refer-
enced with vi: v = [v0, v1, . . . , vn−1] such that vi ∈ F, ∀i ∈ {0, 1, . . . , n − 1}. The
null vector is represented by 0. The Euclidean norm of vector v is denoted by ∥v∥ =√
v1 + v2 + . . .+ vn−1, and the Hamming weight of the same vector v is the number

of non-zero coefficients in a vector and denoted as HW(v). Two vectors u,v ∈ F
are orthogonal if their scalar product u · v ≡ u⊤v = 0, where u⊤ denotes the trans-
pose of u. To simplify some algorithmic operations, a polynomial a(x) = a0 + a1x +
. . . + an−1x

n−1, for the sake of brevity also referred to as a, can be represented as a
n-dimensional vector composed by its coefficients a = [a0, a1, . . . , an−1] ∈ Fn.

A matrix of dimension n × m over the finite field F is represented by a boldface
uppercase letter, e.g. M ∈ Fn×m, where n is the number of rows, and m is the number
of columns composing the matrix, and Mi,j identifies the scalar element in F contained
in the matrix M at row i and column j. The transpose of the matrix M ∈ Fn×m has m
rows and n columns is indicated with M⊤ ∈ Fm×n. The identity matrix In is a n × n
matrix with ones on its main diagonal, and zeros elsewhere. A permutation matrix P
is an n × n square binary matrix such that each row and each column has a single 1
scalar (note that P−1 ≡ P⊤). Given M ∈ Fn×n, PM contains the permuted rows of
M, whereas MP contains the permuted columns of M. Let v ∈ Fn, then ROT(v) is the
n × n matrix obtained from the juxtaposition of v and a sequence of columns, each of
which is obtained through a vertical cyclic rotation of the previous one by one cell. Let
M ∈ Fn×m be a n rows by m columns matrix. Then [M, In] is the matrix with n rows
and m+ n columns constructed by the adjunction of the n columns of In after the ones
of M. Similarly, [M | Im] is the n +m rows by m columns matrix constructed by the
adjunction of the m rows of Im after the ones of M.

2.1.2 Algebraic structures

An algebraic structure consists of a set A, a collection of binary operations working
with the elements inA, such as addition and multiplication, and a set of axioms that the
operations need to satisfy, such as closure, commutativity and associativity.

A group G := (A, ·) is an algebraic structure with A close under one binary oper-
ation (·) that is associative, has an identity element e, and for which all elements are
invertible. In an additive group the group operation is defined using addition (+), with
the inverse of a ∈ A being −a and the identity element e = 0. Similarly, in a multi-
plicative group the group operation is the multiplication (∗), with the inverse element
defined as a−1, and the identity element e = 1. If the binary operation is also commu-
tative, the algebraic structure is an abelian group. If the group G has a finite amount

16

2.1. Theoretical background and notation

of elements, then the group order |G | corresponds to the cardinality of the set of its
elements. An element g ∈ G is called a group generator ⟨g⟩ = S when it produces
every element of the group S ⊆ G by repeatedly applying the group operation (·) to g
or its inverse element. In particular, S = {ng | n ∈ Z} when G is an additive group,
or S = {gn | n ∈ Z} when G is a multiplicative group (in this case, S is a cyclic sub-
group). The order of g is defined as the smallest positive integer m such that mg = e
or gm = e for additive or multiplicative groups, respectively. A set G can equally be
a generator of the subgroup ⟨G⟩ = S ⊆ G containing all the elements of G that can
be expressed as the composition of the elements in G and their inverses. Considering
an additive group, then S = ⟨{g0, . . . , gm−1}⟩ =

{∑m−1
i=0 nigi | ni ∈ Z

}
, whereas for a

multiplicative group S = ⟨{g0, . . . , gm−1}⟩ =
{∏m−1

i=0 gni
i | ni ∈ Z

}
.

A ring R := (A,+, ∗) is an algebraic structure with two binary operations, called
addition (+) and multiplication (∗), such that it is an abelian group with respect to
the addition, and the multiplication is associative, and distributive over the addition.
Rings do not generally require each element to have a multiplicative inverse. If the
multiplication is also commutative, the algebraic structure is a commutative ring.

A field F is a commutative ring in which every non-zero element of A has a multi-
plicative inverse. A few examples are the real numbers R, the rational numbers Q, and
the complex numbers C. The multiplicative group of a field F is indicated as F∗, and
does not contain the zero element. A finite field is a field that contains a finite number
of elements. The most used ones in cryptography are the prime field Fp having prime
order p, or the extension fields Fpn of elements from a n-dimensional vector space over
Fp.

A vector space Fn over a field F consists of a setA of n-dimension vectors of scalars
in F that is an abelian group under the binary addition operation, and a ring homomor-
phism from the field F into the endomorphism ring of this group under the multiplication
of a vector by a scalar. A vector subspace Fk of a vector space Fn, with k ≤ n, is a
subset of Fn that is closed under vector addition and scalar multiplication. A set B of
vectors form a basis for the vector space Fn if every element of A can be written as a
linear combination of the vector in the basis, which are linearly independent. A vector
space can have several basis, although |B| is fixed and defining the dimension of the
vector space.

A quotient ring R/I constructed from a ring R and a two-sided ideal I in R, has
elements that are the cosets of I in R, and therefore it also called residue class ring.

A lattice (L,∧,∨) is a partially ordered set L with two or more binary operations,
including the meet (∧) and join (∨) operations, and connected by the absorption law.

2.1.3 Polynomials and Galois fields

A polynomial f(x) with coefficients from GF(q) is called monic if the coefficient of
the highest power of x is 1. A polynomial p(x) of degree m over GF(q) is said to be
irreducible if it is not divisible by any polynomial over GF(q) of degree less than m

17

Chapter 2. Preliminaries and design methodology

but greater than zero. An irreducible polynomial p(x) of degree m over GF(q) is called
primitive if the smallest positive integer n for which p(x) divides xn− 1 is n = qm− 1.

For any positive integer m, a Galois field GF(qm) with qm elements can be con-
structed from the ground field GF(q). The construction of GF(qm) is based on a monic
primitive polynomial p(x) of degree m over GF(q). Let α be a root of p(x). Then,
0, 1, α, α2, . . . , αqm−2 form all the elements of GF(qm), and αqm−1 = 1. The element α
is called a primitive element. Every element β in GF(qm) can be expressed as a polyno-
mial in α, β = a0 + a1α + a2α

2 + . . . + am−1α
m−1 where ai ∈ GF(q) for 0 ≤ i < m.

Then, [a0, a1, . . . , am−1] is a vector representation of β. Therefore, every element in
GF(qm) has three ways of being represented: power of a primitive element (0 is usually
mapped to α∞), polynomial, and vector.

The elements in GF(qm) form all the roots of xqm − x. Let β be an element in
GF(qm). The minimal polynomial of β is the monic irreducible polynomial ϕ (x) of the
smallest degree over GF(q) that has β as root; that is, ϕ (β) = 0. Let e be the smallest
non-negative integer for which βqe = β. The integer e is called the exponent of β and
e ≤ m. The elements β, βq, βq2 , . . . , βqe−1 are conjugates. Then ϕ(x) =

∏e−1
i=0 (x− βqi)

and ϕ(x) divides xqm − x.

2.1.4 Complexity theory for classical computers

We can characterize the resources used by a specific algorithm in terms of comple-
tion time T (e.g., clock cycles) and space S (e.g., number of parallel processing units or
memory cells). Determining the exact requirements may be extremely difficult for some
algorithms, therefore they are usually defined as functions f of the input with binary size
n, specifying only a few dominating terms, thus characterizing their asymptotic behav-
iors. Considering inputs with a fixed length n, the running time T (n) of an algorithm
may vary significantly. In this case, the average-case time complexity does not coincide
with the worst-case time complexity O(f(n)) (upper bound) or the best-case time com-
plexity Ω(f(n)) (lower bound). If O(f(n)) = Ω(f(n)), then T (n) = Θ(f(n)) (tight
bound). A problem can be classified according to the time complexity T (n) of the best
known algorithm solving it:

LOG problems solved by an algorithm in logarithmic time Θ(log n)

P class of the computational problems which can be solved by a deterministic Turing
machine in polynomial time Θ(ni), i ≥ 1. Problems in the P class are practically
treatable for any n.

EXP class of computational problems that can be solved in exponential time Θ(2n
i
), i ∈

N. Solving a problem in this class is deemed not practically treatable even for
moderately large n (P ⊊ EXP).

NP contains the computational problems solvable in polynomial time by a non-deterministic
Turing machine (P ⊆ NP). A deterministic Turing machine can verify in polyno-
mial time if the solution is valid.

18

2.2. Design Methodology

A specific problem is hard for a class C (C-hard) if every problem in C can be reduced to
it in polynomial time. If the same problem is actually in C, then it is called C-complete.

2.2 Design Methodology

The aim of this thesis is to develop and assess efficient digital systems for lattice-based
and code-based post-quantum asymmetric cryptographic schemes. Designs will be de-
scribed at the Register Transfer Level (RTL) using the SystemVerilog (SV) language,
and not relying on any proprietary Intellectual Properties (IPs) or specific features of
FPGA macros, such as Digital Signal Processor (DSP) units.

The developed hardware designs are implemented on FPGAs for an easy and fair
comparison with the current state-of-the-art. Those platforms are the preferred choice
for fast validation of prototypes due to its streamlined and standardized synthesis and
implementation flow compared to the one for ASICs. Nonetheless, the use of FPGAs
goes beyond the prototyping use, as these platforms are extensively used in specific
industry areas where the the number of samples to be produced are low enough to not
justify the non-recurring expenses necessary to setup an ASIC production line, or when
the flexibility of reprogram the hardware is desired. A few examples of industrial areas
using FPGAs are aerospace and defense, telecommunications, automotive, industrial
automation, medical devices, and even consumer electronics.

The most promising designs are also investigated in an ASIC design flow, giving
insights into the designs for high-volume production purposes. However, given the
substantial differences among the ASIC design and production processes in terms of
Process Design Kit (PDK) and toolchains, the comparison with other works results is,
structurally, more difficult.

2.2.1 Design Tools

To enhance the reproducibility of results and rapidly check for regressions in a Contin-
uous Integration for Verification (CIV) automation, open-source programs and frame-
works are used to synthesize, implement, and verify the designs, with the only excep-
tion being the AMD Vivado suite (formerly Xilinx’s product). Nonetheless, the FPGA
parts used in the benchmarks, the Artix-7 xc7a200tfbg484-3 and Zynq Ultra-
Scale+ xczu7ev-ffvc1156-3-e, are covered by the WebPACK/Standard license,
freely available once applied for the U.S. Government Export Approval. In this thesis is
adopted the open-source Verilator [Sny+] SV simulator, with testbenches written either
in C++, or in Python using the cocotb [FOS19] simulation library. In case of the veri-
fication of complex designs, it is followed the IEEE1800.2 Standard for UVM [IEE20],
via the pyuvm [SS18] framework to produce reusable and scalable testbenches. The
described verification toolchain, while using only open-source software, can only carry
out behavioral simulations, thus not covering the need for post-synthesis and post-route
simulations. However, this limitation can be worked around using any commercial sim-
ulator supported by the cocotb simulation library, such as Synopsys VCS or Cadence

19

Chapter 2. Preliminaries and design methodology

Xcelium. In this work, a behavioral simulator was sufficient to iron out all the design
bugs before generating a bitstream for the Digilent Arty A7-100T board and ultimately
testing the design via Known Answer Tests (KATs) transmitted by a host PC via the Uni-
versal Asynchronous Receiver-Transmitter (UART) bus. Regarding the ASIC design
flow, this thesis mainly adopts the OpenROAD project [Aja+19] via the SiliconCom-
piler [ORM22] framework, both open-source tools, along with the FreePDK45 [Sti+07]
PDK, a reliable and widely adopted open-source predictive technology library having
45 nm planar transistors and 8 metal layers. The OpenRAM project [Gut+16] is a Static
RAM (SRAM) compiler compatible with the FreePDK45 technology library that can
produce the layout, netlists, timing and power models necessary to efficiently imple-
ment the large memories used in the designs, allowing to proceed with the back-end
design flow up to the sign-off stage where the final Design Rule Check (DRC) and Lay-
out Versus Schematic (LVS) checks are carried out. In addition to the previous tools, in
some instances the results are reported using the Synopsys Design Compiler tool for the
synthesis using a proprietary 40 nm technology library from ST Microelectronics.

2.2.2 Latency, area and efficiency metrics

NIST elected the AMD Artix-7 as the reference platform to evaluate the hardware im-
plementation of accelerators for the post-quantum cryptographic schemes. Since some
designs could not fit in the largest product of such family, the AMD Zynq UltraScale+
was widely adopted by many researchers as an alternative platform offering more re-
sources.

The maximum working frequency of a design synthesized for a FPGA platform is
determined using a binary search approach on the clock period defined in the constraint
file passed to the Vivado suite in a out-of-context synthesis, making sure to specify a
clock buffer cell in the FPGA fabric to define the root of the synthesized clock tree,
and as a result having a more precise timing estimation. Thus, the latency figures are
expressed in µs and not clock cycles in order to consider the complexity of the design
determining the maximum working frequency.

To compare the area results of a target with many heterogeneous resources like FP-
GAs, in this thesis it is introduced a novel equivalent Slice (eSlice) synthetic area in-
dicator, specific to the chosen FPGA target, encompassing the use of Look-Up Tables
(LUTs), Flip-Flops (FFs), Block RAMs (BRAMs), and DSPs resources. LUTs and FFs
are the fundamental building blocks for creating any digital circuit within an FPGA,
implementing logic functions and small memory elements. BRAMs are more efficient
memory blocks used to store larger amounts of data, with data accessed through a lim-
ited number of memory ports. DSPs blocks are specialized hardware units capable of
performing specialized arithmetic operations, such as multiply-and-accumulate. The
idea of the eSlice area indicator consists in converting the used BRAM and DSP re-
sources to a set of FF and LUT resources using the results of an out-of-context synthe-
sis on designs that are inferred in exactly one DSP or BRAM unit. In the former case
we described a multiply-and-accumulate with pre-addition, carefully sized to match the

20

2.2. Design Methodology

DSP48E1 architecture from the AMD UG479 user guide, and set the use_dsp =
"no" directive, obtaining a synthesis result using 538 LUT and 232 FF. For the BRAM
case, we annotated a 32 Kb Simple Dual Port RAM template with the ram_style =
"distributed" directive, obtaining a resulting design composed by 848 LUT and
548 FF. Finally, considering that a Slice in a AMD 7-Series FPGA includes four 6-input
LUTs and eight FFs, we derive the number of eSlices as max{⌈LUT/4⌉ , ⌈FF/8⌉}.
In case the AMD UltraScale+ FPGA is used, the number of eSlices are computed as
max{⌈LUT/8⌉ , ⌈FF/16⌉}, reflecting the composition of LUT and FF in a single Slice
of the UltraScale+ fabric. This metric still has some shortcomings, as the conversions
are a worst-case scenario estimate when DSP or BRAM are underutilized, while, by
contrast the eSlice metric is a best-case scenario as it does not consider routing conges-
tion. Moreover, other specialized units in the FPGA fabric, such as CARRY and MUX
units, are not converted in a set of FF and LUT resources as those elements are available
in every Slice unit, and most of the times the usage count of those units are omitted
during the evaluation of the results.

The efficiency is computed as the product of the latency and the area occupied by the
design, and the lowest resulting value denotes the most efficient solution. We are using
eSlice as the area indicator and a proper latency time scale to produce an efficiency
indicator with a suitable scale.

The procedure for evaluating the ASIC design results is less strict than the one for
FPGAs. The exact maximum working frequency is not determined via a binary search
algorithm but automatically computed by the OpenROAD toolchain from the minimum
clock period required by the critical circuit path in the netlist. The occupied silicon area
is generally expressed in µm2. Considering the silicon area of a single NAND gate in
the FreePDK45 technology library, the Gate Equivalent (GE) technology-independent
complexity indicator is computed by dividing the whole circuit area by the NAND cell
area. Finally, the efficiency indicator is expressed as time latency by the GE area.

21

CHAPTER3
Lattice-based cryptography

Lattices are algebraic structures (L,∧,∨) consisting of a partially ordered set L with
two or more binary operations, denoted as the meet (∧) and join (∨) operations, and
connected by the absorption law. The Shortest Vector Problem (SVP) and Closest Vector
Problem (CVP) are hard problems studied for more than a century, and researchers
started to investigate their use to build trapdoor one-way functions to construct different
public-key schemes from RSA and EC-based schemes.

Given k ∈ N linearly independent vectors bi ∈ Rn, with 1 ≤ i ≤ k and k ≤ n, an
instance of a lattice L is the set of points in Rn:

L := Λ(b1,b2, . . . ,bk) =

{
k∑

i=1

aibi | ai ∈ Z

}
⊆ Rn (3.1)

Let B be the matrix constructed by (b1,b2, . . . ,bk), where bi are the row vectors.
We have that L = ROWSPAN(B) is a linear subspace of Rn generated by all possible
linear combinations (span) of the row vectors. Therefore, B is a basis of the lattice L
of dimension n and rank K, and there are multiple basis that generate the same lattice.
The fundamental parallelepiped is the unit volume generated by the vectors in the basis
B, and is defined as F =

{∑k
i=1 aibi | ai ∈ [0, 1)

}
. If L ⊆ Zn, L is an integer lattice.

Figure 3.1 depicts an integer two-dimensional lattice defined by two different basis, the
fundamental parallelepiped, and the shortest vector in the lattice.

23

Chapter 3. Lattice-based cryptography

b1

b2

b1
b2

v

Figure 3.1: Integer lattice L ⊂ Z2 with n = 2 dimension, black dots are the lattice points in L. In the
picture on the left, the basis B is composed by two vectors b1 = [4, 2] and b2 = [2, 4], which are
almost orthonormal among them, and the fundamental parallelepiped is the area highlighted in light
gray generated by the two basis vectors. In the picture on the right, the basis B is composed by two
vectors b1 = [8, 2] and b2 = [22, 2], and the shortest vector v in the lattice L is represented with a
blue arrow. As the dimension of the lattice increase, finding the shortest vector becomes not so trivial.

The shortest vector v in a lattice is not unique, and determining it is proved to be
NP-hard problem even on average case, and it is known as the Shortest Vector Problem:

∥v∥ = min(∥u∥ | u ∈ L ∧ u ̸= 0) (3.2)

Denote as ∆(B) the determinant of the matrix B row-spanning L. Hermite proved that
L contains a short vector v such that ∥v∥ ≤ γ(n) n

√
∆(B). The value for γ(n) making

the relation tight is known only for lattice dimension n ≤ 8, whereas for large values
of n,

√
n

2πe
≤ γ(n) ≤ √

n
πe

. Moreover, in a random instance of a lattice, we expect
the shortest vector to be ∥v∥ ≈ √n n

√
∆(B) in length due to the upper bound from

Minkowki’s first theorem.
A second lattice-based NP-hard problem is the Closest Vector Problem: given a ran-

dom point in the vector space u ∈ Rn not belonging to the lattice L ⊆ Zn, find the
lattice point z ∈ L closest to it, which can be determined by searching for the vector
u− z with minimum euclidean norm. When vectors in the basis B of the lattice are al-
most orthonormal (∥bi∥ ≈ 1 and as orthogonal as possible, also referenced as a “good”
basis), we can apply the Babai’s closest vertex algorithm to easily find the vertex v ∈ L
of the fundamental parallelepiped containing the random point u, that in this case coin-
cides also to the closest point in the lattice z. However, when the vector of the basis are
not orthonormal, Babai’s algorithm is not determining the actual closest lattice point.
Figure 3.2 represents the execution of Babai’s algorithm on a low-dimensional lattice
L ⊆ Z2 when using both a “good” basis and a generic basis.

Solving the SVP and CVP is straightforward when using a orthonormal basis since
the euclidean norm of every single linear combination of the basis vectors degrades to
∥v∥ =

∑
i≤n a

2
i ∥vi∥2. Therefore, the euclidean norm for some two vectors u ∈ Rn,

v ∈ L, for ai ∈ Z and bi ∈ R, is ∥u − v∥ = ∑
i≤n (ai − bi)

2 ∥vi∥2. Consequently, the
easiest way to minimize the scalars in the resulting vector consists in taking the closest

24

b1

b2
u
v≡z b1

b2u
v

z

Figure 3.2: Application of Babai’s closest vertex algorithm in L ⊂ Z2 with a basis having almost
orthogonal vectors (left image), and using a non-ideal basis (right image), to determine a vertex v
in the fundamental parallelepiped that minimizes the euclidean norm ∥u − v∥, with u ∈ R2. The
actual closest lattice vector z in L ⊆ Z2 cannot be determined with Babai’s algorithm when is used
a non-ideal basis.

integer to each bi. However, the best known algorithms solving the SVP on a random
lattice have time complexity T (n) = Ω(2n), thus are deemed practically infeasible to
solve even for small values of n (e.g. n above 100).

Sometimes, it is not necessary to find the exact shortest vector v ∈ L, but a reason-
ably short one with approximation factor µ. Hence, this new problems take the name of
Approximate Shortest Vector Problem (µSVP) and Approximate Closest Vector Prob-
lem (µCVP). A lattice reduction algorithm is producing a basis that is reasonably or-
thonormal starting from a generic integer lattice basis. The Lenstra-Lenstra-Lovász
(LLL) algorithm produces in polynomial time with guaranteed worst-case performance
a lattice basis with approximately orthonormal vectors if the lattice dimension n < 100,
but in practice generates basis with non-negligible defects for n > 300 since the guaran-
teed approximation factor µ is exponential. More advanced lattice reduction techniques
try to provide trade-offs between running time and approximation factor µ. The Block
Korkine-Zolotarev (BKZ) lattice reduction has exponential time complexity, but the re-
sulting lattice has better orthogonality with respect to LLL.

The first use of lattices for public-key cryptography appeared in 1996 by Ajtai and
Dwork [AD97], proposing a probabilistic public-key cryptoscheme relying on the hard-
ness of solving the SVP, and proving that solving the problem in a random lattice in-
stance is as hard as solving the problem in the worst-case scenario. In a Probabilistic
Public-Key Encryption (PPKE) scheme a valid ciphertext can fail to decrypt, and a care-
ful selection of the parameters of the scheme can minimize or even remove the failure
probability. However, the proposed scheme was impractical both in terms of public key
size, in the order of few MiB, and computational cost, particularly for the generation
of the public key taking few hours. Nonetheless, the achieved result encouraged the
research efforts of lattice-based trapdoor one-way functions.

In short time, a new proposal came from [GGH97] in 1997 by Goldreich-Goldwasser-
Halevi, this time having the security of the scheme based on the hardness of solving the

25

Chapter 3. Lattice-based cryptography

CVP, although not proving its security under the worst-case assumption. The results
showed a substantially reduced computational complexity and public key size, improv-
ing the feasibility of a lattice-based public key schemes.

It was in 1998 that Hoffstein, Pipher and Silverman proposed the first practical
scheme in [HPS98] called N-th degree Truncated polynomial Ring Units (NTRU), and
sometimes also referred to NTRUEncrypt, based on truncated polynomial rings. The
new proposal achieves the key generation, encryption and decryption in O(n2) basic
operations, producing key-pair and ciphertext sizes in the order of O(n log n) bits, with
n being the lattice dimension.

An extensive analysis of the early lattice-based public-key proposals is presented in
[Har15], along with currently best known attacks to those schemes.

3.1 NTRU and LWE

Consequently to the first proposal of NTRU, numerous variants appeared in the fol-
lowing years to further optimize the scheme in terms of security and ciphertext/keys
sizes:

IEEE 1363.1 NTRUEncrypt Institute of Electrical and Electronics Engineers (IEEE)
standardized a scheme derived from NTRUEncrypt in 2008 that introduced an ef-
ficient improper-key variant and improved the security with the SVES padding
scheme.

NTRU-HPS, NTRU-HRSS IND-CCA2 secure schemes presented in the NIST PQC
standardization process. The original proposals were based on a PPKE scheme,
which later in the third round was replaced with a Deterministic Public-Key En-
cryption (DPKE) scheme to remove any decryption failures NTRU-HPS is similar
to the original NTRUEncrypt cryptoscheme, which still selects coefficients from
fixed-weight sample spaces, while NTRU-HRSS selects coefficients in an arbi-
trary way as a countermeasure to the key mismatch attack proposed by Ding on
the original NTRU cryptoscheme.

Streamlined NTRU Prime one of the two variants proposed by the NTRU Prime
IND-CCA2 secure scheme that is not using a cyclotomic polynomial ring and
sparse ternary secret to remove lattice structure not strictly necessary for the cor-
rectness of the scheme and potentially exploitable by attackers, at the cost of a
probabilistic decryption, lower compactness, and slightly higher execution times.
The errors are generated deterministically via rounding operations, reducing the
size of the ciphertext and the opportunity to incorrectly generate small ring ele-
ments, and simplifying the protection against chosen-ciphertext attacks.

NTTRU IND-CCA2 secure scheme that uses lattice parameters to be compatible with
Number-Theoretic Transform (NTT) multiplication to further reduce the timing
complexity by ≈ 10×

26

3.2. NTRU HPS and NTRU HRSS

A completely different family of lattice-based schemes, known under name of Learn-
ing With Errors (LWE) / Learning With Rounding (LWR) or product-ring schemes to
differentiate from the quotient-ring NTRU-based schemes, appeared more recently fol-
lowing the proposal of the Gentry-Peikert-Vaikuntanathan (GPV) trapdoor function in
[GPV08]. The most important practical differences are that the expensive computation
of the inverse element in the polynomial ring is not used, and that the module variants
use the same ring structure for multiple security margins offered. This in turn allowed
the generation of schemes that are faster and slightly more efficient than the NTRU-
based counterparts, although it is not at all clear which of product-ring and quotient-ring
schemes is a safer option. During the NIST PQC standardization process, the proposed
LWE candidates were numerous, most notably the Ring-LWE (R-LWE) NewHope,
the Ring-LWR (R-LWR) NTRU LPRime, the Module-LWE (M-LWE) CRYSTALS-
Kyber, and the Module-LWR (M-LWR) SABER. More details on the differences are
detailed in the report [Ber+24].

A fundamental patent issue arose during the the evaluation phase in the NIST PQC
standardization process as it appeared that many patents, such as the U.S. 9094189 and
9246675 patents, could potentially limit the broad diffusion of the future PQC standard
due to license fees. By contrast, NTRU-derived schemes are not subject to any limita-
tion as the U.S. patent 6081597A expired in August 2017. When NIST announced the
standardization of ML-KEM, the patents owned by a US entity and French institutions
were identified and two patent license agreements were redacted to facilitate adoption
by guaranteeing a royalty-free use for the implementers even for commercial purposes,
although limited to the exact specification of NIST’s standard.

3.2 NTRU HPS and NTRU HRSS

In this section we report the mathematical background of the NTRU KEM submission
to the NIST PQC standardization effort [Che+19] (from now referenced as NTRU for
the sake of brevity), which includes two variants: NTRU-HPS [HPS98], and NTRU-
HRSS [Hül+17].

3.2.1 Algebraic structures and parameters sets

Consider the prime integers n, p, and the integer q coprime with both p and n such that
p ≪ q. Denote with Φ1 = x − 1 ∈ Z[x] and Φn = xn−1

x−1
= xn−1 + xn−2 + · · · +

x + 1 ∈ Z[x] the 1-st and the n-th irreducible cyclotomic polynomial, respectively.
All operations in the NTRU cryptoscheme are operations between polynomials over the
quotient rings Rq

∼= Zq[x]/⟨Φ1Φn⟩, Sq
∼= Zq[x]/⟨Φn⟩ or Sp

∼= Zp[x]/⟨Φn⟩. Polynomial
addition and subtraction operations between two polynomials a, b ∈ Rq to compute the
resulting polynomial a ± b = c ∈ Rq are regularly performed between scalars of the
same unknown degree:

ck = ak ± bk mod q, ∀k ∈ {0, . . . , n− 1} (3.3)

27

Chapter 3. Lattice-based cryptography

Also polynomial multiplication is used, that in the quotient polynomial ring assumes
the form of a circular convolution: let a, b be two polynomials in Rq, their product
a · b = c ∈ Rq has coefficients

ck =
∑

i+j≡k mod n

aibj mod q, ∀k ∈ {0, . . . , n− 1} (3.4)

Finally, the multiplicative inverse element of the polynomial a ∈ Rq, if exists, is defined
as b = a−1 ∈ Rq, such that a · b = 1. As the polynomial coefficients are in Zq ≡ Z/qZ,
hence the integers group of the remainders modulo q, the result of all scalar operations
are performed modulo q.

We represent polynomials in Rq and Sq with coefficients encoded in two’s comple-
ment with εq = ⌈log2(q)⌉ bits, i.e.: Zq =

{
− q

2
,− q

2
+ 1, · · · , 0, · · · , q

2
− 1

}
. The pa-

rameter p is set to 3 in all parameter sets of the NTRU specification [Che+19] thus, poly-
nomials in Sp = S3 have coefficients encoded in ternary form, i.e.: Z3 = {−1, 0, 1},
with εp = ⌈log2(p)⌉ = 2 bits.

NTRU utilizes three additional sets of ternary polynomials within Zp[x]/⟨Φ1Φn⟩ of
degree at most n − 2. Let T represent the set of ternary polynomials with a variable
count of non-zero coefficients; T (d), where d is an even number, represents the set of
fixed-weight polynomials having d/2 coefficients equal to +1 and d/2 coefficients equal
to−1. Furthermore, T+ denotes the subset of T containing polynomials v(x) =

∑
i vix

i

satisfying the condition
∑

i vivi+1 > 0 (indicating a non-negative correlation property).
Observe that the elements of Sp = S3

∼= Zp/⟨Φn⟩ are valid members of T .
The map LIFT is an injective function LIFT : Zp[x]/⟨Φ1Φn⟩ → Z[x] such that

Sp(LIFT(m)) = m, for all m ∈ Lm, where Sp(a) represents the canonical represen-
tative element of the equivalence class in Sp to which the polynomial a belongs. In
other words, LIFT is the map that allows to send a ternary polynomial m to its canonical
representative element within a residue class in Sp

∼= Zp[x]/⟨Φn⟩.
An NTRU parameter set is specified by the tuple (n, p, q,Lf ,Lg,Lr,Lm, LIFT),

where Lf , Lg, Lr, and Lm coincide, respectively, with one of the sets of polyno-
mials denoted as T , T (d), T+, depending on the specific instance of the cryptosys-
tem. The NTRU parameter set is correct if, the ternary polynomials f, g, r,m are uni-
formly sampled from Lf ,Lg,Lr,Lm, respectively, and (f · LIFT(m) + g · r · p) mod
(Φ1Φn) ∈ Zq, where Zq =

{
− q

2
,− q

2
+ 1, · · · , 0, · · · , q

2
− 1

}
. All NTRU parameter

sets in [Che+19] are correct.

NTRU-HPS parameters sets
The NTRU-HPS parameter set takes p = 3, and q as a power of two and n as
a prime number such that both 2 and 3 are generators of the multiplicative group
(Z∗

n, ·). A uniform sampling procedure is defined over both the set of variable-
weight and the set of fixed-weight polynomials with degree at most n − 2, i.e.:
Lf = T , Lg = T (q/8− 2), Lr = T , Lm = T (q/8− 2), while the LIFT function
is defined as the identity map ID : m→ m, for all m ∈ Lm.

28

3.2. NTRU HPS and NTRU HRSS

Table 3.1: Differences among NTRU-HPS and NTRU-HRSS cryptographic schemes

NTRU-HPS NTRU-HRSS
n prime, ⟨a⟩ = Z∗

n, a ∈ {2, 3} prime, ⟨a⟩ = Z∗
n, a ∈ {2, 3}

p 3 3
q power of two, q/8− 2 ≤ 2n/3 23.5+log2(n)

Lf T T+
Lg T (q/8− 2) {Φ1 · v | v ∈ T+}
Lr T T
Lm T (q/8− 2) T

LIFT(·) m 7→ m m 7→ Φ1 · (m/Φ1 mod (p,Φn))

The recommended parameter sets take q/8−2 ≤ 2n/3. Parameter sets with larger
q are advised to replace the q/8 − 2 in the definition of Lg and Lm with 2⌊n/3⌋.
In order to remove probabilistic failures in decryption, q > (6d+ 1) p. The of-
ficial NTRU-HPS parameter sets [Che+19] are denoted as ntruhps2048509,
ntruhps2048677, ntruhps4096821, concatenating the values of q and n.

The provided security levels complying to the NIST proposed rank in Table 1.1,
are category 1 for (q, n) = (2048, 509); category 3 for (q, n) = (2048, 677), and
category 5 for (q, n) = (4096, 821).

NTRU-HRSS parameter sets
The NTRU-HRSS parameter set takes p = 3, q = 23.5+log2(n), and n as a prime
number such that both 2 and 3 are generators of (Z∗

n, ·). A uniform sampling pro-
cedure is required only for variable-weight polynomials with degree at most n−2,
i.e.: Lf = T+, Lg = {Φ1 · v | v ∈ T+}, Lr = T , Lm = T , while the LIFT function
is defined as the map m 7→ Φ1 · Sp(LIFT(m)/Φ1), for all m ∈ Lm. The choice
of the different LIFT function allowed to drop the requirement of sampling ternary
polynomials with fixed weight, although requiring to increase q to maintain the
perfect correctness property of the scheme. The single NTRU-HRSS parameter
set proposed for standardization [Che+19] is denoted as ntruhrss701 to point
out an instance of the scheme with n = 701 providing a level of security equal to
category 3.

3.2.2 NTRU DPKE

The NTRU DPKE cryptoscheme is built with the same deterministic structure, regard-
less of the fact that it uses the NTRU-HPS or NTRU-HRSS parameters, and consists
of three algorithms: NTRU.DPKE-KEYGENERATION, NTRU.DPKE-ENCRYPTION,
and NTRU.DPKE-DECRYPTION.

29

Chapter 3. Lattice-based cryptography

Algorithm 1 NTRU.DPKE-KEYGENERATION

Require: None
Ensure: pk = h ∈ Rq

sk = (f, fp, hq, s) ∈ Sp × Sp ×Rq × {0, 1}256

1: γ
$← {0, 1}320

2: (s,str_f,str_g)← CSPRNG(γ, {0, 1}8·(n−1) × {0, 1}β)
3: f ← CSPRNG(str_f,Lf)
4: g ← CSPRNG(str_g,Lg)
5: fp ← f−1 mod (p,Φn)
6: G← p · g
7: v ← (G · f) mod (q,Φn)
8: vq ← v−1 mod (q,Φn)
9: h← (vq ·G ·G) mod (q,Φ1Φn)

10: hq ← (vq · f · f) mod (q,Φ1Φn)
11: return pk = h, sk = (f, fp, hq, s)

NTRU.DPKE-KEYGENERATION

The key generation algorithm is summarized in Algorithm 1, denoting the computed
keypair as (sk, pk), where the secret key is sk = (f, fp, hq), and the public key is pk =
h. The NTRU.DPKE-KEYGENERATION algorithm starts by sampling uniformly the
coefficients of the ternary polynomials f ∈ Lf and g ∈ Lg, respectively, by expanding
a small high-quality random seed γ, obtained from a True-Random Number Generator
(TRNG), into str_f and str_g using a CSPRNG, and then using the random binary
strings with the appropriate ternary polynomial sampling algorithm depending on the
cryptographic scheme variant. NTRU uses an instance of SHAKE256 to expand the
seed into an arbitrary large output (further details will be provided in subsection 5.2.1).
The size β of str_g depends on the cryptographic scheme variant, and is 8 · (n − 1)
for NTRU-HRSS or 30 · (n − 1) for NTRU-HPS. Then, the ternary polynomial fp =
f−1 mod (p,Φn) and the polynomial with coefficients in Zq, fq = f−1 mod (q,Φn)
are determined to be the multiplicative inverse element of f in the ring Sp and Sq,
respectively. The public key pk = h is a polynomial in Rq obtained as h = (p · g ·
fq) mod (q,Φ1Φn), while the last component of the private key hq is pre-computed as
hq = h−1 mod (q,Φn).

Since the computation of the multiplicative inverse element is an expensive task, as
an optimization at algorithmic level the NTRU scheme trades one of such operation for
four multiplications:

vq = v−1 mod (q,Φn) =

(
1

(p · g) · f

)
mod (q,Φn) (3.5)

h =

(
(p · g) · (p · g)

p · g · f

)
mod (q,Φ1Φn) =

p · g
f

mod (q,Φ1Φn) (3.6)

30

3.2. NTRU HPS and NTRU HRSS

Algorithm 2 NTRU.DPKE-ENCRYPTION

Require: pk = h ∈ Rq

(r,m) ∈ Lr × Lm

Ensure: ctx = c ∈ Rq

1: m′ ← LIFT(m)
2: c← (r · h+m′) mod (q,Φ1Φn)
3: return c

hq =

(
f · f

p · g · f

)
mod (q,Φ1Φn) =

f

p · g mod (q,Φ1Φn) (3.7)

Note that the computation of fp and hq, performed during the key generation, could
be potentially deferred during the decryption, as they do not take part to the generation
of the public key, at cost of a non-negligible hit in latency and throughput during an
online key establishment. Moreover, the ring Rq does not contain the multiplicative
inverse of every polynomial. In the (unlikely) case the inverse element does not exist,
the NTRU.DPKE-KEYGENERATION is restarted sampling a new seed γ.

NTRU.DPKE-ENCRYPTION

The NTRU DPKE encryption algorithm, shown in Algorithm 2, receives as input the
public key h ∈ Rq, the encryption ephemeral value r, and the message to be encrypted
m. While NTRU-HRSS uses both r and m from variable-weight ternary polynomials
from T , NTRU-HPS notably requires m to have fixed weight such that m ∈ T (q

8
− 2).

The encryption function computes the ciphertext c = (r·h+LIFT(m)) mod (q,Φ1Φn):
a ternary to q-ary polynomial multiplication (r · h) modulo Φ1Φn is computed, and sub-
sequently adding the resulting q-ary polynomial to the outcome of the LIFT(·) function
applied to the message m. Depending on the NTRU-HPS or NTRU-HRSS scheme,
the function LIFT(·) maps the input polynomial m in a specific way (see Table 3.1).

NTRU.DPKE-DECRYPTION

The NTRU DPKE decryption procedure, shown in Algorithm 3, receives a private key
sk = (f, fp, hq) and a ciphertext c ∈ Rq. As first step, it retrieves the encrypted mes-
sage, and the ephemeral randomness r used during the encryption. The validity of the
computed values is checked, producing a Boolean value δ indicating if the decryption
operation failed. NTRU-HPS and NTRU-HRSS are correct schemes, therefore exe-
cuting the NTRU.DPKE-DECRYPTION routine on the output of the NTRU.DPKE-
ENCRYPTION function always recomputes the correct message and encryption random-
ness if the correct private key is used.

As first step, an intermediate q-ary polynomial a = c · f is obtained multiplying the
ternary polynomial f and the q-ary polynomial c, and reducing the result modulo Φ1Φn:

a = c · f = (r · h+m′) · f = r · h · f +m′ · f
= r · (p · g · fq) · f +m′ · f = r · p · g +m′ · f ∈ Rq

(3.8)

31

Chapter 3. Lattice-based cryptography

Algorithm 3 NTRU.DPKE-DECRYPTION

Require: sk = (f, fp, hq) ∈ Sp × Sp ×Rq

ctx = c ∈ Rq

Ensure: (r,m, δ) ∈ Lr × Lm × {0, 1}
1: if c ̸≡ 0 mod (q,Φ1) then
2: return (0, 0, false)
3: a← (c · f) mod (q,Φ1Φn)
4: m← (a · fp) mod (p,Φn)
5: m′ ← LIFT(m)
6: r ← ((c−m′) · hq) mod (q,Φn)
7: if (r,m) ∈ Lr × Lm then
8: return (r,m, true)
9: else

10: return (0, 0, false)

Note that a is guaranteed to have small coefficients always fitting in Zq, hence no com-
putations modulo q are actually performed.

Since a is already in Rq and no mod q is performed, by computing a mod p from the
result of Equation 3.8 operation removes the contribution of the ephemeral r, obtaining
f ·m, since m′ is transformed to m when mod p is applied due to the construction of
the LIFT(·) map. This trick allows us to recover m multiplying a by fp and applying
the mod p reduction. Once retrieved the message, the ephemeral randomness r is then
computed via a simple manipulation derived from the encryption expression c ← (r ·
h+m′) mod (q,Φ1Φn): by using the hq value pre-computed during the NTRU.DPKE-
KEYGENERATION, it is possible to isolate r from the that equation obtaining r = ((c−
LIFT(m)) · hq) ∈ Rq via a subtraction followed by a multiplication between two q-ary
polynomials.

3.2.3 NTRU KEM

The NTRU KEM employs the NTRU DPKE primitives as components to meet the
requirement by NIST to have an IND-CCA2 secure KEM, i.e., one resistant to active
attackers, as proven in [SXY18].

We will denote with zpkd the bit-packed encoding of a polynomial z, either ternary or
q-ary, used to efficiently store on disk or transfer in a more compact way the polynomials
between different systems. The PACK and UNPACK are auxiliary functions encoding the
polynomials into a bit string, or viceversa.

NTRU.KEM-KEYGENERATION

The NTRU KEM key generation, reported in Algorithm 4, only performs the compres-
sion of the public and private keys obtained from NTRU.DPKE-KEYGENERATION,
to reduce the bandwidth required for the transmission of the ciphertext and public key,
while also reducing the size of the private key.

32

3.2. NTRU HPS and NTRU HRSS

Table 3.2: Size of keys and ciphertext of NTRU-HPS and NTRU-HRSS cryptographic algorithms. Note
that also for the DPKE variant the elements are compressed using the appropriate PACK(·) function.

parameters ntruhps2048509 ntruhps2048677 ntruhps4096821 ntruhrss701
n 509 677 821 701
q 2048 2048 4096 8192

DPKE pk bytes 699 930 1230 1138
DPKE sk bytes 903 1202 1558 1418
DPKE ctx bytes 699 930 1230 1138
KEM pk bytes 699 930 1230 1138
KEM sk bytes 935 1234 1590 1450
KEM ctx bytes 699 930 1230 1138

KEM K bits 256 256 256 256

Algorithm 4 NTRU.KEM-KEYGENERATION

Require: None
Ensure: pk = hpkd

sk = (fpkd, fpkd
p , hpkdq , s ∈ {0, 1}256)

1: h, (f, fp, hq, s)← NTRU.DPKE-KEYGENERATION()
2: hpkd ← PACKq(h)
3: fpkd ← PACKp(f)

4: f
pkd
p ← PACKp(fp)

5: hpkdq ← PACKq(hq)

6: return pk = hpkd, sk = (fpkd, fpkd
p , hpkdq , s)

NTRU.KEM-ENCAPSULATION

The NTRU KEM encapsulation augments the NTRU DPKE one specifying how the
values of the ternary polynomials (r,m) are be sampled, how the secret session key K
encapsulated by the KEM is derived from the ciphertext c, and how polynomials should
be encoded in a bit-dense format.

Algorithm 5 shows the NTRU.KEM-ENCAPSULATION procedure, that starts by
drawing a 320-bit binary string, γ, uniformly at random from a TRNG. This is the only
true randomness used by the cryptosystem, which is then expanded by Pseudo-Random
Number Generator (PRNG) to an arbitrary amount of bit strings. The random string
γ is then employed by a deterministic procedure sampling the encryption ephemeral
randomness r and the message m from the appropriate sets defined by either NTRU-
HPS or NTRU-HRSS (see Table 3.1). The resulting polynomials are packed, con-
catenated, and absorbed via a HASH function, and the 256-bit digest represent session
key K. NTRU implements the HASH function via the SHA3-256 instance defined
in the SHA-3 standard. The size of the bit string str_r is 8 · (n − 1), whereas the
size of str_m depends on the cryptographic scheme variant in use: it could be either
8 · (n− 1) for NTRU-HRSS or 30 · (n− 1) for NTRU-HPS. Then the NTRU.DPKE-
ENCRYPTION routine is called passing (r,m) and the public key h, obtaining the q-ary
ciphertext polynomial c, which is packed as cpkd and returned to the caller together with

33

Chapter 3. Lattice-based cryptography

Algorithm 5 NTRU.KEM-ENCAPSULATION

Require: pk = hpkd

Ensure: ctx = cpkd

K ∈ {0, 1}256
1: h← UNPACKq(h

pkd)

2: γ
$← {0, 1}320

3: (str_r,str_m)← CSPRNG(γ, {0, 1}8·(n−1) × {0, 1}β)
4: r ← CSPRNG(str_r,Lr)
5: m← CSPRNG(str_m,Lm)
6: c← NTRU.DPKE-ENCRYPTION(h, (r,m))
7: cpkd ← PACKq(c)
8: rpkd ← PACKp(r)
9: mpkd ← PACKp(m)

10: K← HASH(rpkd∥mpkd)
11: return cpkd,K

the derived session key K.

NTRU.KEM-DECAPSULATION

The NTRU KEM decapsulation procedure (NTRU.KEM-DECAPSULATION, Algo-
rithm 6), uses the private key sk = (f pkd, f pkd

p , hpkdq , s), composed by two ternary poly-
nomials f, fp and the q-ary polynomial hq, and the q-ary ciphertext polynomial c, all
in their packed format. Initially the algorithm unpacks all the inputs and invokes the
NTRU.DPKE-DECRYPT algorithm, obtaining (r,m) and a failure flag. Two differ-
ent 256-bit session keys are derived, K1 and K2. The former is obtained hashing the
concatenation of r and m after being packed, similarly to what is performed in the
encapsulation, while K2, also known as the implicit rejection key, is composed as the di-
gest of the HASH function obtained absorbing the received ciphertext PACKq(c) and the
value s generated during NTRU.DPKE-KEYGENERATION and bounded to the keypair
(sk, pk).

The implicit rejection key is used to not allow to establish the requested secure com-
munication and is returned only in case a ciphertext manipulation is detected, either
in case of decryption failure ((m, r) should belong to the appropriate set defined by
NTRU-HPS or NTRU-HRSS), or if c ≡ 0 mod (q,Φ1). In case of decryption suc-
cess, K1 is guaranteed to match the session key on the sender side. Both K1 and K2 are
always computed to avoid an information leakage on the decryption failure via timing
side channel.

3.3 Expressing NTRU hardness as lattice problems

The connection linking NTRU to the problems over a lattice is not immediate. How can
we map the key recovery attack to SVP? Why is decryption attack reducible to solving
the CVP?

34

3.3. Expressing NTRU hardness as lattice problems

Algorithm 6 NTRU.KEM-DECAPSULATION

Require: sk = (fpkd, fpkd
p , hpkdq , s)

ctx = cpkd

Ensure: K ∈ {0, 1}256
1: f ← UNPACKq(f

pkd)

2: fp ← UNPACKq(f
pkd
p)

3: hq ← UNPACKq(h
pkd
q)

4: c← UNPACKq(c
pkd)

5: (r,m, δ)← NTRU.DPKE-DECRYPTION(f, (fp, hq, c))
6: rpkd ← PACKp(r)
7: mpkd ← PACKp(m)
8: K1 ← HASH(rpkd∥mpkd)
9: K2 ← HASH(s∥cpkd)

10: if δ = true then
11: K= K1

12: else
13: K= K2

14: return K

The Convolution Modular Lattice L associated to the vector h, composed by the
coefficients of the polynomial h and modulus q, is the 2n dimensional lattice with basis
given by the rows of the following matrix:

L = ROWSPAN





1 0 . . . 0 h0 h1 . . . hn−1

0 1 . . . 0 hn−1 h0 . . . hn−2
...

...
...

...
0 0 . . . 1 h1 h2 . . . h0

0 0 . . . 0 q 0 . . . 0
0 0 . . . 0 0 q . . . 0
...

...
...

...
0 0 . . . 0 0 0 . . . q




(3.9)

or, for compactness, L = ROWSPAN

([
In H
0 qIn

])
= ROWSPAN

([
x0 h
0 qx0

])
The defined matrix spawning the lattice uses entirely public components: the public

key h, the modulus q and the ring size n. The vectors of the basis B are the rows of the
matrix, thus the lattice dimension is 2n.
L contains all the vectors (a,b), obtained taking the coefficients of a, b ∈ Rq lifted

in Z[x]/(Φ1Φn) such that a · h = b for an invertible a ∈ Rq:

L =
{
(a,b) ∈ Z2n : a · h ≡ b (modq)

}
(3.10)

NTRU public/private key pairs are constructed via f · h ≡ g (modq), with small f
and g. This implies that the NTRU lattice contains the short vector [f ,g], since f ·h−g =

35

Chapter 3. Lattice-based cryptography

q · u for some u ∈ Zn

[f ,−u]
[
In H
0 qIn

]
= [f, f · h− q · u] = [f ,g] (3.11)

Key recovery attack
The public key is h ≡ f−1 · g. Building the matrix requires only the public key,
solving the SVP will either yield [f ,g] or an SVP good short vector to be used as a
private key.
It can be easily proved that f and g used to generate the public key belong to the
NTRU lattice, and are by construction short vectors (small polynomials). Solving
the SVP and finding any valid short vector leads to a new valid private key and
thus it is possible to impersonate one agent.
The ciphertext c = r · h+m′ (modq) is the vector

[0, c] = [0, r · h+m′ (modq)] = [r, r · h (modq)] + [−r,m′] (3.12)

where the vector [r, r · h (modq)] ∈ L, and [−r,m′] is a short error by construc-
tion

Decryption attack
First we should note that the ciphertext is a generic point in the vector space and
(with high probability) not belonging to the NTRU lattice. Thus, we can rewrite
this vector as the closest lattice vector plus a small error.

e = [0, c] + [r,−m′] (3.13)

where e ∈ L is the closest vector to [0, c].
Being able to easily solve the CVP, hence compute e from [0, c], the attacker can
easily find r and m required to generate the session key K:

[r,−m′] = e− [0, c] (3.14)

More details on that topic are available in [Car] and [Sil].

36

CHAPTER4
Code-based cryptography

The integrity of data transmission over a noisy or unreliable communication channel
is a well known problem that was tackled since the introduction of telecommunication
lines and radio communications, particularly in case of unidirectional communication
channels (e.g. broadcast television system) or where the cost for re-transmission is
extremely expensive due to a long-latency (e.g. space communication) and possibly
combined with inefficient re-transmission protocols.

To handle the errors introduced during the data transmission, a solution involves the
encoding of the message with some redundant information to detect, and optionally
correct, the introduced errors at cost of a reduced bandwidth. In the first case, parity
check schemes can detect the errors, provided that the number of introduced errors are
below some bound.

Error-Correcting Codes (ECCs) were invented halfway in the 20th century and pro-
vide a more versatile solution, as they can:

• both detect and correct the transmission errors

• deal with different type of error distribution (burst of errors or uniformly dis-
tributed errors)

• improve the error-correcting capability in case of erasures (the the location of the
errors are known)

• work on fixed-sized blocks of data (block codes) or streams (convolutional code)

37

Chapter 4. Code-based cryptography

noisy
channel

information
word codeword

encode
MSG M S G

received
codeword
M S G

decode

information
word
MSG

Sender Receiver

Figure 4.1: Working principle of an Error Correction Code. The sender encodes a message m using a
code C producing the codeword c embedding some redundant information, and sends it over a noisy
channels. The receiver obtains a vector r, also known as senseword, potentially corrupted by an error
e, and tries to decode it obtaining a message m′. If the error e introduced by the noisy channel can
be detected and corrected by the code C, then m ≡m′.

• offer various trade-offs in terms of bandwidth consumption and error correcting
capability achieving transmission rates close to the Shannon limit of the commu-
nication channel capacity

Figure 4.1 shows the working principle of a generic error correction code applied for
the communication over a noisy channel.

A notorious block error correction code introduced in 1960 and still finding numer-
ous applications in consumer products such as optical disks, QR codes and bar codes,
but also in highly complex technologies such as satellite communications, Digital Video
Broadcasting (DVB) and Digital Subscriber Line (DSL), is the Reed-Solomon (RS)
code. The essence of the original proposal of the code was that the message to be
transmitted needs to be transformed in a polynomial with maximum degree k, and the
transmitted information are a set of n > k evaluated points in the message polynomial
at locations known both to the sender and the receiver. The decoder algorithm, how-
ever, was not practical for large block sizes, limiting the applicability of such solution.
Shortly, it was conceived that using a Bose-Chaudhuri-Hocquenghem (BCH) encoding
scheme lead to use more practical decoders such as the Petterson-Gorenstein-Zierler
(PGZ) and the Berlekamp-Massey (BM) algorithms.

A [n, k, d] linear forward ECC C over Fq is a subspace of Fn
q having dimension k, and

minimum Hamming distance d among any two (row) vectors in C. The value r = n− k
is called redundancy, and R = k

n
the rate of the code. The generator matrix G ∈ Fk×n

q

of the code C allows to generate all the 2k codewords c ∈ C ⊆ Fn
q from the information

words m ∈ Fk
q :

C =
{
mG |m ∈ Fk

q

}
(4.1)

The generator matrix G is full-rank, and the rows forming the basis of the vector space
are valid codewords. The parity-check matrix of the code C is the matrix H ∈ F(n−k)×n

q

such that
C =

{
v ∈ Fn

q | Hv⊤ = 0
}

(4.2)

We denote as syndrome s ∈ Fn−k
q of v ∈ Fn

q with respect to H the result of Hv⊤ for
a generic v ∈ Fn

q . The parity-check matrix is the generator matrix of the dual code C⊥
with rank n−k containing all the vectors orthogonal to the codewords in C, and if k > n

2
,

38

4.1. Syndrome Decoding Problem

it is used to represent the code in a more compact way. A generator matrix formed as
G = [Ik|M] is in its systematic form, and H =

[
−M⊤ | In−k

]
is its corresponding

parity-check matrix.
The encoding procedure is a map ENCODE : Fk

q 7→ Fn
q , and the algebraic decoding

procedure correcting up to t = ⌊d−1
2
⌋ errors is a map DECODEt : Fn

q 7→ Fk
q . If a message

m ∈ Fk
q is transmitted over a channel encoded in the codeword c ∈ C ⊆ Fn

q , the channel
noise can be represented as an error e ∈ Fn

q combined to the transmitted codeword. The
received data r = c+ e can be successfully recovered iff ∥e∥ ≤ t:

DECODEt (ENCODE (m) + e) = m, m ∈ Fk
q (4.3)

A [n, k, d] linear ECC is called a perfect ECC if all the codewords have the maximum
possible d for a given code length n and dimension k, with the RS code being an example
of a perfect ECC.

The Gilbert-Varshamov (GV) bound provides a lower bound on the maximum pos-
sible rate R = k

n
of a error-correcting code C over Fq for a given minimum Hamming

distance d such that 0 ≤ d
n
< 1− 1

q
:

R ≥ 1− Hq

(
d

n

)
(4.4)

Where Hq is the q-ary entropy function defined as:

Hq (x) = x logq (q − 1)− x logq x− (1− x) logq (1− x) (4.5)

4.1 Syndrome Decoding Problem

Decoding a general linear code is a NP-hard problem known as Generic Decoding Prob-
lem (GDP), but there exist efficient decoders for some linear code having some useful
structure. Provided that an obfuscated generator matrix of such code is indistinguishable
from a random code, the GDP can be used as the core for PKC schemes:

KeyGeneration Let G ∈ Fk×n
q be a random generator matrix of the q-ary [n, k, d]

linear code C for which an efficient decoding algorithm exists. Generate a random
invertible matrix S ∈ Fk×k

q , and a random permutation matrix P ∈ Fn×n
2 . The

public key is the obfuscated generator matrix pk = SGP = Ĝ, and the private
key is sk = (S,G,P).

Encryption Generate a random message m ∈ Fk
q and the corresponding codeword

r ∈ Fn
q using Ĝ, and corrupt it with an error e of low weight ∥e∥ = t. The

ciphertext is ctx = mĜ+ e = r.

Decryption Compute rP−1 = (mĜ+ e)P−1 = (mS)G+ eP−1, and use the efficient
decoder algorithm to determine mS, as eP−1 maintains weight t due to P being a
permutation matrix. Finally, retrieve the original message m = (mS)S−1

39

Chapter 4. Code-based cryptography

The search or computational GDP (C-GDP) asks to find m from r and Ĝ. Fixing the
code length n and dimension k, the number of solutions in a random code on average
are (nt)|C|/qn = (nt)/qn−k, and there is exactly one solution if t < qn−k.

In 1978 McEliece chose C from the binary Goppa codes family as there exist efficient
decoders and their number grows exponentially in the length of the code n, contrary
to RS codes, to avoid an easy guess by the attacker of the random instance of G. The
scheme envisioned by McEliece has resisted cryptanalysis so far, with the most effective
attacks using information-set decoding algorithms.

In 1986 Niederreiter applied the same idea for a cryptosystem based on the Syndrome
Decoding Problem (SDP).

KeyGeneration Let G ∈ Fk×n
q be a random generator matrix of the q-ary [n, k, d]

linear code C for which an efficient decoding algorithm exists, and H ∈ F(n−k)×n
q

its parity-check matrix. Generate a random invertible matrix S ∈ F(n−k)×(n−k)
q ,

and a random permutation matrix P ∈ Fn×n
2 . The public key is the obfuscated

parity-check matrix pk = SHP = Ĥ, and the private key is sk = (S,H,P).

Encryption Generate a random message m and encode in e ∈ Fn
q such that ∥e∥ = t,

then compute the syndrome s ∈ Fn−k
q using Ĥ. The ciphertext is ctx = Ĥe⊤ = s.

Decryption Compute S−1s = HPe⊤, and apply the efficient syndrome decoding algo-
rithm for C to recover Pe⊤, and then recompute m from P−1(Pe⊤)

The search or computational SDP (C-SDP) asks to find the error e with small weight
from the syndrome s and the parity-check matrix Ĥ. If the weight ∥e∥ = t is large
enough, there are multiple solutions which are easy to find. Given that C is a random
linear code, it lies on the GV bound with very high probability, therefore it is possible
to determine the relative distance δGV = dGV/n of the code starting from Equation 4.4,
and consequently find the maximum value of t for which there is an unique solution:

t ≤ dGV − 1

2
=

δGV n− 1

2
=

H−1
q (1−R)n− 1

2
(4.6)

The decisional SDP (D-SDP) only asks if there exist e, with ∥e∥ ≤ t, such that Ĥe⊤ =
s, which [BMT78] proved to be a NP-complete problem under the name of Coset
Weights Problem. As the decisional variant of the presented problem can be trivially
reduced to its search version, it implies that the C-SDP is at least as hard as D-SDP, and
consequently it is a NP-hard problem.

There are many cryptographic schemes based on the Niederreiter framework, most
notably Classic McEliece which is concurring in the standardization of a code-based
scheme in the NIST PQC standardization process. As the GDP and the SDP can be
reduced one into the other in both directions, the major advantage of a Niederreiter
scheme with respect to McEliece schemes is the size reduction of the private key and
the ciphertext when k > n

2
, hence when the redundancy information r = n − k is

40

4.1. Syndrome Decoding Problem

larger than the message information k. Another technique to further reduce the size of
the public key consists in computing the systematic form [In−k | T] of the parity-check
matrix Ĥ, whenever is possible, and consequently transmitting only T ∈ F(n−k)×k

q and
omitting the identity matrix In−k. Considering that the computational cost of Gaussian
elimination used to determine the matrix systematic form is O(n3), the reduction of
the network traffic offered by this optimization comes at a cost of an increased keygen
latency.

4.1.1 Quasi-Cyclic codes

For appropriate dimensions of k and k able to guarantee practical security against crypt-
analysis, the public key size of McEliece and Niederreiter schemes is in the order of few
MiB, which is ≈ 1000× larger than EC-based public key schemes currently in use. For
that reason, such schemes are primarily used to produce static keys, that are intended
to be re-used for relatively long period of time, e.g. Virtual Private Network (VPN),
and where the performance of the Key Generation and the size of the public key do not
play a fundamental role. By contrast, ephemeral keys are generated for a single use in
a cryptographic process, guaranteeing forward security in the cryptographic protocols
making use of it, but are strongly influenced on key generation latency and size of the
public key. Notably, the TLS v1.3 protocol, which is widely used nowadays to estab-
lish secure connections between a web browser and a HTTP server, mandates the use of
ephemeral keys for each key exchange.

Quasi-Cyclic (QC) codes introduced in [Gab05] aim to produce public keys having a
size of just O(n) in the code’s length n by exploiting the quasi-cyclicity of BCH ECCs
that allow to transmit only few rows of the generator or parity-check matrix and still be
able to derive the whole matrix.

Let C be a [n, k, d] binary quasi-cyclic code of order s | n. Its generator matrix G is
composed of r × r circulant blocks Ai ∈ Fu×s

2 , with r = n
s
, 0 ≤ i < r and ru = k,

such that every column (or row) is a cyclic rotation of the previous column (or row) by
one cell:

G =


A0 Ar−1 . . . A1

A1 A0 . . . A2
...

...
Ar−1 Ar−2 . . . A0

 = ROT([A0,A1, . . . ,Ar−1]) (4.7)

As a consequence, the generator matrix G ∈ Fk×n
2 can be reconstructed from the r

smaller matrices Ai ∈ Fu×s
2 , having only nk

r
size in total. Let c = [c0, c1, . . . , cs−1] be a

codeword of C, then a simultaneous rotation of every ci by the same amount of positions
is also a codeword of C.

The construction of G can be generalized to relax the r | k condition, and therefore
both McEliece and Niederreiter schemes can be instantiated with a QC code, consider-
ing that the permutation matrix P ∈ Fr×r

2 is applied to each circulant block Ai. Notice

41

Chapter 4. Code-based cryptography

that there are no complexity results proving the hardness of decoding random quasi-
cyclic codes on average or worst cases, but it is still believed by the community to be
hard, and the current best attacks are the same of generic codes.

In recent times there are numerous proposal of cryptographic schemes relying on
quasi-cyclic codes, some featuring low-density or moderate-density parity-check ma-
trix as a further step to decrease the public key size. Most notably some of them are
KEMs proposals in the NIST PQC standardization process LEDAkem [Bal+18], BIKE
[Ara+22], and HQC [Agu+24a].

4.1.2 Restricted error vectors

The Restricted Syndrome Decoding Problem (R-SDP) is an NP-complete problem sim-
ilar to the SDP where the coefficients of the error vector e belong to the cyclic subgroup
⟨g⟩ = E ⊆ F∗

p generated by the element g ∈ F∗
p of multiplicative order z, with z < p

prime numbers. It was initially presented in [Bal+20] for the z = 2 case, and later gen-
eralized for any z in [Bal+24b], with the proof for the NP-completeness being reported
in [Weg+24]. Given a parity-check matrix H ∈ F(n−k)×n

p , a syndrome s ∈ Fn−k
p and a

restricted group ⟨g⟩ = E ⊆ F∗
p with g ∈ F∗

p having prime order z, the search variant of
the R-SDP asks to find a vector e ∈ En such that s = eH⊤, while the decision variant
of the R-SDP asks if there exists such e. With this restriction of the ambient space of
the error vector, the uniqueness of the solution can be guaranteed for any weight of the
error vector when log2(z) ≤ (1−R) log2(p), and the best solvers are the same ones for
the SDP. Note that when z = p − 1, the R-SDP is similar to the SDP, whereas when
z = 1, the R-SDP is close to the Subset Sum Problem (SSP) over finite fields.

Another way to further restrict the valid solution is to take the error vector e from the
subgroup G ⊂ En such that |G | = zm and |E n | = zn, where n is the dimension of the
ECC and m < n. Note that the structure of G may be leveraged to mount more efficient
attacks for the Restricted Syndrome Decoding Problem in the subgroup G (R-SDP(G))
variant of the problem, so the subgroup G must be carefully chosen to thwarts structural
weaknesses. Given a parity-check matrix H ∈ F(n−k)×n

p , a syndrome s ∈ Fn−k
p and a

restricted group G = ⟨{a1, . . . , am}⟩ , for ai ∈ En, the decisional R-SDP(G) asks if
there exits a vector e ∈ G such that eH⊤ = s. When m logp(z) ≤ (1 − R)n, it is
guaranteed that only one solution exists.

Digital signatures can be constructed by leveraging a Zero-Knowledge (ZK) identifi-
cation protocol where a prover P tries to convince a verifier V that it knows a particular
secret that verifies some public statement, while not revealing any part of its secret dur-
ing the process. During the process, the two actors exchange some messages, most of
the times in an interactive manner. A prover P starts the protocol by making a commit-
ment to its sk. Afterwards, the verifier V sends a random challenge asking the prover P
to demonstrate the knowledge of the secret key in a follow-up response message. This
challenge-response mechanism can be re-iterated multiple times if necessary. A ZK
protocol must satisfy the following properties:

42

4.2. Hamming Quasi-Cyclic

Completeness a honest prover P using a secret key sk and following the protocol al-
ways convinces a verifier V .

Soundness a cheating prover P ′ can convince a verifier V only with a small probability
ε < 1, called soundness error. To boost the soundness, the prover can perform t
protocol executions using the same secret key sk, resulting in a overall soundness
error ≈ εt

Zero-knowledge starting from the transcript of the messages exchanged between P
and V , no one can learn any information of the sk employed by P .

The first ZK protocol based on the SDP for a binary code was presented in [Ste93], and
later generalized for q-ary ECC in [CVA10]. More recently, a ZK identification proto-
col based on R-SDP and R-SDP(G) problems was presented in [Bal+24b], allowing to
significantly reduce the signature size.

The Fiat-Shamir (FS) framework [FS86] can create a signature scheme from a ZK
protocol by making its execution non-interactive via a one-way pseudo-random function
to deterministically simulate the actions between the prover P and the verifier V starting
from the message to sign and all the messages exchanged in the previous steps of the
ZK protocol. The transcript of the protocol execution is the resulting signature to be
verified by emulating all the steps of the verifier V . A malicious prover can repeatedly
simulate the ZK protocol execution tweaking the exchanged messages to forge valid
signatures, requiring on average ε−1 attempts, and achieving the Existential Unforge-
ability under Chosen Message Attacks (EUF-CMA) security. CRYSTALS-Dilithium
is an example of a FS-based digital signature using the R-LWE underlying hard prob-
lem that was selected as by NIST and standardized in FIPS 204 under the name of
ML-DSA. Among the proposals in the additional NIST standardization effort of digi-
tal signatures that passed the first evaluation barrier, CROSS represents a promising
FS-based schemes employing a ZK identification scheme relying on the hardness of the
R-SDP or R-SDP(G), and showing a moderate signature size while having low signing
and verification runtime. In comparison, the recently introduced Multy-Party Computa-
tion in-the-Head (MPCitH) technique is an alternative way to construct zero-knowledge
proofs. The idea is to simulate a secure multi-party computation protocol "inside the
head" of a single proverP , without actually distributing the computation across multiple
real parties holding part of the sk. The advantage lies in shorter signature sizes, although
requiring a non-trivial computational overhead for both the signer and the verifier V .

4.2 Hamming Quasi-Cyclic

Hamming Quasi-Cyclic (HQC) is a code-based candidate in the NIST PQC standard-
ization process that employs two different linear codes: a double circulant (s = 2)
public quasi-cyclic random code that ensures the scheme’s security, and a fixed public
code with high error correction capacity and an efficient decoding algorithm to encode
the plaintext with the high error tolerance required by the scheme. Differently from

43

Chapter 4. Code-based cryptography

private key
material Decapsulation

information
word

corrupted
codeword

uncorrectable
codeword

MSGM S G decode

Encapsulation

information
word codeword

encode

public key +
random material

uncorrectable
codeword

MSG M S G

Figure 4.2: Overview of HQC’s working principle and use of the fixed public code

McEliece and Niederreiter schemes, HQC does not need an efficient decoder for the
quasi-cyclic code, and for that reason a random code is sampled directly without obfus-
cating a known good code.

The working principle by which HQC allows to communicate a session key between
two agents A and B, in line with what was presented during the introduction to KEM
in Figure 1.1, is depicted in Figure 4.2. B starts by generating a a key pair and shar-
ing the public key with A. Having the public key of B, A encodes a fully random
plaintext from which the session key will be derived, with the public and highly effi-
cient error correcting code. Afterwards, he corrupts the resulting codeword way beyond
the error-correcting capability of the fixed public code by employing both the public
key and some randomness generated deterministically from the message, obtaining the
ciphertext, i.e, the encapsulated key. The ciphertext is sent to B, while also deriving
the private shared session key from the message. Only B, which is in possession of
the private key corresponding to the public key employed by A is able to remove a
large amount of the introduced corruptions of the codeword, reducing the corruption to
a point where the public error correction code allows to correct the remaining errors.
HQC employs the transformation described by Hofheinz-Hövelmanns-Kiltz (HHK) in
[HHK17] to achieve resistance against active attackers. Informally, this requires that B
should be able to validate if the recovered message is actually the one sent by A: this
is done in practice through a re-encryption of the message performed by B after the
decryption, and a comparison with the received ciphertext.

In the following, the structure of the HQC.KEM is detailed, i.e., the cryptographic
primitive obtained applying the HHK transformation to the HQC Probabilistic Public-
Key Encryption (PPKE) (HQC.PPKE).

44

4.2. Hamming Quasi-Cyclic

4.2.1 Algebraic structures and parameters sets

Let F2 be the binary finite field, and R be the polynomial ring F2[x]/ ⟨xp − 1⟩. To thwart
mathematical attacks based on the ring structure, HQC picks p as a prime number such
that p > 3 and ord2(p) = p− 1, determining that xp − 1 ∈ F2[x] would only admit two
irreducible factors (mod p).

A polynomial a ∈ R has a Hamming weight ω(a) if it has ω(a) non-zero binary
coefficients. The set Rw ⊂ R contains all polynomials in R having Hamming weight
equal to w, w ≥ 1. Operatively, each polynomial a = a0 + a1x + . . . + ap−1x

p−1 ∈ R
can also be considered as a p-dimensional binary vector composed by its coefficients
a = [a0, a1, . . . , ap−1] ∈ Fp

2.
HQC uses a random quasi-cyclic [2p, p, d] code with a public parity-check ma-

trix H = [Ip | ROT(h)], where Ip is the p × p identity matrix, while ROT(h) is the
p × p matrix obtained from the juxtaposition of h and a sequence of columns, each
of which is obtained through a vertical rotation of the previous one by one coefficient.
The public efficiently decodable code is generated by the concatenation of a shortened
RS [ne, ke, de] (external) code with a duplicated Reed-Muller (RM) [ni, ki, di] (internal)
code, producing a concatenated code with length, dimension and minimum distance of
[neni, keki, dedi]. We will refer to the Reed-Muller/Reed-Solomon (RM/RS) generator
matrix of this code as G.

HQC employs the SHAKE256 algorithm from the SHA-3 NIST standard [PM15]
to implement the CSPRNG (further details will be provided in subsection 5.2.1).

Moreover, the KEM construction of HQC makes use of two different hash functions,
HASHG and HASHK , that for efficiency reasons are both based on SHAKE256 and dif-
ferentiated by a single byte absorbed as the last element, providing a domain separation
to securely employ the same cryptographic primitive for different purposes.

4.2.2 HQC PPKE

HQC.PPKE-KEYGENERATION

The PPKE key generation procedure, presented in Algorithm 7, starts by sampling
two random seeds γ and φ of 320 bits each. φ is used to sample the random public
polynomial h from R, that in turn generates the parity-check matrix of a random QC
code H = [Ip, ROT(h)]. The seed γ is used to sample the random secret polynomials
x, y ∈ R, both with fixed Hamming weight ω(x) = ω(y) = w. s is the syndrome poly-
nomial of the pair (x, y) in the random quasi-cyclic code defined by H, s ← x + h · y,
i.e., s = H[x | y]⊤. The outputs are the public key (φ, s) and the private key γ.

HQC.PPKE-ENCRYPTION

The encryption procedure (Algorithm 8) receives as input the public key (φ, s), the
random message m to be transmitted encoded with k ∈ {128, 192, 256} bits, and a
512-bit public salt θ employed to randomize the ciphertext and achieve the IND-CPA

45

Chapter 4. Code-based cryptography

Algorithm 7 HQC.PPKE-KEYGENERATION

Require: None
Ensure: pk = (φ ∈ {0, 1}320 , s ∈ R)

sk = γ ∈ {0, 1}320

1: (γ, φ)
$← {0, 1}320 × {0, 1}320

2: h← CSPRNG(φ,R)
3: (x, y)← CSPRNG(γ,Rw ×Rw)
4: s← x+ h · y
5: return pk = (φ, s), sk = γ

Algorithm 8 HQC.PPKE-ENCRYPTION

Require: pk = (φ ∈ {0, 1}320, s ∈ R)

m ∈ {0, 1}k, θ ∈ {0, 1}512
Ensure: ctx = (u ∈ R,v ∈ Fneni

2)
1: (e, ra, rb)← CSPRNG(θ,Rwe

×Rwr
×Rwr

)
2: h← CSPRNG(φ,R)
3: u← ra + h · rb
4: v← ENCODEG(m) + TRUNC (s · rb + e)
5: return ctx = (u,v)

property. Three random polynomials e, ra, rb ∈ R, are randomly sampled using the
seed θ such that ω(e) = we and ω(ra) = ω(rb) = wr. The parity-check matrix H is
expanded from the public seed φ and used to compute the syndrome polynomial u of
the bit vector [ra | rb] as u ← ra + h · rb ⇔ u = H[ra | rb]⊤. The codeword resulting
from the encoding of the message m with the public RM/RS code having generator
matrix G is then corrupted adding the first neni < p bits obtained from the s · rb + e
operation. The resulting vector v ∈ Fneni

2 cannot be used to obtain m using the public
RM/RS decoding algorithm alone, since the introduced error bits are far more than its
maximum correcting capability. The ciphertext is (u,v).

HQC.PPKE-DECRYPTION

The decryption algorithm (Algorithm 9) starts by expanding the secret vector [x | y] ∈
F2p
2 from the secret key sk = γ and subtracts from the polynomial v, derived from

the second component v of the ciphertext, the product of the first one u by the second
element of the secret vector y. The resulting quantity, v−u · y can be shown to be close
to a codeword of the RM/RS public code G, recalling that s = h ·y+x from the keygen
algorithm:

v − u · y = mG+ (s · rb + e− h · rb · y − ra · y)
= mG+ (h · y · rb + x · rb + e− h · y · rb − ra · y)
= mG+ (x · rb + e− ra · y)
= mG+ e′

(4.8)

46

4.2. Hamming Quasi-Cyclic

Algorithm 9 HQC.PPKE-DECRYPTION

Require: sk = γ ∈ {0, 1}320, ctx = (u ∈ R,v ∈ Fneni
2)

Ensure: m′ ∈ {0, 1}k
1: (x, y)← CSPRNG(γ,Rw ×Rw)
2: m′ ← DECODEG(TRUNC([v∥0p−neni]− u · y))
3: return m′

Algorithm 10 HQC.KEM-KEYGENERATION

Require: None
Ensure: pk = (φ ∈ {0, 1}320 , s ∈ R)

sk = (γ ∈ {0, 1}320 , σ ∈ {0, 1}k , φ ∈ {0, 1}320 , s ∈ R)

1: σ
$← {0, 1}k

2: ((φ, s), γ)← HQC.PKE-KEYGENERATION()
3: return pk = (φ, s), sk = (γ, σ, φ, s)

The resulting e′ vector corrupting the codeword mG has a Hamming weight low enough
to be successfully corrected by the fixed RM/RS decoder algorithm, retrieving the orig-
inal message m. The HQC.PPKE parameters (i.e., p, w, we, wr, ni, ne, ki, ke, di, de,
with k = kike) are tuned so that this decoding action has a negligible failure rate. In the
call for post-quantum cryptographic schemes, NIST provided a security level classifica-
tion to categorize each cipher. Specifically, security levels 1, 3, and 5 correspond to the
lowest computational efforts needed to derive the secret key of AES-128, AES-192,
AES-256 via the best classical and quantum cryptanalytic attacks, respectively (see
Table 1.1). The designers of HQC provided parameters for the cryptosystem, reported
in Table 4.1, so that the decryption failures take place with a probability of 2−λ, where
λ is the bit-length of the key of the AES cipher considered at the corresponding security
level.

4.2.3 HQC KEM

The HQC.KEM is obtained wrapping the HQC.PPKE with the HHK transformation
[HHK17] which, from a functional standpoint, feeds the HQC.PPKE with a random
message, from which the secret to be employed as a session key K is derived, and adds
to the ciphertext additional information which allows to check if a decryption error took

Table 4.1: HQC parameter sets. Public fixed codes are specified via the [n, k, d] notation. The rightmost
column reports the Decoding Failure Rate (DFR) of each parameter set.

Security Parameter Public concatenated code Polynomial ring R DFRlevel set Reed-Solomon Reed-Muller p w we=wr

1 hqc128 [46, 16, 31] [384, 8, 192] 17669 66 75 2−128

3 hqc192 [56, 24, 33] [640, 8, 320] 35851 100 114 2−192

5 hqc256 [90, 32, 59] [640, 8, 320] 57637 131 149 2−256

47

Chapter 4. Code-based cryptography

Algorithm 11 HQC.KEM-ENCAPSULATION

Require: pk=(φ ∈ {0, 1}320, s ∈ R)

Ensure: ctx=(u ∈ R, v ∈ Fneni
2 , salt ∈ {0, 1}128), K∈{0, 1}512

1: m
$← {0, 1}k, salt $← {0, 1}128

2: θ ← HASHG(m∥φ∥s∥salt)
3: (u,v)← HQC.PKE-ENCRYPTION((φ, s),m, θ)
4: K ← HASHK(m∥u∥v)
5: return ctx = (u,v, salt),K

Algorithm 12 HQC.KEM-DECAPSULATION

Require: ctx = (u ∈ R,v ∈ Fneni
2 , salt ∈ {0, 1}128)

sk = (γ ∈ {0, 1}320 , σ ∈ {0, 1}k , φ ∈ {0, 1}320 , s ∈ R)

Ensure: K ∈ {0, 1}512
1: m′ ← HQC.PKE-DECRYPTION(γ, (u,v))
2: θ′ ← HASHG(m

′∥φ∥s∥salt)
3: ctx′ ← HQC.PKE-ENCRYPTION((φ, s),m′, θ′)
4: if (ctx ̸=ctx′)K ′←HASHK(σ∥u∥v) else K ′←HASHK(m′∥u∥v)
5: return K ′

place. In this case, to avoid information leakage, the construction emits a random string,
deterministically derived with a CSPRNG from the ciphertext and a secret seed stored
within the private key.

HQC.KEM-KEYGENERATION

The KEM key generation algorithm matches the one of HQC.PPKE-KEYGENERATION,
save for the generation of the additional seed, denoted as σ, of 128, 192, or 256 bits (de-
pending on the security level), stored together with the private seed γ.

HQC.KEM-ENCAPSULATION

The encapsulation algorithm, presented in Algorithm 11, starts by picking a uniformly
distributed random message m encoded with 128, 192, or 256 bits, depending on the
security level, and a 128-bit public salt. The two quantities are concatenated with the
public key (φ, s) and hashed via the HASHG function to get a digest θ, which is subse-
quently employed as the ephemeral value required as an input by the HQC.PPKE-
ENCRYPTION algorithm. After calling the routine HQC.PPKE-ENCRYPTION, the
shared secret session key K is derived through a different hash function, HASHK , fed
with the concatenation of the message m and the components u,v of the ciphertext.

HQC.KEM-DECAPSULATION

The decapsulation procedure (Algorithm 12) starts by computing the output value m′

of the routine HQC.PPKE-DECRYPTION fed with the secret key seed and the received

48

4.2. Hamming Quasi-Cyclic

components u,v of the ciphertext ctx, which should match the original confidential
message m unless a decryption failure occurs. To distinguish between the two possible
scenarios and provide security against active attackers, which may have mangled the
received ciphertext, the HHK transformation followed by the decapsulation procedure
mandates to compare the received ctx with the output obtained from the re-computation
of the HQC.PPKE-ENCRYPTION routine, which in turn requires the re-computation of
the ephemeral value θ fed to it as last input parameter. If the retrieved secret message m′

matches the one that was actually encrypted, the outcome of such process (lines 2 and
3 of Algorithm 12) will yield a value ctx′ matching the received ciphertext ctx (check
performed at line 4). In case the recomputed ciphertext ctx′ does not match the received
one, the implicit rejection mechanism requires the computation of the session key K as
the result of the HASHK function fed with the concatenation of the received ctx and the
binary string σ (included in the secret key), instead of the mangled message m′, which
may provide information to an attacker.

4.2.4 Comparison with BIKE

BIKE is a code-based post-quantum scheme whose security is guaranteed by:

Private key recovery the indistinguishability of a hidden QC Medium Density Parity
Check (QC-MDPC) code from a QC random parity check code

Session key recovery the hardness of the random quasi-cyclic (QC) syndrome decod-
ing problem

HQC on the other hand relies only on the latter for both recovery attacks.
Both cryptographic schemes operates with element in a binary polynomial ring R =

F2[x]/⟨xp − 1⟩, with p a large prime number ≥ 10000. Note that the polynomial ring
used by BIKE has slightly smaller elements than the ones used in HQC – the value p,
which also represents the bit-length of an element, is equal to 12323, 24659, 40973,
as opposed to 17669, 35851, 57637, for the parameter sets defining security levels of
AES-128, AES-192, and AES-256, respectively. This practically means that the
arithmetic operations performed on the elements defined by the mid-range security level
of HQC are roughly executed in the same amount of time as the BIKE’s arithmetic op-
erations defined by the highest security margin. This performance gap for the execution
of arithmetic operation is similar and consistent for all the parameters sets defined by
the two schemes.

To thoroughly compare the schemes, we need to consider the schedule of the opera-
tions for the three KEM primitives (key generation, encapsulation, and decapsulation),
focusing primarily on the most computationally intensive operations. A summary of the
operations involved in the computation of the primitives is provided in Table 4.2.

Key generation
BIKE needs to sample two polynomials with a fixed Hamming weight. In this case,
the constant-time property of such operation is not mandatory, hence the sampling

49

Chapter 4. Code-based cryptography

Table 4.2: Comparison of BIKE and HQC on the type and number of operations involved in the three
KEM primitives KEYGENERATION, ENCAPSULATION, and DECAPSULATION.

Operations KeyGeneration Encapsulation Decapsulation
BIKE HQC BIKE HQC BIKE HQC

Fixed-weight sample in R 2 2 2 3 2 4
Inverse in R 1 0 0 0 0 0

Multiplication in R 1 1 1 2 1 3
Decoder 0 0 0 0 1 1
Encoder 0 0 0 1 0 1

algorithm specified by the authors of BIKE is more straightforward than the one in
HQC. Afterwards, an inverse inverse R is computed and used in a multiplication
between polynomials to generate the public key. Compared to HQC, the simplified
sampling algorithm gives a slight benefit in performance, but it does not compen-
sate for the large computational cost of computing the inverse element in R (about
10-30 multiplications in R), as demonstrated by the latency of the key generation
operation highlighted in the presented results for HQC.

Encapsulation
BIKE samples two additional random polynomials with fixed-weight, as opposed
to the 3 random polynomials required by HQC. Furthermore, a singe multipli-
cation among polynomials is needed, whereas in HQC two of such operations are
carried out. Finally, HQC needs to encode a message using the Reed-Muller/Reed-
Solomon concatenated code. The presented benchmarks determine a 1.6 ∼ 2.1×
latency improvement of the HQC design in this thesis, along with a ≈ 2× effi-
ciency gain with respect with the current state-of-the-art BIKE hardware imple-
mentation [Ric+22], a remarkable result considering the higher number of slightly
more complex operations carried out in HQC.

Decapsulation
BIKE performs one multiplication before decoding the resulting codeword to the
final message, which is used to re-sample the same two random-polynomials com-
puted during the encapsulation. The decoding of BIKE’s Moderate-Density Parity-
Check (MDPC) code is achieved with a simple iterative decoder. The recently
adopted (October 2024) BIKE-FLIP decoder has a simpler logic than the Black-
Gray-Flip (BGF) decoder previously used, making the memory bound nature of
iterative hard decision bit flipping decoders even more evident. Furthermore, it-
erative decoders need to act on their entire input for the whole duration of the
decoding computation. On the other hand, HQC performs substantially more op-
erations during the decapsulation – samples 4 polynomial with fixed-weight, per-
forms 3 multiplications among polynomials, and decodes the codeword obtained
from the ciphertext to the final message, which is then re-encoded to validate the
operations by the HHK transformation. HQC uses a conceptually more com-

50

4.3. Codes and Restricted Objects Signature Scheme

plex algebraic decoder algorithm, which, besides being computationally bound,
leaves a greater margin for engineering, as it on works with smaller elements. This
gave the opportunity to efficiently extract a higher degree of computational paral-
lelism with respect to an iterative decoder, without imposing taxing requirements
on memory resources. Summing up, the presented design handles a higher num-
ber of slightly more complex operations faster (9.1 ∼ 20.7×) and more efficiently
(11.2 ∼ 25.8×) than the best design for BIKE [Ric+22].

4.3 Codes and Restricted Objects Signature Scheme

The Codes and Restricted Objects Signature Scheme (CROSS) is a post-quantum Dig-
ital Signature (DS) obtained applying the Fiat-Shamir (FS) framework to the CROSS-
ID Zero-Knowledge (ZK) protocol relying on the NP-complete Restricted Syndrome
Decoding Problem (R-SDP) or Restricted Syndrome Decoding Problem in the subgroup
G (R-SDP(G)) introduced in subsection 4.1.2, and on the hardness of finding collisions
in a cryptographic hash function. The main advantage over other code-based digital sig-
natures derives from the removal of the fixed-weight constraint in favor of the restriction
of the ambient space of the error vector, meaning that its coefficients must be in the sub-
groups En ⊂ Fn

p or G ⊂ En for R-SDP and R-SDP(G), respectively. In turn this allows
to have shorter signatures while having simple arithmetic, particularly when it comes to
computing element transformations. In fact, CROSS performs modular arithmetic in
integer fields modulo a small prime, mostly a Mersenne prime to simplify the computa-
tion of the modulo remainder, and can be easily performed in a constant amount of time
to thwart time side-channel attacks. The size of public and private keys are minimal,
where the private key consists of just a single random seed, while the public key takes
at most 121 B and 74 B for the R-SDP and R-SDP(G) variants, respectively. Some
standard optimization techniques are adopted to reduce the signature size, for exam-
ple deriving the seeds used in each ZK round from a binary tree, using a Merkle tree
to reduce the number of commitments transmitted in the signature, and producing an
intentionally unbalanced distribution of commitments.

4.3.1 Algebraic structures and parameters sets

As in the SDP, the public key consists in a parity check matrix H ∈ F(n−k)×n
p of a p-ary

[n, k, d] random linear code deterministically generated from the output material of a
CSPRNG, in particular from the SHAKE eXtendable-Output Function (XOF), starting
from a small public random seed (further details will be provided in subsection 5.2.1).
The error vector sk = e ∈ Fn

p is the private key of the scheme, similarly determinis-
tically generated from the output material of a CSPRNG initialized by a small private
random seed. Differently from the SDP, e does not have a fixed weight, but rather
its coefficients are in the subgroup E generated by the public element g of order z:
⟨g⟩ = {gi | i ∈ {1, . . . , z}} = E ⊂ F∗

p, thus e ∈ En. The syndrome is consequently

51

Chapter 4. Code-based cryptography

generated as s = eH⊤ and is part of the public key pk = (H, s), which be reduced in
size by transmitting the public seed used to deterministically generate the matrix H in
its place. Note that both p and z are small prime numbers, so the vector coefficients are
part of an algebraic field, and therefore each coefficient of e has also order z.

Let (⊙) be the Hadamard product (component-wise multiplication), then the commu-
tative group (En,⊙) is isomorphic to (Fn

z ,+). An element a ∈ En can be represented
by a vector a ∈ Fn

z with vector coefficients in Fz, hereafter denoted by an overline to
specify that it is from the Fn

z vector space, such that
[
ga1 , . . . , gan

]
, or ga for brevity.

Having two values a,b ∈ En, then their component-wise product is a⊙b = ga+b, and
the inverse element of a is a−1 = g−a.

Considering the R-SDP(G), let G be the subgroup of En defined as follows:

G = ⟨{b1, . . . ,bm}⟩ =
{

m⊙
i=1

bi
ui | bi ∈ En ∧ ui ∈ F⋆

z ∧m < n

}
⊂ En (4.9)

Then let M =
[
b1, . . . ,bm

]⊤
be the Fm×n

z matrix of the exponents of g composing
b1, . . . ,bm, having rank equal to m. An element a ∈ G can be computed as a = gaGM

starting from an even smaller vector aG ∈ Fm
z , hereafter denoted denoted by the G

subscript.
These isomorphisms are useful when considering the linear transitive maps V :

En 7→ En and VG : G 7→ G simply given by the Hadamard product by an element
v ∈ En or v ∈ G :

V(a) = v ⊙ a = gv+a (4.10)

As a consequence, a random linear map V can be compactly represented by any random
element v. The same is true for a random linear map VG that is be represented by an
even more compact random element vG in the R-SDP(G) variant.

The CROSS scheme offers two variants, the more conservative one relying on the
R-SDP, and the one based on the R-SDP(G) providing smaller signatures. For the first
variant both p = 127 and z = 7 are Mersenne primes, while for the latter only z = 127
is a Mersenne prime, while p = 509 is a generic small prime number. For each variant
there are different parametrization of the random [n, k, d] random linear code guarantee-
ing the three security margins mandated by NIST, equivalent to the security offered by
AES-128, AES-192, and AES-256. As a further choice offered for each parameter
set, a trade-off between execution runtime and signature size is proposed by tweaking
some parameters, such as the number of ZK protocol repetitions t, or the unbalanced
distribution of the second CROSS-ID binary challenge having Hamming weight w, to
the goal of producing a fast variant, one generating small signatures, and a balanced op-
tion in between the previous two choices. Overall, the CROSS specification [Bal+24a]
defines 18 parameter sets, here reported in Table 4.3.

52

4.3. Codes and Restricted Objects Signature Scheme

Table 4.3: CROSS parameter sets for the three security levels mandated by NIST. Two variants are
proposed for each security level, depending on the hard problem relying on, and for each one of them
three optimization corners are offered producing a trade-off between sing/verification runtime and
signature size. The generator element g is public and fixed for every parameter sets, and is equal to 2
and 16 for R-SDP and R-SDP(G), respectively.

Security Hard Trade-off Parameter
p z n k m t w

Size (B)
level problem variant set sk pk sig

1

R-SDP
fast CROSS-RSDP-1-f

127 7 127 76 –
157 82 32 77 18432

balanced CROSS-RSDP-1-b 256 215 32 77 13200
small CROSS-RSDP-1-s 520 488 32 77 12480

R-SDP(G)
fast CROSS-RSDPG-1-f

509 127 55 36 25
147 76 32 54 11980

balanced CROSS-RSDPG-1-b 256 220 32 54 9168
small CROSS-RSDPG-1-s 512 484 32 54 9008

3

R-SDP
fast CROSS-RSDP-3-f

127 7 187 111 –
239 125 48 115 41406

balanced CROSS-RSDP-3-b 384 321 48 115 29925
small CROSS-RSDP-3-s 580 527 48 115 28463

R-SDP(G)
fast CROSS-RSDPG-3-f

509 127 79 48 40
224 119 48 83 26772

balanced CROSS-RSDPG-3-b 268 196 48 83 22536
small CROSS-RSDPG-3-s 512 463 48 83 20524

5

R-SDP
fast CROSS-RSDP-5-f

127 7 251 150 –
321 167 64 153 74590

balanced CROSS-RSDP-5-b 512 427 64 153 53623
small CROSS-RSDP-5-s 832 762 64 153 50914

R-SDP(G)
fast CROSS-RSDPG-5-f

509 127 106 69 48
300 153 64 106 48102

balanced CROSS-RSDPG-5-b 356 258 64 106 40196
small CROSS-RSDPG-5-s 642 575 64 106 36550

53

Chapter 4. Code-based cryptography

4.3.2 CROSS ZK protocol

CROSS defines the CROSS-ID ZK identification protocol starting from the one in
[CVA10], and using R-SDP hard problem as a foundation. Within a CROSS-ID pro-
tocol execution, the signer will prove to the verifier that the secret key, represented by
the error vector e ∈ Fn

p , either satisfies the syndrome equation s = eH⊤, or that it is
from En (or G in case of R-SDP(G)). For the sake of simplicity, in this section it is
presented the identification protocol for R-SDP(G), which is applicable also for R-SDP
by considering m = n and M = Im, which make G = En.

The CROSS-ID is a 5-pass protocol here represented in Algorithm 13, where a
prover P tries to convince a verifier V that it is in possess of a secret value e bound to
the public key (s,H) as s = eH⊤. After an initial commitment of the prover P , the
verifier V sends two challenges, the first one from a space of cardinality q = p − 1,
and the second one from a space of cardinality 2. Finally, the verifier V checks the
sent commitment and the response to the first challenge. It is therefore classified as
q2-Identification scheme, with a soundness error of ε = p

2(p−1)
≈ 1

2
.

Transformation
An initial random bit string seed seed of size λ equal to the security margin
of the parameter set in use is sampled uniformly at random. It is then used to
initialize a CSPRNG to generate the transformed error e′ ∈ G and the element
u′ ∈ Fn

p . A peculiarity of CROSS-ID is that the transformation VG associated to
the element v is computed via Equation 4.10 from the random element e′ ∈ G
such that VG(e) = e′: Note that if both e and e′ are sampled from a uniform
distribution, so it is for the transformation v. It is imperative to not share both the
transformation v and the random element e′ in the same response to the challenge
to avoid the verifier to recompute the secret key as e = VG(e

′).

Commitment
Then the syndrome s′ ∈ Fn−k

p is computed from the transformed element u =
v ⊙ u′ using the parity check matrix H. The two commitments cmt0 and cmt1

are generated as the digest of the absorption of the bit string representations of s′

concatenated to v, and u′ concatenated to e′, respectively.

First challenge
After receiving the commitments from the prover P , the verifier V generates a first
random challenge chall1 ∈ F∗

p, which is then used by the prover P to compute
the quantity y = u′ + chall1e

′. As a response to the first challenge, the prover
sends the digest digy of the bit string representation of y.

Second challenge
The verifier now generates a second challenge chall2, a single binary choice to
ask the prover to communicate either the bit string representation resp of both y
and v, or the randomness seed used in the protocol execution. Note that vG ∈ Fm

z

54

4.3. Codes and Restricted Objects Signature Scheme

Algorithm 13 CROSS-ID

Require: sk = e ∈ G ⊆ En

pk =
(
H ∈ F(n−k)×n

p , s = eH⊤ ∈ Fn−k
p

)
PROVER P VERIFIER V
seed

$← {0, 1}λ

. Commitment .

e′,u′←CSPRNG(seed,G×Fn
p)

v← e⊙ (e′)−1

u← v ⊙ u′

s′ ← uH⊤

cmt0 ← HASH(s′∥v)
cmt1 ← HASH(u′∥e′)

cmt0,cmt1

commitment

. First challenge .

chall1
$← F∗

p
chall1

1st challenge
y← u′ + chall1e

′

digy ← HASH(y)
digy

1st response

. Second challenge .

chall2
$← {0, 1}

chall2

2nd challenge
if chall2=0 then resp←y∥v
else resp← seed

resp

2nd response

. Verification .

if chall2 = 0 then

y′ ← v ⊙ y

s′ ← y′H⊤ − chall1s

if HASH(y) ̸=digy ∨ HASH(s′∥v) ̸=cmt0 ∨ v ̸∈G then fail

else(
e′,u′)← CSPRNG(seed,G × Fn

p)

y← u′ + chall1e
′

if HASH(y) ̸= digy ∨ HASH(u′∥e′) ̸= cmt1 then fail

55

Chapter 4. Code-based cryptography

is smaller than v ∈ Fn
p , therefore to reduce the size of the transmitted message,

vG is sent in its place, and recomputed by the verifier as v = gvGM. Moreover,
consider that when chall2 = 1, the transmitted message is just a seed, which
is way smaller than the bit string representation of the elements in the Fn

p × Fm
z

space. Therefore, an optimization to reduce the signature size makes the verifier V
generate chall2 = 1 more often than chall2 = 0.

Verification
The verifier V now has to check the initial commitment and the response to the
first challenge are correct. If the second challenge chall1 is 0, then it received y
and v from the prover P . It initially computes y′ = v ⊙ y:

y′ = v⊙y = v⊙ (u′+chall1e
′) = v⊙u′+v⊙ (chall1e

′) = u+chall1e
(4.11)

Therefore, y′ contains the secret error vector e scaled by the first challenge chall2,
and masked by the unknown value u. The quantity y′ is then multiplied by the
parity-check matrix H to obtain s′ + chall1s:

y′H⊤ = (u+ chall1e)H
⊤ = uH⊤+chall1

(
eH⊤) = s′+chall1s (4.12)

Starting from Equation 4.12, it is possible to isolate s′ as y′H⊤ − chall2s. The
verifier V can now check the commitment cmt0, the first challenge response digy,
and that vG ∈ Fm

z .
In case the second challenge chall2 is 1, then the prover P sent the seed of the
protocol seed. Consequently, the verifier V can recompute e′ and u′, and verify
that the first response is indeed computed as y = u′ + chall1e

′, and that the
commitment cmt1 is correct.

In [Bal+24a] the authors give the proofs of the completeness, ZK, and soundness
properties of this identification protocol, and describe the details of the efficient imple-
mentation of such protocol in terms of message sizes and computation complexity.

4.3.3 CROSS digital signature

The CROSS Digital Signature algorithm is constructed via the Fiat-Shamir transforma-
tion of t independent executions of the CROSS-ID ZK identification protocol, making
their execution non-interactive using a one-way function and achieving the EUF-CMA
security. The protocol executions are performed by the signer deterministically com-
puting the challenges of the verifier V using the digest of a cryptographically safe hash
function that absorbed all the previous transferred messages between the prover P and
the verifier V , the message msg to be signed, and a 2λ salt public random value unique
for each signing operation. The transcript of the transferred messages from the prover P
to the verifier V , along with the salt used, is the requested message signature sig. The
verification consists in the deterministic recreation of the two challenges used by the
signer, and the execution of the final verification step of the CROSS-ID protocol.

56

4.3. Codes and Restricted Objects Signature Scheme

seed

1

3

seed[1] seed[2]

4

seed[3] seed[4]

2

5

seed[5] seed[6]

6

seed[7] seed[8]

cmt0

11

7

cmt0[1] cmt0[2]

8

cmt0[3] cmt0[4]

12

9

cmt0[5] cmt0[6]

10

cmt0[7] cmt0[8]

Figure 4.3: Simplified working principle of CROSS seed (above) and commitment (below) trees. Note
that the CROSS specification do not generate perfect nor complete binary trees. The signer needs to
communicate to the verifier all the w out of t seeds and commitments highlighted in blue, determined
by chall2[i] = 1. However, it can just send path = 3∥seed[4]∥2, called the seed path, and let
the verifier expand the missing seeds (REBUILDLEAVES). Similarly, the signature contains proof =
7∥cmt0[4]∥12, called the Merkle tree proof. When the verifier will compute the missing commitment
cmt0[3], the verifier will be able to retrieve the root of the Merkle tree (RECOMPUTEROOT).

To distinguish the elements and messages of the i-th protocol execution, with 0 <
i ≤ t, a suffix [i] is added to them. All the t CROSS-ID protocol executions are
performed in parallel, synchronizing the message transfers by aggregating the t ho-
mogeneous messages in a single one (e.g., chall2 = chall2[1]∥ . . . ∥chall2[t]).
For performance reasons, in some cases it is also possible to replace the computa-
tion of t hash functions having a single element with a single hash computation of
the t concatenated elements, such as in the case of the response to the first challenge
digy = HASH(y[1]∥ . . . ∥y[t]). Note that with this shortened notation, it is intended to
produce a digest of the concatenated bit string representation of all elements y.

To reduce the signature size, sig only contains the commitments that the verifier can-
not recompute depending on the second challenge chall2 value. The validity of all the
commitments is then checked by attaching to the signature a small digest of the com-
mitments concatenated together, so that the verifier can combine the half ones received
in the signature with the other half computed during the verification, and compare the
digest of their absorption. In case the second challenge is sampled from an unbalanced
distribution to send more often chall2[i] = 1 challenges, as it is the case for the bal-
anced and small parameter sets, the number of protocol executions t needs to increase.
In the end, the signature size is slightly reduced, at cost of an increased computational
complexity due to the larger number of parallel CROSS-ID protocols executed.

It is possible, however, to compress the large number of transmitted seed[i] by
considering them as the leaves of a binary tree computed by expanding λ intermediate
nodes in 2λ child nodes. In this way, it is possible to only communicate the ancestor
nodes of the tree leafs to be revealed to the verifier. The same principle can be used for
the transmission of the commitments cmt0[i], which are present in the signature more

57

Chapter 4. Code-based cryptography

often than cmt1[i], by using a Merkle tree structure where the commitments cmt0[i]
are the leafs of the tree. Each intermediate node is composed by absorbing the two
child nodes, up to the tree root. Consequently, in the signature are attached the common
ancestors of the tree leafs to be revealed to the verifier. A simplified case is presented
in Figure 4.3. Note that the fast parameter set does not employ any tree structure, as
w ≈ t/2, so there are no improvements in the signature size, but rather just an increased
computational complexity.

For performance and memory saving reasons, the random matrices H ∈ F(n−k)×n
p of

rank n − k and M ∈ Fm×n
z of rank m are sampled and used in their systematic form

H = [V, In−k] and M =
[
W, Im

]
. In this way, V ∈ F(n−k)×k

p and W ∈ Fm×(n−m)
z are

generated from the output material of a CSPRNG after the absorption of seedpk.
The CROSS scheme makes use of two cryptographically safe one-way functions,

HASH : {0, 1}∗ 7→ {0, 1}2λ and CSPRNG : {0, 1}∗ 7→ {0, 1}∗. Both are imple-
mented using the SHAKE XOF function standardized by NIST in the SHA-3 FIPS
202 standard[PM15], to minimize the size of imported libraries in SW implementation,
and reduce the area consumption in HW designs. Depending on the required security
margin λ, it can either use the SHAKE128 (λ = 128) or SHAKE256 (λ = 192, 256)
functions, with a performance boost derived by the slightly higher output throughput de-
livered by the former one. The implementation of the HASH function truncates the XOF
output to 2λ. However, to avoid potential collisions in the output of the two functions
CSPRNG and HASH, a domain separation mechanism is implemented by transparently
appending a different 16-bit integer to the absorbed material. In particular, a value≥ 215

is used for defining the HASH domain, thus any value < 215 denotes an implementation
of the CSPRNG function. It is possible to define up to 215 different CSPRNG and
HASH instances for further separation. Considering the i-th instance of the HASH, here
denoted as HASHi, the appended 16-bit integer will be 215 + i.

CROSS.KEYGENERATION

In the following paragraphs is presented an overview of the operations necessary to gen-
erate the key pair of the CROSS signature scheme, here also reported in Algorithm 14.
Whenever there is a difference between the hard problem instance, on the left side, high-
lighted in orange, are reported the steps specific to instantiate the R-SDP(G) problem,
while on the right side, highlighted in teal, are reported the steps specific to instantiate
the R-SDP problem.

The generation of the key pair starts by securely generating a 2λ-bits long seed from
a TRNG, which will be the secret key of the scheme seedsk. This seed is then absorbed
and expanded via the CSPRNG function to generate two random bit strings, seede

and seedpk, both 2λ-bits long.
The second one is then expanded in an arbitrary long bit string material used by a

sampling algorithm to generate the matrices W ∈ Fm×(n−m)
z (only for R-SDP(G) pa-

rameters) and V⊤ ∈ Fk×(n−k)
p which, adjointed column-wise and row-wise with the

58

4.3. Codes and Restricted Objects Signature Scheme

Algorithm 14 CROSS.KEYGENERATION

Require: None
Ensure: sk = seedsk ∈ {0, 1}2λ

pk = (seedpk ∈ {0, 1}2λ , s ∈ Fn−k
p)

1: seedsk
$← {0, 1}2λ

2: (seede,seedpk)← CSPRNG(seedsk∥3t+ 1, {0, 1}2λ × {0, 1}2λ)
3: ▷ Sampling the random matrices H and M ◁

4:
W,V⊤←CSPRNG3t+2(seedpk,Fm×(n−m)

z ×Fk×(n−k)
p)

V⊤←CSPRNG3t+2(seedpk,Fk×(n−k)
p)

M← [W, Im]

5: H⊤ ← [V⊤ | In−k]
6: ▷ Computing e ◁

7:
eG ← CSPRNG3t+3(seede,Fm

z)
e← CSPRNG3t+3(seede,Fn

z)
e← eGM

8: for j ← 0 to n− 1 do
9: ej ← gej

10: ▷ Computing the syndrome s ◁
11: s← eH⊤

12: return (sk = seedsk, pk = (seedpk, s));

identity matrices Im and In−k, respectively, form the public matrix M ∈ Fm×n
z and

the transposed parity-check matrix H⊤ ∈ Fn×(n−k)
p of the random code. For the trans-

mission of such large public matrices, it is possible to share just the bit string material
seedpk initially absorbed by the CSPRNG, and by using the same deterministic sam-
pling algorithm it is possible to recreate the matrices.

Afterwards, the secret bit string seede is absorbed by a CSPRNG and expanded
in an arbitrary long bit string material used by a vector sampling algorithm to generate
either eG ∈ Fm

z or e ∈ Fn
z , depending on the chosen instance of hard problem. For the

R-SDP(G) variant, e ∈ Fn
z is computed by expanding eG using the public matrix M.

This expansion can be seen as the encoding of the message eG with the random linear
code having generator matrix M, producing the codeword e. The error vector e ∈ Fp

is obtained as e = ge, where g ∈ F∗
p is the public generator element of order z creating

the multiplicative subgroup E . Operatively, this step is carried out exponentiating g by
each element of e.

Finally, the syndrome s ∈ Fn−k
p is obtained as usual as s = eH⊤, and is transmitted

as part of the public key pk = (seedpk, s), while the private key is sk = seedsk.

CROSS.SIGN

In Algorithm 15 are reported the operations performed to create a valid digital signature
of an input message msg using the private key sk = seedsk by performing t parallel
executions of the CROSS-ID identification protocol. An overview of the steps are
represented in Algorithm 13 and previously described in subsection 4.3.2.

59

Chapter 4. Code-based cryptography

Algorithm 15 CROSS.SIGN

Require: sk = seedsk ∈ {0, 1}2λ, msg ∈ {0, 1}∗
Ensure: sig = (salt ∈ {0, 1}2λ ,digcmt ∈ {0, 1}2λ ,digchall2

∈ {0, 1}2λ ,path,proof,resp)
1: ▷ Expanding the secret key (steps 2-7 in CROSS.KEYGENERATION) ◁

2: e, eG,H
⊤,M← EXPANDSK(seedsk) e,H⊤ ← EXPANDSK(seedsk)

3: ▷ Computing the commitments ◁

4: seed
$← {0, 1}λ

5: salt
$← {0, 1}2λ

6: (seed[1], . . . ,seed[t])← SEEDLEAVES(seed,salt)
7: for i← 0 to t− 1 do
8: ▷ Compute the transformation v[i] such that v[i]⊙ e′[i] = e ◁

9:

e′G[i],u
′[i]←CSPRNG2t+i(seed[i]∥salt,Fm

z ×Fn
p)

e′[i],u′[i]←CSPRNG2t+i(seed[i]∥salt,Fn
z×Fn

p)e′[i]← e′G[i]M

vG[i]← eG − e′G[i]

10: v[i]← e− e′[i]
11: for j ← 0 to n− 1 do
12: v[i]j ← gv[i]j

13: u[i]← v[i]⊙ u′[i]
14: s′[i]← u[i]H⊤

15: cmt0[i]← HASH2t+i(s
′[i]∥vG[i]∥salt) cmt0[i]← HASH2t+i(s

′[i]∥v[i]∥salt)
16: cmt1[i]← HASH2t+i(seed[i]∥salt)
17: digcmt0

← TREEROOT(cmt0[1]∥ . . . ∥cmt0[t])
18: digcmt1

← HASH0(cmt1[1]∥ . . . ∥cmt1[t])
19: digcmt ← HASH0(digcmt0

∥digcmt1
)

20: ▷ Computing the first challenge ◁
21: digmsg ← HASH0(msg)
22: digchall1

← HASH0(digmsg∥digcmt∥salt)
23: chall1 ← CSPRNG3t−1(digchall1

, (F∗
p)

t)
24: ▷ Computing the first response ◁
25: for i← 0 to t− 1 do
26: for j ← 0 to n− 1 do
27: e′[i]j ← ge

′[i]j

28: y[i]← u′[i] + chall1[i]e
′[i]

29: ▷ Computing the second challenge ◁
30: digchall2

← HASH0(y[1]∥ . . . ∥y[t]∥digchall1
)

31: chall2 ← CSPRNG3t(digchall2
,Bt,w)

32: ▷ Computing the second response ◁
33: proof← TREEPROOF(cmt0[1]∥ . . . ∥cmt0[t],chall2)
34: path← SEEDPATH(seed,salt,chall2)
35: for i← 0 to t− 1 do
36: if chall2[i] = 0 then
37: resp[i]0 ← (y[i],vG[i]) resp[i]0 ← (y[i],v[i])

38: resp[i]1 ← cmt1[i]
39: return sig = (salt,digcmt,digchall2

,path,proof,resp)

60

4.3. Codes and Restricted Objects Signature Scheme

The algorithm starts by expanding the public matrices M (only for the R-SDP(G)
variant) and H⊤, and the secret error vector e in the same way as steps 2 through 7 of
the CROSS.KEYGENERATION algorithm.

Commitments Subsequently, the signer needs to generate the two commitments cmt0

and cmt1 before constructing the two challenges. It starts by drawing two random bit
strings: an λ-bit long signature randomness seed and a 2λ-bit long salt tagged to the
current signature. Considering the randomness seed as the root of a binary tree, each
node of the tree consists of a λ-bit string that is expanded via the CSPRNG function
into two λ-bit child nodes, until there are t leaf nodes representing the randomness seeds
seed[1], . . . ,seed[t] used in each protocol execution.

Afterwards, each i-th randomness values seed[i] is expanded to an arbitrary long
bit string that is used by a vector sampling algorithm to generate u′[i] ∈ Fn

p and the
exponents of the transformed error vector e′[i]. When instantiating the R-SDP(G) prob-
lem, the sampled vector e′G[i] ∈ Fm

z is expanded to e′[i] ∈ Fn
z by multiplying it with

the public matrix M, whereas in R-SDP the vector e′[i] is directly sampled from the
expanded seed. Each transformation element v[i] ∈ Fn

p is then computed by subtracting
the transformed error vector e′[i] to the secret key vector e, and using it as the exponents
of the generator element g of the restricted group E . Moreover, in R-SDP(G) the more
compact transformation vG[i] ∈ Fm

z is computed similarly starting from the elements in
Fm
z . The transformed element u[i] are computed applying the transformation v[i] to the

sampled vector u′[i], and the round syndrome s′[i] ∈ Fn−k
p is computed as u[i]H⊤.

Finally, the commitments cmt0 and cmt1 can be computed. Each cmt0[i] is the 2λ-
bits long digest resulting from the absorption of the round syndrome s′[i], the smallest
transformation element vG or v depending on the hard problem variant, and the per-
signature salt. The computed values are then assigned to the leafs of a Merkle tree.
Each internal node of the tree is the hash digest resulting when absorbing the values
contained in its two child nodes, and the value of the resulting root is digcmt0 . Each
cmt1[i] instead is the digest of the absorbed round seed seed[i] concatenated to the per-
signature salt, and all the concatenated cmt1[i] are absorbed in a single hash application
to produce the digest digcmt1 . To conclude, digcmt is computed as the digest of the
concatenation of digcmt0 and digcmt1 .

First challenge The verifier V requires to generate the first challenge chall1[i] ∈ F∗
p. In

the FS framework, this choice is derived deterministically from the output of a collision-
resistant one-way function having as input the message msg and the prover’s commit-
ments. CROSS uses the same instance of HASH as the one-way function, absorbing
the digest of the message to be signed digmsg, the digest of the commitments digcmt,
and the per-signature salt, to generate the input material digchall1 for the CSPRNG
XOF used to sample the t random challenges chall1.

The prover P then expands each transformed round error e′[i] into e′[i] by exponen-
tiating the public generator element g by each element of e′[i]. Finally, each response to

61

Chapter 4. Code-based cryptography

the first challenge is computed as y[i] = u′[i] + chall1[i]e
′[i].

Second challenge Now the verifier V needs to generate the second challenge chall2[i] ∈
{0, 1}. The CROSS-ID is made non-interactive by determining the challenge from the
one-way function output having as input the protocol transcript. Since all the previous
“virtually” exchanged messages are contained in digchall1 , it is sufficient to absorb it
concatenated to all the responses to the first challenges y[i] with a hash function, result-
ing in the digest digchall2 . The expansion of digchall2 with the CSPRNG function
is then used to sample the t second challenges chall2[i]. Such challenge is a ran-
dom t-bits long binary vector with Hamming weight w, thus Bt,w denotes the set of
all the possible binary strings of length t and weight w. The second challenges are
used to determine the seed path (path) and the Merkle proof (proof) as described
in Figure 4.3, and to assemble the signature with the correct elements. In the CROSS
fast variant the path and proof bit strings contain just the leafs at index i of their
trees if chall2[i] = 1, as no meaningful compression can be obtained with these data
structures when w ≈ t/2. If chall2[i] = 0, the signature will contain the commit-
ment cmt1[i] and the required elements to let the verifier compute cmt0[i]. In case
chall2[i] = 1, then the signer can easily compute cmt1[i] from the seed expanded
from path, while cmt0[i] is embedded in proof. Particular care is needed in this
stage, because an incorrect assembly of the signature, possibly caused by a simple fault
attack, can lead to an easy retrieval of the private key [Mon+24].

CROSS.VERIFY

In Algorithm 16 is described the algorithm checking a signature sig of a message msg
using the public key pk = (seedpk ∈ {0, 1}2λ , s ∈ Fn−k

p), and returning ⊤ on suc-
cess, and ⊥ on failure. The operations mimics the verifier V behavior in the t parallel
executions of the CROSS-ID identification protocol (Algorithm 13, subsection 4.3.2).

The algorithm starts by expanding the public matrices H⊤ and M, the latter only
when the R-SDP(G) variant of the hard problem is used, starting from the public key
seed seedpk. Afterwards, the two challenges chall1 ∈ (F∗

p)
t and chall2 ∈ Bt,w are

computed via the digests and the salt value transmitted in the signature.
All the w out-of t seeds used in the CROSS-ID protocol executions are expanded

from the seed paths, as explained in Figure 4.3, and are used to compute the first com-
mitments cmt1[i] when chall2[i] = 1. For the same challenge value, the transformed
error e′[i] is expanded from their compressed forms, and used to compute the first re-
sponse value y[i] = u′[i] + chall1[i]e

′[i].
In the t − w cases when chall2[i] = 0, then the transmitted transformation v[i]

is checked and expanded to compute v′[i] = v[i] ⊙ y[i], which is then used to retrieve
the transformed syndrome s′[i] = y′[i]H⊤ − chall1[i]s. Finally, the verifier can re-
compute the missing cmt0[i], which is used to fill the missing Merkle tree leafs, before
recomputing the root value digcmt0 . Similarly, the cmt1[i] commitments computed
when chall2[i] = 1 or received in the signature in the opposite case are concatenated

62

4.3. Codes and Restricted Objects Signature Scheme

Algorithm 16 CROSS.VERIFY

Require: pk = (seedpk ∈ {0, 1}2λ , s ∈ Fn−k
p), msg ∈ {0, 1}∗,

sig = (salt ∈ {0, 1}2λ ,digcmt ∈ {0, 1}2λ ,digchall2
∈ {0, 1}2λ ,path,proof,resp)

Ensure: valid = {⊤,⊥}
1: ▷ Recover the public key ◁

2:
W,V⊤←CSPRNG3t+2(seedpk,Fm×(n−m)

z ×Fk×(n−k)
p)

V⊤←CSPRNG3t+2(seedpk,Fk×(n−k)
p)

M← [W, Im]

3: H⊤ ← [V⊤ | In−k]
4: ▷ Compute the challenges ◁
5: digmsg ← HASH0(msg)
6: digchall1

← HASH0(digmsg∥digcmt∥salt)
7: chall1 ← CSPRNG3t−1(digchall1

, (F∗
p)

t)
8: chall2 ← CSPRNG3t(digchall2

,Bt,w)
9: ▷ Compute the commitments ◁

10: (seed[i])i:chall2[i]=1 ← REBUILDLEAVES(path,chall2,salt)
11: for i← 0 to t− 1 do
12: if chall2[i] = 1 then
13: cmt1[i]← HASH2t+i(seed[i]∥salt)

14:
e′G[i],u

′[i]←CSPRNG2t+i(seed[i]∥salt,Fm
z ×Fn

p)
e′[i],u′[i]←CSPRNG2t+i(seed[i]∥salt,Fn

z×Fn
p)

e′[i]← e′G[i]M

15: for j ← 0 to n− 1 do
16: e′[i]j ← ge[i]j

17: y[i]← u′[i] + chall1[i]e
′[i]

18: if chall2[i] = 0 then
19: cmt1[i]← resp[i]1

20:

(y[i],vG[i])← resp[i]0 (y[i],v[i])← resp[i]0

Check if vG[i] ∈ Fm
z Check if v[i] ∈ Fn

z

v[i]← vG[i]M

21: for j ← 0 to n− 1 do
22: v[i]j ← gv[i]j

23: y′[i]← v[i]⊙ y[i]
24: s′[i]← y′[i]H⊤ − chall1[i]s

25: cmt0[i]← HASH2t+i(s
′[i]∥vG[i]∥salt) cmt0[i]←HASH2t+i(s

′[i]∥v[i]∥salt)
26: ▷ Check the digests ◁
27: digcmt0

← RECOMPUTEROOT(cmt0,proof,chall2)
28: digcmt1

← HASH0(cmt1[1]∥ . . . ∥cmt1[t])
29: dig′

cmt ← HASH0(digcmt0
∥digcmt1

)
30: dig′

chall2
← HASH0(y[1]∥ . . . ∥y[t]∥digchall1

)
31: if digcmt ̸= dig′

cmt ∨ digchall2
̸= dig′

chall2
then

32: return valid = ⊥
33: return valid = ⊤

63

Chapter 4. Code-based cryptography

and used as input to the cryptographic hash function, producing the digest digcmt1 . The
same process is repeated for y[i], producing the digest digy. If any of these digests do
not match the ones in the signature sig, the verification process fails.

64

CHAPTER5
Cryptographic hash functions

Foundation for many security protocols, a cryptographic hash function, hereafter re-
ferred to as a hash function, is a cryptographic primitive that provides essential guar-
antees to many applications for data integrity, authentication, and commitment. Given
its valuable properties, it is also a central element in all the post-quantum asymmetric
protocols for both the KEM and DS schemes.

A cryptographic hash function is a non-injective map from the set of binary strings
with any cardinality to the set of binary strings of fixed length n ∈ N called digests or
hash values:

HASH : {0, 1}∗ 7→ {0, 1}n (5.1)

Given the definition of a cryptographic hash function, it is easy to see that there are
plenty of collisions. The challenge in creating a cryptographic hash function is making
practically unfeasible to find and generate collisions on purpose, while being deter-
ministic and computationally efficient to apply over large amount of data. Let M be
the set of messages (message space), and D the set of digests (digest space), so that
HASH :M 7→ D. A secure cryptographic hash function has the following properties:

Preimage resistance one-way property of a function, is deemed infeasible to reverse
the process and retrieve the original input m ∈ M starting from the hash output
d = HASH(m). An attack can ideally succeed with probability ≤ 2−n.

Second preimage resistance also known as weak collision resistance, is impossible to
produce a input m2 ∈ M having the same hash digest d = HASH(m1) of any

65

Chapter 5. Cryptographic hash functions

other known input m1 ∈ M, m1 ̸= m2. An attack can ideally succeed with
probability ≤ 2−n.

Collision resistance is impractical to search for any two distinct messages m1,m2 ∈
M having the same digest d = HASH(m1) = HASH(m2). An attack can succeed
with probability ≤ 2−n/2 due to the birthday paradox.

Avalanche effect a single bit flip in the input message m ∈ M drastically changes its
digest d ∈ D, ideally flipping each output bit with 50% probability

Random oracle for any given input, the hash function should produce a digest d $← D
appearing as if it were picked from a uniform distribution on strings of the same
length. Any successive query using the same message must return the same digest
(deterministic)

5.1 Merkle-Damgård construction

Historically, most of the cryptographic hash functions are based on the Merkle-Damgård
(MD) construction, depicted in Figure 5.1, which combines an injective padder func-
tion with a one-way collision-resistant compressor function, and an injective finalizer
function:

PADDER : {0, 1}k 7→ {0, 1}r (5.2)

COMPRESSOR : {0, 1}c+r 7→ {0, 1}c (5.3)

FINALIZER : {0, 1}c 7→ {0, 1}n (5.4)

where k, r, c ∈ N, r > k > 0, and r, c are constants.
The input message bit string is split in r-bits chunks m = m0∥m1∥ . . . ∥ms−1, and

the last block ms−1 containing k < r bits gets expanded using the padder function. The
compressor functions has an inner state of c bits, initialized with a known Initialization
Vector (IV), and r-bits message chunks are mixed in the inner state by the round-based
compressor function. The compressor function could be for example an instance of a
block cipher. After mixing all message chunks, the finalizer function produce the digest
output of the correct size.

MD5 published in 1992, has c = n = 128, r = 512, and the compressor function
composed by 4 rounds composed with 16 operations working on 32-bit operands.
MD5 input space is limited to messages with up to 264−1 bits (≈ 2048 PiB) due to
its padding scheme. Collisions are are widely reported and can be generated with
just 218 operations [XLF13], and using it for cryptographic purposes its a major
security flow.

SHA-0, SHA-1 the first presented in 1993, and promptly decommissioned in 1995 in
favour of the latter, have c = n = 160 and r = 512. The compressor function is
composed by 4 rounds of 20 operations each, and uses 32-bit operands. SHA-0 and

66

5.2. Sponge construction

…

…

Figure 5.1: Merkle-Damgård (MD) construction

SHA-1 input space are limited to messages with up to 264−1 bits. Collision can be
crafted with 234 and 263 operations for SHA-0 and SHA-1 [Ste12], respectively,
thus it is not recommended to use them in security-related contexts.

SHA-2 defines two main functions SHA-256 (c = 256, n = 256, r = 512) and
SHA-512 (c = 512, n = 512, r = 1024). The compressor function composed by
64 (or 80) rounds operations among 32-bits (or 64-bits) operands, for SHA-512
and SHA-512, respectively. There are variants with smaller digest size n = 224
and n = 384 derived from SHA-256 and SHA-512, respectively. To circumvent
the decrease in the second preimage resistance when long input messages are used,
which is caused by the digest being the entire final state, two new variants produc-
ing n = 256, 244 digests using the SHA-512 algorithm were later introduced.

MD-based hash functions proved to be weak against length-extension attack, when
an attacker extends an input message with some specially crafted data to create a colli-
sion. A viable workaround requires to encode the length of the message at the beginning
of the message or in the padding scheme, or not exposing the entire inner state as digest
(thus having n < c).

5.2 Sponge construction

Given the current situation of length-extension attacks afflicting the MD, the creation
of a secure Keyed Hash Algorithm based on Secure Hash Algorithm (SHA) is a deli-
cate research question. For that reason, a call for new proposals from NIST that are not
based on the MD construction led to the publication of the new standard SHA-3 in 2015.
The SHA-3 winner Keccak employs a flexible and customizable sponge construction,
depicted in Figure 5.2, which allows the construction of the XOF SHAKE, the Authen-
ticated Encryption with Associated Data (AEAD) schemes Keyak and Ketje, and the
tree-style hashing mode Sakura.

67

Chapter 5. Cryptographic hash functions

absorb squeeze

…

… …

……

XOF

…

Figure 5.2: Sponge construction

Similarly to MD constructions (Equation 5.2), there is an injective padder function
that splits the input message in constant-size r-bits blocks, while also providing domain
separation functionality. At the core of the sponge construction there is a permutation
function working on a b = r + c bits internal state.

PADDER : {0, 1}k 7→ {0, 1}r (5.5)

PERMUTATION : {0, 1}c+r 7→ {0, 1}c+r (5.6)

where k, r, c ∈ N, r > k > 0, and r, c are constants.
The rate (r) parameter defines the size of the blocks into which input and output

data streams are partitioned to be processed or yielded, while the capacity (c) parameter
denotes the portion of the state which is never output, providing its security margin.
The permutation function is applied every time a r-bits input block is absorbed into
the first r bits of the state via a bitwise xor operation. After the last input message
block is absorbed, the first r bits of the state are the digest of the cryptographic hash
construction.

An eXtendable-Output Function (XOF) is a map from the set of binary strings with
any cardinality to a set of binary strings of length e. Contrarily to cryptographic hash
functions defined as Equation 5.1, the length e is not a constant and can vary depending
on the needs.

XOF : {0, 1}∗ 7→ {0, 1}e (5.7)

A common use case is the expansion of a small random seed in a longer random bit
string maintaining the same entropy of the input data.

In case of the construction of a XOF using the sponge construction, after the initial
absobption of the message, the permutation function is applied as many time as required
in the squeeze phase to produce the output of the required size, reading at most r bits of

68

5.2. Sponge construction

X

Y

Z

Figure 5.3: Three-dimensional representation of the Keccak state, organized as a 5×5 grid of lanes with
w length (dashed red box of 8 bits in the example). The sub-state of 25 bits with a fixed z coordinate
is called slice, here highlighted in gray color.

the internal state each time. If the length of the output stream is not a multiple of r, the
last output block is truncated.

5.2.1 Keccak scheme

The Keccak[r,c] algorithm [Ber+11] employs the aforementioned sponge construction,
and defines the round-based KECCAK-f [r+c] permutation function (Equation 5.8). The
internal state is logically partitioned in a three-dimensional 5× 5×w = r+ c structure,
as represented in Figure 5.3. Each one of the 12 + 2 · log2w rounds is composed by 5
steps working on the whole state:

KECCAK-f ≜ (θ ◦ ρ ◦ π ◦ χ ◦ ι)12+2·log2 w (5.8)

θ provides a high level of diffusion, each bit at the output (input) of a round depends on
(affects) 31 bits at its input (output)

ρ speeds up the diffusion between slices (z dimension)

π provides dispersion aimed at long-term diffusion, removing the exhibition of periodic
trails of low weight

χ is a simple degree 2 non-linear function, providing protection against differential
analysis

ι breaks the round symmetry mixing round-specific constants in the state, protecting
from slide attacks

The operations used in each step are just xor, and, and not Boolean operations, with
the only CPU word-dependent operation being the vector rotations. All the steps, with

69

Chapter 5. Cryptographic hash functions

Table 5.1: Instances of the Keccak[r, c](m∥dstr) algorithm, in terms of output size n, rate r, capacity
c, domain separation string dstr, and input message m, as defined in FIPS 202 standard from NIST.

Algorithm Output size Rate Capacity Domain string
n r c dstr

SHA3-224 224 1152 448 01
SHA3-256 256 1088 512 01
SHA3-384 384 832 768 01
SHA3-512 512 576 1024 01
SHAKE128 e 1344 256 1111
SHAKE256 e 1088 512 1111

the exception for ι, are defined independently of the state z dimension, therefore they
can be applied to different state sizes (matryoshka structure). The Keccak documenta-
tion of the submission to NIST SHA standardization defines w ∈ {1, 2, 4, 8, 16, 32, 64},
producing a state with size up to 1600 bits.

NIST standardized a subset of the Keccak scheme in FIPS 202 [PM15] under the
name SHA-3. The standard permits only the instantiation of KECCAK-f [1600], defines
four hash functions, named as SHA3-224, SHA3-256, SHA3-384, and SHA3-512,
depending on the length of the digest. Moreover, two XOFs are introduced, named as
Secure Hash Algorithm Keccak (SHAKE), with either a 128-bit or a 256-bit security
level against all class of attacks, and a configurable output length e. The padder function
ensures that the absorbed message m, after attaching a domain-separation string dstr
for each different function instance, is always a multiple of r by appending the 10∗1
binary string:

m0∥m1∥ . . . ∥ms−1 = m∥dstr∥1∥0j∥1, 0 ≤ j < r (5.9)

The rate, capacity, domain-separation strings, and hash output size for the SHA-3 al-
gorithms are contained in Table 5.1, and the comparison among the previously presented
cryptographic hash functions are reported in Table 5.2.

5.2.2 SHA-3 hardware designs

The authors of Keccak gathered in a report [Ber+12] all the details of the hardware
and software implementations. Considering the hardware designs, three categories of
implementations are defined:

High-speed each clock cycle k rounds of the KECCAK-f permutation are performed
on the whole state, concluding the permutation in 12+2·log2 w/k clock cycles. In case
of the Keccak instance used in SHA-3, the 1600-bits state must be implemented
entirely in FFs or latches, which may be prohibitive in some contexts.

Mid-range this core applies the fixed permutation steps ρ and π on the whole state, as
in hardware are achieved simply via re-wiring and basically for free, and the com-
putation steps θ, χ, and ι are applied on a group of k slices, saving gate resources.

70

5.2. Sponge construction

Table 5.2: Comparison of preimage, second preimage and collision resistance of NIST’s standardized
SHA from the FIPS 202 document. L(m) is the function ⌈log2(LEN(m)/b)⌉, where b ∈ N is the block
length of the function and LEN(m) is the length in bit of the message m.

Algorithm Digest size Attack success probability (2−x)
Collision Preimage Second preimage

SHA-1 160 < 80 160 160− L(m)
SHA-224 224 112 224 min(224, 256− L(m))

SHA-512/224 224 112 224 224
SHA-256 256 128 256 256− L(m)

SHA-512/256 256 128 256 256
SHA-384 384 192 384 384
SHA-512 512 256 512 512− L(m)
SHA3-224 224 112 224 224
SHA3-256 256 128 256 256
SHA3-384 384 192 384 384
SHA3-512 512 256 512 512

SHAKE128 n min(n/2, 128) ≥ min(n, 128) min(n, 128)
SHAKE256 n min(n/2, 256) ≥ min(n, 256) min(n, 256)

The state is kept in 25 distinct 8 × 8 Random-Access Memorys (RAMs). Round
steps have to be rescheduled adding an artificial first round, and some multiplexers
to differentiate the first and last round steps. Additionally, a register containing the
parity of the previous θ step is required. The overall latency of the permutation is
(12 + 2 · log2w) + (12 + 2 · log2w + 1)(w/k).

Low-area compact solution suitable for smart cards, containing the whole Keccak state
in a single RAM, and working on lanes. Only few registers are required for stor-
ing temporary variables. Each KECCAK-f permutation takes thousands of clock
cycles.

Considering FPGA targets, the mid-range core is an interesting solution as it uses
LUT as distributed memories, taking few hundreds of LUTs to store the Keccak state,
significantly improving the overall area cost of the core. However, this approach is
not feasible in ASIC implementations, where multiple small memory macros needs to
be compiled, characterized, and replaced in the netlist, with the associated extra cost
required for implementing the memory ports addressing logic. For this target, the sim-
plicity of the high-speed variant provides invaluable benefits, as the state can be im-
plemented with latches to save silicon area. Furthermore, the critical path of the full
KECCAK-f permutation round is only few gates deep, making the place and route step
the most challenging task of the implementation.

For these reasons, I opted for the creation of a high-speed core variant, starting from
[Xin18], with several improvements:

XOF mode the padding function and the control logic is updated to support the XOF
mode, supporting the SHAKE algorithm. The implemented algorithm is selected

71

Chapter 5. Cryptographic hash functions

at synthesis time determining the rate/capacity ratio, simplifying the resulting de-
sign.

Stream width the streams used to write the message m and read the digest d are gen-
eralized with an arbitrary width B fixed during the synthesis. This parametrization
is necessary for the following optimizations

I/O buffer introducing an separated r-sized input buffer from the r + c-sized state al-
lows the parallel execution of the padder module, preparing the message block
mi+1, with the absorption of the previously processed block mi. If ⌈r/B⌉ ≤
12+2·log2w, then the module implementing the KECCAK-f permutation is always
busy absorbing the input, maximizing the efficiency of the design. Similarly, when
performing the XOF SHAKE, having a r-sized input buffer from the r + c-sized
state allows the parallel execution of the squeeze operation of the digest block vi+1,
while the previously processed block vi is read out. If ⌈r/B⌉ ≈ 12 + 2 · log2w,
the efficiency of the design is maximized. Note that the absorb and squeeze phases
of the sponge construction are mutually exclusive, thus the input/output buffers
are merged in a single buffer instance, which is efficiently implemented as a shift
register to minimize the number of employed multiplexers.

Fast absorption quite often the absorbed inputs of the SHAKE XOF are seeds with a
fixed size. Therefore, it is possible to enhance the padding module such that, for
these specific input sizes, it fast-forwards the shift register buffer with the correct
padded input, to immediately start the f -permutation in the following clock cycle.

Unroll factor performing k rounds of the KECCAK-f permutation in the same clock
cycle clearly reduces the overall clock cycles required to complete the permuta-
tion, and the area requirement of just the permutation module increases by k times.
However, the gates in the critical path increases by k, and the place and route im-
plementation tasks becomes more difficult, causing a reduction of the maximum
work frequency by more than k times. Therefore, the efficiency of the design re-
quires wider stream widths B and may decrease after a certain unroll factor k.
Considering a hardware design with a single clock domain, all the modules are
driven with the same clock signal. Therefore, the module with the longest critical
path is imposing the clock frequency to the other modules. Unrolling the permu-
tation function in order to have a maximum frequency matching the one of the
design allows to achieve the maximum throughput possible. The unroll factor k
must divide evenly the number of the permutation rounds, i.e. 1, 2, 3, 4, 6, 8, 12, 24
in case r + c = 1600.

The module implementing the padder function from Equation 5.9 works with the
input/output buffer. For efficiency reasons, the buffer is a shift register with B-bits
blocks matching the width of the streams. The read and write access to the buffer
via multiplexers would improve the latency and efficiency in case small messages are

72

5.2. Sponge construction

Table 5.3: Synthesis results of SHAKE256 module for the AMD Artix-7 xc7a200t FPGA platform
(results for -2 speed grade chip are denoted with ∗, otherwise are referred to -3 speed grade chip).
The design variant defines the fold factor for mid-range core types (number of parallel slices processed
each clock cycle), or the unroll factor for high-speed cores (number of KECCAK-f rounds performed
each clock cycle). The latency, efficiency and throughput figures for SHA3-256 are referred to the
absorption of a 320-bits message to generate the r-bits of the digest block d0.

Design Area Frequency SHA3-256
Ref. Type Variant LUT FF eSlice MHz CC µs AT prod. Gb/s

[Wan+20] mid-range
∗ ×1 811 490 203 178 2681 15.06 3.06 0.07

[Des+23] mid-range ×1 1437 498 360 163 2408 14.77 5.32 0.07

[Wan+20] mid-range
∗ ×2 908 450 227 163 1353 8.30 1.88 0.13

[Des+23] mid-range ×2 1558 466 390 167 1206 7.22 2.82 0.15

[Wan+20] mid-range
∗ ×4 1069 361 268 158 680 4.30 1.15 0.25

[Des+23] mid-range ×4 1625 370 407 157 604 3.85 1.57 0.28

[Wan+20] mid-range
∗ ×8 1466 270 367 164 337 2.05 0.75 0.52

[Des+23] mid-range ×8 1958 280 490 158 302 1.91 0.94 0.56

[Wan+20] mid-range
∗ ×16 2401 226 601 165 168 1.02 0.61 1.04

[Des+23] mid-range ×16 2819 236 705 164 150 0.91 0.64 1.17

[Wan+20] mid-range
∗ ×32 4436 180 1109 161 85 0.53 0.59 2.00

[Des+23] mid-range ×32 4797 191 1200 166 74 0.45 0.53 2.36
This work high-speed ×1 5589 2744 1398 237 29 0.12 0.17 8.85
This work high-speed ×2 10571 2736 2643 125 17 0.14 0.36 7.59
This work high-speed ×3 12700 2719 3175 74 13 0.18 0.56 5.90
This work high-speed ×4 15472 2717 3868 53 11 0.21 0.80 5.06
This work high-speed ×6 22725 2715 5682 28 9 0.32 1.83 3.32
This work high-speed ×8 20262 2714 5066 26 8 0.31 1.56 3.43
This work high-speed ×12 28782 2713 7196 14 7 0.50 3.60 2.12
This work high-speed ×24 55403 2714 13851 6 6 1.00 13.85 1.06

absorbed, but given the practical size of the rate r and the block size B, the additional
area cost and increased complexity would be non-negligible.

In Table 5.3 the core designs for FPGA platforms executing the SHAKE256 algo-
rithm using a 320-bits seed and producing a single r-bits digest block are compared in
terms of maximum working frequency, area, latency, throughput, and efficiency. All the
cores in Table 5.3 are specialized at synthesis time for a specific SHA-3 scheme. The
adopted methodology for the evaluation of the design are detailed in section 2.2. For
the designs in the mid-range core category, the two works from [Wan+20] and [Des+23]
present various instances processing multiple state slices in parallel. The results are
quite similar, except for the LUT usage when few slices are processed in parallel, show-
ing a linear increase in area requirement when processing more slices, and a slight
frequency drop for the larger designs. The throughput and the efficiency indicator, com-
puted as the Area×Time product, confirm the improvements when more slices are
processed simultaneously.

By contrast, the results obtained from the developed high-speed core clearly indi-
cate that processing one round per clock cycle is the best solution in terms of efficiency

73

Chapter 5. Cryptographic hash functions

and throughput, having a ≈ 4× improvement with respect to the mid-range core. The
achieved maximum frequency is remarkably higher (+38%) and the designs require a
similar amount eSlices. This is due to the proportion of LUT and FF resources compos-
ing a single Slice, which in this case the contribution is dominated by the LUT usage.
The substantial difference in FF usage is due to the Keccak state being implemented
entirely in FFs, instead of relying on few hundreds of LUTs used as distributed mem-
ories. Computing more KECCAK-f permutation rounds in the same clock cycle does
not produce an improvement in terms of efficiency and throughput as in the case of the
mid-range core, due to a substantial frequency drop caused by the routing congestion
in the FPGA fabric. Nonetheless, these variants can be a useful solution in case the
Keccak core is instantiated in a design with a single clock region. Notice that using
the SHAKE core as a regular Extendable-Output Function (XOF) the performance is
severely limited by the read speed of the sink unit reading out the stream bits from the
rate section of the Keccak state. In such case, the width of the AXI Stream must be
carefully considered to obtain the best efficiency and leverage the whole potential of the
unrolled designs.

74

CHAPTER6
Element generation

A major design challenge for cryptographic schemes is the secure generation of new
elements from the prescribed sample space from some distribution. The way a cryp-
toscheme samples the elements plays a crucial role in the security and efficiency. Spe-
cial attention is also required to correctly implement the sampling process of sensitive
elements composing the private key or using private key-derived material as a source
of randomness without leaking information in the form of execution time latency. This
is crucial to comply with the IND-CCA2 property, and avoid that an attacker produc-
ing mangled ciphertexts is able to determine a failure due to a different the execution
time, bypassing the implicit rejection mechanism. Since the presented algorithms are
analyzed to be implemented securely in hardware, the time variances caused by data-
dependent memory access due to the presence of data caches is omitted in this chapter.

Typical distributions used by PQC schemes are the uniform distribution, where every
element from the set has equal probability of being chosen, the discrete Gaussian dis-
tribution, necessary to select elements with a probability related to their distance to an-
other element, and the binomial distribution, used to efficiently approximate the discrete
Gaussian distribution. Notably, lattice-based schemes rely on discrete Gaussian distri-
bution (FALCON) binomial distribution (CRYSTALS-Dilithium, CRYSTALS-Kyber),
or custom algorithms (NTRU) to sample errors with specific properties guaranteeing
the correctness and security of the scheme. The sampling algorithms used by the cryp-
toschemes considered in this thesis, NTRU, HQC, and CROSS, are only generating
elements from the uniform distribution from the sample space.

75

Chapter 6. Element generation

One of the key components in element sampling algorithms is a good quality Ran-
dom Number Generator (RNG). A TRNG extracts the entropy from physical random
processes, such as thermal noise, metastability, or phase noise jitter, producing a high-
quality yet low throughput source of randomness. The resulting bit stream can pass
through one or more post-processing stages to improve the quality of the random bits,
which are processed by a health check routine to detect failures and anomalies, such
as long runs of 0 or 1 bits or more sophisticated tests. This last step is critical since
an attacker may be able to modify the environment conditions in which the device is
running, significantly altering the physical process generating the entropy, reducing the
quality, or even making it a deterministic process. Efficient techniques compromis-
ing the entropy source are lowering the environment temperature using liquid nitrogen
[Sou+11], voltage regulation or spike injection on the power line [Mar+15], and locking
ring oscillators injecting a high-frequency signal [MM09].

While properly designed TRNGs fit the description of an ideal source of randomness,
their low throughput is a serious limitation for PQC schemes using a significant amount
of randomness to sample random elements. To this end, an appropriate-sized random
binary string generated from a TRNG is expanded via a deterministic PRNG algorithm,
which maintains the desired statistical properties. The validation of TRNG and PRNG
outputs can be performed using the NIST’s special publication SP800-22 [Bas+10] sta-
tistical test suite, while NIST’s recommendations are published in the special publica-
tion SP800-90C [Bar+24]. A few examples of commonly used PRNG algorithms are
the Mersenne Twister, xoshiro/xoroshiro, stream ciphers (e.g., ChaCha20), block
ciphers in the counter mode of operations (e.g., AES-CTR), or XOF functions (e.g.,
SHAKE). In particular, many PQC schemes opted for AES-CTR and SHAKE, due to
the presence of many highly-optimized software libraries for the former, and the high
throughput offered by the latter.

For the sake of clarity in the description of the sampling algorithms, in this chapter
a polynomial a(x) = a0 + a1x + . . . + an−1x

n−1 having coefficients ai ∈ Fq, i ∈
0, . . . , n− 1 is considered as a n-dimensional vector composed by its coefficients a =
[a0, a1, . . . , an−1] ∈ Fn

q . The generation of a random j-bit binary string str ∈ {0, 1}j
from a PRNG is indicated with str← PRNG(j). The stri+:j notation represents the
j-bit long substring of str composed by the bit elements from index i to i + j. The
described algorithms will be evaluated on the basis of distribution conformity, quantity
of used randomness, and latency variability.

6.1 Pack and unpack vectors into and from bit strings

Before starting to explore the algorithms to sample random vectors, it is necessary to
know how to deal with vectors transmitted as public keys or ciphertexts. The pack
operation consists in encoding vectors into a bit string in a compact way to store and
transmit more efficiently ciphertexts and keys, while also providing a performance boost
in case the packed vectors are the input messages of PRNGs. The opposite operation is

76

6.1. Pack and unpack vectors into and from bit strings

Algorithm 17 Pack vectors with elements approximately a power of two

Require: n ∈ N: the dimension of the vector to be sampled
q ∈ N: the order of the finite field
a ∈ Fn

q

Ensure: a_str: the binary string representing the vector
1: a_str← ∅
2: for i← 0 to n− 1 do
3: for k ← 0 to ⌈log2(q)⌉ − 1 do
4: a_str← a_str∥((ai ≫ k)&1)
5: return a

Algorithm 18 Unpack vectors with elements approximately a power of two

Require: n ∈ N: the dimension of the vector to be sampled
q ∈ N: the order of the finite field
a_str: the binary string representing the vector

Ensure: a ∈ Fn
q

1: a← 0
2: for i← 0 to n− 1 do
3: ai ← UINT(a_stri·⌈log2(q)⌉+:⌈log2(q)⌉)
4: return a

the unpack, and decodes vectors from bit strings before starting using them in arithmetic
operations. A bit string str of length j can be interpreted as an unsigned integer a ∈ N
such that 0 ≤ a < 2j via the function UINT : {0, 1}j 7→ N2j−1:

a =

j∑
i=0

2i · stri (6.1)

Considering a vector of dimension n with elements in Fq and q ≈ 2j, j ∈ N, the pack
procedure, described in Algorithm 17, appends the bit representation of the element
value ai from the Least Significant Bit (LSB) to the Most Significant Bit (MSB), and
repeats the operation for all elements in the vector. The unpack operation simply calls
n times the UINT function on consecutive j-bit strings representing the packed vector,
as represented in Algorithm 18.

When q is not a power of two, some binary strings are invalid representation of ele-
ments in Fq. Minimizing the number of invalid encoded values improves the compres-
sion efficiency, leading to smaller ciphertexts and keys. Taking as an example q = 3,
the 2-bits string str ∈ {00,01,10} is employed to represent an element in {0, 1, 2}.
However, it is possible to encode 5 consecutive vector elements ai ∈ {0, 1, 2} in a 8-bit
string a_str instead of a 10 bits one, using the following equation:

UINT(a_str) =
4∑

i=0

3i · ai (6.2)

77

Chapter 6. Element generation

Consequently, compressing and then packing a vector of dimension n leads to a binary
string of size 1.6 · n bits instead of 2 · n bits.

In this case, the unpack operation reads 8-bit binary strings and decodes it in 5 ternary
elements through a decoding table, where the address of the table corresponds to the 8-
bit string and the output is 10-bits long containing the expanded encoding of 5 ternary
elements. Consequently, the table has size 28 ∗ 10 = 2560 bits (320 bytes). Of those
256 table entries, only 13 are invalid encodings, which translates in almost 95 % of
space efficiency, compared to the 75% space efficiency obtained without applying the
compression.

Applying the same look-up table approach for the compression procedure transform-
ing 5 ternary elements in a 8 bit string, the table size would be much different: 10 bit
addresses with 8-bits long output, requiring a memory of 210 ∗ 8 = 8192 bits (1KiB) in
size, with a representation efficiency of just (243/1024) ∗ 100 = 23.7%.

Note that most memories are accessed with a byte granularity, therefore it may be
necessary to pad the resulting compressed and packed string, normally with 0 bits, until
the length is a multiple of 8.

6.2 Sampling random vectors

Starting from the simplest case when q = 2, sampling elements from the uniform dis-
tribution from Fn

2 just requires to truncate the PRNG output to n bits. This approach
is applicable also to sample random binary strings. In case of a generic power of two
number q = 2j, j ∈ N, special attention is needed when packing coefficients in blocks
of size B ∈ N if ⌈log2(q)⌉ ∤ B, as it may require the introduction of some pad binary
string to fill the unused bits of each block. This process is required to guarantee the
alignment of elements in each block to perform efficient arithmetic computations, both
in SW and HW implementations. In order to properly align the elements in blocks, a
Barrel shift can be employed, both for SW and HW implementations, producing the
desired vector element in the lowest ⌈log2(q)⌉ bits of the result. Considering that q is
normally a fixed value in the parameters set of a cryptographic scheme, some optimiza-
tions are available for HW implementations to improve the latency or the area size of
the solution.

Considering now a generic q ∈ N, the rejection sampling technique interprets j
random bit strings as an integer unsigned number x, and assigns it to ai if 0 ≤ x <
q, otherwise discards them and tries again with the following j bits. The algorithm,
represented in Algorithm 19, is straightforward, but does not run in constant time. The
time complexity is T (n) = Ω(n), but does not have an upper bound. If q is such
that the probability of discarding the random integer x is minimal, then the rejection
sampling algorithm on average has low latency and uses a low amount of randomness.
Considering the rejection check a Bernoulli trial with success probability p, a geometric
distribution models the sampling process of the vector element giving the probability of
the first success in k independent trials. Let X ∼ G(p) be a discrete random variable

78

6.2. Sampling random vectors

Algorithm 19 Rejection sampling

Require: n ∈ N: the dimension of the vector to be sampled
q ∈ N: the order of the finite field

Ensure: a ∈ Fn
q

1: a← 0
2: for i← 0 to n− 1 do
3: repeat
4: x← UINT(PRNG(⌈log2(q)⌉))
5: until x < q
6: ai ← x
7: return a

Algorithm 20 Modulo remainder sampling

Require: n ∈ N: the dimension of the vector to be sampled
q ∈ N: the order of the finite field
j ∈ N | j ≫ ⌈log2(q)⌉: the size of bit strings from the PRNG

Ensure: a ∈ Fn
q

1: a← 0
2: for i← 0 to n− 1 do
3: x← UINT(PRNG(j)) mod q
4: ai ← x
5: return a

from the geometric distribution with success probability p of the Bernoulli trial. The
expected number of trials required for a successful sample is E(X) = 1

p
, leading to an

average consumption of randomness equal to ⌈log2(q)⌉
p

. Taking as example the sampling
algorithm of the NTRU HRSS scheme having q = 3. Interpreting any ⌈log2(3)⌉ = 2
bit string as a random integer x ∈ {0, 1, 2, 3} and rejecting the 11 = 3 encoded value,
there is a p = 3/4 probability of accepting the encoded value. The average randomness
requirement is therefore 2.67 input random bits per vector element.

Another algorithm working for generic q ∈ N is listed in Algorithm 20. This al-
gorithm completes the task in constant time similarly interpreting j random bit strings
as an integer unsigned number x, and but computes the sampled vector coefficient as
x mod q, thus having vector coefficients not sampled from a perfect uniform distribu-
tion. In [Sen21] it is proved that if j ≫ ⌈log2(q)⌉, then the distribution bias can be con-
sidered negligible and does not imply a security loss for the PQC schemes. Nonetheless,
the amount of consumed randomness is greater than the rejection sampling technique.
Considering the same example for the NTRU HRSS scheme, starting from a 8-bit num-
ber and taking the remainder of the modulo 3 operation to compute the vector coefficient
leads to an average of 8 > 2.67 random bits consumed. In this case, the probabilities of
the outcomes {0, 1, 2} differ by at most 1/256, and the authors of the schemed deemed it
a worthy compromise.

It is possible to combine the two approaches producing values from a perfect uniform

79

Chapter 6. Element generation

Algorithm 21 Rejection sampling with modulo

Require: n ∈ N: the dimension of the vector to be sampled
q ∈ N: the order of the finite field
j ∈ N | j ≫ ⌈log2(q)⌉: the size of bit strings from the PRNG

Ensure: a ∈ Fn
q

1: a← 0
2: for i← 0 to n− 1 do
3: repeat
4: x← UINT(PRNG(j))
5: until x <

⌊
2j/q

⌋
q

6: ai ← x mod q
7: return a

distribution with a significant lower rejection rate, although with higher consumption of
randomness compared to the rejection sampling algorithm. The resulting algorithm
reported in Algorithm 21 shows that there is not an upper bound for the running time
and randomness usage. Note that the rejection threshold ⌊2j/q⌋ q is a known constant
value.

6.3 Sampling random vectors with fixed Hamming weight

Lattice-based and code-based PQC schemes both have in common the need of an effi-
cient procedure to sample vectors a ∈ Fn

q of dimension n and coefficients in Fq with a
pre-defined Hamming weight HW(a) = w. In some cases, there are further constraints
in addition to the weight, such in the case of NTRU-HPS, where q = 3 and a specific
number of −1 and 1 coefficients needs to be present in the randomly sampled vector.
The creation of said sampling procedure proved to be a challenging task, especially con-
sidering the requirement of finding an algorithm having low and fixed latency, avoiding
significant distribution distortions and consuming a reasonable amount of randomness.
In this section, we are considering vectors in Fn

2 to simplify the description, but the
presented techniques can be adapted for generic vectors a ∈ Fn

q .
Considering q = 2, the most straightforward algorithm consists in sampling random

vector positions j ∈ {0, 1, . . . , n− 1} where set the coefficient bit to 1. The generation
of random indexes can use either the rejection sampling (Algorithm 19) or rejection
with modulo (Algorithm 21) algorithm. In Algorithm 22, if a drawn position already
contains a one, the sampled number is discarded and a new one is produced, thus the al-
gorithm does not work in constant time and uses a variable amount of randomness. This
solution is viable only if the number of ones is by far smaller than the number of zeros
(w ≪ n), as if w approaches n, the probability of generating colliding vector indexes
increases due to the Birthday Paradox. Modeling as a random variable X the number of
calls to the PRNG function to successfully sample the random vector, and estimating its
distribution, it is possible to determine the Cumulative Distribution Function (CDF) and
compute the number xλ of PRNG calls such that the the sampling process completes

80

6.3. Sampling random vectors with fixed Hamming weight

Algorithm 22 Fixed-weight rejection sampling

Require: n ∈ N: the dimension of the vector to be sampled
w ∈ N | w ≤ n: the Hamming weight of the vector to be sampled

Ensure: a ∈ Fn
2 such that HW(a) = w

1: S ← ∅
2: for j ← 0 to w − 1 do
3: repeat
4: idx← UINT(PRNG(⌈log2(n)⌉))
5: until idx < n ∧ idx ̸∈ S
6: S ← S ∪ {idx}
7: ▷ Compose the final vector from the list of indexes of non-zero elements ◁
8: a← 0
9: for all j ∈ S do

10: aj ← 1
11: return a

Algorithm 23 Constant time fixed-weight rejection sampling

Require: n ∈ N: the dimension of the vector to be sampled
w ∈ N | w ≤ n: the Hamming weight of the vector to be sampled
xλ ∈ N | xλ ≥ w: the number of index sampling operations to perform

Ensure: a ∈ Fn
2 such that HW(a) = w

1: S ← ∅
2: for j ← 0 to xλ − 1 do
3: idx← UINT(PRNG(⌈log2(n)⌉))
4: if idx < n ∧ idx ̸∈ S ∧ |S| < w then
5: S ← S ∪ {idx}
6: ▷ Compose the final vector from the list of indexes of non-zero elements ◁
7: a← 0
8: for all j ∈ S do
9: aj ← 1

10: return a

81

Chapter 6. Element generation

Algorithm 24 Fixed-weight sampling via scramble

Require: n ∈ N: the length of the vector to be sampled
w ∈ N | w ≤ n: the Hamming weight of the vector to be sampled

Ensure: a ∈ Fn
2 such that HW(a) = w

1: ▷ Set the first w elements in the vector ◁
2: a← 0
3: for i← 0 to w − 1 do
4: ai ← 1
5: ▷ Fisher-Yates scramble ◁
6: for i← n− 1 to 1 do
7: repeat
8: j ← UINT(PRNG(⌈log2(i)⌉)) ▷ Reduce the rejection rate
9: until j ≤ i

10: t← aj
11: aj ← ai
12: ai ← t
13: return a

successfully in less than xλ call with a probability equal to Pr(X ≤ xλ) = 1 − 2−λ.
Therefore, setting λ to match the one of the appropriate security margin of each param-
eter set Table 1.1, and executing exactly xλ loop iterations calling the PRNG function,
the running time and the randomness used are constant. The Algorithm 23 is the result
of this approach.

Another approach consists in preparing an initial vector with the required weight at
a pre-defined location (e.g., in the first w coordinates of the vector), and then scramble
the vector, as presented in Algorithm 24. The resulting vector is sampled from an ideal
uniform distribution, but the consumption of randomness if not fixed. Note that most
of the scrambling algorithms are not constant time in systems equipped with data cache
memories, but generally HW accelerators do not make use of them. The asymptotic
time complexity of the Fisher-Yates scrambling algorithm [Knu98] is T (n) = Θ(n),
but the multiplicative constant hidden in the asymptotic notation reduces its utility in
practical use cases. This is caused by the high latency in accessing random memory
locations considering that the read-after-write data dependency imposes to flush the
modified blocks after each swap. As i approaches 1, the number of rejected random in-
dexes increases dramatically. To reduce the average rejection rate to 25%, it is sufficient
to use the least amount of random bits necessary to represent the integer i, as performed
in line 6 of Algorithm 24.

A similar algorithm consists in prefixing all the elements in the initial vector with 30
random bit strings, for a total of n · 30 bits, and then sort the elements via any sorting
algorithm, such as the merge sort having time complexity Θ(n log n). At the end of
the computation, the highest 30 bits of each element is discarded, leaving the desired
fixed-weight vector. The result produced in a fixed amount of time is from a uniform
distribution, but uses a remarkable quantity of random bits in the process.

Relaxing the requirement of an ideal uniform distribution, in [Sen21] is presented

82

6.3. Sampling random vectors with fixed Hamming weight

Algorithm 25 Fixed-weight sampling via sorting

Require: n ∈ N: the length of the vector to be sampled
w ∈ N | w ≤ n: the Hamming weight of the vector to be sampled
γ ∈ N | γ ≫ ⌈log2(n)⌉: the size of bit strings from the PRNG

Ensure: a ∈ Fn
2 such that HW(a) = w

1: ▷ Set the first w elements in the vector ◁
2: a← 0
3: for i← 0 to w − 1 do
4: ai ← 1
5: for i← 0 to n− 1 do
6: ai ← ai∥PRNG(γ) ▷ Append γ random most significant bits
7: SORT(a) ▷ Sort the elements of the vector
8: for i← n− 1 to 1 do
9: ai ← ai,0 ▷ Remove γ most significant bits

10: return a

Algorithm 26 Non-uniform Fisher-Yates fixed-weight sampling

Require: n ∈ N: the dimension of the vector to be sampled
w ∈ N | w ≤ n: the Hamming weight of the vector to be sampled
γ ∈ N | γ ≫ ⌈log2(n)⌉: the size of bit strings from the PRNG

Ensure: a ∈ Fn
2 such that HW(a) = w

1: for j ← 0 to w − 1 do
2: support[j]← j + UINT(PRNG(γ)) mod (n− j)
3: ▷ Search for duplicates ◁
4: for j ← w − 1 to 0 do
5: found← 0
6: for k ← j + 1 to w − 1 do
7: if support[j] == support[k] then
8: found← 1
9: if found then

10: support[j]← j
11: ▷ Compose the final vector from the list of indexes of non-zero elements ◁
12: a← 0
13: for j ← 0 to w − 1 do
14: asupport[j] ← 1
15: return a

83

Chapter 6. Element generation

Table 6.1: Comparison of sampler algorithm of fixed-weight Fn
2 vectors. xλ > n is computed from the

CDF of the distribution of the discrete random variable X representing the number of calls to the
PRNG function, such that Pr(X ≤ xλ) = 1−2−λ. There is not an upper bound running time for the
rejection sampling algorithm, and the constant time rejection sampling algorithm is not guaranteed
to succeed for every input random string.

Algorithm Distribution Average Constant time Asymptotic Always
bias randomness and randomness time complexity successful

Algorithm 22 ✓ – ✗ Ω(n) ✗
Algorithm 23 ✓ ⌈log2(n)⌉ · xλ ✓ Θ(xλ) ✗
Algorithm 24 ✓ 1.25 · ⌈log2(n)⌉ · n ✗ Θ(n) ✓
Algorithm 25 ✓ γ · n ✓ Θ(n log n) ✓
Algorithm 26 ✗ γ · w ✓ Θ(w2) ✓

an algorithm, here reported in Algorithm 26, using the same concept of the Fisher-
Yates scrambling, but using a fixed amount of randomness and working in constant
time. The procedure samples a set of w integers from a binary string of length γ ≫
⌈log2(n)⌉, requiring a total of γ · w random bits. Then it computes the modulo n − j
remainder for each one of them, with j being a monotonically increasing counter starting
from 0 up to the required weight w − 1 summed to the modulo remainder to create
a support vector. Afterwards, the w elements in the support vector are checked for
duplicates, and in case of a collision the element with highest index gets replaced with
the index itself. Given how the remainders are generated, this step guarantees that after
the first check there are no duplicates in the support vector. The resulting values are
the indexes of the coefficients to be set to one in the fixed-weight vector. The time
complexity of this algorithm is T (n) = Θ(w2), and depends entirely only on the weight
w of the polynomials. Another important difference of this algorithm compared to the
scrambling-based one, is that in this case the entirety of PRNG randomness usage is
consumed at the beginning of the algorithm. Therefore, a high-throughput source of
randomness is necessary to not limit the performance of this algorithm.

In Table 6.1 is reported the comparison of the presented fixed-weight random Fn
2

vectors, summarizing their property of absence of uniform distribution distortions, av-
erage quantity of used randomness, and time and randomness usage variability, and
asymptotic time complexity.

6.4 Hardware designs

In this section are reported the synthesis results of the hardware designs implementing
the (un)pack, (de)compression, and sampling of random vectors/polynomials with or
without fixed-weight for the NTRU, HQC, and CROSS schemes. Whenever possible,
the implementations of each work are referred to the pseudo-algorithms previously de-
scribed to give a general idea of its working principle, although there could be some
substantial differences with the actual implemented algorithm.

84

6.4. Hardware designs

6.4.1 NTRU

The elements of NTRU-HPS and NTRU-HRSS cryptoschemes are polynomials in the
ring Rq or T ⊆ Sp, corresponding to vectors in Zn

q or Zn−1
p . The coefficients are the in-

tegers modulo q = {2048, 2048, 4096, 8192} for the parameter sets ntruhps2048509,
ntruhps2048677, ntruhps4096821, and ntruhrss701, respectively, or mod-
ulo p = 3. In both cases, the polynomial coefficients are represented with their zero-
centered equivalence classes representatives encoded in two’s complement.

When storing these polynomials in the ciphertext or public/private keys, the corre-
sponding vectors must be packed in their bit string representation, and possibly com-
pressed. For vectors in Zn

q we can efficiently use the Algorithm 17 to pack the coeffi-
cients since those are exactly power of two, while vectors in Zn−1

p additionally require
the compression function Equation 6.2 to reduce the number of invalid bit sting encod-
ings.

Considering the Equation 6.2, it is possible to have a trade-off between logic and
registers requirements, storing the constants 3i, i ∈ {0, 1, 2, 3, 4} in FFs. Each clock
cycle an element ai of a at index i is processed. The index i selects one of the stored
constants via a multiplexer, which is multiplied by two via a bit-shift operation, which
is a free operation in HW. A last multiplexer select between the zero value constant, the
selected constant, or the selected constant multiplied by two depending on the element
ai value. The output of the last multiplexer is then added to an 8-bits accumulator, which
after five iterations contains the compressed binary string.

The reverse unpack operation is described in Algorithm 18, and the uncompression
of binary strings encoding ternary polynomials is performed using the compact look-up
table.

Both NTRU variants need to sample random q-ary and ternary polynomials, while
NTRU-HPS also requires to generate random ternary polynomials with q/8−2 non-zero
coefficients. See Table 3.1 for more details.

Random q-ary polynomials are generated from the random bit strings coming from
the PRNG by interpreting the ⌈log2(q)⌉ bits consecutive sub-strings as signed integer
numbers. Being the coefficients transferred in B-sized blocks, an appropriate pad bi-
nary string is introduced in each block to fill the unused bits of each memory block,
aligning the coefficients in each block to perform efficient arithmetic computations.

The official specification mandates the use of Algorithm 20 to generate random poly-
nomials in T , computing each coefficient as the remainder of the modulo operation of
a random 8-bit integer divided by 3. For such dimensions, the resulting bias of the uni-
form distribution is deemed negligible from the security standpoint. In this work, both
the mandated modulo-reduction based algorithm and the rejection sampling strategy are
evaluated, as the former is has straightforward implementation, while the latter is the
most efficient in terms of randomness usage, and consequently on the pressure on the
PRNG. The modulo 3 reductions are performed with a dedicated unit exploiting the fast
reduction algorithm for Mersenne primes, which employs only shift operations and ad-
ditions. Given the size of the prime number, the resulting design is extremely small and

85

Chapter 6. Element generation

Table 6.2: Performance and area figures of Fn
2 vector samplers with dimension and weight (n,w) ∈

{(17669, 75), (35851, 114), (57637, 149)}, defined by the parameters sets hqc128, hqc192, and
hqc256, respectively. Area-Time product in eSlices · µs. The result denoted with ∗ runs in constant
time, but does only w < n swap operations, and improperly produces random indexes, consequently
not generating polynomials from the uniform distribution. The result denoted with ⋆ targets an Artix-7
FPGA with a lower speed grade -1.

Param. Work Algorithm Resources Freq. Latency AT
set LUT FF BRAM DSP eSlice MHz CC µs prod.

hqc128

This work Algorithm 26 1055 1189 2.0 0 688 230 2983 12.97 8.92
[Des+23] Algorithm 26 201 229 1.0 4 801 201 3062 15.23 12.20
[Des+23] Algorithm 23 316 124 2.0 0 503 223 1479 6.63 3.34
[HTX23] Algorithm 24∗ 1560 766 2.0 0 814 170 976 5.74 4.67
[Ae22] Algorithm 22 9942 4354 0.0 0 2486 151 2573 17.04 42.36

hqc192

This work Algorithm 26 1010 1178 2.0 0 677 237 6727 28.38 19.22
[Des+23] Algorithm 26 211 245 1.0 5 938 200 6817 34.08 31.97
[Des+23] Algorithm 23 295 125 2.0 0 498 236 2226 9.43 4.70
[HTX23] Algorithm 24∗ 1553 761 3.0 0 1025 185 1636 8.84 9.06

hqc256

This work Algorithm 26 1027 1172 2.0 0 681 225 11382 50.59 34.45
[Des+23] Algorithm 26 216 248 1.0 5 939 204 11487 56.31 52.87
[Des+23] Algorithm 23 314 192 2.5 0 609 242 3248 13.42 8.17
[HTX23] Algorithm 24∗ 1569 779 3.0 0 1029 181 2268 12.53 12.89

efficient.
For what concerns the random polynomials in T having fixed weight, the reference

algorithm is based on the sorting of random values similarly to Algorithm 25, where
the first q/16 − 1 are arbitrary set to 1, the following q/16 − 1 are set to −1, and the
remaining coefficients are set to 0. Given the parameters n and q, the Hamming weights
of the vectors associated to such polynomials are not extremely small. Instead of using
Algorithm 25, we used Algorithm 24 to apply a random permutation to a fixed weight
array of ternary coefficients via the Fisher-Yates shuffle. While this technique is a source
of timing-side channel insecurity when employed in cache-endowed architectures, we
are able to guarantee constant-time memory access in this design, and are thus immune
to such concerns. This approach provides significant area gains with respect to the
one of [DMG21] following the official specification. This method exhibits several key
advantages: it demands substantially less randomness per coefficient (approximately 9
bits versus 30), necessitates significantly less temporary storage by storing only ternary
coefficients rather than 32-bit integers, and utilizes randomness uniformly throughout
the execution, eliminating the need for large upfront randomness generation.

6.4.2 HQC

In HQC the elements are polynomials with coefficients from the binary field which
can be represented as a vector h ∈ Fn

q with q = 2. Therefore, their binary string
representations composing the ciphertext or the public and private key do not require

86

6.4. Hardware designs

compression or packing.
The random quasi-cyclic parity-check matrix is represented by the polynomial h ∈

R, thus the random vector h is generated straightforwardly by truncating the PRNG
output to n bits. The hardware module performing such operation producing the vector
with elements packed in blocks of B = 128 bits takes just 89 LUTs and 333 FFs, for an
eSlices area indicator of 235. The maximum frequency of 357 MHz allowed to complete
the operation in 314, 598, and 938 clock cycles taking 0.20, 0.40, and 0.62 µs for the
three parameters sets hqc128, hqc192, and hqc256, respectively.

Regarding the sampling algorithms for sparse polynomials, the HQC scheme needs
to generate the elements x, y ∈ Rw, e ∈ Rwe , and ra, rb ∈ Rwr , where w,we, wr ≈

√
n.

Various approaches are reported in Table 6.2, using the highest vector weight wr. Start-
ing from the fourth specification document revision, the authors prescribe the use of
the Algorithm 26 with γ = 32 to protect against timing side-channel attacks after that
[Guo+22] demonstrated a successful key recovery attack due to timing variations of Al-
gorithm 22 dependent on the secret key in the deterministic re-encryption executed in
the HQC.KEM-DECAPSULATE primitive. Any change to the specified sampling algo-
rithm will lead to different results from the KAT. However, if the actor executing the key
generation and decapsulation algorithm is consistent in the algorithm chose to generate
the polynomial y, the compatibility of the resulting design with other specification-
compliant implementations is guaranteed. Given the γ = 32 parameter value, the
amount of randomness used by this algorithm amounts to 32 · wr, which for the pa-
rameters set with the highest security margin results in 4768 random bits consumed.

From an hardware design perspective, in the Algorithm 26, the computation of the
remainder of a modulo operation is the most computationally expensive operation. The
authors in [Des+23] opted use a pipelined Barrett reduction [Bar86] circuit where the
large 32-bit integer multiplication is split in three smaller multiplications with halved
bit-size via the sub-quadratic Karatsuba multiplication algorithm [Kar63] (more on them
in chapter 7), and computed in the specialized DSP units. In this thesis is explored a
novel approach starting from the consideration that the divisor, even though has not
a fixed value, has always a 16-bit size. Therefore, a shift-and-subtract algorithm can
be employed, completing the operation with exactly 16 shifts and subtractions without
using DSP units. The design has a pipeline with k stages in which ⌈16/k⌉ shift and sub-
tractions are performed, completing each operation in k clock cycles, but being capable
of executing k modulo operations in parallel. Evaluating the maximum operating fre-
quency of this design while varying the number of pipeline stages determined that, to
prevent the divider functional unit from being the limiting factor of the other modules,
each stage must compute a single shift and subtraction. The synthesis results show a re-
duction of area from 1.16× to 1.37×, and a substantially improved maximum frequency
reducing the latency from 1.11× to 1.17×. Consequently, the efficiency improvement
ranges from 1.36× to 1.53×.

The same authors in [Des+23] tried another solution akin to the constant time rejec-
tion sampling in Algorithm 23 with xλ = 2 · wr, reducing the rejection rate generating

87

Chapter 6. Element generation

the random indexes with Algorithm 21, and showing better figures in terms of latency,
area usage, and efficiency than the designs implementing the official Algorithm 26. The
amount of randomness used by this algorithm results higher than the one used in Algo-
rithm 26 and amounts to 24 ·2 ·wr, which for the parameters set with the highest security
margin results in 7152 random bits consumed.

In [Ae22] the authors provide a High Level Synthesis (HLS) description of the re-
jection sampling-based algorithm of the initial specification just for the parameters set
offering the lowest security margin. The synthesis results highlight the inefficiencies
resulting from the HLS description compared to a RTL one, as the simpler rejection
sampling algorithm takes more resources compared to the more refined constant time
algorithms.

Lastly, in [HTX23] is presented another design implementing a scrambling technique
resembling Algorithm 24, although with few key differences generating a distribution
bias. Firstly, the Fisher-Yates algorithm is used to scramble a vector with w bits in the
first positions of the vector, but only w < n random indices are swapped. Moreover, the
random indices are generated as the remainder of a modulo operation from an unspec-
ified sized random dividend, leading to random values not sampled from the uniform
distribution. The resulting component shows interesting latency and efficiency figures
at the cost of a larger area occupied and a security yet-to-be-proven.

6.4.3 CROSS

Considering the CROSS scheme, the elements transmitted in the public key pk and
the signature sig are bit strings (path, proof, salt, cmt1[i]) and vectors with co-
efficients in Fp or Fz (s, v, and y), with p and z two prime numbers from the set
S = {7, 127, 509}. Being all the values in S approximately a power of two 8, 128, and
512, respectively, the usual Algorithm 17 and Algorithm 18 can be used to efficiently
pack the vectors in bit strings, without requiring extra logic to handle some compression
and decompression tasks. Note that the elements are packed before the absorption by
the HASH function.

Within the CROSS.KEYGENERATION, CROSS.SIGN and CROSS.VERIFY prim-
itives the public key seed seedpk is expanded by an instance of the CSPRNG to
obtain an arbitrary long bit string used to generate the matrices W ∈ Fm×n−m

z and
V ∈ F(n−k)×k

p , the former only in case a R-SDP(G) based parameter set is selected.
Similarly, in CROSS.KEYGENERATION and CROSS.SIGN the private key sk =

seedsk is expanded via a CSPRNG in a longer bit string used to generate the secret
error vector eG ∈ Fm

z and e ∈ Fn
z , respectively for R-SDP(G) and R-SDP parameters.

Moreover, in each one of the t CROSS.ID protocol executions in CROSS.SIGN
is generated the random vector u′[i] ∈ Fn

p , and the transformed error vector e′G[i] ∈
Fm
z or e′[i] ∈ Fn

z for R-SDP(G) and R-SDP parameters, respectively, starting from
the CSPRNG output generated by the absorption of the round seed and salt values
seed[i]∥salt.

88

6.4. Hardware designs

SHAKE

Fisher-Yates
scrambling

Rejection

Rejection

Figure 6.1: Sampler unit of CROSS elements implementing the CSPRNG and HASH functions. Credits
to Patrick Karl from the Technical University of Munich.

Finally, the two challenges chall1 ∈ (F∗
p)t and chall2 ∈ Bt, w (the set of all

binary strings of length t having Hamming weight w) are generated from the expansion
of the hash digests digchall1 and digchall1 , respectively.

With the exclusion of chall2, each coefficient composing all the previously de-
scribed vectors are generated via a rejection sampling as detailed in Algorithm 19, since
the probability of rejection of each coefficient is low, namely 1/8, 1/128, and 3/256 when
sampling coefficients in F7, F127, and F509, respectively. The process consists in inter-
preting each ⌈log2 p⌉ bit long string chunk a as an integer element a = UINT(a) ∈ Z,
and discard it if a ≥ p. Recalling that the rejection sampling does not exhibit the exe-
cution in a constant amount of time, the authors provided an upper bound xλ similar to
Algorithm 23 to fail the sampling process after xλ random samplings with an extremely
low probability < 2λ, with λ ∈ {128, 192, 256} being the security margin. The coef-
ficients of the vectors are sampled sequentially from the lowest to the highest indexes,
whereas matrices are linearized by rows, hence the sampled coefficients are filling the
matrix from the top-most row to the bottom-most one, left to right.

Regarding the generation of the second challenge chall2, the Algorithm 24 is em-
ployed to perform the scramble using a Fisher-Yates algorithm of a vector having the
first w bits set to 1, and the following t− w bits set to 0.

The designed sampling unit, depicted in Figure 6.1, generates all the elements of
CROSS from the expansion of a small seed absorbed by an instance of the SHAKE
XOF, either SHAKE256 or SHAKE128 depending on the parameter set, that generates
an arbitrary long random bit string used by two rejection sampling units specialized
for the generation of Fp and Fz coefficients, and a Fisher-Yates algorithm scrambling a
binary vector having fixed Hamming weight w.

Each CROSS-ID parallel execution asks to generate two elements, e′[i] ∈ Fn
z (or

e′G[i] ∈ Fm
z in case of R-SDP(G) parameters) and u′[i] ∈ Fn

p , taking part to some arith-
metic computation. However, each rejection sampler is able to produce at most one
vector coefficient per clock cycle, and the official specification mandates the sequential
sampling of e′[i] (or e′G[i]) before u′[i] from the expansion of the same seed. To improve
the latency of such operation, the generation of the two elements can be performed in

89

Chapter 6. Element generation

Table 6.3: Synthesis results for the sampler of CROSS vectors when targeting an AMD Artix-7 FPGA
and using 64-bits word size. The sampler unit is agnostic to the fast, balanced, and small optimization
corners. Credits to Patrick Karl from the Technical University of Munich.

Parameter Resources Freq.
set LUT FF BRAM eSlice MHz

CROSS-RSDP-1 10757 3749 2.5 3220 159
CROSS-RSDP-3 9478 3487 3.5 3112 173
CROSS-RSDP-5 9903 3579 4.5 3430 179
CROSS-RSDPG-1 9643 3824 1.5 2729 167
CROSS-RSDPG-3 9357 3427 3.5 3082 176
CROSS-RSDPG-5 8077 3453 3.5 2762 179

parallel by employing two First-In First-Out (FIFO) buffers. The first one accumulates
all the XOF material necessary to sample the entire vector with coefficients in Fz (se-
lection 0 of the multiplexer/demultiplexer in Figure 6.1), allowing the second rejection
sampler to start as soon as enough material is present in the buffer by switching the de-
multiplexer signal to the selection 1. This is possible due to the constant-time sampling
algorithm exactly specifying the number of coefficient samplings xλ performed in each
operation. The second FIFO buffer is used to guarantee the sequentiality of the sampled
elements, by releasing to the output the vector u′[i] switching the multiplexer selection
to 1 only after the full transmission of the vector with coefficients in Fz.

In Table 6.3 is reported the synthesis of the sampler unit for the AMD Artix-7 FPGA
specialized for every parameter set. Note that the vector and matrix shapes do not vary
depending on the fast, balanced, or small optimization corners. The FIFO buffers are
implemented by Vivado in a few BRAM units. The resource occupation figures include
the contribution of the SHAKE module, which takes ≈ 6443 LUT and 2735 FF. This
unit is optimized for the absorption of two seed sizes of length 3λ + 16 and 4λ + 16
by instantly padding the remaining part of the input buffer and start the f -permutation
function in the following clock cycle. Note that the SHAKE module in the sampler unit
is also used as the instance implementing the HASH function, therefore the output of
the SHAKE unit is also directly routed to the output of the sampler to produce the hash
digests via the multiplexer/demultiplexer selection 3 in Figure 6.1.

90

CHAPTER7
Arithmetic

This chapter introduces to the arithmetic operations performed in lattice-based and
code-based cryptographic schemes. A brief mathematical background is provided in
section 2.1. Each section starts with a description of the operations for modular arith-
metic and then, building on them, presents the algorithms for vector spaces and poly-
nomial rings. Note that the described operations are always valid only if the operands
are from a finite field, which guarantees the existence of the additive and multiplicative
inverses for each element in the field.

7.1 Addition

A natural number a ∈ N is representable by a n-bit binary string a = a0∥a1∥ . . . ∥an−1

such that a =
∑n

i=0 ai · 2i. The n-bit binary string can encode all the unsigned integer
numbers in the range [0, 2n − 1]. Considering a, b ∈ N in their binary representation,
the addition operation (+) can be performed digit by digit starting from the LSB a0

to the MSB an−1. A half adder operation produces a sum bit s0 = a0 ⊕ b0 and a
carry bit c0 = a0 ∧ b0, computed as the Boolean xor and the Boolean and operations
of two bits of the operands, respectively. The carry bit represents the overflow in the
addition computation for the previous (i − 1)-th digit, which is then given in input to
the full adder operation of the current i-th digit. The sum bit is similarly computed as

Part of the material presented in this chapter was originally described in [Ant+23b; Ant+23a; Ant+24a; Ant+24b; Ant+24c;
ABP25].

91

Chapter 7. Arithmetic

si = ai ⊕ bi ⊕ ci−1, while the produced carry is ci = (ai · bi) ⊕ (ci−1 ∧ (ai ⊕ bi)).
Consequently, the addition of two n-bit numbers produces a (n + 1)-bit result via a
chain of full adders, except for the LSB being computed via a half adder. This structure
is known as ripple carry adder, and has a critical path determined by the chain of n
carry computations. There are several known algorithms trying to provide an area-time
trade-off (carry look-ahead adder), or deferring the computation of the carry (carry save
adder).

The two’s complement representation encodes an integer number a ∈ Z in a n-bit
binary string such that a + (−a) = 0 using the previous algorithm. A n-bit binary
string can encode all the unsigned integer numbers in the range [−2n−1, 2n−1 − 1]. To
compute the additive inverse element−a, all binary digits of a are negated via a Boolean
not operation, here denoted with an abuse of notation as ¬a, and adding 1 to the result.
The subtraction operation a− b therefore can be computed as a + (−b) = a + ¬b + 1.
This means that the subtraction can be implemented via a chain of full adders similarly
to the addition, but all the bits of b are negated, and the input carry c−1 of the LSB digit
is artificially set to 1. By using some multiplexers, the same architecture employed for
the subtraction can be reused to compute also the addition of two numbers.

Nowadays all the EDA tools handle the generation of such structures transparently
when the addition or subtraction operations between two integer numbers are detected.
FPGA vendors even provide hard IPs to minimize the latency of additions/subtractions
in the designs.

7.1.1 Modular arithmetic

A prime field Fp ≡ Z/pZ is a finite field having prime order p where the set of elements
A is the integers modulo p as the canonical representatives of the residue classes. The
defined operations follow the modular arithmetic for a generic modulo q, thus given
a, b ∈ Zq, their sum or difference is a ± b mod q. Operatively, to compute the residue
class representative of the sum result ≥ q, it is necessary to subtract q to it. Conversely,
to compute the residue class representative of the difference result < 0, it is necessary
to add q to it. To make the operation constant time, the addition or subtraction by q is
always carried out, and the correct result is picked via a selection mask in SW, or via a
multiplexer in HW.

Note that when q = 2k for k ∈ N \ 0 – clearly not the case for prime fields – the
modulo remainder is equivalent to the integer encoded in the first k bits, therefore the
carry bit of the addition or subtraction operation is simply ignored. The edge case is
represented by q = 2 where the Boolean xor operator performs both the addition and
the subtraction of elements in F2.

7.1.2 Vector space and polynomials

Another cryptographically-relevant class of finite fields are extension fields Fpm , which
are constructed from a base field Fp and contain pm elements. These fields can be

92

7.1. Addition

Algorithm 27 Modular addition/subtraction between vectors

Require: n ∈ N: the dimension of the vectors
q ∈ N: the modulo
a,b ∈ Zn

q : the two vector operands
Ensure: c ∈ Zn

q | c = a± b
1: for i← 0 to n− 1 do
2: ci ← (ai ± bi) mod q
3: return c

Algorithm 28 Modular addition/subtraction between vectors when one operand is sparse

Require: n ∈ N: the dimension of the vectors
q ∈ N: the modulo
w ∈ N: the weight of polynomial b ∈ Zn

q

a ∈ Zn
q : the first operand in regular format

bsparse ∈ Sw: the operand b ∈ Zn
q with w non-zero elements in sparse format

Ensure: c ∈ Zn
q | c = a± b

1: c← a
2: for (i, v) ∈ bsparse do
3: ci ← (ci ± v) mod q
4: return c

realized as quotient rings of the form Fp[x]/ ⟨f(x)⟩, where f(x) is an monic irre-
ducible polynomial of degree m over Fp. Elements of the extension field Fpm have
multiple but equivalent forms, where the most commonly used ones are polynomi-
als of degree less than m, or power of the root element α of f(x). For more details
refer to subsection 2.1.3. Using the usual representation of a polynomial a(x) =
a0 · x0 + a1 · x1 · . . . · am−1x

m−1 as a vector a ∈ Fm
p of dimension m having as elements

the polynomial coefficients ai ∈ Fp, the addition and subtraction operations are carried
out element-wise following the modular arithmetic defined in Zq, as represented in Al-
gorithm 27. The computational complexity of this algorithm is Θ(n) when considering
the addition/subtraction operation in Z as an elementary operation. Binary extension
fields F2m are remarkably efficient to implement in SW and HW with respect to other
choices of base field order p, as the elements can be represented with binary vectors.
In this case, both addition and subtraction are carried out via a bitwise Boolean xor
operation, without considering carries or modulo remainders to compute.

A polynomial or a vector is considered sparse when it has significantly fewer w non-
zero coefficients than its total length (w ≪ n). Such sparse entities can be efficiently
represented using a sparse format, where only the indexes i and corresponding values v
of the non-zero elements are stored in a list of tuples (i, v). Let S = {(i, v) | i ∈ N, v ∈
Z, i < n,−q/2 ≤ v < q/2} be the set containing the (i, v) valid pairs for a vector in Zn

q .
The sparse representation of a vector having Hamming weight w is given by a vector of
dimension w with elements in S. For binary polynomials or vectors, since all non-zero
values are inherently 1, only the indices i of these non-zero elements need to be stored.
When one of the addition or subtraction operand is in the sparse form, more efficient

93

Chapter 7. Arithmetic

Algorithm 29 Barrett reduction

Require: q ∈ N: the modulo value
a ∈ Z | 0 ≤ a < q2: the input value

Ensure: b ∈ Z | 0 ≤ b < q
1: ▷ Approximation factor k = ⌈log2(q)⌉ ◁

2: ▷ Pre-computed constant r =
⌊
4k

q

⌋
◁

3: c←
⌊
a·r
4k

⌋
▷ Equivalent to (a · r)≫ 2k

4: t← a− c · q
5: if t ≥ q then
6: b← t− q
7: else
8: b← t
9: return b

algorithms can be devised, improving the time complexity of the solution. For example
Algorithm 28 has a time complexity Θ(w) when it works in-place, thus updating the
first operand without copying it to the result vector in step 1.

7.2 Multiplication

Let a, b ∈ Z two integers such that both a and b can be encoded in n-bit strings in two’s
complement notation. The schoolbook algorithm computes the multiplication operation
(·) between a and b summing the integers corresponding to the extension of the bit string
representation of a with i zero bits at the LSB side if bi is 1. The result c is the 2n-bit
long given by Equation 7.1.

c =
n−1∑
i=0

(bi ∧ a)≪ i (7.1)

Most EDA tools automatically infer the optimal architecture performing this integer
multiplication.

7.2.1 Modular arithmetic

In modular arithmetic, the multiplication between two elements a, b ∈ Zq is given by
(a · b) mod q, but this time the computation of the equivalence class representative is
more challenging with respect to the case of addition or subtraction.

The Barrett reduction [Bar86] (Algorithm 29) is an algorithm efficiently performing
the modulo operation of a for a fixed divisor value q. Instead of performing a full
division, the algorithm uses a multiplication with a pre-computed constant r =

⌊
4k

q

⌋
and

bit shift to get an approximated quotient c. Multiplying that value by q and subtracting
it from the input value a results in a value in the range [0, 2q), which is checked and
conditionally reduced in the required range [0, q). Overall, the arithmetic operations
used are a 2k × k-bit multiplication, a 2k × 2k-bit subtraction, a k × k-bit smaller

94

7.2. Multiplication

Algorithm 30 Mersenne primes reduction

Require: q ∈ N | q = 2k − 1 ∧ j ∤ q, k, j ∈ N ∧ 2 ≤ j < q: the Mersenne prime modulo value
a ∈ Z | 0 ≤ a < q2: the input value

Ensure: b ∈ Z | 0 ≤ b < q
1: t← a
2: for i← 0 to ⌈⌈log2(a)⌉ / ⌈log2(q)⌉⌉ − 1 do
3: c← t0∥t1∥ . . . ∥t⌈log2(q)⌉−1 ▷ Lower ⌈log2(q)⌉ bits of the binary string representation t of t
4: d← t⌈log2(q)⌉∥t⌈log2(q)⌉+1∥ . . . ∥t⌈log2(a)⌉−1 ▷ Remaining upper bits of t
5: t = c+ d ▷ Considering the integers c, d from their binary string c,d
6: if t ≥ q then
7: b← t− q
8: else
9: b← t

10: return b

multiplication, a (k + 1) × k-bit smaller subtraction, and a shift by a constant amount
of bits.

Another approach that similarly trades the division by q with a cheaper division by
a power-of-two consists in performing the multiplications in the Montgomery domain.
The conversion of inputs to the Montgomery domain, and the reverse process for the re-
sult is expensive, thus it is considered only when the number of modular multiplication
performed in a row is high, such in case of RSA or DH key exchange. A more formal-
ized view of the integer approximation of these two reduction schemes is analyzed in
[Bec+22b], where the correspondence between the Montgomery multiplication and the
Barrett multiplication is detailed.

When q = 2k − 1 is a prime number for some k ∈ N, the modulus q is referred
as Mersenne prime. These prime numbers cover an important role in cryptography
since the extremely efficient Algorithm 30 computes the modulo operation with a few
additions/subtractions.

Finally, recalling that if q is a power-of-two the modulo operation corresponds to
the selection of the first ⌈log2(q)⌉ bits, in the edge case q = 2 the multiplication in F2

simplifies to the Boolean and between the two operands.
A naive modular exponentiation ba mod q for some a, b ∈ Zq may iterate the mod-

ular multiplication of an auxiliary variable c, initialized with the multiplicative identity
element 1, by the value b for a times. This approach however has a considerable cost
due to the large number of multiplications required, which depends on the value a.
Moreover, there may be a problem when a is a secret element of a cryptographic algo-
rithm, leading to a timing side-channel leakage. The square-and-multiply algorithm is
a well-known technique to sensibly reduce the number of multiplications from O(a) to
O(log2 a). Iterating on each digit of a, the binary string representation of a, if ai = 1
then the auxiliary variable c is multiplied by bi+1, which is simply computed by the mod-
ular squaring of the initial value b each round iteration. Particular care is still needed
when a is a secret element of a cipher, as the literature offers many simple examples of

95

Chapter 7. Arithmetic

Algorithm 31 Schoolbook polynomial multiplication algorithm

Require: n ∈ N: the maximum degree of polynomials
q ∈ N: the coefficient modulo
a,b ∈ Zn

q : the two operand vectors containing the coefficients of polynomials a(x) and b(x)
Ensure: c ∈ Z2n−1

q | c(x) = a(x) · b(x)
1: for j ← 0 to n− 1 do
2: for i← 0 to n− 1 do ▷ This can be parallelized in n multiply-and-accumulate units
3: cj+i ← (cj+i + aj · bi) mod q ▷ Multiply-and-accumulate operation
4: return c

side-channel attacks targeting this operation.

7.2.2 Vector space and polynomials

Let A be a matrix from the vector space Fn×m
q , and λ ∈ Fq a scalar. The scalar multi-

plication λA produces a matrix C ∈ Fn×m
q where each coefficient is computed as

Ci,j ← λ · Ai,j ∀i ∈ {0, 1, . . . , n− 1}, ∀j ∈ {0, 1, . . . ,m− 1} (7.2)

Considering now two matrices A,B from the vector space Fn×m
q , the Hadamard

multiplication C = A⊙B consists in the modular multiplication of the elements at the
same indexes:

Ci,j = Ai,j ·Bi,j mod q ∀i ∈ {0, 1, . . . , n− 1}, ∀j ∈ {0, 1, . . . ,m− 1} (7.3)

Having instead another matrix B from the vector space Fm×r
q , the matrix multiplica-

tion C = A ·B is defined as:

Ci,j =
m∑
k=1

Ai,k ·Bk,j mod q, ∀i ∈ {0, 1, . . . , n−1}, ∀j ∈ {0, 1, . . . , p−1} (7.4)

When dealing with polynomials, the schoolbook operand scanning algorithm per-
forming the multiplication between two polynomials, described in Algorithm 31, is not
dissimilar to the one for integers described in Equation 7.1, adding together all the re-
sults of multiplying the first polynomial by each one of the monomials composing the
second polynomial. The resulting polynomial has a maximum degree of 2n−2, and the
running time of the operation has a quadratic complexity T (n) = O(n2) in the cost of
modular multiplications.

The sub-quadratic methods, pioneered by Karatsuba [Kar63], provide algorithms
to compute the polynomial multiplication in O(nlogi(2i−1)) coefficient-wise multiplica-
tions, where i ≥ 2 and i | n. In particular, Karatsuba proposed the algorithmic variant
for i = 2, here reported in Algorithm 32, while Toom and Cook [Bod07] generalized
the result for i > 2. Note that the level of recursions can be modified by adjusting
the base case condition (line 2 in Algorithm 32) and performing such multiplication
with other parametrization of i, or even other algorithms. This is particularly useful

96

7.2. Multiplication

Algorithm 32 Karatsuba polynomial multiplication algorithm

Require: n ∈ N: the maximum degree of polynomials
q ∈ N: the coefficient modulo
a,b ∈ Zn

q : the two operand vectors containing the coefficients of polynomials a(x) and b(x)
Ensure: c ∈ Z2n−1

q | c(x) = a(x) · b(x)
1: function KARATSUBAMULTIPLY(a, b, n)
2: if n = 1 then ▷ Base case
3: return (a0 · b0) mod q
4: m← ⌊n/2⌋
5: aL ← [a0, . . . , am−1], aH ← [am, . . . , an−1] ▷ Split a in low and high part
6: bL ← [b0, . . . , bm−1], bH ← [bm, . . . , bn−1] ▷ Split b in low and high part
7: cL ← KARATSUBAMULTIPLY(aL,bL,m) ▷ Recuirsive call with low parts
8: cH ← KARATSUBAMULTIPLY(aH,bH, n−m) ▷ Recuirsive call with high parts
9: p← KARATSUBAMULTIPLY(aL + aH,bL + bH,max(m,n−m)) ▷ Rec. call with mixed

parts
10: cM ← p− cL − cH ▷ Avoids a fourth multiplication
11: ▷ Compose the result by shifting vectors to the left, padding with zero coefficients ◁
12: c← cL + SHIFT(cM,m) + SHIFT(cH, 2m)
13: return c
14: return KARATSUBAMULTIPLY(a,b, n)

when the size of polynomials do not exactly satisfy the condition i | n. These meth-
ods are not universally used because, although they reduce the number of individual
coefficient operations, they also increase the number of polynomial additions and sub-
tractions needed. While additions and subtractions have a linear cost proportional to the
degree of the polynomial n, their overhead may outweigh the multiplication savings for
small n. Since the relative cost of multiplication versus addition/subtraction depends on
the hardware, the optimal threshold is typically found through testing for each specific
cryptographic implementation.

Leveraging the Discrete Fourier Transforms (DFT), in particular conditions the poly-
nomial multiplication can be performed in just O(n log2(n)) time. This method exploits
the equivalence between polynomial multiplication and the convolution of the sequences
of coefficients of the operands. The polynomial product is obtained by computing the
DFT of these sequences, performing element-wise multiplication on the transformed re-
sults, and then applying the inverse Fourier transform. The overall complexity is domi-
nated by the Fourier transform computation, having a complexity of O(n log2(n)), plus
a linear number of coefficient-wise multiplications, resulting in a total multiplication
cost of O(2(n log2(n))+n). This technique is applied fruitfully to polynomials in a ring
Zq [x] / ⟨f(x)⟩, provided that Zq is a field and the degree of f(x) is a power of two gen-
erating the 2n-th root of unity, and goes by the name of Number-Theoretic Transform
(NTT). The aforementioned prerequisites on the polynomials were not commonly em-
ployed in cryptography, and many schemes, such as CRYSTALS-Kyber, CRYSTALS-
Dilithium, SABER, and NTTRU, have been developed specifically to leverage this
multiplication algorithm with asymptotic optimal cost. Willing to multiply two gen-

97

Chapter 7. Arithmetic

Table 7.1: Comparison of polynomial multiplication algorithms. The computation of the asymptotic
running time complexity assumes that each modular multiplication takes a constant amount of time.

Algorithm Asymptotic Parameters compatibility
complexity q n

Schoolbook n2 any any
Karatsuba nlog(3)/ log(2) any even

Toom-Cook i nlog(2i−1)/ log(i) any divisible by i
NTT n log2 n prime values power-of-two

eral polynomials Zq [x] not belonging to the described ring, any operand having up to
(⌈n/2⌉ − 1)-th degree can be safely used with such fast multiplication algorithm. It
is however possible to adapt the NTT algorithm for the big-number arithmetic used in
the RSA scheme [Bec+22a], or for NTT-unfriendly rings [Chu+21] using any arbitrary
combination of the Cooley-Tukey, Good-Thomas, Bluestein, Rader, Rader-Winograd,
Binary Rader-Winograd, Bruun, and Johnson-Burrus NTT algorithms. As it is the case
for the other sub-quadratic multiplication techniques, also the NTT proves to be practi-
cally worth for large values of n.

To conclude, Table 7.1 summarizes the presented techniques to perform the polyno-
mial multiplications, comparing the asymptotic complexity, and the compatibility with
the coefficient modulo q and the polynomial maximum degree n.

7.3 Arithmetic in NTRU

The parameters of the NTRU scheme, described in subsection 3.2.1, generate polyno-
mials over the quotient rings

Rq
∼= Zq[x]/⟨ΦnΦ1⟩, Sq

∼= Zq[x]/⟨Φn⟩, Sp
∼= Zp[x]/⟨Φn⟩ (7.5)

where Φ1 = x − 1 and Φn = xn−1
x−1

= xn−1 + xn−2 + · · · + x + 1 are the 1-st and the
n-th irreducible cyclotomic polynomial, respectively, and ΦnΦ1 = xn − 1. The mod-
ules must handle the arithmetic correctly depending on the defined polynomial rings.
However, note that not all operations must be carried out in every ring in the NTRU
scheme. Polynomials in Rq and Sq are represented with coefficients encoded in two’s
complement with εq = ⌈log2(q)⌉ bits, i.e.: Zq =

{
− q

2
,− q

2
+ 1, · · · , 0, · · · , q

2
− 1

}
.

7.3.1 Polynomial addition/subtraction

The polynomial adder employs a coefficient-wise addition approach, regardless of the
polynomial modulus generating the ring. NTRU performs only additions between poly-
nomials in Rq, thus taking the form of the binary operation Rq × Rq 7→ Rq. The
hardware component responsible for this operation has been enhanced to perform α
additions simultaneously, allowing α coefficients to be transferred from memory as a
single block and completing the task in ⌈n/α⌉ clock cycles. This hardware module han-
dles both addition and subtraction of the coefficients, with a multiplexer selecting the

98

7.3. Arithmetic in NTRU

Algorithm 33 Comba polynomial multiplication algorithm for Zq[x]/ ⟨xn ± 1⟩
Require: n ∈ N: the maximum degree of polynomials

q ∈ N: the coefficient modulo
a,b ∈ Zn

q : the two operand vectors containing the coefficients a(x), b(x) ∈ Zq[x]/ ⟨xn ± 1⟩
Ensure: c ∈ Zn

q | c(x) = a(x) · b(x) mod xn ± 1
1: c← 0
2: for j ← 0 to n− 1 do
3: for i← 0 to j do
4: t← t+ aj−i · bi ▷ Accumulated locally
5: cj ← cj + t
6: for j ← 0 to n− 2 do
7: for i← 0 to j do
8: t← t+ an−1−j+i · bn−1−i ▷ Accumulated locally
9: cn−1−j ← cn−1−j ∓ t

correct result based on the specified operation. Modular arithmetic in the coefficient
ring is highly efficient since q is a power-of-two, retaining only the lower ⌈log2(q)⌉ bits
of the coefficient addition or subtraction.

7.3.2 Polynomial multiplication

The multiplication strategy place a critical role in many post-quantum cryptographic
scheme due to its extensive use and high cost compared to the other operations in the
schemes, especially in NTRU were there is not a clear optimal algorithm choice for both
software and hardware implementations. For this reason, this thesis proposes a study
of hardware modules implementing different algorithms derived from the schoolbook
method and applying different degrees of parallelization.

For the NTRU scheme, multiplications are always performed in the Rq ring, and
the result is eventually embedded in the Sq or Sp rings. In all cases except one, the
multiplication binary operation is in the form Sp×Rq 7→ Rq, what is commonly known
as small-by-large multiplication, which allows to apply some optimizations reducing the
area of the multiplier module. Only in one instance during the decapsulation algorithm
– when computing (c − m′) · hq – both the operands are in the Rq ring, requiring the
regular large-by-large binary multiplication operation Rq ×Rq 7→ Rq.

Comba algorithm

The operand scanning algorithm, also known as the Comba’s method [Com90], is a
schoolbook multiplication algorithm that reduces the number of memory accesses while
still performing O(n2) coefficient-wise multiplications, while still requiring minimal
computational resources. Comba’s method optimizes polynomial multiplication by re-
arranging the order of single-coefficient multiplications. This ensures that each coeffi-
cient of the resulting polynomial is calculated and stored in its final memory location
exactly once, processing either from the lowest to highest order coefficients, or vice

99

Chapter 7. Arithmetic

0

a

b

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

0

c

order of computation

(a) Scheduling of the memory accesses and
MAC computation

MUL

D Q

accumulator

ADD

(b) modular MAC unit

Figure 7.1: Scheduling of operations (left) and datapath (right) of the Comba multiplier for polynomials
in Zq[x]/ ⟨xn ± 1⟩

versa. From an implementation perspective, this approach offers a significant advan-
tage: it reduces memory access to just 2n− 1 read/write operations for the result, com-
pared to the 2n2 read/write operations needed by the traditional schoolbook method.
In software, this approach results in the smallest code size and register usage, while
in hardware the multiplier has a compact area occupation and minimizes the required
bandwidth towards the memory.

To achieve a multiplication in Zq[x]/ ⟨xn ± 1⟩ with an operand-scanning Comba
multiplier, it is sufficient to accumulate the coefficient of the result in the appropri-
ate position, as reported in Algorithm 33 and shown in Figure 7.1a. In particular,
Figure 7.1a represents the simple case of a multiplication of two polynomials a,b ∈
Zq[x]/ ⟨x9 ± 1⟩, where the intersection points in the grid consists in every single multi-
plication among a coefficient of a by a coefficient of b. The vertical lines in the figure
connect the sub-multiplication results that needs to be accumulated to produce the par-
tial result of the Comba algorithm. In case the sum of the polynomial degrees of the two
operand coefficients is ≤ n − 1, the partial result is added to the first positions of the
result polynomial (lines 2–5, highlighted in blue color both in Algorithm 33 and Fig-
ure 7.1a). In the other case (lines 6–9, highlighted in green color both in Algorithm 33
and Figure 7.1a), the partial result is added or subtracted to a set of monomials of lower
degrees corresponding to the non-null coefficients of the polynomial ring modulus f(x)
– in the case example f(x) = x9±1, the resulting polynomial coefficient having degree
n− 9 is updated.

The Comba multiplier is designed with a highly compact datapath that focuses on

100

7.3. Arithmetic in NTRU

executing a single multiply-and-accumulate (MAC) operation between polynomial co-
efficients per clock cycle. The result of each operation is stored in an accumulator
register. As illustrated in Figure 7.1b, the datapath consists of a multiplier, an adder,
and a modulo q reducer. If q is a power of two, the modular reduction step is greatly
simplified and reduces to truncating the output of the MAC operation. This design en-
ables efficient processing of one loop iteration from Algorithm 33, specifically lines 3–5
or 9–11, during each clock cycle. The value of the intermediate variable t is preserved
within the local accumulator throughout the computation. The final computed value, cj ,
is written back to memory only once at the end of each iteration of the outer loops, as
specified in lines 2–5 and 6–9 of Algorithm 33.

When performing a standard multiplication followed by a polynomial reduction us-
ing Comba’s method, the resulting polynomial could have a degree as high as 2n − 1,
which would require twice the memory size to store it. To address this, the traditional
Comba algorithm is optimized by ensuring that only the result of a single outer loop
iteration from lines 6–9 of Algorithm 33 is retained, while carefully managing the ef-
fects of modular reduction. This optimization involves either adding or subtracting the
coefficients of monomials with degree greater than n − 1 from the results of the regu-
lar multiplication, adjusting them to match the corresponding coefficients of the mod-
ular multiplication result. Implementing this approach is particularly challenging for
the NTRU Prime cryptographic scheme, as the coefficients of monomials with degree
greater than n − 1 must be added twice, each time to two consecutive coefficients in
the modular multiplication result. Furthermore, before storing the sum or difference
of the coefficient of the monomial with degree greater than n − 1 and the correspond-
ing value in the result accumulator, a modular reduction must be performed. Given
that the maximum value resulting from the accumulation is smaller than 2q − 2, it is
feasible to handle the modular reduction simultaneously with the accumulation. This is
accomplished through a straightforward selection process within a small chain of adders
and subtractors, even when the modulus q is not naturally reduction-friendly (i.e., not a
power of two).

The two steps of the algorithm can be executed in parallel in order to halve the
computation time, at cost of introducing another modular MAC unit and a slightly more
complex Finite State Machine (FSM) handling the case if the two result writes collide on
the same result block. It is worth noting that the parallelization of this algorithm leads to
the access different parts the two operands at the same time, requiring the serialization
of the requests and consequently nullifying the potential performance gains. To this
end, the operands need to be prepared modifying their layout in memory blocks in order
to fetch the pair of coefficients in a single fetch operation. Consequently, each memory
transfer is now retrieving 2 ⌈log2(q)⌉ < B bits, halving the number of operand transfer
throughout the algorithm execution.

101

Chapter 7. Arithmetic

Algorithm 34 Parallelized schoolbook polynomial multiplication algorithm for Zq[x]/ ⟨f(x)⟩
Require: n ∈ N: the maximum degree of polynomials

q ∈ N: the coefficient modulo
a,b ∈ Zn

q : the two operand vectors containing the coefficients of a(x), b(x) ∈ Zq[x]/ ⟨f(x)⟩
f(x): a monic polynomial generating the ring Zq[x]/ ⟨f(x)⟩

Ensure: c ∈ Zn
q | c(x) = a(x) · b(x) mod f(x)

1: c← 0
2: for j ← 0 to n− 1 do
3: c← c+ bj · a ▷ scalar multiplication with n parallel MAC units
4: a← a · [0, 1, 0, . . . , 0] mod f(x) ▷ a(x) · x mod f(x) performed via the LFSR structure
5: return c

0

0

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8 order of com
putation

Figure 7.2: Scheduling of operations in the parallelized schoolbook multiplier for polynomials.

Parallelized schoolbook

Instead of focusing on algorithmic improvements like Karatsuba or DFT-based meth-
ods, another way to accelerate the multiplication is to leverage the parallel nature of
the standard schoolbook multiplication Algorithm 31, as depicted in Figure 7.2. In par-
ticular, Figure 7.2 represents the simple case of a multiplication of two polynomials
a,b ∈ Zq[x]/ ⟨x9 ± 1⟩, where the intersection points in the grid consists in every sin-
gle multiplication among a coefficient of a by a coefficient of b. With this approach,
multiplying a single coefficient of one polynomial by all coefficients of the other poly-
nomial involves independent operations, while showing a predictable and simplified
memory access pattern. Each diagonal blue lines in Figure 7.2 represents the parallel
sub-multiplications carried out during each iteration. This inherent parallelism allows
for a linear-time multiplication algorithm by unrolling the for loop in line 2 using n pro-
cessing units and 2n memory units (one for each coefficient of the accumulated partial
result), completing the product in Θ(n) time. Moreover, it is possible to interleave the
reduction by polynomial ring modulus f(x) with each intermediate step of the multipli-
cation algorithm (lines 3 and 4 of Algorithm 31), saving n memory elements required
for the computation.

In [LW15] it is proposed a linear-time modular multiplication algorithm specifi-

102

7.3. Arithmetic in NTRU

1

0

0

Multiply
and accumulate

MUL

ADD

MUL

ADD

MUL MUL

ADD SUB

load

Computation
of

Computation

of

MUL

ADD

MUL

ADD

Figure 7.3: Structure of the parallelized schoolbook multiplier x-net computing the product r(x) =
(a(x) · b(x)) mod p(x). The top portion of the modular multiplier takes care of computing xi ·
a(x) mod p(x) at the i-th clock cycle, while the bottom part performs the vector scalar multiplication.

cally designed for the NTRUEncrypt polynomial ring. Their method uses n parallel
MAC units to achieve multiplication in n clock cycles. To minimize the area of each
MAC unit, they replaced the multiplier with a multiplexer. This multiplexer selects one
of three possible multiplication outcomes, leveraging the small coefficient size of the
operand in Rp, where p = 3. This technique has since been adapted for the polynomial
rings used in SABER, NTRU, and NTRU Prime [BR21; DMG23; Far+19]. Authors
in [BR21] suggested a centralized approach to pre-compute the limited set of possi-
ble coefficient-wise multiplication results and then distribute them to the MAC units.
[Pen+23] proposed delaying the modulo q coefficient reduction of the multiplication re-
sult’s coefficients until the end of the multiplication when the coefficients are read-out.
While this requires larger accumulators to store the resulting polynomial’s coefficients,
it reduces area by needing only a single modular reduction unit.

In the following, it is assumed that the polynomial modulus f(x) is monic, as it
is often the case in practice. The modular polynomial multiplication, a(x) · b(x) =
c(x) mod f(x), is broken down into a vector-scalar multiplication and a polynomial
addition. The first step involves multiplying a single coefficient of the second operand
by the entire first operand (line 3), followed by multiplications by x and modular re-
ductions of the first operand (line 4). This decomposition of the modular multiplication
operation allows an efficient hardware implementation. The coefficient-wise multiplica-
tions in line 3 expose significant data parallelism, while the modular multiplication by x
and the subsequent reduction can be efficiently realized using an Linear-Feedback Shift
Register (LFSR) structure. The hardware structure of the generic parallelized school-
book modular multiplier for a monic f(x), hereafter named x-net for brevity after the
multiplication by x of one operand by the LFSR structure, is depicted in Figure 7.3.

Generic hardware design The coefficient-by-polynomial multiplication (line 3 in Algo-
rithm 31) is computed with n independent MAC elements that compute the product of

103

Chapter 7. Arithmetic

the coefficient bi by each coefficient of polynomial a(x), and add the result to the cor-
responding coefficient of c(x). The corresponding portion of the circuit in Figure 7.3 is
the bottom half, where one MAC element is highlighted in grey. A single MAC element
is composed by an integer multiplier, an adder, a modular reducer mod q, and a register
containing the value of the coefficient ci, 0 ≤ i < n.

The computation of the multiplication of the first factor by x, a(x) ← a(x) · x is
efficiently done by storing the coefficients of a(x) in a shift register, as the multiplication
by x acts shifting the coefficients by one position towards higher degree monomials
(to the right, in Figure 7.3). Since the degree of a(x) is at most n − 1 before the
multiplication by x, the modular reduction a(x)← a(x) ·x mod f(x) can be efficiently
computed. Indeed, since f(x) is monic, computing the remainder of a(x) · x mod f(x)
is equivalent to the subtraction from a(x) · x of the polynomial an−1 · (f(x)− xn).

The multiplication and modular reduction are performed in the same clock cycle by
the the portion of the x-net multiplier managing the operation (top portion of Figure 7.3).
This circuit, structured as a shift register with feedback, performs the a(x)·x shifting the
contents of the registers containing (a0, . . . an−1) towards right. The same circuit also
subtracts an−1 ·(f(x)−xn) from a(x)·x by adding the coefficients of−an−1 ·(f(x)−xn)
to the ones of a(x)·x. This is done inserting the adders on the shift lines between any two
elements of the shift-register that contains a(x). This feedback network structure will
thus need as many multipliers and adders as the number of non-null coefficients in f(x),
benefiting from values of f(x) with a very small number of coefficients. Finally, note
that the shift-register structure also allows to perform the loading of a(x) with minimal
additional hardware. Indeed, a(x) in this design is loaded coefficient-wise from an−1 to
a0, inserting a single mux (represented on the left in Figure 7.3).

Structural optimizations The first observation leading to an optimization is that the top-
most portion of the x-net multiplier may operate entirely with values modp, leading to
a significant saving in the resource consumption for the cases where p≪ q. The lifting
required to multiply coefficient in Zp by coefficients in Zq is efficiently realized within
the multiplier units in the MAC elements by sign-extending the two’s complement rep-
resentation of the Zp elements.

The second observation leading to an optimization is that, in case p is very small,
as it is the case in this cryptosystems, the multiplier in the MAC can be substituted by
a multiplexer that selects among a small set of fixed multiples of bi, which are in turn
computed by a small number of additions. Taking as an example p = 5, the multi-
plier is substituted by a multiplexer selecting among the values {−2bi,−bi, 0, bi, 2bi},
depending on the value of the coefficient of the a(x) polynomial. The values can be
either pre-computed only once, and distributed, or computed within the MAC unit and
selected in place. The latter approach requires a larger amount of resources for each
single MAC unit, while obtaining a reduction in the wiring congestion, which may be
particularly beneficial for FPGA targeted implementations.

A final point concerning the optimization of the x-net multiplier is the trade-off be-

104

7.3. Arithmetic in NTRU

tween performing modular reductions in the MAC complex managing the coefficients
of the result, and performing the reductions upon result readout. Choosing to perform
the modular reductions at readout requires wider accumulator registers for c(x); in par-
ticular, their size grows from ⌈log2 (q)⌉ to ⌈log2 (npq)⌉ bits, as n values mod q will
be multiplied by a value mod p and added by the x-net multiplier during its operation.
This increase in area is however compensated by the removal of n modular reducers
mod q from each multiply and accumulate complex, enacting a trade-off that typically
gains in area consumption, unless the reduction by q is trivial (e.g., when q is a power of
two). In the former case, each accumulator register has log2(q) bits size, and the mod q
operation is performed by conditionally applying additions and subtractions. Since the
distance between each integer multiplication result and a valid Zq element is at most
(q − 1) · ⌈(p− 1) /2⌉, then ⌈(p− 1) /2⌉ additions and subtractions are carried out in
parallel with values multiple of q and the only valid result in Zq is selected. In case of
the reduction operation performed during the readout, a single Barrett reduction module
is used.

The described architecture uses n clock cycles to load the a(x) from memory, n cy-
cles to compute the result of the modular multiplication (potentially without coefficient-
wise modular reduction), and n cycles to read out the final polynomial multiplication
result and store it into the memory. This process can be sped up devising a mem-
ory bus transferring multiple polynomial coefficients at once. Transferring α, β and γ
coefficients for respectively a(x), b(x), and c(x), the overall latency of a polynomial
multiplication is ⌈n/α⌉ + ⌈n/β⌉ + ⌈n/γ⌉. Loading α coefficients of a(x) for each
clock cycle is achieved transferring them in parallel from main memory, and having the
shift register containing a rotate by α positions at each clock cycle through appropriate
connections. The same approach is applied for reading out γ coefficients of the result
from the accumulator registers, possibly instantiating γ parallel Barrett modules when
performing the reductions-at-readout approach. To compute the multiplication of β Zq

coefficients in parallel, a total of β ·n MACs are required. Indeed, to compute the result
of β multiplication steps, β multiplications and sums need to be computed at each clock
cycle, to obtain the result which is to be stored β−1 cells to the right of each MAC unit.
In this thesis the generalized architecture using β ̸= 1 is denoted as xβ-net. Note that β
steps of the update of a(x) should be computed in a single step. This in turn may require
to perform β − 1 sign flips of the Zp coefficient and additional multiply and additions
for specific MAC units depending on the value of the modulus polynomial f(x).

Specialization for NTRU parameters Considering the parameters defined by the NTRU
scheme, q is always a power-of-two, and the polynomial modulus f(x) is xn − 1. Con-
sequently, the mod q operation is equivalent to keeping the lower log2 q bits of the MAC
result and discarding the remaining one without requiring any computation to perform
the modulo of coefficients, while the feedback network of the LFSR simplifies in just a
rotation of the coefficients of the polynomial a(x).

NTRU mainly uses Sp × Rq 7→ Rq multiplications, and in only one occasion a

105

Chapter 7. Arithmetic

MUL

ADD

MUL

ADD

MUL

ADD

load

1

0

Figure 7.4: Structure of the parallelized schoolbook multiplier (x-net) computing the product r(x) =
(a(x) ·b(x)) mod xn−1 specifically for the NTRU scheme. The top portion of the modular multiplier
takes care of computing xi · a(x) mod xn − 1 at the i-th clock cycle, while the bottom part performs
the vector scalar multiplication.

Rq×Rq 7→ Rq multiplication during the decapsulation (when computing ((c−m′)·hq)).
In the first case, the x-net multiplier can be further optimized being p = 3 an extremely
small number, as all the possible results for the multiplication of the coefficient bi at
clock cycle i by any value of Zp can be pre-computed and distributed to each MAC
unit. To reduce the effect of routing congestion in the critical path due to the large x-net
structure, the pre-computed results are stored in a register before being used in the MAC
units, allowing the EDA tools to replicate such register throughout the silicon area and
reduce the average distance between the pre-computed values and the MAC units. The
result of the application of all this optimizations is represented in the Figure 7.4. During
the decapsulation such optimization cannot be applied as both operands are in Rq, thus
in that case a regular multiplier is instantiated in the MAC unit.

7.3.3 Ring embed and lift

A peculiarity of the NTRU scheme is the use of three different polynomial rings through-
out the entire algorithm. The process of moving an element from a smaller ring to a
larger one is called lift, whereas the opposite process is called embed.

After the computation of multiplications, the result a(x) ∈ Rq may need to be trans-
formed into an element in Sq or Sp, for which two embed functions E1 : Rq 7→ Sq and
E2 : Rq 7→ Sp are necessary. The latter function can be derived applying the embed-
ding function E1 and then applying a third embedding function E3 : Sq 7→ Sp such that
E2 = E1 ◦ E3.

For the specific definition of rings Rq and Sq, the embed function E1 corresponds
to a division of the input polynomial a(x) by Φ1 = x − 1. This operation can be
efficiently carried out by subtracting the coefficient an−1 having the highest degree to all
the other coefficients. Regarding the embed function E3, this operation corresponds to
the computation of the coefficient modulo remainder modp. Given the value of p = 3,

106

7.3. Arithmetic in NTRU

highest grade coeff

SUB

Mersenne

prime

reducer

out

in

Figure 7.5: Hardware module computing the embedding functions E1 : Rq 7→ Sq and E2 : Rq 7→ Sp

defined in NTRU depending on the signal driving the output multiplexer

Algorithm 35 LIFT operation in NTRU-HRSS using multiplications

Require: a ∈ Sp

Ensure: b ∈ Rq | Sp (b) = a
1: for i← 0 to n− 2 do
2: ci ← (1− i) mod p ▷ c← Sp (1/Φ1) for NTRU parameters
3: t← Sp (a · c) ▷ small-by-small multiplication
4: ▷ multiplication by Φ1 replaced by additions ◁
5: b0 ← (tn−1 − t0) mod q
6: for i← 1 to n− 1 do
7: bi ← (ti−1 − ti) mod q
8: return b

the best approach consists in using a Mersenne prime modulo algorithm. The embed
hardware module is either attached to the output of the x-net polynomial multiplier
unit, or working independently accessing the coefficients of a(x) directly from a bus
connected to the memory. In the first case, the coefficients must be streamed out from
the multiplier unit starting from the highest degree an−1 towards the one with lower
degree. The embed module, depicted in Figure 7.5, is able to select which embedding
function apply, but is also able to process a configurable amount of coefficients of the
input polynomial a(x) per clock cycle in parallel.

The LIFT operation maps elements a(x) ∈ Sp in wider ringsRq such that

a′ ← Lift(a)⇒ a′ mod (p,Φn) = a (7.6)

In NTRU-HPS it is just the sign extension of the coefficients, whereas NTRU-HRSS
employs a non trivial lift function

Lift : a→ Φ1 · ((a/Φ1) mod (p,Φn)) (7.7)

This last operation, described in Algorithm 35, can be performed by one multipli-
cation with c = 1/Φn, then followed by reduction in Sp, and lastly multiplied by Φ1.
As the first step, the polynomial c is algorithmically generated via small decreasing
counter with reset value equal to 2. Afterwards, the small-by-large multiplication is car-
ried out using the polynomial multiplier unit. Finally, the multiplication by Φ1 is again
performed via subtractions.

107

Chapter 7. Arithmetic

Algorithm 36 LIFT operation in NTRU-HRSS without using multiplications

Require: a ∈ Sp

Ensure: b ∈ Rq | Sp (b) = a
1: for i← 0 to n− 2 do
2: ci ← (1− i) mod p ▷ c← Sp (1/Φ1) for NTRU parameters
3: for i← 0 to p− 1 do
4: di ←

〈
xic̄, a

〉
▷ inner-product of a with the rotated reversal map of c

5: for i← p to n− 1 do
6: di ← di−p −

∑p−1
j=0 ai−j

7: d0 ← d0 − dn−1 mod p
8: b0 ← −d0
9: ▷ multiplication by Φ1 replaced by additions ◁

10: for i← 1 to n− 1 do
11: di ← di − dn−1 mod p
12: bi ← di−1 − di mod q
13: return b

However, leveraging on the structure of the polynomial rings [Hül+17] introduces a
new algorithm, here reported in Algorithm 36, that only makes use of addition and sub-
traction operations. The algorithm produces the rotated reversal map of Sp (1/Φ1) on the
fly with a similar procedure of the other algorithm. Each clock cycle p inner products are
carried out simultaneously, with multiple coefficients of the input polynomial accessed
sequentially. Afterwards, the input polynomial is accessed linearly maintaining the last
p accessed coefficients in a buffer, and subtract their sum to the coefficient computed p
cycles before. Finally, the reduction in Sp and multiplication by Φ1 = x− 1 are carried
simultaneously by means of simple subtractions working on multiple coefficients in the
same clock cycle. This algorithm has a time complexity of Θ(3n), and is composed
by many elementary operations that required about 1.5% the area of a small-by-large
x-net multiplier. Another advantage of this module is that can be scheduled in parallel
to other multiplication operations, hiding the latency of such operation in case of the
use of ax-net multiplier, or vastly speeding-up the operation in case a slow multiplier is
available.

7.4 Arithmetic in HQC

HQC.PPKE primitives use multiplications and additions between polynomials in R =
F2[x]/ ⟨xp − 1⟩, with p a prime number, and in Rw ⊂ R, the set of all polynomials
in R having Hamming weight equal to w, w ≈ √p. We commonly refer to a polyno-
mial in the former set as dense polynomial, represented in memory as a sequence of p
binary coefficients in little-endian format organized as a list of ⌈ p

B
⌉ words with a con-

figurable bit-length B (e.g., B ∈ {32, 64, 128}), and the polynomial in the latter class
as sparse polynomial, stored in memory as a sequence of 16-bit unsigned integers for
all parameters sets, each of which is intended as the exponent of a non-null monomial

108

7.4. Arithmetic in HQC

0 1 2 3 4 5 6 7 8 9 10 11
operand2/result

544 284 302 1402 239 819 265 1053
operand1

Figure 7.6: Addition of a sparse polynomial a ∈ Rw to a dense one b ∈ R. The algorithm works in-
place, and the dense operand becomes the result after the computation. The word T is a B-bits word
containing a single bit in a specific position determined by the processed index of the sparse operand
that causes a bit-flip in b.

(xi, 0 ≤ i ≤ p− 1).
Additionally, HQC employs a Reed-Solomon (RS) code in the concatenated RM/RS

concatenated code which interprets the message and codeword data in m-bit long bit
strings called symbols. Each symbol is then mapped to an element of the extension
field F2m , with m = 8, to perform some arithmetic operations on it. Recalling that
each element in F2m can be considered as a polynomials of degree less than m, the
arithmetic used by the symbols in the RS code in HQC is given by the polynomial field
F2[x]/ ⟨f(x)⟩, where f(x) is the pentanomial x8 + x4 + x3 + x2 + 1 irreducible in F2.

7.4.1 Polynomial addition/subtraction

Addition and subtraction among two binary polynomials a(x), b(x) of maximum degree
n corresponds to a coefficient-wise Boolean xor between their vector representations
(i.e., ai⊕bi, 0 ≤ i < n). When dealing with polynomials a, b ∈ R having maximum de-
gree p > 10000, their size imposes to split their binary coefficients into ⌈ p

B
⌉ consecutive

words, and carry out B-bit xors each clock cycle.
Moreover, HQC.PPKE-ENCRYPT requires two additions between a sparse and a

dense polynomial, and HQC.PPKE-KEYGENERATION also performs another one. This
operation is realized by flipping the bits of the dense operand in the positions indicated
by the sparse one. Recalling that the indexes of the sparse polynomial are stored as
16-bits unsigned integers, we split it to determine the dense operand word address as
the highest 16 − log2(B) bits of the index encoding, while the remaining bits of the
index are encoding the bit position within the word to flip. An example is provided
in Figure 7.6, where T denotes a B-sized word containing a single bit set in a posi-
tion where a bit-flip of the result is required. Notice that this is an algorithm working
in-place, thus after the computation the dense operand is lost as it is transformed into
the result. Since two consecutive indexes may flip bits in the same memory word, cre-
ating a read-after-write data dependency, it is employed a straightforward sequential
architecture that, even considering the non-negligible memory access latencies, does
not penalize the overall performance thanks to the low weight of the sparse polynomials

109

Chapter 7. Arithmetic

op1_i[7:0]

op2_i[7:0]

req_i

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_AND

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

RTL_XOR

I0

I1
O

res_o[7:0]

valid_o

clk_i

rst_n

0

1

0

1

0

1

0

1

0

0

1

1

0

1

0

1

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

7

7

7

7

7

7

7

7

1

7

2

7

3

7

0

7

1

0

2

3

0

6

4

5

4

6

6

6

5

7

6

6

7

7

5

5

5

4

5

5

6

6

4

4

4

4

4

5

5

4

4

0

1

2

3

4

5

6

7

(a) Multiplication between any two polynomials

op1_i[7:0]

res_o16_i

RTL_XOR

I0

I1
O

res_o4_i

RTL_XOR

I0

I1
O

res_o7_i

RTL_XOR

I0

I1
O

res_o12_i

RTL_XOR

I0

I1
O

res_o15_i

RTL_XOR

I0

I1
O

res_o1_i

RTL_XOR

I0

I1
O

res_o3_i

RTL_XOR

I0

I1
O

res_o6_i

RTL_XOR

I0

I1
O

res_o9_i

RTL_XOR

I0

I1
O

res_o11_i

RTL_XOR

I0

I1
O

res_o14_i

RTL_XOR

I0

I1
O

res_o18_i

RTL_XOR

I0

I1
O

res_o20_i

RTL_XOR

I0

I1
O

res_o0_i

RTL_XOR

I0

I1
O

res_o2_i

RTL_XOR

I0

I1
O

res_o5_i

RTL_XOR

I0

I1
O

res_o8_i

RTL_XOR

I0

I1
O

res_o10_i

RTL_XOR

I0

I1
O

res_o13_i

RTL_XOR

I0

I1
O

res_o17_i

RTL_XOR

I0

I1
O

res_o19_i

RTL_XOR

I0

I1
O

res_o[7:0]

clk_i

rst_n

(b) Multiplication of any polynomial by x5+1

Figure 7.7: Multiplication circuits for polynomials in the field F2[x]/
〈
x8 + x4 + x3 + x2 + 1

〉
(see Table 4.1). Each parameter set determines a specific number of memory words to
process, which is used as initialization value of a counter determining the number of
iterations in the task.

7.4.2 Polynomial multiplication

The algorithm performing polynomial multiplications are reported in Algorithm 31.
However, starting from n-bits long operands, the result is up to 2n bits long. Work-
ing in a polynomial ring, the equivalence class representative must be computed as the
remainder of the modulo operation with the modulus polynomial f(x).

Multiplication in F2[x]/
〈
x8 + x4 + x3 + x2 + 1

〉
For this polynomial field the same parallelized schoolbook algorithm of NTRU de-
scribed in subsubsection 7.3.2 is employed. The realized x-net architecture has 4 LFSR
taps in positions corresponding to the non-null monomials of the modulus polyno-
mial x8 + x4 + x3 + x2 + 1. Given the small size of the polynomials in the field
F2[x]/ ⟨x8 + x4 + x3 + x2 + 1⟩ and the straightforward coefficient arithmetic in F2, a
fully unrolled x8-net architecture is used, generating a combinatorial network comput-
ing each multiplication in a single clock cycle, here depicted in Figure 7.7a. The critical
path of such combinatorial circuit has a depth of only 8 two-input logic gates, and the
output fanout of the gates is well balanced, allowing to reach high working frequencies
in ASIC designs. Moreover, due to the LUT combining optimization applied during the
synthesis for FPGA targets, the same circuit gets synthesized and compacted in a few
LUTs, and the resulting critical path is only passing through three LUTs.

110

7.4. Arithmetic in HQC

The prescribed RS generator polynomial g(x) is specified in the HQC specification,
and has a fixed value for every instance of HQC key pairs. When one multiplication
operand has a fixed value, the inputs of the and gates have a fixed value. By looking at
the truth table of the and operation it is clear that if one operand has a zero value, the
output of the gate is always zero, independently from the value of the second operand.
Therefore, the constant zero value is propagate to the following layers of the circuit.
When the fixed input of the and gate is 1, then the second operand is passing through the
gate untouched, thus it is possible to remove that gate from the circuit. An example of
such an optimized circuit is represented in Figure 7.7b when the multiplication operand
x5 + 1 ∈ F8

2 is used, however consider that the optimization level depends on the actual
value of the fixed operand.

Multiplication in R

Considering the arithmetic in R, due to the polynomial modulus xp − 1, the ring R has
a cyclic structure. Therefore, knowing that xp ≡ 1, the product of two polynomials
a, b ∈ R, derived from Algorithm 31, in F2[x] simplifies in

ci =
⊕

j+k mod p=i

(aj ∧ bk), i, j, k ∈ {0, 1, . . . , p− 1} (7.8)

Considering the parameter p values for hqc128, hqc192, hqc256 are 17669,
35851, 57637, the polynomials a and b are extremely large. A naive implementation of
the schoolbook algorithm having a quadratic time complexity in p would be extremely
slow, completing the task in millions of clock cycles. However, the HQC.PPKE prim-
itives require only multiplications where one operand is a sparse and the other one is
dense, hereafter referred to as sparse-by-dense multiplications. While sub-quadratic
approaches for generic polynomial multiplication exist, in the HQC the amount of non-
null coefficients of a polynomial a ∈ Rw is w ≈ √p out of p. Therefore, in case
of a multiplication Rw × R 7→ R, the schoolbook approach from Algorithm 28 has
an asymptotic complexity of just O(p1.5), which is already better than the one of the
Karatsuba approach. Furthermore, the schoolbook method does not hide large con-
stants within the asymptotic notation, and allows for a resource-sparing implementation.
Therefore, in the proposed polynomial multiplier component a shift-and-add approach
is used, where the dense operand is shifted by an amount of bits specified by each index
of the sparse operand, and accumulated into the result.

The number of accumulator memory words are reduced to the minimum possible
by immediately reducing modulo xp − 1 the shifted polynomial to be added, therefore
interleaving each shift-and-add operation with the modulo computation. Due to the
structure of the polynomial ring R = F2[x]/ ⟨xp − 1⟩, this is possible through a simple
change in the location where the coefficients of the dense polynomial are added, as
the polynomial modular reduction modulo xp − 1 amounts to a bit-wise xor of the
coefficients of degrees greater or equal than p onto the coefficients of the monomials of
the result having a degree lower by exactly p units.

111

Chapter 7. Arithmetic

0 1 2 3 4 5 6 7 8 9 10 11

34
barrel shifter

accumulator

operand2

2

1332 862 302 1402 239 819 265 1053
operand1

Figure 7.8: Multiplication of a sparse polynomial a ∈ Rw by a dense polynomial b ∈ R

The word-wise shift-and-add approach rotates and accumulates a B-bit word each
clock cycle, in turn taking w ·⌈ p

B
⌉ clock cycles and using ⌈ p

B
⌉ temporary memory words

for the accumulator. Each processed index of the sparse operand uniquely identifies a
memory word of the dense operand starting from which all its blocks are read out in
a cyclic sequence. The words of the accumulator are retrieved, updated, and written
back in sequence starting from the first word to the last one. The working principle is
represented in Figure 7.8. Since p is a prime value, p ∤ B, hence the last memory word
contains some padding bits not encoding the coefficients of the dense polynomial, and
some care is required in managing this memory word. Note that this algorithm runs
in constant time as the memories of this RTL design do not feature caches, thus fully
eliminating the timing side channel which would be present in an analogue software
implementation.

Furthermore, the design improves by l× the latency of the sparse-by-dense polyno-
mial multiplication processing l sparse indexes in parallel. To this end, l read memory
ports accessing the dense binary polynomial operand are employed, along with a read
and write memory port for the accumulated result, and a read memory port for the
sparse polynomial. A similar, yet sub-optimal, approach would use a single readmem-
ory port accessing the dense binary polynomial operand, along with l read and write
memory ports for the accumulated result, and a read memory port for the sparse poly-
nomial. This solution was discarded because it would require l independent p-sized
accumulators, and an extra round of computation merging the distinct accumulators to
retrieve the final result.

Due to the potentially prominent size of the memory words B, it is employ a pipelined
Barrel module to perform the shift operation, and it is parametrized in the number of
pipeline stages to break the possibly long critical path and improve performance.

To accomplish the support of all parameter set, the number of indexes i of the sparse
polynomial operand to process is received as input to the module upon the start of oper-

112

7.5. Arithmetic in CROSS

ation, masking out the accumulation resulting from the processing of invalid indexes in
case l does not divide i.

In Table 7.2 are reported the area and performance figures of such devised architec-
ture when the hqc256 parameters set is used, and varying the word size of the transfers
between memories, the number l of read memory ports, and the number of stages of the
Barrel shifter. The latency of the multiplier clearly is inversely proportional to both the
word size, and the number of read ports. As the word size increments, a Barrel shifter
with more pipeline stages proves to be beneficial for the maximum working frequency,
but has a tangible contribution in the additional FFs used by the design.

7.5 Arithmetic in CROSS

Considering the three primitives CROSS.KEYGENERATION (Algorithm 14), CROSS.SIGN
(Algorithm 15) and CROSS.VERIFY (Algorithm 16) detailed in section 4.3, the main
arithmetic operations involve vectors in Fp and Fz. In particular, CROSS uses the sub-
tractions and point-wise multiplications among vectors, the exponentiation of the gen-
erator element g ∈ Fp of order z by each element of a Fz vector, and the vector-matrix
multiplications. Each sub-operation among scalar elements of the vectors is performed
modulo the small prime numbers p, z ∈ {7, 127, 509}. Therefore, it is possible to use
the optimized reduction algorithm for Mersenne primes, described in Algorithm 30,
when p, z ∈ {7, 127}, and use the generic Barrett reduction, reported in Algorithm 29,
for p = 509.

7.5.1 Vector addition/subtraction and point-wise multiplication

The addition/subtraction and point-wise multiplication among vectors can be performed
as described in Algorithm 27, potentially leveraging multiple adders, multipliers, and
modulo units to compute multiple coefficients in parallel. Considering memory words
of 64 bits, up to 21, 9, and 7 parallel operations can be carried out for p, z equal to 7,
127, and 509, respectively.

In Table 7.3 are reported the results of a synthesis targeting the AMD Artix-7 FPGA
of the modules implementing the addition or subtraction (upper half) and point-wise
multiplication (lower half) among two vectors a,b ∈ Fp for all the parameter sets
defined by the CROSS specification. The modulo p is small enough that the synthesizer
implement the multiplication logic in LUT. The inferred DSP units are due to the first
multiplication within the 7 parallel Barrett modulo units. Note the remarkable efficiency
of the computation of the modulo remainder when the modulo is a Mersenne prime,
both in terms of occupied area (≈ 1/6 considering the eSlice indicator) and working
frequency.

113

Chapter 7. Arithmetic

Table 7.2: Performance of the polynomial multipliers when using the hqc256 parameter set. The re-
source usage for the other parameter sets do not vary significantly, and only the latency is influenced
by a different parameter set choice. Area-Time (AT) product in eSlices · ms

Word Read Shift Resources Freq. Latency AT
size ports stages LUT FF BRAM eSlice MHz CC µs prod.

32

1

1 403 405 4.5 1055 248 236723 954 1006
2 466 411 4.5 1071 249 236724 950 1017
3 483 448 4.5 1075 243 236725 974 1047
4 487 487 4.5 1076 262 236726 903 971

4

1 1127 803 7.0 1766 210 59637 283 499
2 1341 922 7.0 1820 238 59638 250 455
3 1417 1065 7.0 1839 234 59639 254 467
4 1408 1205 7.0 1836 232 59640 257 471

64

1

1 696 655 4.5 1128 227 118692 522 588
2 848 665 4.5 1166 251 118693 472 550
3 828 744 4.5 1161 267 118694 444 515
4 825 808 4.5 1161 261 118695 454 527

4

1 2615 1306 7.0 2138 183 29904 163 348
2 2566 1529 7.0 2126 237 29905 126 267
3 2538 1829 7.0 2119 222 29906 134 283
4 2552 2099 7.0 2122 250 29907 119 252

128

1

1 963 1161 6.5 1619 173 59742 345 558
2 1435 1173 6.5 1737 211 59743 283 491
3 1442 1315 6.5 1739 254 59744 235 408
4 1572 1464 6.5 1771 258 59745 231 409

4

1 4962 2333 11.0 3573 155 15054 97 346
2 4779 2747 11.0 3527 194 15055 77 271
3 4544 3304 11.0 3468 214 15056 70 242
4 5101 3903 11.0 3608 233 15057 64 230

Table 7.3: Synthesis results for addition/subtraction (top) and point-wise multiplication (bottom) among
Fn
p vectors when targeting an AMD Artix-7 FPGA and using 64-bits word sizes. CROSS arithmetic

units are agnostic to the fast, balanced, and small optimization corners.

Arithmetic Parameter Resources Freq. Latency
operation set LUT FF DSP eSlice MHz CC

+/−

CROSS-RSDP-1
247 304 0 62 530

33
CROSS-RSDP-3 39
CROSS-RSDP-5 46
CROSS-RSDPG-1

448 296 0 112 544
26

CROSS-RSDPG-3 30
CROSS-RSDPG-5 34

⊙

CROSS-RSDP-1
809 598 0 203 415

34
CROSS-RSDP-3 40
CROSS-RSDP-5 47
CROSS-RSDPG-1

1085 727 7 1213 205
28

CROSS-RSDPG-3 32
CROSS-RSDPG-5 36

114

7.5. Arithmetic in CROSS

Table 7.4: Synthesis results for exponentiation of a Fn
z vector to a Fn

p one using as base the public
generator element g when targeting an AMD Artix-7 FPGA and using 64-bits word sizes. CROSS
arithmetic units are agnostic to the fast, balanced, and small optimization corners.

Parameter Resources Freq. Latency
set LUT FF DSP eSlice MHz CC

CROSS-RSDP-1
360 365 0 90 328

26
CROSS-RSDP-3 30
CROSS-RSDP-5 34
CROSS-RSDPG-1

539 358 0 135 260
33

CROSS-RSDPG-3 39
CROSS-RSDPG-5 46

7.5.2 Vector exponentiation

The modular exponentiation ga mod p for some g ∈ F∗
p of order z and some a ∈ Fz

may use the square-and-multiply technique, requiring O(log2 a) modular multiplica-
tions. However, when considering that g is an element fixed in the specification (in
particular equal to 2 or 16 for R-SDP or R-SDP(G) parameter sets) and that the field Fz

has a small number of elements, a look-up table with z entries of Fp elements can be
used to efficiently perform such operation.

Specifically, for R-SDP and R-SDP(G) parameters a smaller 7× log2 127 table seri-
alizable in just 49 bits, and a larger 127 × log2 509 table of ≈ 1 KiB can be employed.
This technique is particularly interesting for FPGA solutions where moderately large
look-up tables can be implemented in just few LUTs, particularly the aforementioned
tables fit in just 7 and 18 LUTs, respectively. Similarly to the subtraction and point-wise
multiplication, multiple exponentiations can be performed in parallel by replicating the
look-up tables, or by allowing multiple read ports to such Read-Only Memory (ROM)
memory.

However, considering a word size of 64-bits, the number Fp and Fz coefficients en-
coded in a single word differs, as z < p. Therefore, a small FIFO buffer at the input of
the exponentiation unit is used to compose a smaller word having fewer Fz coefficients
in it, matching the number of the Fp ones contained in a single 64-bits word.

In Table 7.4 is reported the result of a synthesis for the AMD Artix-7 FPGA when
using words of 64-bits, computing 64/log2 p exponentiations in parallel via look-up tables
every clock cycle. Due to the LUT resources in the FPGA fabric, this solution has
minimal area impact, and reaches high working frequencies for both R-SDP and R-
SDP(G) parameters. The difference in size of the required look-up tables for the R-SDP
and R-SDP(G) parameters explains the difference in LUT usage and gap in the working
frequency.

115

Chapter 7. Arithmetic

7.5.3 Vector-matrix multiplication

Regarding the vector-matrix multiplications, only two matrices M and H⊤ are in-
volved in such operation. Recall that M ∈ Fm×n

z and H⊤ ∈ Fn×(n−k)
p are in their

systematic forms M =
[
W, Im

]
and H⊤ =

[
V⊤ | In−k

]
, with W ∈ Fm×(n−m)

z and
V⊤ ∈ Fk×(n−k)

p , here reported their partially expanded versions for a visual aid.

M =


W 0,0 W 0,1 · · · W 0,n−m−1 1 0 · · · 0
W 1,0 W 1,1 · · · W 1,n−m−1 0 1 · · · 0

...
...

...
...

Wm−1,0 Wm−1,1 · · · Wm−1,n−m−1 0 0 · · · 1

 (7.9)

H⊤ =



V ⊤
0,0 V ⊤

0,1 · · · V ⊤
0,n−k−1

V ⊤
1,0 V ⊤

1,1 · · · V ⊤
1,n−k−1

...
...

V ⊤
k−1,0 V ⊤

k−1,1 · · · V ⊤
k−1,n−k−1

1 0 · · · 0
0 1 · · · 0
...

...
0 0 · · · 1


(7.10)

Furthermore, consider that the matrices W and V⊤ are serialized row-wise, hence they
are received by the arithmetic modules as the concatenations:

W 0,0∥W 0,1∥...∥W 0,n−m−1∥W 1,0∥W 1,1∥...∥W 1,n−m−1∥Wm−1,0∥Wm−1,1∥...∥Wm−1,n−m−1

V ⊤
0,0∥V ⊤

0,1∥...∥V ⊤
0,n−k−1∥V

⊤
1,0∥V ⊤

1,1∥...∥V ⊤
1,n−k−1∥V

⊤
k−1,0∥V

⊤
k−1,1∥...∥V

⊤
k−1,n−k−1

Taking as an example the operation e = eGM, it is possible to leverage the system-
atic form of the matrix M to simplify the computation:

e = eGM = eG
[
W, Im

]
=

[
eGW, eG

]
(7.11)

Therefore, the last m elements of the resulting vector e correspond to eG, and a smaller
vector-matrix multiplication is performed to compute the first n − m elements of the
result. Due to the order of the received matrix coefficients, the used algorithm slightly
differs from the usual schoolbook row-by-vector approach where the inner product of
the input vector by the transposed i-th matrix column is performed to produce the i-
th result element. In this case, a scalar-vector multiplication between the i-th vector
coefficient of eG and the i-th matrix row is accumulated in a n−m result buffer, which
yields eGW after m iterations. Therefore, this simplified vector-matrix multiplication
takes only O(m(n−m)) < O(mn) multiplications in Fz.

116

7.5. Arithmetic in CROSS

Table 7.5: Synthesis results for CROSS vector-matrix multiplications vectors when targeting an AMD
Artix-7 FPGA and using 64-bits word sizes for the transmission of vectors and 192-bits for the transfer
of the matrix rows. CROSS arithmetic units are agnostic to the fast, balanced, and small optimization
corners.

Matrix Parameter Resources Freq. Latency
operator set LUT FF DSP eSlice MHz CC

H⊤

CROSS-RSDP-1 2776 1351 0 694 149 221
CROSS-RSDP-3 2780 1541 0 695 149 427
CROSS-RSDP-5 2985 1427 0 747 149 719
CROSS-RSDPG-1 3515 1162 21 3704 120 74
CROSS-RSDPG-3 3538 1352 21 3709 118 146
CROSS-RSDPG-5 3555 1356 21 3714 119 194

M
CROSS-RSDPG-1 2755 1015 0 689 149 122
CROSS-RSDPG-3 2767 1033 0 692 149 176
CROSS-RSDPG-5 2772 1230 0 693 149 267

Considering now the operation s = eH⊤, the systematic form of the matrix H⊤ can
be similarly leveraged to simplify the computation:

s = eH⊤ = e [V | In−k] = [ek, ek+1, . . . , en] + [e0, e1, . . . , ek−1]V
⊤ (7.12)

This time the n − k result buffer is pre-initialized with the last n − k coefficients of e,
and a smaller [ek, ek+1, . . . , en] + [e0, e1, . . . , ek−1]V

⊤ vector-matrix multiplication is
performed using the same scalar-vector multiplication approach. The resulting compu-
tational complexity is therefore decreased from O(n(n − k)) arithmetic operations in
Fp to just O(k(n− k)).

In Table 7.5 are reported the synthesis for the AMD Artix-7 FPGA of the vector-
matrix multiplications for both the matrices H⊤ and M leveraging their systematic
form. The vector operator and result are transferred using 64-bits words, while the
systematic part of the matrix, either V or W, are accessed using larger words of 192-
bits to speed-up the computation. Consequently, ⌊192/log2 p⌋ parallel modular multiplica-
tions in Fp are carried out in parallel each clock cycle for the design specialized for the
H⊤ matrix, instantiating 21 or 27 multiplier units when using the R-SDP or R-SDP(G)
parameters, respectively. Considering the unit specialized for the M matrix operator,
⌊192/log2 z⌋ = 64 parallel modular multiplications in Fz are performed each clock cycle.
When the modulo is a Mersenne prime, the resulting designs are able to work with a
clock frequency up to 150 MHz. Conversely, each Barrett reduction unit, which are
compatible with a generic modulo value, make use of a DSP unit that became part of
the critical path, stepping back the maximum reachable working frequency to around
120 MHz.

117

Chapter 7. Arithmetic

7.6 Arithmetic in lattice-based schemes

During the PQC standardization contest, four lattice-based KEMs stood out during the
first three rounds of analysis.

The KEM candidate CRYSTALS-Kyber was picked for immediate standardization
as ML-KEM scheme. This scheme is based on Module-LWR (M-LWR) , and provides
three parameters sets, kyber512, kyber768, and kyber1024, for a security mar-
gin equivalent to the one of AES-128, AES-192, and AES-256, respectively. All the
three parameters sets work in the same NTT friendly polynomial ring algebraic structure
Rq = F3319/ ⟨x256 + 1⟩, and varies the module rank to increase the size of the lattice.

NTRU was officially recommended as the fallback alternative in case patent issues
cannot be solved by the end of 2023 [Ala+22a]. As a further testimony of NTRU’s secu-
rity and efficiency, Google LLC adopted it as the key encapsulation method of choice in
its internal infrastructure [ISE; Sch]. The polynomial rings used by their parameters sets
are Rq = Z2k/ ⟨xp − 1⟩, for some k ∈ N and p being a prime value. The NTRU-HPS
specification defines four parameters sets, ntruhps2048509, ntruhps2048677,
and ntruhps4096821 providing increasing protection equivalent to the ones of AES,
while NTRU-HRSS only provides one parameters set for ntruhrss701 having se-
curity margin equivalent to the one of AES-192.

NTRU Prime is an NTRU variant with conservative choices in the underlying al-
gebraic structure, which prevent a number of attacks preemptively, and the errors are
generated deterministically via rounding operations. Thanks to its conservative de-
sign choices, it has been adopted and employed by default in the hybrid mode of
OpenSSH [The22], the most widely diffused implementation of the Secure SHell (SSH)
protocol suite starting from the release version 9.0. The algebraic structure consists
in the polynomial fields Rq = Zq/ ⟨xp − x− 1⟩, with p and q prime numbers de-
fined by their parameters sets. Two different schemes are proposed, one based on
the NTRU lattice under the name of Streamlined NTRU Prime, and another based
on the R-LWR problem and named NTRU LPRime. For each scheme, five parame-
ters sets are defined, with the first three corresponding to the security margins offered
by AES: sntrup653,sntrup761, sntrup857, sntrup953, sntrup1013, and
sntrup1277 for the former scheme, and ntrulpr653,ntrulpr761, ntrulpr857,
ntrulpr953, ntrulpr1013, and ntrulpr1277 for the latter.

SABER is based on the M-LWR algebraic problem, which is at least as computa-
tionally hard as the M-LWE one of CRYSTALS-Kyber. The polynomial ring used by
the scheme is Rq = Z2k/ ⟨x256 + 1⟩, for some k ∈ N. The specification mandates three
parameters sets, lightsaber, saber, and firesaber, having the same security
margins of the parameters of AES.

The four lattice-based cryptosystems previously mentioned are built upon the arith-
metic of polynomials with integer coefficients modulo q, where q is either a power of
two or a small prime number. These computations occur within a ring defined by a
polynomial modulus characterized by a limited number of terms. Additionally, each

118

7.6. Arithmetic in lattice-based schemes

Table 7.6: Summary of the features of the polynomial rings Rp = Zp [x] / ⟨f(x)⟩ and Rq =
Zq [x] / ⟨f(x)⟩ for each lattice-based KEM.

Cryptographic Scheme q p n f(x)

NTRU 2i 3 prime
xn − 1values values

NTRU Prime prime 3 prime
xn − x− 1values values

Kyber prime 5, 7 2i
xn + 1values 256

SABER 2i 7, 9, 11 2i
xn + 1values 256

scheme employs polynomials whose coefficients belong to smaller fields Zp, where
p ∈ 3, 5, 7, 9, 11. A summary of the polynomial ring characteristics for each scheme is
presented in Table 7.6.

Recalling the compatibility of the parameters with sub-quadratic multiplication tech-
niques summarized in Table 7.1, the efficient NTT algorithm running in Θ(n log2(n)))
sequential steps and requiring a polynomial modulus with a power-of-two degree with
the coefficients being in a field, is clearly only compatible with CRYSTALS-Kyber.
On the other hand, optimized versions of the schoolbook algorithm, which has a com-
putational complexity of O(n2), such as the method introduced by Comba [Com90],
are universally applicable. These approaches enable highly compact designs but come
at the cost of lower throughput. Multiplication algorithms implemented via divide-and-
conquer strategies, such as Karatsuba or Toom-Cook, introduce additional design com-
plexity and larger constants hidden within the O notation, but they provide a consistent
reduction in the complexity exponent.

In the following subsections are described several flexible hardware components ca-
pable of adapting to the different ring structures of the aforementioned lattice-based
cryptographic schemes, either via a parameters selection at synthesis time for best ef-
ficiency, or even at runtime to enhance the flexibility of the hardware accelerator inte-
grating it. The second case is particularly interesting as can enable cryptographic agility
due to the compatibility with several PQC schemes without the need of replacing the
hardware component. Two base designs are used, the parallelized schoolbook (x-net)
multiplier algorithm for polynomials described in subsubsection 7.3.2 and generalized
in Figure 7.3, and the compact Comba multiplier presented in subsubsection 7.3.2.

The CRYSTALS-Kyber specification indicates that both private and public keys are
stored in the NTT-transformed domain to reduce the number of NTT computations.
This approach provides a computational speed advantage but comes at the expense of
cryptographic flexibility when other multiplication techniques are used. However, there
is still some degree of flexibility when the key pairs are used by the same multiplication
algorithm implementation, such as in the host performing the key generation and de-
capsulation primitives, making worth exploring different solutions. In this context, it is

119

Chapter 7. Arithmetic

Table 7.7: Number of Rp×Rq 7→ Rq multiplications in key generation, encapsulation and decapsulation
primitives of each cryptographic scheme. One further Rq ×Rq 7→ Rq multiplication is performed
during the decapsulation in NTRU, denoted by a ⋆ symbol. Module-based cryptographic schemes
SABER and CRYSTALS-Kyber perform one k × k matrix-vector and one or two vector-vector
multiplications, where the elements are built from the coefficients of polynomials in Rq or Rp, during
key generation, encapsulation and decapsulation, respectively.

Cryptographic Module Rp ×Rq Multiplications
scheme rank k KeyGen. Encap. Decap.
NTRU 1 5 1 2⋆

Streamlined NTRU Prime 1 1 1 3
NTRU LPRime 1 1 2 3

Kyber 2,3,4 k2 k2 + k k2 + 2k
SABER 2,3,4 k2 k2 + k k2 + 2k

assumed that the presented multipliers performing operations with CRYSTALS-Kyber
polynomials receive keypairs that have already been converted back to the canonical
domain during the loading process. This approach is well-suited for scenarios where
long-term keypairs are employed, and cryptographic flexibility is required. Examples
include smartcards, IPSec-based VPNs, instant messaging protocols, and the SSH trans-
port layer protocol [Ylo06].

The correctness of the multiplier results was verified using testbenches derived from
a synthetic computation model developed in SageMath. This model produced known
answer tests aligned with the reference implementations of the cryptographic ciphers
across all rings defined by the parameters sets of CRYSTALS-Kyber, NTRU, SABER,
and NTRU Prime cryptographic schemes.

To report the overall latency of computations accelerated by the designs across the
four cryptosystems, the number of accelerated multiplications required for each KEM
primitive, namely the key generation, encapsulation, and decapsulation, are reported in
Table 7.7. The latency figures are therefore based on the sequential execution of the
necessary multiplication operations. Note that the Area-Time (AT) product keeps con-
stant even in case even multiple parallel multipliers are deployed, provided the scheme
allows for data parallelism.

Specialized and unified parallelized schoolbook designs

While x-net based multipliers require a non negligible amount of resources, they show
very good performance and flexibility. Starting from the generic architecture in Fig-
ure 7.3, the specializations of the x-net designs optimizing for the specific parameters
of the polynomial ring defined by NTRU, SABER, NTRU Prime and CRYSTALS-
Kyber are shown in Figure 7.9.

Specialized designs For the NTRU polynomial ring, the modulus q is a power of two,
and the modulus polynomial is defined as f(x) = xn − 1. This structure enables the

120

7.6. Arithmetic in lattice-based schemes

MUL

ADD

MUL

ADD

MUL

ADD

load

1

0

(a) Parallelized schoolbook design tailored for NTRU polynomial ring

load

1

0

MUL

ADD

SUB

0

MUL

ADD

MUL

ADD

(b) Parallelized schoolbook design tailored for SABER polynomial ring

MUL

ADD

MUL

ADD

MUL

ADD

load

1

0 SUB

0

(c) Parallelized schoolbook design tailored for Kyber polynomial ring

MUL

ADD

MUL

ADD

MUL

ADD

load

1

0

ADD

(d) Parallelized schoolbook design tailored for NTRU Prime polynomial ring

Figure 7.9: Parallelized schoolbook architectures specifically tailored for each polynomial ring. The
readout circuit of the accumulators is omitted for clarity. The mod q reducer is not present whenever
the reduction is performed upon result readout.

121

Chapter 7. Arithmetic

optimizations shown in Figure 7.9a. Modular reduction is a straightforward truncation
of the first ⌈log2(q)⌉ bits, removing the need for modulo q components. The feedback
term−an−1 ·(f(x)−xn) in the LFSR structure simplifies to adding an−1 as the constant
term because f(x)− xn = −1. Since the product a · x always has a0 = 0, no additional
adder is required.

For the case of SABER, the modulus q remains a power-of-two, which allows for
the same truncation adopted by the NTRU case. The polynomial modulus f(x) =
xn + 1 involves adding the −an−1 · (f(x) − xn) result to the first operand polynomial
a(x), which in this case is equivalent to subtracting an−1 from the zero a0 coefficient
of a(x) · x. As a result, a subtractor is introduced on the feedback line, where 0 is
used as the minuend and an−1 as the subtrahend. The resulting design is represented in
Figure 7.9b.

The x-net design for CRYSTALS-Kyber, depicted in Figure 7.9c, requires a modulo
q operation either in all the MAC units after the computation of the accumulation, or
during the readout phase by employing larger accumulators. The polynomial modulus
f(x) = xn + 1 is the same as the one of SABER, so the computation of a(x) · x mod
f(x) again results in −an−1 being added to the zero a0 coefficient of a(x) · x, requiring
to compute the additive inverse element of an−1.

Finally, the design of the x-net multiplier for NTRU Prime, also requires to perform
one or more modq units, depending if used in every MAC unit or in the readout circuit.
The modulus for NTRU Prime is f(x) = xn−x− 1, which means that adding−an−1 ·
(f(x)−xn) is equivalent to adding−an−1 · (−x−1) = an−1x+an−1 to a(x) ·x. While
adding an−1 does not require an actual adder as in the case of NTRU, adding an−1x
does require a coefficient-wise addition of an−1 + a1, with a1 being the coefficient of
the x monomial in a(x) ·x, hence the the constant term of a(x). Therefore, the feedback
network for the x-net design of NTRU Prime, shown in Figure 7.9d, includes an adder
that takes as inputs an−1 and a0 from a(x).

A synthesis campaign is set for all the prescribed parameters sets of all the four cryp-
toschemes on a Xilinx UltraScale+ platform, gathering the Configurable Logic Blocks
(CLBs) usage as the area occupation indicator, the latency taken for a single polyno-
mial multiplication, and the maximum working frequency reached by the design. Ad-
ditionally, the total latency for all Rp × Rq 7→ Rq multiplications involved in the key
generation, encapsulation, and decapsulation of the scheme are computed considering
the number of operations used in each primitive that are reported in Table 7.7. Both
coefficient ring modulo strategies outlined in subsubsection 7.3.2 are assessed, either
performed in every MAC unit, or deferred during the readout but requiring larger ac-
cumulators, to determine which approach is more suitable when targeting an FPGA
design.

In particular, the latter strategy yields an significant performance and area gains in
the designs of CRYSTALS-Kyber and NTRU Prime, although at the cost of a moderate
increase in the number of needed FFs. On the other hand, the multipliers specialized for
SABER and NTRU do not benefit from such strategy, as it comes at cost of an increased

122

7.6. Arithmetic in lattice-based schemes

Table 7.8: Results of the synthesis targeting an Xilinx UltraScale+ ZCU106 FPGA specialized for each
supported parameter sets. The design is based on the x-net algorithm, when 4 Rp and 1 Rq coeffi-
cients are loaded/read per clock cycle. One further Rq ×Rq multiplication is performed during the
decapsulation in NTRU, denoted by ⋆ symbol. Area-Time product computed as latency (ms) × CLB

(a) modulo reduction operation performed in each MAC unit

Security Parameter set CLB CC Freq. Latency (µs) AT product
level MHz Keyg. Enc. Dec. Keyg. Enc. Dec.

AES-128

kyber512 4226 583 312 7.47 11.21 14.95 31.58 47.37 63.17
ntruhps2048509 2150 1153 638 9.04 1.81 3.61 19.42 3.88 7.77⋆

sntrup653 8411 1477 275 5.37 5.37 16.11 45.17 45.17 135.52
ntrulpr653 8411 1477 275 5.37 10.74 16.11 45.17 90.34 135.52
lightsaber 3245 583 497 4.69 7.04 9.38 15.22 22.83 30.45

AES-192

kyber768 3202 583 328 16.00 21.33 26.66 51.22 68.29 85.37
ntruhps2048677 2825 1531 625 12.25 2.45 4.90 34.60 6.92 13.84⋆

ntruhrss701 3336 1585 600 13.21 2.64 5.28 44.06 8.81 17.62⋆

sntrup761 9691 1720 325 5.29 5.29 15.88 51.28 51.28 153.86
ntrulpr761 9691 1720 325 5.29 10.58 15.88 51.28 102.57 153.86

saber 3019 583 553 9.49 12.65 15.81 28.64 38.19 47.74

AES-256

kyber1024 3202 583 328 28.44 35.55 42.66 91.06 113.82 136.59
ntruhps4096821 3712 1855 562 16.50 3.30 6.60 61.26 12.25 24.50⋆

sntrup857 11142 1936 312 6.21 6.21 18.62 69.13 69.13 207.41
ntrulpr857 11142 1936 312 6.21 12.41 18.62 69.13 138.27 207.41
firesaber 2468 583 581 16.06 20.07 24.08 39.62 49.52 59.43

above
AES-256

sntrup953 12770 2152 312 6.90 6.90 20.69 88.08 88.08 264.24
ntrulpr953 12770 2152 312 6.90 13.79 20.69 88.08 176.16 264.24

sntrup1013 13017 2287 275 8.32 8.32 24.95 108.25 108.25 324.76
ntrulpr1013 13017 2287 275 8.32 16.63 24.95 108.25 216.50 324.76

sntrup1277 16686 2881 262 11.00 11.00 32.99 183.48 183.48 550.44
ntrulpr1277 16686 2881 262 11.00 21.99 32.99 183.48 366.96 550.44

(b) modulo reduction operation performed at readout

Security Parameter set CLB CC Freq. Latency (µs) AT product
level MHz Keyg. Enc. Dec. Keyg. Enc. Dec.

AES-128
kyber512 3186 585 328 7.13 10.70 14.27 22.72 34.09 45.45
sntrup653 8138 1479 288 5.14 5.14 15.41 41.79 41.79 125.37
ntrulpr653 8138 1479 288 5.14 10.27 15.41 41.79 83.58 125.37

AES-192
kyber768 2615 585 312 16.88 22.50 28.12 44.12 58.83 73.54
sntrup761 9043 1722 312 5.52 5.52 16.56 49.91 49.91 149.73
ntrulpr761 9043 1722 312 5.52 11.04 16.56 49.91 99.82 149.73

AES-256
kyber1024 2615 585 312 30.00 37.50 45.00 78.45 98.06 117.67
sntrup857 10141 1938 312 6.21 6.21 18.63 62.99 62.99 188.97
ntrulpr857 10141 1938 312 6.21 12.42 18.63 62.99 125.98 188.97

above
AES-256

sntrup953 11073 2154 312 6.90 6.90 20.71 76.44 76.44 229.33
ntrulpr953 11073 2154 312 6.90 13.81 20.71 76.44 152.89 229.33

sntrup1013 12022 2289 312 7.34 7.34 22.01 88.19 88.19 264.59
ntrulpr1013 12022 2289 312 7.34 14.67 22.01 88.19 176.39 264.59

sntrup1277 14735 2883 325 8.87 8.87 26.61 130.71 130.71 392.13
ntrulpr1277 14735 2883 325 8.87 17.74 26.61 130.71 261.42 392.13

123

Chapter 7. Arithmetic

Table 7.9: Results of the synthesis targeting an Xilinx UltraScale+ ZCU106 FPGA specialized for each
supported parameter sets. The design is based on the x-net algorithm, 4Rp and 2Rq coefficients are
loaded/read per clock cycle. One furtherRq ×Rq multiplication is performed during the decapsula-
tion in NTRU, denoted by ⋆ symbol. Area-Time product computed as latency (ms) × CLB

(a) modulo reduction operation performed in each MAC unit

Security Parameter set CLB CC Freq. Latency (µs) AT product
level MHz Keyg. Enc. Dec. Keyg. Enc. Dec.

AES-128

kyber512 6508 327 197 6.64 9.96 13.28 43.21 64.81 86.42
ntruhps2048509 4455 645 438 7.36 1.47 2.95 32.80 6.56 13.12⋆

sntrup653 13992 825 200 4.12 4.12 12.38 57.71 57.71 173.15
ntrulpr653 13992 825 200 4.12 8.25 12.38 57.71 115.43 173.15
lightsaber 5796 327 400 3.27 4.91 6.54 18.95 28.42 37.90

AES-192

kyber768 5579 327 206 14.29 19.05 23.81 79.70 106.27 132.83
ntruhps2048677 6208 855 475 9.00 1.80 3.60 55.87 11.17 22.34⋆

ntruhrss701 7428 885 425 10.41 2.08 4.16 77.33 15.46 30.93⋆

sntrup761 16429 960 188 5.11 5.11 15.32 83.89 83.89 251.67
ntrulpr761 16429 960 188 5.11 10.21 15.32 83.89 167.78 251.67

saber 4993 327 425 6.92 9.23 11.54 34.57 46.10 57.62

AES-256

kyber1024 5579 327 206 25.40 31.75 38.10 141.69 177.11 212.54
ntruhps4096821 8052 1035 438 11.82 2.36 4.73 95.13 19.02 38.05⋆

sntrup857 19034 1080 188 5.74 5.74 17.23 109.34 109.34 328.03
ntrulpr857 19034 1080 188 5.74 11.49 17.23 109.34 218.68 328.03
firesaber 4200 327 375 13.95 17.44 20.93 58.59 73.24 87.89

above
AES-256

sntrup953 21165 1200 188 6.38 6.38 19.15 135.09 135.09 405.28
ntrulpr953 21165 1200 188 6.38 12.77 19.15 135.09 270.19 405.28

sntrup1013 22219 1275 188 6.78 6.78 20.35 150.68 150.68 452.06
ntrulpr1013 22219 1275 188 6.78 13.56 20.35 150.68 301.37 452.06

sntrup1277 27283 1605 200 8.03 8.03 24.07 218.94 218.94 656.83
ntrulpr1277 27283 1605 200 8.03 16.05 24.07 218.94 437.89 656.83

(b) modulo reduction operation performed at readout

Security Parameter set CLB CC Freq. Latency (µs) AT product
level MHz Keyg. Enc. Dec. Keyg. Enc. Dec.

AES-128
kyber512 5460 329 291 4.52 6.78 9.04 24.69 37.03 49.38
sntrup653 11867 827 238 3.47 3.47 10.42 41.23 41.23 123.70
ntrulpr653 11867 827 238 3.47 6.95 10.42 41.23 82.47 123.70

AES-192
kyber768 4733 329 291 10.18 13.57 16.96 48.15 64.21 80.26
sntrup761 13762 962 238 4.04 4.04 12.13 55.62 55.62 166.87
ntrulpr761 13762 962 238 4.04 8.08 12.13 55.62 111.25 166.87

AES-256
kyber1024 4733 329 291 18.09 22.61 27.13 85.61 107.02 12.842
sntrup857 15404 1082 238 4.55 4.55 13.64 70.02 70.02 21.008
ntrulpr857 15404 1082 238 4.55 9.09 13.64 70.02 140.05 21.008

above
AES-256

sntrup953 18111 1202 238 5.05 5.05 15.15 91.46 91.46 274.40
ntrulpr953 18111 1202 238 5.05 10.10 15.15 91.46 182.93 274.40

sntrup1013 19201 1277 238 5.37 5.37 16.10 103.02 103.02 309.07
ntrulpr1013 19201 1277 238 5.37 10.73 16.10 103.02 206.04 309.07

sntrup1277 23332 1607 238 6.75 6.75 20.26 157.54 157.54 472.62
ntrulpr1277 23332 1607 238 6.75 13.50 20.26 157.54 315.08 472.62

124

7.6. Arithmetic in lattice-based schemes

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

·104

A
T
=
4
0
0

A
T
=
2
0
0

A
T
=
1
0
0

A
T
=

5
0

A
T

=
2
5

A
T

=
1
2
.5

A
T

=
6
.2

5

ntruhps2048509
ntruhps2048677

ntruhps4096821
ntruhrss701

lightsaber saber
firesaber

kyber512
kyber768 kyber1024

sntrup653

sntrup761

sntrup857

sntrup953

sntrup1013

sntrup1277

ntrulpr653

ntrulpr761

ntrulpr857

ntrulpr953

ntrulpr1013

ntrulpr1277

Time (us)

A
re

a
(C

L
B

)

NTRU-HPS
NTRU-HRSS

SABER
CRYSTALS-Kyber

Streamlined NTRU Prime
NTRU LPRime

Figure 7.10: efficiency comparison of x-net based designs. Blue, yellow and orange markers refer to
parameters of security level 1, 3, and 5, respectively. Red markers denote parameters above security
level 5. Dashed lines exhibit the same area-time (AT) product (lower is better).

125

Chapter 7. Arithmetic

ADD

0
SUB

Figure 7.11: Multiplexers introduced by the unified parallelized schoolbook multiplier

size of the accumulator registers without any performance advantage.
Figure 7.10 allows to compare the designs of the encapsulation module of CRYSTALS-

Kyber, SABER, NTRU and NTRU Prime, employing the x-net based multipliers with
their most suitable reduction strategy. A blue marker denotes a design with a parame-
ter set corresponding to NIST security level 1 (AES-128), a yellow marker represents
security level 3 (AES-192), an orange marker indicates security level 5 (AES-256),
and red markers correspond to security levels above level 5. The figure also includes
dashed lines representing design space points showing equivalent AT products, which
simplifies the comparison of the efficiency indicators in such chart. Figures with similar
trends were also obtained for decapsulation modules and key generation modules, thus
are omitted here.

By examining the designs with the same security level (markers of the same color),
it is evident that the time spent on polynomial multiplications is greater in CRYSTALS-
Kyber (a module RLWE scheme) and SABER (a module RLWR scheme) compared
to NTRU-based schemes (the right-most values on the x axis of Figure 7.10), and such
difference increases with the security level. The only exception to this trend is the key
generation of NTRU-HPS and NTRU-HRSS for the parameter sets corresponding to
security levels 1 and 3 due to the larger number of operations involved with respect to
the other schemes. CRYSTALS-Kyber and SABER schemes show an almost constant
value on the y axis of Figure 7.10 due to almost identical polynomial multiplier resulting
from similar q, n, p, and f(x) from the parameters sets. The latency of polynomial
multiplications in NTRU Prime scales linearly with the degree n of the polynomials,
and the performance degradation due to higher security margins increases at a slower
rate compared to CRYSTALS-Kyber and SABER.

From Figure 7.10 it is evident that NTRU Prime has the least efficient implementa-
tions among all due to more strict security of the employed polynomial field. NTRU-
based parameters exhibit a considerably lower degree of variability in terms of effi-
ciency with benchmark points less spread than the other schemes, and is from 4× to
8× more efficient during encapsulations. Finally, designs for CRYSTALS-Kyber lag
significantly behind the efficiency achieved with SABER, with ≈ 2× worse efficiency.

126

7.6. Arithmetic in lattice-based schemes

Table 7.10: Results of the synthesis targeting an Xilinx UltraScale+ ZCU106 FPGA for the unified
designs compatible with the specified parameter sets. The design based on x-net is configured to
transfer 4Rp coefficients and 1Rq coefficients per clock cycle. Each supported parameter set can be
selected at runtime.

Design Supported Security CLB Freq. LUT FF CARRY8 DSP48E2ciphers level

x-net
NTRU,

NTRU Prime,
SABER, Kyber

AES-128 12090 272 70704 20184 2630 2
AES-192 13935 247 83922 24237 3064 2
AES-256 15273 241 94410 27276 3448 2

x-net
NTRU,

NTRU Prime,
Kyber

AES-128 8825 272 53479 18750 2624 2
AES-192 10071 247 63718 22593 3058 2
AES-256 11435 244 71775 25401 3442 2

Comba NTRU, SABER
AES-256 67 328 394 142 30 0Kyber

Unified design A single unified design for all four cryptosystems, shown in Figure 7.11,
was achieved by working on the following areas:

Coefficient modulo the operation modq is performed during the readout phase, re-
quiring a Barrett reduction module compatible with multiple dividend values. For
this reason, the pre-computed approximated constants 1/q for each possible value
of q are stored in small read-only memories, with the exception of q = 2k for some
k ∈ N that used the regular bit trim operation for efficiency.

Accumulator the number and size of accumulation registers are carefully sized in order
to fit the largest value resulting from all the supported schemes

LFSR net few multiplexers are introduced to control which an−1 coefficients are fed
back, depending on the n value defined by the parameters set in use, and what taps
are active on the LFSR feedback network. Furthermore, and additional multiplexer
determines if the selected feedback value an−1 needs a sign-flip or not.

To explore potential efficiency tradeoffs, the resulting design was tested limiting the
supported security levels to 1, ≤ 3, and ≤ 5.

These proposed designs offer complete runtime flexibility at the cost of approxi-
mately 50% more area resources compared to the largest tailored component. The
achieved operating frequency is only from 5% to 22% slower than the slowest com-
ponent it includes, with no penalty in the number of clock cycles for any of the mul-
tiplications compared to the corresponding optimized design. By removing support to
SABER, the area penalty reduces to less than 12%.

Comba designs

The Comba multiplier presented in subsubsection 7.3.2 shows a remarkably small data-
path because it only performs a single MAC operation between polynomial coefficients
per clock cycle. The optimal memory access strategy is guaranteed due to the efficient

127

Chapter 7. Arithmetic

Table 7.11: Results of the synthesis targeting an Xilinx UltraScale+ ZCU106 FPGA specialized for each
supported parameter sets. The design is based on the Comba algorithm, and the modulo reduction
operation is performed each clock cycle. Area-Time product computed as latency (ms) × CLB

Comba algorithm | modulo each CC
Security Parameter set CLB kCC Freq. Latency (µs) AT product

level MHz Keyg. Enc. Dec. Keyg. Enc. Dec.

AES-128
ntruhps2048509 35 260.1 930 1398.4 279.6 559.3 48.9 9.7 19.5⋆

lightsaber 36 66.1 522 506.1 759.2 1012.3 18.2 27.3 36.4
kyber512 60 66.1 295 895.6 1343.4 1791.2 53.7 80.6 107.4

AES-192

ntruhps2048677 37 459.7 906 2536.9 507.3 1014.7 93.8 18.7 37.5⋆

ntruhrss701 46 492.8 883 2790.5 558.1 1116.2 128.3 25.6 51.3⋆

saber 39 66.1 522 1138.8 1518.4 1898.1 44.4 59.2 74.0
kyber768 56 66.1 319 1863.5 2484.7 3105.9 104.3 139.1 173.9

AES-256
ntruhps4096821 43 675.7 845 3998.1 799.6 1599.2 171.9 34.3 68.7⋆

firesaber 33 66.1 667 1584.5 1980.6 2376.7 52.2 65.3 78.4
kyber1024 56 66.1 319 3313.0 4141.3 4969.5 185.5 231.9 278.2

use of an accumulator register t. An additional modulo q component is necessary to
deal with the modular arithmetic in the coefficient ring Zq. As in the case for the x-net
multiplier, it can be omitted in case the value of q is a power of two due to the bit trim
operation performing it for free.

Performing a regular polynomial multiplication in Zq[x] would produce a result with
a maximum degree up to 2n − 1, and a complex polynomial modulo operation is later
required. This can be avoided computing a modular addition or subtraction of each
outer loop iteration results of lines 6–9 of Algorithm 33 with specific monomial of
the temporary result. However, the NTRU Prime cryptographic scheme requires two
additions per iteration due to the polynomial modulus giving the equation xn = x + 1.
Therefore, to maintain the design as compact and as efficient as possible, the support to
the NTRU Prime parameters sets are dropped.

Since each coefficient multiplication in the Rp × Rq 7→ Rq polynomial operation
can produce a relatively small maximum value of p · q − 1, the modq operation can be
performed through a selection of the results of a short chain of adders and subtractors
even when the modulus q is not a power-of-two.

Considering the results of the synthesis campaign of the Comba-based multipliers
specialized for each parameters set of all the supported cryptoschemes, the design shows
a remarkably small area requiring almost two orders of magnitude less CLBs with re-
spect to the x-net design, leading to an operating frequency improved up to 36% when
NTRU parameters sets are used.

The efficiency analysis depicted in Figure 7.12 confirms similar trends than Fig-
ure 7.10, with CRYSTALS-Kyber being the slowest cryptoscheme, NTRU the fastest
and most efficient one for encapsulation and decapsulation procedures, and SABER is
showing the same results for the key generation. Note that such extremely compact and
slow solution still has interesting efficiency figures while requiring almost two order of

128

7.6. Arithmetic in lattice-based schemes

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
10

20

30

40

50

60

70

80

90

100

A
T
=
2
0
0

A
T
=
1
0
0

A
T
=

5
0

A
T

=
2
5

A
T

=
1
2
.5

ntruhps2048509
ntruhps2048677

ntruhps4096821

ntruhrss701

lightsaber
saber

firesaber

kyber512

kyber768 kyber1024

Time (us)

A
re

a
(C

L
B

)

NTRU-HPS
NTRU-HRSS

SABER
CRYSTALS-Kyber

Figure 7.12: efficiency comparison of Comba-based designs. Blue, yellow and orange markers refer to
parameters of security level 1, 3, and 5, respectively. Red markers denote parameters above security
level 5. Dashed lines exhibit the same area-time (AT) product (lower is better).

129

Chapter 7. Arithmetic

magnitude less area than the low-latency solution based on x-net. Therefore, when a
slow multiplier completing its task in few milliseconds is an acceptable solution, this
compact design can be an appealing solution.

Ultimately, this multiplier requires only 10% more area compared to the largest tai-
lored component, in this case resulting from the support of the kyber512 parameters
set, while does not exhibit an operating frequency degradation.

The complete dataset of this DSE is available at DOI:10.5281/zenodo.8337625.

130

https://doi.org/10.5281/zenodo.8337625

CHAPTER8
Top-level design

Once all basic components of a cryptographic scheme are designed and validated, the
final step consists in the integration of those components in a Top-Level Design (TLD)
along with some RAMs and a secure TRNG, designing their interconnection, and creat-
ing the FSM logic implementing a schedule of the operations to produce a valid crypto-
graphic primitive. Then, the TLD must be validated against test vectors from the KAT
file distributed along with the specification of the cryptographic scheme, usually directly
derived by the reference SW code. During this validation task, the source of randomness
is not derived directly from a TRNG, but rather uses the seed contained in the KAT file,
hence having a deterministic and reproducible behavior.

The ultimate goal of this thesis is to produce several reference designs for post-
quantum asymmetric cryptographic algorithms which are easily portable to different
targets and are functionally correct. Even though these designs are compliant with the
official specification, they must be considered solely for research purposes for several
reasons. Firstly, the specifications of the cryptographic algorithms are not frozen and
certified by a standardization body, and it is imperative that all the parties involved in
the cryptographic protocol use exactly the same version of the algorithm for a guaran-
teed compatibility and security assurance. Secondly, in the developed TLDs the TRNG
component is missing, and the randomness seed are retrieved from the internal memory
for testing purposes using the KATs. The reason is that the choice of a secure TRNG
intrinsically depends on the target device implementing the design, such as the EDA

Part of the material presented in this chapter was originally described in [Ant+23a; Ant+24a; Ant+24b; ABP25].

131

Chapter 8. Top-level design

SRAM 0

SRAM 1

Keccak

point-to-point
network

Compute
unit 0

Compute
unit 1

Compute
unit n

FSA
Operation
schedule

start
done
cfg

start
done
cfg

start
done
cfg

(a) Units interconnected via a point-to-point network

Vector
exponentiation

Vector
multiplication

Simple
dual-port
RAM

FSA
Operation
schedule

Vector-matrix
multiplication

Vector
subtraction

Vector
multiplication

Vector
addition

RW

(b) Arithmetic modules interconnected in a partially repro-
grammable chain

Figure 8.1: Overview of two strategies for modules instantiation in the top-level design. A centralized
Finite State Automata (FSA) manages the control signals following a specific schedule of algorithm
operations.

tools employed, the product family and production revision of the FPGA chip, or the
technology library, the fabrication process flow for ASIC chips, and the Process, Volt-
age, and Temperature (PVT) conditions. Furthermore, in addition to the obstruction
of portability, a secure TRNG must be validated and certified by passing the statistical
test suite for the validation of RNGs for cryptographic applications, such as [Bas+10].
A systematic review of tools and technologies employed for the assessing of RNGs
is reported in [Cro+23]. Lastly, the developed solutions do not implement any coun-
termeasure against invasive or non-invasive side-channel attacks other than timing at-
tacks, which is achieved through the constant-time execution of algorithms with the
exclusion of rejection sampling mechanisms well known not to be a source of time
leakage. The security requirements, tests, and approved mitigations of non-invasive at-
tacks for cryptographic modules are extensively normed by the NIST standard FIPS
140-3 [JC19] and ISO/IEC standards 17825:2024 [ISO24], 19790:2025 [ISO25a], and
24759:2025 [ISO25b], identifying 11 different security areas and 4 levels of security as-
surance. Every cryptographic modules operated by U.S. federal departments and agen-
cies must comply with the FIPS 140-3 standard, but this certification is also required by
several other national agencies and companies, thus is recognized as a globally relevant
standard.

An important design choice to be decided during the integration of the basic com-
ponents is the selection of how to interconnect the sub-modules. Generally speaking,
two different strategies can be devised, as represented in Figure 8.1: either directly
connect each module to the memories holding the operand values and storing the com-
puted result, or chain them in a configurable pipe structure specifically tailored to the
sequence of operations defined in the cryptoscheme. The former solution requires an
interconnection network that allows a high degree of flexibility in connecting the hard-
ware components, but also has a non-negligible cost both in terms of area and routing
congestion. An example of such design is depicted in Figure 8.1a. This solution is par-

132

time

se
ed

read port
write port

MEM1

MEM4

MEM3

MEM2

Figure 8.2: Simplified example of a memory port binding analysis exclusively assigning a read or write
port of a simple dual-port SRAM to let a computing module access an operand or write a result in a
memory. This information is used by the FSA in the top-level design to configure the point-to-point
connection between the memory and a computing module. Note that if more advanced contention
protocols are used, such as a round-robin queue or the broadcast of shared request, this analysis must
consider the newly introduced constraints.

ticularly interesting when conducting a DSE in order to easily swap each component,
minimizing the compatibility issues. The other solution requires a thorough analysis
of the sequence of operations to define the structure using the least amount of multi-
plexers, and benefits from the partially overlapped execution of the units composing
the chain. However, even small changes to the cryptoscheme specification may require
the redesign of the piping connections. Moreover, incompatibilities between the units
composing the chain may arise when there are strict constraints on the transmitted data,
such as the absence of transfer stalls, or the shape of the interconnection. It is possible to
adopt a hybrid approach between the two solutions, for example chaining only the arith-
metic operations which are less prone to updates in the documentations, and leaving to a
simplified interconnection network the management of point-to-point connections of the
hardware modules. In Figure 8.1b is represented an example of a partially re-wireable
chain connecting some arithmetic components, where I0, I1, I2, I3, O0, and O1 are the
input/output connections of the arithmetic module.

Both integration strategies require a FSA driving the multiplexers connecting the
hardware components following a schedule that reflects the data dependencies of the
operations in the cryptoscheme to correctly compute the results, and satisfying the con-
straints imposed by the hardware resources. An example of such constraint is given
by the unique binding of a memory port to a specific computing module. Considering
that the number of ports offered by a memory has an increasing area and performance
cost, and often is limited by the availability of the required SRAM macro, the FSA
must consider such constraints when trying to schedule the execution of two or more
parallel operations. An example of the port binding in a system composed of four sim-
ple dual-port RAMs is depicted in Figure 8.2. Fortunately the order of operations in
KEM and DS primitives are fixed, and such schedule can be pre-computed. The size

133

Chapter 8. Top-level design

MEM1

MEM4

MEM3

MEM2

mem.
depth

time

Figure 8.3: Simplified example of variable liveness analysis throughout the execution of the crypto-
graphic primitive having access to four memories. The yellow block corresponds to a variable start-
ing when the element is generated and terminating after its last access. The complete analysis must
also consider elements with different sizes, keeping track of their base memory addresses, which is
then used by the FSA in the top-level design.

of centralized memories depends on how many and which elements needs to persist in
memory at the same time. The optimal size can be determined statically by a process
known as liveness analysis thanks to the known order of operations provided by each
cryptoscheme specification. A small example is provided in Figure 8.3.

8.1 NTRU

A desired aspect of the designed hardware accelerator for the NTRU cryptoscheme
consists in having all the computing modules highly decoupled in order to easily re-
place each component to explore and evaluate different algorithms and implementation
strategies. Moreover, different strategies may require to access data with different word
sizes. Such flexibility is provided by the point-to-point interconnection network linking
computing modules to the centralized memories and shared components, such as the
SHAKE module.

Two main components are necessary to correctly implement the network: a port ar-
biter unit, and a link width converter. The former handles the access to a shared source
or sink of data, and in its simplest form consists in a set of multiplexers to establish a
one-to-one link coherently to the transfer protocol in use depending on a selection sig-
nal. Note that more sophisticated control logic, such as a round-robin based approach or
broadcasting the data to links making the same request, may allow the parallel schedul-
ing of some operations. The link width converter manages the access to the data with
different granularity either in a stateless or stateful manner via some buffers, to allow
a transparent access to resources, at cost of requiring memories supporting byte-enable
writes to update small parts of the data words contained in the memory.

The main developed components are the packer and unpacker of polynomials with
coefficients in Zp and Zq (PACKp, UNPACKp, PACKq, and UNPACKq), the polynomial
generator CSPRNG creating ternary polynomials in T , T+, or having w fixed weight
T (w), the polynomial multiplier and adder, and the lift (LIFT) and embed (mod(·, ·))
of polynomials in polynomial rings. The top-level design makes use of 4 main simple
dual-port RAMs, for which one port is a read only memory port and the other is a write

134

8.1. NTRU

c

h

r

rh

m

time

(a) NTRU.KEM-ENCAPSULATION for NTRU-HPS

m

rh

c

m'

h

r

time

(b) NTRU.KEM-ENCAPSULATION for NTRU-HRSS

f

c

fp

a

m'

hq

r

time

(c) NTRU.KEM-DECAPSULATION for NTRU-HPS and NTRU-HRSS

Figure 8.4: Schedule of the operations for the NTRU.KEM scheme

only memory port. The memories have 64-bits word size, with a 16-bits write enable
chunks to support the modification of small portions of the words via the link width
converters.

8.1.1 Operation scheduling

As a case study, this thesis considers the use of the NTRU scheme with long-term key-
pairs, thus producing hardware accelerators for NTRU.KEM-ENCAPSULATION and
NTRU.KEM-DECAPSULATION algorithms only, and having the keypair pre-generated
in software and securely stored in a memory accessible by the hardware components
[Che+19]. Two design targets are provided, a high efficiency and low latency design
using the x-net polynomial multiplier and leveraging a higher degree of parallelism for
the other computing modules, or a low area solution using the Comba multiplier without
leveraging any parallelism in the other modules.

The scheduling of the operations included in the NTRU.KEM-ENCAPSULATION
and NTRU.KEM-DECAPSULATION primitives, shown in Figure 8.4, depends on the
algorithm implementing the LIFT map, and the SAMPLErm function generating the ele-
ments r and m prescribed by NTRU-HPS and NTRU-HRSS schemes.

Indeed, the NTRU-HPS requires to sample m from the space of ternary polynomials
having fixed Hamming weight T (q/8− 2), for which the sampling algorithms take
more time compared to the sampling algorithms used by NTRU-HRSS generating them
from the set of ternary polynomials of any weight. The specification mandates to sample
first r and then m, thus as soon as r is retrieved and h is decoded from its compressed
binary string form, the r ·h multiplication can take place. In this way, the latency of this
polynomial multiplication is hidden by the latency of sampling the polynomial m for
NTRU-HPS if using the x-net multiplication architecture, as pictured in Figure 8.4a.
The LIFT map in this scheme is a mere sign extension of the coefficients in the ring Zq,

135

Chapter 8. Top-level design

which is implicitly performed during the final addition.
By contrast, in NTRU-HRSS the sampling of m does not represent a bottleneck, but

the LIFT does require a dedicated module for its computation. We hide such computa-
tion scheduling it in parallel to the r · h multiplication, as represented in Figure 8.4b,
thanks to the developed unit not relying on the polynomial multiplier to compute the
result.

The generation of the session key K is performed immediately absorbing in the
SHA3-256 module the bit string representation of r and m as soon as they are gen-
erated, and runs in parallel to the computation of the ciphertext c. Overall, the devised
NTRU.KEM-Encapsulation schedule manages to have the SHA3-256/SHAKE256
module represent a significant portion of the overall computation of around 20% in
NTRU-HPS and 30% in NTRU-HRSS.

Scheduling of operations in the NTRU.KEM-DECAPSULATION primitive is less
influenced by the differences between NTRU-HPS and NTRU-HRSS, as there is no
need to sample random ternary polynomials. The only difference relies on the imple-
mentation of the LIFT function that this time cannot be scheduled in parallel to other
operations and is scheduled right before the execution of the last multiplication.

The longest read-after-write sequence of operations in the proposed schedules is
highlighted with darker gray boxes in all the subfigures of Figure 8.4, and in case of
Figure 8.4c it is clear that most of the operations are in this long read-after-write de-
pendency chain. As a result, we scheduled the operations on this path to be executed
as soon as possible, and parallelized all the others, preemptively starting unpacking and
validation computations where possible. The only computation which cannot be paral-
lelized with the final SHA3-256 computation is the one acting on r, as the SHA3-256
module is accessing the same memory at the same time, potentially with a different
width. Since a Rq ×Rq 7→ Rq multiplication takes place, the multiplier component in
the decapsulation top-level module cannot apply the optimization leveraging the small
size of the coefficients in Rp.

8.1.2 Design synthesis and implementation

A DSE for the encapsulation and decapsulation primitives is conducted on a AMD Zynq
UltraScale+ FPGA platform, varying the word size that each computing module is using
to access the centralized simple dual-port RAMs, and consequently the degree of par-
allelization used in the implemented algorithms. The choice of an UltraScale+ FPGA
platform in place of the usual AMD Artix-7 FPGA which is the reference platform se-
lected by NIST, is due to the large number of DSP units required by the decapsulation
design that could not fit in any Artix-7 chip. The minimum memory word size is set to
16 to allow the inference of RAMs having support to the byte-enable writes in FPGA
targets, although synthesis results demonstrated that it was not achieved, resulting in a
higher than expected BRAM count, with a consequent efficiency degradation. Only 4
independent RAMs are used in both encapsulation and decapsulation designs, with a
word size up to 64 bits long. Among all the configurations, we selected for a synthe-

136

8.1. NTRU

sis assessment only the ones which dominated their alternatives in RTL simulations in
terms of latency, which led to the synthesis of 9 NTRU.KEM-ENCAPSULATION and
4 NTRU.KEM-DECAPSULATION configurations for each parameters set, reported in
Table 8.1.

The target frequency was set to 400 MHz for the encapsulation, and 350 MHz for the
decapsulation, with the small difference caused by routing congestion. In both cases,
the critical path involved the Keccak core in the SHAKE module.

8.2a and 8.2b report the best speed oriented designs found by this exploration,
highlighted in gray in 8.1a and 8.1b. The NTRU-HRSS variant is more efficient (lower
AT product) than its NTRU-HPS counterpart, saving between 50% in latency at an
increased ≈ 4% area cost. The compact solutions using the Comba multiplier are able
to achieve a 66% area reduction, but are also significantly less efficient than the designs
using the x-net multiplier. However, approximately 80% of the area is constituted by
the SHA-3 module, which constitutes a hard barrier to further area savings.

Building upon the outcomes of the design space exploration conducted on FPGA,
we selected the configuration that exhibited the lowest latency and the most compact
area. These chosen designs were then synthesized for an ASIC implementation using
the Synopsys Design Compiler Ultra 2022.03-SP1 tool, and leveraging a high-density
40 nm industrial-grade technology library. Memories are excluded from the logic syn-
thesis by removing them and routing the memory buses through the input/output pins.
8.3a and 8.3b report the results of the ASIC synthesis. Using the slow process corner

using a 1.15V core voltage at 40°C, the architecture incorporating the Comba multiplier
attains an operational frequency of 750 MHz for both encapsulation and decapsulation
processes, and the design utilizing the x-net multiplier achieves 700 MHz for encapsu-
lation and 650 MHz for decapsulation.

In the x-net based designs for encapsulation and decapsulation, the primary contribu-
tors to area requirements are theRp×Rq andRq×Rq multipliers, respectively. Notably,
in the encapsulation module, these multipliers are between 2.3× and 4.1× larger than
the Keccak module, making their resource usage comparable. Additionally, anRq×Rq

multiplier occupies only three times the area of an Rp ×Rq multiplier. It is also worth
noting that the decapsulation module for ntruhrss701 demands more area than that
of ntruhps4096821, even though the latter offers a higher security margin. This dif-
ference arises from the larger value of q used in ntruhrss701, which consequently
increases the area requirements for the Rq × Rq multiplier. Considering the operating
frequencies of the ASIC implementations, the NTRU.KEM-ENCAPSULATION opera-
tion is executed within a range of 6.2µs to 10.2µs for NTRU-HPS, depending on the se-
curity margin, and in 4.1µs for NTRU-HRSS. Similarly, NTRU.KEM-Decapsulation
is completed in 7.1µs to 11.5µs for NTRU-HPS and in 11.7µs for NTRU-HRSS. More-
over, the Comba-based design occupies an area between 49.91 and 52.43 · 103 µm2,
with approximately 41 · 103 µm2 allocated to the Keccak module. As a result, the
NTRU.KEM modules require only approximately 20% more area compared to an ex-
isting SHA3-256/SHAKE256 accelerator. Meanwhile, the compact designs achieve

137

Chapter 8. Top-level design

Table 8.1: Design space exploration for the NTRU.KEM varying the multiplier architecture (Comba,
x-net), the sampler algorithm (Modulo, Rejection), and the parallelized coefficient transfers (PT) for
first multiplier operand (op1) and result (res), adder, session key generator (SKG), validator (Val.)

(a) NTRU.KEM-ENCAPSULATION, 400 MHz clock target, the first multiplication operand is in Rp, AT: eSlice × ms

NTRU Rp×Rq mul. Sampler Add SKG Lift Latency Area AT
variant arch. op1 res alg. PT PT PT PT CC µs LUT FF BRAM eSlice prod.

x-net 1 1 M 2 1 4 1 4765 11.91 18186 11545 4.0 5395 64.2
x-net 1 1 R 2 1 4 1 4787 11.97 18127 11490 4.0 5380 64.3
x-net 4 2 M 2 2 4 2 4511 11.28 19229 11587 5.0 5868 66.1
x-net 4 2 R 2 2 4 2 4533 11.33 19152 11524 5.0 5848 66.2
x-net 8 4 M 4 4 4 4 4384 10.96 19379 11663 8.5 6647 72.8
x-net 8 4 R 4 4 4 4 4394 10.98 19333 11552 8.5 6636 72.8
x-net 8 4 M 4 8 4 4 4320 10.80 19462 11715 12.5 7516 81.1
x-net 8 4 R 4 8 4 4 4330 10.82 19212 11597 12.5 7453 80.6

ntruhps2048509

Comba 1 1 R 1 1 1 1 261950 654.88 7750 4805 1.5 2256 1477
x-net 1 1 M 2 1 4 1 6435 16.09 23215 13772 4.0 6652 107
x-net 1 1 R 2 1 4 1 6465 16.16 23161 13716 4.0 6639 107
x-net 4 2 M 2 2 4 2 6097 15.24 23357 13824 5.0 6900 105
x-net 4 2 R 2 2 4 2 6127 15.32 23543 13805 5.0 6946 106
x-net 8 4 M 4 4 4 4 5928 14.82 24664 13902 8.5 7968 118
x-net 8 4 R 4 4 4 4 5947 14.87 24562 13760 8.5 7943 118
x-net 8 4 M 4 8 4 4 5843 14.61 24817 13923 12.5 8855 129
x-net 8 4 R 4 8 4 4 5862 14.65 24387 13817 12.5 8747 128

hps2048677

Comba 1 1 R 1 1 1 1 462079 1155.20 8309 4828 1.5 2396 2767
x-net 1 1 M 2 1 4 1 7796 19.49 27850 16496 4.5 7917 154
x-net 1 1 R 2 1 4 1 7780 19.45 27841 16449 4.5 7915 153
x-net 4 2 M 2 2 4 2 7386 18.46 29543 16582 5.5 8552 157
x-net 4 2 R 2 2 4 2 7370 18.43 29188 16462 5.5 8463 155
x-net 8 4 M 4 4 4 4 7181 17.95 29637 16634 9.0 9318 167
x-net 8 4 R 4 4 4 4 7171 17.93 29565 16511 9.0 9300 166
x-net 8 4 M 4 8 4 4 7078 17.70 29806 16667 13.0 10208 180
x-net 8 4 R 4 8 4 4 7068 17.67 29631 16555 13.0 10164 179

ntruhps4096821

Comba 1 1 R 1 1 1 1 678596 1696.49 8140 4821 2.0 2459 4171
x-net 1 1 R 2 1 4 1 4542 11.36 26255 15534 6.5 7942 90.2
x-net 1 1 M 2 1 4 1 4542 11.36 26350 15653 6.5 7966 90.4
x-net 4 2 M 2 2 4 2 3317 8.29 27881 15690 6.5 8349 69.2
x-net 4 2 R 2 2 4 2 3317 8.29 27731 15634 6.5 8311 68.8
x-net 8 4 M 4 4 4 4 2879 7.20 28561 16005 9.0 9049 65.1
x-net 8 4 R 4 4 4 4 2879 7.20 27898 15743 9.0 8883 63.9
x-net 8 4 M 4 8 4 4 2791 6.98 28563 15934 13.0 9897 69.0
x-net 8 4 R 4 8 4 4 2791 6.98 28041 15689 13.0 9767 68.1

ntruhrss701

Comba 1 1 R 1 1 1 1 495312 1238.28 8112 4917 2.0 2452 3036

(b) NTRU.KEM-DECAPSULATION, 350 MHz clock target, both operands of the multiplier are Rq elements, AT: eSlice × ms

NTRU Rq×Rq mul. Add SKG Val. Lift Latency Area AT
variant arch. op1 res PT PT PT PT CC µs LUT FF DSP BRAM eSlice prod.

x-net 1 1 1 1 1 1 8110 23.17 14666 16776 509 2.0 72551 1681
x-net 2 2 2 2 2 2 5822 16.63 19261 16209 509 3.0 73912 1229
x-net 4 4 4 4 4 4 4678 13.37 20051 17379 509 5.5 74640 997

ntruhps2048509

Comba 1 1 1 1 1 1 785351 2243.75 8331 4641 1 2.0 2642 5927
x-net 1 1 1 1 1 1 10729 30.65 15516 20648 677 2.5 95466 2926
x-net 2 2 2 2 2 2 7686 21.96 22689 20059 677 3.5 97471 2140
x-net 4 4 4 4 4 4 6163 17.61 23689 21286 677 6.0 98251 1730

ntruhps2048677

Comba 1 1 1 1 1 1 1385714 3958.98 8446 4705 1 2.5 2776 10990
x-net 1 1 1 1 1 1 13061 37.32 18348 25482 821 4.0 115860 4323
x-net 2 2 2 2 2 2 9366 26.76 28504 25953 821 5.0 118611 3174
x-net 4 4 4 4 4 4 7521 21.49 29074 26474 821 6.0 118965 2556

ntruhps4096821

Comba 1 1 1 1 1 1 2035182 5814.51 8347 4668 1 4.0 3070 17850
x-net 1 1 1 1 1 1 13351 38.14 17972 24300 701 2.5 99308 3787
x-net 2 2 2 2 2 2 9514 27.18 27343 24468 701 3.5 101863 2768
x-net 4 4 4 4 4 4 7606 21.73 27790 24979 701 6.0 102504 2227

ntruhrss701

Comba 1 1 1 1 1 1 1487552 4249.94 8526 4813 1 2.5 2796 11882

138

8.1. NTRU

Table 8.2: Results of the synthesis exploration for the NTRU.KEM primitive with speed objective on
FPGA. AT metric computed as eSlice × ms.

(a) NTRU.KEM-ENCAPSULATION

Sec. NTRU Work Freq. Area Latency AT
lvl. Variant LUT FF DSP BRAM eSlice CC µs prod.
1 hps2048509 This work 400 19379 11663 0 8.5 6647 4384 10.9 72.4

3

hps2048677
This work 400 24664 13902 0 8.5 7968 5928 14.8 117
[DMG21] 250 26325 17568 0 5.0 7642 3687 14.8 113

hrss701
This work 400 28396 15894 0 9.0 9007 2879 7.2 64.8
[DMG21] 300 31494 25120 0 2.5 8404 2219 7.4 62.1

sntrup761 [Pen+21] 289 31996 22425 6 4.5 9760 5007 17.3 168

5 hps4096821
This work 400 29637 16634 0 9.0 9318 7181 17.9 166
[DMG21] 250 33698 30551 0 5.5 9591 4576 18.3 175

(b) NTRU.KEM-DECAPSULATION

Sec. NTRU Work Freq. Area Latency AT
lvl. Variant LUT FF DSP BRAM eSlice CC µs prod.
1 hps2048509 This work 350 20051 17379 509 5.5 74640 4678 13.3 992

3

hps2048677
This work 350 23689 21286 677 6.0 98251 6163 17.6 1729
[DMG21] 300 29935 19511 45 2.5 14067 7522 25.1 353

hrss701
This work 350 27790 24979 701 6.0 102504 7606 21.7 2224
[DMG21] 300 37702 34441 45 2.5 16008 8826 29.4 470

sntrup761 [Pen+21] 285 32301 22724 9 3.5 10028 10989 38.6 387

5 hps4096821
This work 350 29074 26474 821 6.0 118965 7521 21.4 2545
[DMG21] 300 38642 33003 45 2.5 16243 10211 34.0 552

139

Chapter 8. Top-level design

Table 8.3: Results of the ASIC synthesis for the NTRU.KEM primitive reached 750 and 650 MHz for
area constrained (Comba) and fast (x-net) designs, respectively, when using the slow process corner
of 1.15V at 40°C from a 40 nm industrial-grade technology library.

(a) NTRU.KEM-ENCAPSULATION

Mul. NTRU Area (103 µm2) Latency
type Variant add sample Keccak q pack K gen Rp ×Rq q unp. lift Total µs

x-net

hps2048509 0.66 2.76 39.12 1.12 2.64 90.40 1.41 – 140.19 6.2
hps2048677 0.68 2.97 39.16 1.11 2.67 120.44 1.41 – 170.44 8.4
hps4096821 0.73 2.95 39.28 0.82 2.68 161.21 1.07 – 211.05 10.2
hrss701 0.83 1.36 40.24 1.26 2.67 148.91 1.54 1.87 201.15 4.1

Com.

hps2048509 0.39 2.92 41.56 1.14 1.63 1.22 1.39 – 51.52 349.2
hps2048677 0.42 3.01 40.06 1.13 1.65 1.30 1.40 – 50.30 616.1
hps4096821 0.44 3.00 40.29 0.82 1.67 1.31 1.07 – 49.91 904.7
hrss701 0.47 2.40 40.96 1.35 1.68 1.36 1.52 1.22 52.43 660.4

(b) NTRU.KEM-DECAPSULATION

Mul.
type

NTRU
Variant

Area (103 µm2) Latency
add Keccak K1 K2 Rq ×Rq unpack validat. lift Totalgen. gen. mult. p q µs

x-net

hps2048509 0.78 40.60 0.68 2.67 268.95 1.02 1.54 0.21 – 320.06 7.1
hps2048677 0.81 40.10 0.72 2.70 359.13 1.06 1.52 0.26 – 410.03 9.4
hps4096821 0.81 38.96 0.71 2.66 495.69 1.07 1.17 0.28 – 517.80 11.5
hrss701 0.91 40.71 0.72 2.71 507.23 1.05 1.66 0.25 1.72 561.02 11.7

Com.

hps2048509 0.42 41.46 0.67 1.64 1.59 1.08 1.51 0.31 – 51.45 1047.1
hps2048677 0.45 40.70 0.71 1.68 2.38 1.05 1.48 0.29 – 50.74 1847.6
hps4096821 0.46 40.14 0.72 1.68 2.49 1.07 1.17 0.30 – 50.08 2713.5
hrss701 0.50 40.33 0.71 1.69 2.66 1.09 1.63 0.31 1.14 52.26 1983.4

140

8.1. NTRU

encapsulation within a range of 0.34 to 0.9 ms and perform decapsulation in 1.04 to
2.71 ms.

141

Chapter 8. Top-level design

8.2 HQC

Other than the polynomial multiplier and adder, the sampler of dense and sparse polyno-
mials, and the SHAKE256/SHA3-256 unit, HQC needs the encode and decode vectors
using an ECC. In the following subsection are presented the designs of the algebraic
encoders and decoders for the RM/RS concatenated code, before introducing to the
scheduling of the operations orchestrated by the FSA in the top-level design.

8.2.1 Encoders and decoders for Reed-Solomon and Reed-Muller codes

The HQC scheme, introduced in section 4.2, uses two public Error-Correcting Codes
(ECCs) for different purposes, the first one being a random instance of a [2p, p] quasi-
cyclic code, and the second one being a highly correcting code fixed in the specification
that is easy to decode. As the former one does not have an efficient decoder algorithm,
an eavesdropper analyzing the syndromes h and u publicly exchanged during the proto-
col is not able to retrieve the low-weight errors encoding the secret messages transferred.
Only the owner of the private key is able to remove most of the corruption added by the
actor sending the first message (see Equation 4.8), and correct the remaining low-weight
error e′ using the decoding algorithm for the fixed ECC.

The [n, k] fixed code is selected such that the length n ≈ p, and that the mes-
sage m ∈ Fk

2. Initially the specification of HQC used the tensor product of a BCH
code with a repetition code due to the vast choice of parameters satisfying the afore-
mentioned constraints, its encoding and decoding simplicity, and allowing a precise
DFR estimation. Later on, the same authors proposed in [Agu+24b] a concatenated
code composed by a shortened Reed-Solomon (RS) as the external code, and a du-
plicated Reed-Muller (RM) as the internal one, that shows a better error-correcting
capability. As a consequence, this new code allowed to reduce the size of the poly-
nomial ring p speeding-up the HQC arithmetic operations, and the latest specifica-
tion adopted the Reed-Muller/Reed-Solomon (RM/RS) concatenated code. The fixed
Reed-Muller/Reed-Solomon (RM/RS) concatenated code [neni, keki, dedi] is formed by
a shortened Reed-Solomon (RS) [ne, ke, de] external code, and a duplicated Reed-Muller
(RM) [ni, ki, di] internal code, identified by the generator matrix G.

In 1965 Forney proved in [For65] that the concatenation of ECC with short lengths
to form one with a longer length generates a code with an exponentially improved error-
correcting capability at cost of a polynomial-time increase of the complexity of the
decoder algorithm. For that reason, concatenated codes were quickly adopted in space
communications in the 1970s, and is still used today for satellite communication, for
example in the DVB-S standard.

As the internal and external codes in a concatenated code are independent, we will
consider each component separately, detailing their encoding and decoding procedures
in the remaining part of the subsection. We will also report some hardware design that
is produced to efficiently implement such operations.

142

8.2. HQC

Shortened Reed-Solomon code

The HQC specification defines three different [ne, ke, de] RS codes, one for each NIST
security level, that are treating each 8-bits block of data as an element of F28 called
symbol, and able to correct t = de−1

2
erroneous symbols: RS-1 = [255, 225, 31],

RS-2 = [255, 223, 33], and RS-3 = [255, 197, 59]. A shortened variant of these codes
are actually used in the HQC primitives, and are simply obtained by fixing 209, 199,
or 165 message symbols to 0, respectively, avoiding their transmission in the codeword:
RS-S1 = [46, 16, 31], RS-S2 = [56, 24, 33], and RS-S3 = [90, 32, 59].

Each symbol is a 8-bits block of data that is interpreted as an element of F28 repre-
sented employing the irreducible polynomial y8+y4+y3+y2+1 ∈ F2[y]. In particular,
the message to be encoded is used to build a message polynomial u(x) ∈ F28 [x], with
degree ke − 1. An ne-symbol codeword c(x) = u(x)g(x) ∈ F28 [x] can be simply ob-
tained multiplying the input message polynomial u(x) ∈ F28 [x] by the code generator
polynomial g(x) ∈ F28 [x] having de = ne − ke + 1 degree.

The RS code generator polynomial is defined as:

g(x) = (x− α) · (x− α2) · (x− α3) · · · (x− αde−1) (8.1)

where α is the primitive element in F28 having representation α = y. As a consequence,
the first de powers of α are roots of both g(x) and any error-free codeword c(x). A sys-
tematic encoding procedure requires that the resulting codeword contains the sequence
of symbols of the message polynomial u(x) as a prefix and the error correcting symbols
as a suffix, while still being a multiple of g(x). Such encoding is obtained computing

c(x) = xne−keu(x)−
(
xne−keu(x) mod g(x)

)
(8.2)

Encoder algorithm In a cyclic block ECC every cyclic rotation of any vector correspond-
ing to a valid codeword is still a valid codeword. This considerable algebraic structure
allows to employ a LFSR to perform the encoding of a message to a codeword in sys-
tematic form. As the RS code is a cyclic ECC, we employed the LFSR-based circuit
represented in Figure 8.5, adapted from the design in [LJ83] to work with symbols in
F8
2, computing xne−keu(x) modulo g(x) in exactly ke clock cycles. The coefficients

of the message polynomial u(x) are streamed in from highest to lowest degree, while
also being reported to the output, by selecting the input 1 of the multiplexers. After ke
clock cycles, the last input coefficient is received, and the content of the shift register
is read-out in ne − ke clock cycles by driving the multiplexer selector to 0. This circuit
efficiently computes the Reed-Solomon codeword in systematic form (Equation 8.2),
producing the polynomial coefficients from the highest to lowest degree.

Aiming to support all the three RS codes with a single circuit, we can construct
a LFSR able to fit all the coefficients of the generator polynomial with largest degree.
During the computation, the coefficients of the correct generator polynomial are selected

In the official HQC specification, the constant term of the generator polynomial for the RS-S1 Reed-Solomon code is incor-
rectly reported as 9, however the correct value is 89.

143

Chapter 8. Top-level design

param param
param

param param

Figure 8.5: Linear-Feedback Shift Register (LFSR) circuit computing xne−ke · u(x) modulo g(x). The
coefficients of the generator polynomial are one operand of the F28 multipliers, while the second
one is a single coefficient fed-back in the network, which can be either a coefficient of the message
polynomial, or the constant 0 ∈ F28 .

from a small local ROM and used as one operand of the F28 multipliers. Furthermore,
the appropriate symbol to report in the feedback network and to the output is chosen
depending on the degree of the generator polynomial g(x) of the RS code in use via
an additional multiplexer. The encoding latency remains exactly the same of the circuit
specifically tailored for each one of the three RS codes, but effectively improving the
efficiency of the design by sharing the common resources.

In case a single RS code needs to be supported, the ne−ke instantiated F28 multipliers
have a fixed operand value gi, 0 ≤ i ≤ ne−ke−1. Note that each of these fixed operands
lies in a small subset of all possible values in F28 . As detailed in subsection 7.4.2, the
fully combinatorial network of a generic F28 multiplier include 8 layers composed by
and and xor gates. When a constant 0 is an input of an and gate, it makes the output
also a constant 0, and consequently such gate can be removed. Therefore, in case an
operand of the multiplication is fixed, all and gates can be removed, reducing the worst
critical path of the circuits of any F28 multiplication, improving the overall performance
and area usage of the encoder. More refined bit-parallel designs, as the ones in [FH15],
have lower performance gains in the case of HQC due to the small size of the F28 field.

In Table 8.4 are reported the synthesis of the RS encoder design for the Artix-7
FPGA. All the designs are extremely fast both in terms of the latency of the encoding
operation and the maximum working frequency. The missed optimization opportunity
when the F28 operand is not fixed in the unified design, resulted in a 1.95× area increase
compared to the RS encoder for the largest code (the one for hqc256). Nonetheless,
this unified encoder is still useful due to the halved number of FF and a 10% area reduc-
tion compared to the sum of three separated RS encoders optimized for each parameter
set.

Decoder algorithm The typical algebraic RS decoder takes as input an error-affected
codeword and considers it as a polynomial r(x) ∈ F28 [x], with degree ne, obtained from
the addition of an error-free codeword c(x) ∈ F28 [x], with degree ne, to an unknown
error polynomial e(x) ∈ F28 [x] having ν ≤ t terms: e(x) =

∑ν
k=1 eikx

ik , where ik
identifies the error coefficient with non-zero value. The decoder computes the syndrome

144

8.2. HQC

Table 8.4: Synthesis results for the Reed-Solomon encoder on the Artix-7 FPGA. The Area-Time product
is computed as eSlices · µs. The first design has a single LFSR optimized for a specific parameter set.
The second design combines the three optimized LFSR to support all the parameter sets in a single
unit, while the third one can do the same with a single LFSR.

Param. Design Resources Freq. Latency AT
set LUT FF BRAM eSlice MHz CC µs prod.

hqc128
Parameter set optimized

250 299 0 63 419 52 0.12 7.56
hqc192 260 316 0 65 397 62 0.16 10.40
hqc256 446 526 0 112 396 96 0.24 26.88

hqc128
Sum of parameter set optimized 956 1141 0 240 396

52 0.13 31.20
hqc192 62 0.16 38.40
hqc256 96 0.24 57.60
hqc128

Unified design 875 527 0 219 383
52 0.14 30.66

hqc192 62 0.16 35.04
hqc256 96 0.25 54.75

Figure 8.6: Syndrome polynomial computation

of the received codeword r(x) and from it derives the number, the positions and the
values of the coefficients of e(x). Finally, the error-free codeword is computed as c(x) =
r(x)− e(x).

The coefficients of the syndrome polynomial S(x) = S1 + S2x + . . . + S2tx
2t−1 ∈

F28 [x], with 2t = de − 1 = ne − ke, associated to the received codeword r(x), are
derived by evaluating the latter at each root of the generator polynomial g(x), i.e.,
Sj = r(αj) = c(αj) + e(αj) = e(αj). The corresponding evaluation circuit, shown
in Figure 8.6, applies Horner’s method for polynomial evaluation[Pan66], processing a
symbol of the input polynomial r(x) at each clock cycle, from rne−1 to r0. After pro-
cessing all ne symbols of r(x), the j-th memory element, with 1 ≤ j ≤ 2t, will store
the j-th syndrome value, i.e., r0 + r1α

j + . . .+ rne−1(α
j)(ne−1) = r(αj) = e(αj) = Sj .

By construction, the generator polynomials g(x) of the three codes share the same roots,
therefore the F28 multipliers in the circuit, that use a power of α as one operand, have a
fixed input for all parameters set. Starting from the fully combinatorial network of the
Mastrovito bit-parallel design of binary finite fields multiplier [Mas88], which includes
both and and xor gates, we specialized each multiplier instance for each distinct value
of an α power, with a net advantage both in terms of critical path length and number of
logic gates. The number of F28 multiplier instances is given by the largest number of

145

Chapter 8. Top-level design

roots of the RS code generator polynomials defined by the parameter sets.
If all 2t syndrome values are zero, then c(x) = r(x) and no errors have occurred.

Otherwise Sj = e(αj) =
∑ne−1

i=0 ei(α
j)i =

∑ν
k=1 eik(α

j)ik =
∑ν

k=1 YkX
j
k for each

j ∈ {1, . . . , 2t}, where Xk = αik indicates the presence of an error in the ik-th received
symbol, and Yk = eik is the error symbol value. A decoding algorithm attempts to
solve the following set of simultaneous equations, which does not have a straightforward
solution: 

Y1X1 + Y2X2 + . . . + YνXν = S1

Y1X
2
1 + Y2X

2
2 + . . . + YνX

2
ν = S2

...
Y1X

2t
1 + Y2X

2t
2 + . . . + YνX

2t
ν = S2t

(8.3)

A strategy to obtain the information captured by Equation 8.3 considers the methods
for solving the following equations, based on the definitions of error locator polynomial
Λ(x) and error evaluator polynomial Ω(x):

Λ(x) ≜
ν∏

k=1

(1−Xkx) = 1 + Λ1x+ . . .+ Λνx
ν (8.4)

Ω(x) ≜
ν∑

k=1

YkXk

ν∏
j=1,j ̸=k

(1−Xjx)

= Λ(x)S(x) mod x2t

= Ω0 + Ω1x+ . . .+ Ων−1x
ν−1

(8.5)

In particular, X−1
k =α−ik is a root of Λ(x) that determines an unique error location ik.

Given Λ(X−1
k) = 0 for 1 ≤ k ≤ ν, by multiplying both sides by YkX

j+ν
k and expanding

Λ(x), we have that
∑ν

k=1(YkX
j+ν
k + Λ1YkX

j+ν−1
k + . . .+ ΛνYkX

j
k) = 0 which yields

SjΛν + Sj+1Λν−1 + . . .+ Sj+ν−1Λ1 = −Sj+ν (8.6)

as Sj =
∑ν

k=1 YkX
j
k . Having up to 2t syndromes, we can construct a system of t linear

equations having the coefficients of Λ as unknowns:
S1 S2 . . . Sν

S2 S3 . . . Sν+1
...

...
Sν Sν+1 . . . S2ν−1




Λν

Λν−1
...
Λ1

 =


−Sν+1

−Sν+2
...
−S2ν

 (8.7)

Since the number of errors ν ≤ t is not known, the PGZ tries all 1 ≤ ν ≤ t in
decreasing order until a matrix with nonzero determinant is found, whose inverse is
used to compute the Λ values.

146

8.2. HQC

Figure 8.7: Minimal length LFSR generated by the Berlekamp-Massey Algorithm staring from the se-
quence of syndromes

A more efficient algorithm is given by the Berlekamp-Massey algorithm [Mas69].
The Equation 8.6 describes an operation of a LFSR, as depicted in Figure 8.7. Deter-
mining the coefficients of Λ is equivalent to synthesizing the minimum length LFSR
generating the entire sequence of syndromes S1, S2, . . . , S2t when the LFSR registers
are initialized with S1, S2, . . . , Sν .

Chien Search is a fast algorithm determining the roots of Λ(x) with an efficient
hardware architecture composed by t multipliers with a constant operand and t − 1
adders. Given that Λ(α−i) =

∑t
k=1 Λkα

−ik, the evaluation with the following power of
α is Λ(α−i+1) =

∑t
k=1 Λkα

−ik+k =
∑t

k=1(Λkα
−ik)αk, which only requires to multiply

the previous result by αk. The initial value for the k-th term is Λkα
−nek, and the tested

α power is a root for Λ(x) if the result is 0.
Once the error locations are known, the error values Yk can be obtained possibly solv-

ing Equation 8.3 via Gaussian elimination, or using Forney’s formula, which exploits
the fact that the matrix of Xj

k is a Vandermonde matrix. Consider now that the formal
derivative Λ′(x) is d

dx

∏ν
i=1(1 − Xix) = −

∑ν
l=1 Xl

∏ν
i=1,i ̸=l(1 − Xix) due to Leibniz

rule. Evaluated in X−1
k , it yields −Xk

∏ν
j=1,j ̸=k(1 − XjX

−1
k) = −1

Yk
Ω(X−1

k) which is

used to retrieve Yk = − Ω(X−1
k)

Λ′(X−1
k)

. After the computation of the error polynomial, the
error-free codeword can be reconstructed.

In this design we employed the Enhanced Parallel Inversionless Berlekamp-Massey
Algorithm (ePIBMA) introduced in [Wu15] to derive Λ(x). An overview of the archi-
tecture is depicted in Figure 8.8. To support all parameter sets, a number of Processing
Elements (PE) equal to the maximum 2t+ 1 value are instantiated, taking care to prop-
erly preset their registers ma and mb with the correct amount of coefficients from the
previously computed syndrome polynomial S(x). Eventual unused PEs are initialized
with a zero symbol, and the computation is completed after just 2t− 1 clock cycles.

To find the error locations and values, we used the Enhanced Chien Search and Error
Evaluation (eCSEE) architecture from [Wu15], depicted in Figure 8.9. It performs both
tasks in parallel, reusing the evaluation of Xk on the even powers of the unknown of
Λ(x) for both the Chien Search and the Error Evaluation, as Λ′(x) = d

dx
(Λ0 + Λ1x +

. . .+Λνx
ν) = Λ1 +2Λ2x+3Λ3x

2 + . . .+ νΛνx
ν−1 = Λ1 +Λ3x

2 + . . . = x−1Λodd(x).
Due to the small size of the finite field used by the RS code, the finite field inversion
necessary to compute Yk is obtained via a 2 KiB read-only memory. Adapting this

147

Chapter 8. Top-level design

param param

param

Figure 8.8: Enhanced Parallel Inversionless Berlekamp-Massey Algorithm architecture computing the
error locator polynomial Λ(x) and an auxiliary polynomial B(x) starting from the syndrome polyno-
mial S(x)

architecture to support all parameter sets required to instantiate a number of multipliers
equal to the maximum length of the error locator and auxiliary polynomials. The zero
symbols introduced in the ePIBMA PEs ensured the correct computation of the error
vector in ne clock cycles. To retain a constant-time behavior, the decoding procedure is
always executed, even if there are no errors detected during the syndrome computation.

For the RS decoder, the ePIBMA module contributes for the vast majority to the logic
resource usage (≈ 75% of LUTs) due to the large amount of general F(28) multipliers
required.

The unified component proved to be extremely efficient with a 1.1× area increase
compared to the design optimized for the largest code (the one for hqc256). The occu-
pied area is reduced by 2× when compared to a component containing all the decoders
specialized for the three RS codes.

Duplicated Reed-Muller code

The HQC specification describes a binary 1st order RM code with parameters [ni = 2l,
ki = l, di = 2l−1] = [128, 8, 64], with l = 7, extended with a repetition code having each
codeword composed by m replicas of the same RM original codeword. For the NIST
security level 1, the extended RM code [384, 8, 192] is obtained applying a multiplicity
m = 3, whereas for the security levels 3 and 5, the extended RM code [640, 8, 320] is

148

8.2. HQC

Figure 8.9: Enhanced Chien Search and Error Evaluation architecture computing the error indexes Xk

and error values Yk starting from Λ(x) and an auxiliary polynomial B(x)

Table 8.5: Synthesis results for the Reed-Solomon decoder on the Artix-7 FPGA. The Area-Time product
is computed as eSlices · µs

Param. Design Resources Freq. Latency AT
set LUT FF BRAM eSlice MHz CC µs prod.

hqc128
Parameter set optimized

3169 1643 0 793 273 97 0.36 285
hqc192 3648 1652 0 912 265 117 0.44 401
hqc256 6147 2579 0 1537 249 185 0.74 1137

hqc128
Sum of parameter set optimized 12964 5874 0 3242 249

97 0.39 1264
hqc192 117 0.47 1523
hqc256 185 0.74 2399
hqc128

Unified design 6426 2576 0 1607 249
97 0.39 626

hqc192 117 0.47 755
hqc256 185 0.74 1189

149

Chapter 8. Top-level design

Table 8.6: Synthesis results for the Reed-Muller encoder on the Artix-7 FPGA. The Area-Time product is
computed as eSlices · µs

Param. Resources Freq. Latency AT
set LUT FF BRAM eSlice MHz CC µs prod.

hqc128 246 322 2.0 486 434 194 0.45 218
hqc192 247 329 2.0 486 396 336 0.85 413
hqc256 255 329 2.0 486 411 506 1.23 600

obtained using a multiplicity m = 5.

Encoder algorithm To derive the 128-bits codewords c corresponding to each 8-bits input
message m, the schoolbook vector-matrix multiplication encoding procedure considers
the RM generator matrix GRM ∈ F8×128

2 and computes c = mGRM. The generator matrix
GRM defined by the authors of HQC is reported in Equation 8.8, here grouped in 32-bits
chunks for easier visualization.

GRM =



0xAAAAAAAA 0xAAAAAAAA 0xAAAAAAAA 0xAAAAAAAA
0xCCCCCCCC 0xCCCCCCCC 0xCCCCCCCC 0xCCCCCCCC
0xF0F0F0F0 0xF0F0F0F0 0xF0F0F0F0 0xF0F0F0F0
0xFF00FF00 0xFF00FF00 0xFF00FF00 0xFF00FF00
0xFFFF0000 0xFFFF0000 0xFFFF0000 0xFFFF0000
0x00000000 0xFFFFFFFF 0x00000000 0xFFFFFFFF
0x00000000 0x00000000 0xFFFFFFFF 0xFFFFFFFF
0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF


(8.8)

Notice that the values in the first 32-bit wide column are repeated also on the following
columns, except for the rows highlighted in boldface.

A straightforward encoding design following the schoolbook approach employs ki =
8 multiplexers with two 128 input bits, where one input is the matrix row, and the other
input is the constant 0 ∈ F128

2 . Each bit of the message m drives the selection signal
of such multiplexers, and ki − 1 = 7 xor gates 128-bits wide are used to sum the
selected matrix rows. A binary tree structure can be used to minimize the depth of such
accumulation process.

A simple and effective optimization applied in the design of the RM encoder consid-
ers each row in the generation matrix GRM as a sequence of 32-bits words and leverages
the presence of computations yielding the same intermediate values due to the redun-
dancy of some columns in the matrix. As a consequence, a more compact vector-matrix
multiplication can be devised using 9 multiplexers, with smaller two 32 input bits, and
9 banks of xor gates 32-bits wide.

Finally, the required multiplicity m, the only differentiator between the duplicated
codes defined by each HQC parameter set, is implemented by sequentially storing the
resulting value into m contiguous memory locations.

150

8.2. HQC

(a) Hadamard transform layer (b) Connections between the i-th register and each
Butterfly unit

Figure 8.10: Design computing the Hadamard transform. For graphical reasons, each one of the 128
registers on the left side are replicated on the right side, although being the same entity. The same
layer is applied log2 128 = 7 times, without tweaking the connections to the registers, and at the end
of the computation the transformed result is contained in the registers.

Decoder algorithm Since the RS decoder acting as the second stage of the RM/RS con-
catenated decoder needs the entire output of the RM decoder, minimizing the latency of
the RM decoder plays a significant role in this design. Therefore, in designing the RM
decoder we prioritized performance over resource reuse.

The extended RM codeword is initially de-duplicated accumulating in a flip-flop-
based buffer the bitwise sum of the m-fold 128-bit replicas, via 128 independent adders,
to the end of dealing with the plain 1st order RM code [ni = 2l, ki = l, di = 2l−1] =
[128, 8, 64]. Considering the appropriate number of message/codeword blocks and mul-
tiplicity m defined by each parameter set is enough to support all security levels without
extra incurred cost.

The design of the RM decoder follows the implementation of the Maximum Likeli-
hood (ML) decoder computing a fast Hadamard transform, firstly introduced by [BS86],
which requires only O(ni log(ni)) binary operations and log(ni) clock cycles in contrast
with the O(n2

i) binary operations and O(ni) clock cycles provided by a plain ML-based
RM decoder. The transform layer and its butterfly unit are depicted in Figure 8.10. Note
that the de-duplication process influenced the actual computation, and the subtraction
of the value 64 to the first register is required to compensate such operation.

The maximum absolute value in the result of the Hadamard transform is found with a
pipelined comparator tree computing pairwise maxima, acting on a tunable-sized input
vector. An example of comparison of 8 parallel values is represented in Figure 8.11.
The encoded message corresponds to the index of the register containing the maximum
value, hence a side tree is built to determine the (fixed) index value using exactly the

151

Chapter 8. Top-level design

max
val

(a) Comparison of register content finding the maximum value

idx
max

(b) Selection tree of the register index with the maximum value

Figure 8.11: Pipelined comparison tree performing ζ = 8 parallel comparisons determining the maxi-
mum value. The operation is iterated 128/ζ to determine the maximum vector value.

noisy
channel

RM/RS codeword
M S G

encode
RSMSG MSG

RS codeword -
RM information

word
encode

RMMSG

received
RM/RS codeword

M S G
decode

RM
decode

RS

information
word

information
word

MSG

Sender Receiver RS codeword -
RM information

word

Figure 8.12: Encoding and decoding of a Error-Correcting Code generated by the concatenation of
an external RS code with an internal RM code. The execution order of the sub-codes encoding and
decoding procedures is specular.

same selection signal.
In Table 8.7 are reported the synthesis results of the RM decoder for the Artix-7

FPGA, exploring different the speed/area trade-offs given by the parallel comparison
of multiple elements. As the comparison tree is fully pipelined, the number of FF used
quickly rises with the size of comparison block, with the best efficiency obtained having
16 parallel comparisons at a small cost of incremented resource count.

Reed-Muller/Reed-Solomon concatenated code

Figure 8.12 represents the steps to perform the encoding and decoding of code generated
by the concatenation of an external RS code with an internal RM code:

Encoding the external RS code encodes the original message m into a RS codeword,
which is then interpreted as the message to be encoded by the internal RM code
into the final RM/RS codeword

152

8.2. HQC

Table 8.7: Synthesis results for the Reed-Muller decoder on the Artix-7 FPGA when comparing multiple
elements elements in parallel. The Area-Time product is computed as eSlices · µs

Parameter Parallel Resources Freq. Latency AT
set comparisons LUT FF BRAM eSlice MHz CC µs prod.

4 3034 1392 1.0 971 226 2256 9.98 9.69
8 3069 1486 1.0 980 210 1566 7.46 7.31
16 2761 1642 1.0 903 219 1244 5.68 5.13
32 3266 2006 1.0 1029 211 1106 5.24 5.39

hqc128

64 3815 2995 1.0 1166 211 1060 5.02 5.86
4 3411 1557 1.0 1065 225 2858 12.70 13.53
8 3432 1660 1.0 1070 216 2018 9.34 10.00
16 3606 1850 1.0 1114 193 1626 8.42 9.39
32 3935 2235 1.0 1196 196 1458 7.44 8.90

hqc192

64 4630 3290 1.0 1370 210 1402 6.68 9.15
4 3347 1528 1.0 1049 187 4592 24.56 25.76
8 3449 1659 1.0 1075 216 3242 15.01 16.13
16 3599 1835 1.0 1112 217 2612 12.04 13.38
32 4095 2238 1.0 1236 218 2342 10.74 13.28

hqc256

64 4631 3291 1.0 1370 205 2252 10.99 15.05

Table 8.8: Length, dimension, and minimum distance of the [n, k, d] concatenated RM/RS fixed code and
its sub-codes. The rightmost column represents the failure probability of the decoding procedure when
the concatenated code is used in the HQC scheme.

Parameter Concatenated code Constraints
set Reed-Solomon Reed-Muller p ≈ neni keki DFR

hqc128 [46, 16, 31] [384, 8, 192] 17669 ≈ 17664 128 2−128

hqc192 [56, 24, 33] [640, 8, 320] 35851 ≈ 35840 192 2−192

hqc256 [90, 32, 59] [640, 8, 320] 57637 ≈ 57600 256 2−256

Decoding the RM/RS codeword, considered as a codeword of the internal RM code,
gets decoded into its message, which is then interpreted as the codeword of the
external RS code to be decoded into the message m′

If the error e introduced during the transmission has a Hamming weight lower than the
error-correcting capability of the concatenated code, the original message m = m′ is
successfully retrieved.

While the RM and RS encoders can work in a pipelined fashion processing the orig-
inal input message byte-wise, this is not possible for the RM and RS decoders, since the
latter requires the whole codeword during the very first step of the decoding algorithm.

Recall that fixed RM/RS concatenated code [neni, keki, dedi] is formed by a short-
ened RS [ne, ke, de] external code, and a duplicated RM [ni, ki, di] internal code, identi-
fied by the generator matrix G. Table 8.8 reports the lengths and dimensions of the RS
and RM codes used by HQC that satisfy the constraints p ≈ neni, keki being the appro-
priate length of the message m secure against a bruteforce search, and guaranteeing the
required DFR for each security level defined by NIST.

153

Chapter 8. Top-level design

Table 8.9: Synthesis results for the Reed-Muller/Reed-Solomon encoder and decoder on the Artix-7
FPGA compared to the current state-of-the-art. The RM decoder compares 16 elements at a time, and
the Area-Time product is computed as eSlices · µs

Module Parameter Design Resources Freq. Latency AT
set LUT FF BRAM eSlice MHz CC µs prod.

Encoder

hqc128
This work 532 620 2.0 557 374 148 0.40 222
[Des+23] 858 922 2.0 639 270 97 0.36 230
[Ae22] 2019 603 0.0 505 – 7244 – –

hqc192
This work 570 644 2.0 567 394 290 0.74 419
[Des+23] 1011 1088 2.0 677 298 131 0.44 297

hqc256
This work 743 854 2.0 610 386 460 1.19 725
[Des+23] 1503 1689 2.0 800 293 189 0.65 520

Decoder

hqc128
This work 5896 3364 2.5 2004 212 1293 6.10 12224
[Des+23] 2817 3779 2.5 1235 205 4611 22.49 27775
[Ae22] 10154 2569 3.0 3175 – 68619 – –

hqc192
This work 7219 3561 2.5 2335 219 1685 7.69 17956
[Des+23] 3257 4727 2.5 1345 212 5485 25.87 34795

hqc256
This work 10090 4472 2.5 3053 225 2705 12.02 36697
[Des+23] 3679 5574 2.5 1450 206 9199 44.66 64756

In Table 8.9 are reported the synthesis results of the concatenated RM/RS code en-
coder and decoder for the Artix-7 FPGA. The RM/RS encoder proved to be remarkably
compact, fast, and efficient, although slower with respect to [Des+23]. However, the
encoder is already faster than the dense polynomial sampler, which is run in parallel in
the operation schedule, therefore in this case a smaller design is preferred over a faster
one.

Comparing the concatenated decoder with [Des+23], this design uses from 2× to
2.74× more LUTs, while requiring less FFs. Nonetheless, this solution is from 3.36×
to 3.71× faster and about twice more efficient in the Area-Time product metric.

8.2.2 Operation scheduling

Figure 8.13 illustrates the resulting operation schedule for the hqc scheme when uti-
lizing five true dual-port RAM memories. Each column delimited by vertical dashed
lines correspond to a FSM state, and the blocks are the scheme operations mapped on a
specific hardware component. Furthermore, the decision to employ precisely five mem-
ories stems from an analysis of parallelizable operations, which revealed the feasibility
of scheduling a polynomial multiplication alongside the sampling of a random polyno-
mial with a fixed Hamming weight. By constraining the latency of the multiplier unit
to closely match the one of the polynomial sampling unit, the required number of mem-
ory read ports accessed by the multiplier was determined to be l = 4, which in turn
determined the amount of memories used. The HQC scheme offers limited opportuni-
ties for parallelization at the algorithmic level. One notable instance is the concurrent
execution of the RM/RS concatenated encoding alongside the sampling of the public

154

8.2. HQC

sparse
sampler

seed
expander

dense
sampler

seed
expander

sparse
sampler

sparse
by

dense
multiplier

sparse
to

dense
adder

(a) HQC.KEM-KEYGENENERATION

sparse
by

dense
multiplier

dense
to

dense
adder

decode
RS-RM

encapsulation

seed
expander

sparse
sampler

memory
comparator

dense
sampler

seed
expander
K domain

(b) HQC.KEM-DECAPSULATION

sparse
sampler

hr2

r1

sr2sparse-by-dense
multiplier
sr2 = s⋅r2

e

cdw

seed
expander

dense
sampler

dense
sampler

seed
expander

sparse
sampler

sparse
sampler

sparse
by

dense
multiplier

sparse
by

dense
multiplier

sparse
to

dense
adder

sparse
to

dense
adder

seed
expander
G domain

dense
to

dense
adder

dense
sampler

encode
RS-RM

seed
expander
K domain

(c) HQC.KEM-ENCAPSULATION

Figure 8.13: Schedule of the operations for the HQC.KEM scheme. A white box represents an output
value

key polynomial h. However, additional parallelization possibilities may be restricted by
the presence of shared components, such as the Keccak module, which could introduce
resource contention.

The choice of true dual-port RAMs over simple dual-port variants is driven by the
high demand for read ports in the polynomial multiplication unit. Since the dense
operand for the polynomial multiplication must be replicated across all memories that
supply read access to the multiplier component, minimizing the number of copies and
instantiated RAM modules led to the selection of true dual-port memories as the most
efficient option for the FPGA implementation. However, in an ASIC design flow where
the use of customized memories gives more design freedom, alternative and more ef-
ficient memory architectures can be explored. Additionally, due to the specific access
pattern required for sampling fixed-weight vectors, two memory blocks are necessary to
support byte-enable writes with 16-bit wide words. Each memory port is dedicated to
a single computing module during the execution of a specific state in the global FSM,
ensuring that the arbitration logic remains minimal.

To optimize performance, we adopted a flattened HDL module hierarchy, integrat-
ing the HQC.PPKE components directly within the HQC.KEM implementation. This
approach leverages the reduced latency achieved through a manually routed intercon-
nect, efficiently linking the computing modules to both the memory blocks and the
SHAKE256 component. Given these constraints, the operation schedule executed by

155

Chapter 8. Top-level design

each top-level module remained identical, irrespective of the differing parameters spec-
ified in the official HQC documentation for the NIST security levels 1, 3, and 5, which
are referred to as hqc128, hqc192, and hqc256, respectively.

HQC.KEM-KEYGENERATION Module

The schedule of the key pair generation is reported in Figure 8.13a. The seed φ is ex-
panded into the dense public polynomial h (step K0 and K1), and the seed γ is expanded
(step K2) into the two private polynomials x and y.

Inverting the order of the sampled private polynomials enables a potential parallelism
between the sampling of the second polynomial x and the first polynomial multiplication
h · y. The proposed variation of the HQC specification, recently accepted in the latest
specification 4th October 2024, comes at no resource or security loss. Alternatively,
software implementation in constraint platforms, such as low-end microcontrollers, can
benefit from it deferring the expansion of x and overwriting y after the multiplication, as
it is no longer used in the algorithm after that operation. Moreover, only the y polyno-
mial is used during the decapsulation element, therefore the polynomial x is not gener-
ated using the new sampling order, avoiding to waste time discarding the first w ·32-bits
linked to x squeeze.

Consequently, the HQC.KEM-KEYGENERATION schedule samples the sparse poly-
nomial y in step K3, and multiplies it by h in step K4 while x is sampled in the mean-
time. This variation in the sampling order combined to this schedule of operation im-
proved the overall latency of the whole key generation from 15% to 38% depending on
the parameter set in use. Adding the sparse polynomial x to the result of the multiplica-
tion h · y generates the syndrome s in step K5. Note that the sparse polynomial y can
be sampled in parallel with h by replicating the SHAKE module if the price of the extra
hardware resource is acceptable.

HQC.KEM-ENCAPSULATION Module

The schedule of the key encapsulation, reported in Figure 8.13c, starts by absorbing the
message m, the salt, the syndrome s, and the public key seed φ via the HASHG function
(step E0), generating the encryption seed θ (step E1). During the expansion of the
parity-check polynomial h from φ, the message m is encoded via the RM/RS encoder
(steps E2 and E3). Afterwards, the sparse polynomials ra, rb, and e are sampled using
the output of the CSPRNG having absorbed the encryption salt θ.

Here is proposed a further optimization of the generation order of the polynomials,
recently included in the latest HQC specification [Agu+24a], by sampling the values rb,
e, and then ra. This allows the parallel execution of two sparse-by-dense multiplications
during the first two sampling operations (steps E5 to E7). Applying this variation in
the sampling order of these elements improved the latency of the whole encapsulation
from 15% to 35% depending on the chosen parameter set. Moreover, it enables SW
implementations in constrained platforms to expand the required element right before its

156

8.2. HQC

use, without cluttering the system memory or expanding multiple times the encryption
seed.

In step E8, the sparse polynomial e is incorporated into the product of s and rb by
inverting the binary coefficients at the index positions indicated by e. The resulting value
is then combined with the codeword to produce v in step E9. Ultimately, in step E10, the
sparse polynomial ra is added to the product of h and rb, resulting in the polynomial u.
Once the message m and the ciphertext u∥v are absorbed in the HASHK domain (step
E11), the first 512-bits of SHAKE’s internal state will hold the session key K, which is
securely stored in memory.

HQC.KEM-DECAPSULATION Module

The scheduling of this module, depicted in Figure 8.13b, begins by leveraging the opti-
mization of the HQC.KEM-KEYGENERATION procedure. This allows for the sam-
pling of the sparse polynomial y (step D1) without discarding any output from the
SHAKE-based CSPRNG, which would have been required if the x polynomial had
been sampled first. In step D2, the sparse polynomial y is multiplied by the first portion
of the ciphertext u, and in step D3 added to the second portion v. Following step D3, the
resulting value is a decodable message m′, which is passed to the concatenated RM/RS
decoder in step D4, completing the HQC.PPKE decryption.

Then, the encapsulation steps E0 through E10 are repeated due to the HHK frame-
work using the decoded message m′. If the resulting values u′∥v′ do not match the
received ciphertext u∥v (step D5), or if the decoding of the message fails, the secret
value σ bound to HQC’s private key is used instead of m′ to generate an invalid ses-
sion key Kf through the SHAKE module. The session key K′ ∨ Kf is then produced
by absorbing the ciphertext u∥v (step D6) and keeping the first 512-bits of the output
produced by the SHAKE module (step D7).

Note that the variation in the sampling order of y, ra, rb, and e also benefited the
decapsulation module due to the re-encryption performed by the HHK transformation,
resulting in a latency reduction between 13% and 32% depending on the employed
parameter set.

8.2.3 Design synthesis and implementation

In Table 8.10 are reported the synthesis results of full HW designs of some Post-
Quantum KEM schemes from NIST PQC contest targeting an Artix-7 FPGA. The
lattice-based candidates Streamlined NTRU Prime and CRYSTALS-Kyber are re-
ported in the first rows in each security category, followed by the code-based schemes
HQC, BIKE and Classic McEliece. Highlighted rows distinguish unified designs that
additionally are compatible with all parameter sets.

The proposed solution has lower latency and higher efficiency than [Des+23], while
also supporting all HQC parameters sets, even considering the lower working frequency
caused by high routing congestion and a net delay contributing by more than 83% to the

157

Chapter 8. Top-level design

Table 8.10: Comparison with other unified hardware accelerators for post-quantum KEM algorithms
synthesized for an Artix-7 FPGA and supporting all KEM operations. The highlighted designs in
addition support all parameters sets. The efficiency indicator Area × Time (AT) product is expressed
in eSlices ·ms. Lattice-based designs are reported in the first rows for each security category, followed
by code-based designs.

Design Resource Freq. KeyGeneration Encapsulation Decapsulation
sec. scheme ref. variant LUT FF BR DSP eSlice MHz µs AT µs AT µs AT

Kyber [DMG23] – 9347 8186 6 4 4147 220 10 40 15 62 20 85
Kyber [XL21] – 7412 4644 3 2 2758 161 24 65 32 87 42 115
HQC This work – 26561 13636 28 0 12471 143 39 488 82 1027 128 1597
HQC [Des+23] balanced 18662 7088 22 8 10406 164 96 1000 204 2122 294 3059
HQC [Des+23] high-speed 20011 7484 24 8 11167 178 89 989 126 1407 209 2333
HQC [Li+23] – 24591 11270 68 0 20564 178 112 2311 225 4621 393 8087
BIKE [Ric+22] lightweight 12319 3896 9 7 5930 121 3826 22691 446 2646 6950 41216
BIKE [Ric+22] trade-off 19607 5008 17 9 9717 100 1870 18171 280 2721 4210 40909
BIKE [Ric+22] high-speed 25549 5462 34 13 15344 113 1681 25800 133 2037 1168 17924

C. McEliece [Che+22] lightweight 23890 45658 138 5 36007 112 1161 41794 1518 54653 79286 2854841

A
E
S
-
1
2
8

C. McEliece [Che+22] high-speed 40018 61881 178 4 48173 113 265 12789 885 42631 8584 413520
S. NTRU P. [Pen+23] low area 9574 4399 8 18 6617 128 4917 32535 228 1512 669 4427
S. NTRU P. [Pen+23] high-speed 41428 26381 36 31 22265 140 457 10182 36 796 78 1748

Kyber [DMG23] – 10434 9473 8 6 5218 220 12 64 18 93 23 119
Kyber [XL21] – 7412 4644 3 2 2758 161 39 108 49 135 62 171
HQC This work - 26561 13636 28 0 12471 143 96 1200 200 2497 305 3799
BIKE [Ric+22] lightweight 13850 4010 15 7 7584 116 15302 116048 1353 10265 20526 155668
BIKE [Ric+22] trade-off 20049 5039 17 9 9827 100 6930 68101 800 7862 11980 117727

A
E
S
-
1
9
2

BIKE [Ric+22] high-speed 25811 5460 34 13 15410 113 6027 92869 372 5728 5354 82505
Kyber [DMG23] – 11527 10767 10 8 6184 220 16 101 22 135 27 169
Kyber [GLK22] – 7900 3900 16 4 5905 159 49 290 53 312 66 390
Kyber [XL21] – 7412 4644 3 2 2758 161 58 161 70 194 86 238
HQC This work – 26561 13636 28 0 12471 143 181 2262 378 4718 574 7158
BIKE [Ric+22] lightweight 13973 4002 34 7 11643 113 42558 495497 3035 35341 46168 537536
BIKE [Ric+22] trade-off 21373 5160 34 9 13762 94 19649 270409 1851 25474 27872 383579

A
E
S
-
2
5
6

BIKE [Ric+22] high-speed 26441 5601 34 13 15567 111 16198 252157 811 12622 11901 185261

158

8.2. HQC

total delay in the critical path. Similarly to [Li+23], we are not using specialized DSP
units, but this design requires less than half of the BRAMs and supports all the parame-
ters sets, showing a remarkable efficiency. CRYSTALS-Kyber has several low-latency,
compact, and efficient hardware implementations: among all the other code-based can-
didate designs, this design for HQC is the only one showing metrics in the same order of
magnitude. This further confirms that HQC is a noteworthy alternative to CRYSTALS-
Kyber, particularly for the AES-128 equivalent security margin, as the penalties in
latency and efficiency when using higher security guarantees grow faster in all consid-
ered code-based schemes compared to CRYSTALS-Kyber. When compared to BIKE,
the high-speed variant of [Ric+22] reports a similar but higher eSlice resource usage,
while being from 1.62× to 89× slower than our solution. Classic McEliece is unable
to guarantee security margins higher than AES-128 on a low-end target as an Artix-
7 due to the error correction code size not fitting in the available BRAM, and results
from 6.8× to 67× slower than the presented HQC solution. Finally, this HQC de-
sign can compete with hardware designs for lattice-based Streamlined NTRU Prime,
roughly positioning somewhere between the low area and high-performance solutions
of [Pen+23]. As for any NTRU-derived scheme, the key generation is the most expen-
sive operation which does not compare favorably with HQC.

In Table 8.11 are reported the results for the designs specialized for either the server
(key generation and decapsulation KEM operations) and client (just supporting the en-
capsulation KEM operation). The BIKE designs in [Gal+22] maximized the parallelism
of the computing modules to fill the entire FPGA fabric of an Artix-7 50T (low-cost
chip variant) and an Artix-7 200T (top-of-the-line chip variant), providing top level
designs specialized for the parameter sets having security margins of AES-128 and
AES-192. Due to the expensive inversion operation in the key generation, the server
designs are penalized both in terms of latency and, by a larger margin, in efficiency with
respect to the presented solution. On the other end, the lightweight client designs show
≈ 2× better latency and efficiency figures than the proposed design, partially due to
the larger number of operations carried out during the HQC encapsulation. Finally, the
CRYSTALS-Kyber client and server designs in [XL21] have from 2.3× to 4.7× better
latency than this design of HQC, with an efficiency improved by 7× to 21×.

The unified design was then evaluated using an ASIC toolchain composed of Yosys
and OpenROAD for synthesis and place-and-route, respectively. The tools used the
FreePDK45 technology library to complete the open-source ASIC toolchain, and evalu-
ated using the typical process corner of 1.1V at 25°C. Due to the current lack of maturity
of the OpenRAM memory compiler, the memory buses are directly exposed as I/O pins
of the chip. Despite this fact, the resulting design reached a maximum operating fre-
quency of 419 MHz, occupying an area of 0.496mm2.

To better appreciate the computational advantages provided by this HQC accelera-
tor targeting an AMD Artix-7 FPGA, it is worth considering also the performance of
a software implementation run on a CPU-based platform, which can be fit in the same
cost envelop and at the same level of maturity of semiconductor fabrication technology.

159

Chapter 8. Top-level design

Table 8.11: Results of the synthesis exploration for the NTRU.KEM server/client configurations on an
Artix-7 FPGA. The highlighted designs in addition support all parameters sets. The contribution of
the SHAKE256 of 5520 LUTs and 2810 FFs is excluded. The efficiency indicator Area-Time (AT)
product is expressed in eSlices · ms.

(a) Comparison with other client hardware accelerators for post-quantum KEM supporting only the
encapsulation primitive

Design Resource Freq. Client
security scheme ref. variant LUT FF BR DSP eSlice MHz µs AT

BIKE [Gal+22] high-speed 126510 51492 357 0 107312 91 30 2438
BIKE [Gal+22] lightweight 31792 17805 44 0 17170 91 30 339
HQC This work – 26533 13688 28 0 12464 156 73 595

AES-128

Kyber [XL21] – 7412 4644 3 2 2758 161 30 79
BIKE [Gal+22] high-speed 124891 53067 360 0 107543 91 60 4086
BIKE [Gal+22] lightweight 31411 20181 46 0 17499 91 80 874
HQC This work – 26533 13688 28 0 12464 156 175 1433

AES-192

Kyber [XL21] – 7412 4644 3 2 2758 161 47 123
HQC This work – 26533 13688 28 0 12464 156 328 2688

AES-256 Kyber [XL21] – 7412 4644 3 2 2758 161 68 176

(b) Comparison with other server hardware accelerators for post-quantum KEM supporting the key gen-
eration and decapsulation primitives

Design Resource (server) Freq. Server
security scheme ref. variant LUT FF BR DSP eSlice MHz µs AT

BIKE [Gal+22] high-speed 91422 46208 276 0 81262 91 580 62241
BIKE [Gal+22] lightweight 19804 11401 30 0 11311 91 5710 98041
HQC This work – 15847 9335 20 0 8202 172 158 1966

AES-128

Kyber [XL21] – 6785 3981 3 2 2602 167 65 179
BIKE [Gal+22] high-speed 72725 37795 236 0 68108 91 1710 183899
BIKE [Gal+22] lightweight 19979 12282 28 0 10931 91 19270 337206
HQC This work – 15847 9335 20 0 8202 172 377 4693

AES-192

Kyber [XL21] – 6785 3981 3 2 2602 167 102 280
HQC This work – 15847 9335 20 0 8202 172 707 8813

AES-256 Kyber [XL21] – 6785 3981 3 2 2602 167 145 399

160

8.2. HQC

Specifically, we referred to the eBATS (ECRYPT Benchmarking of Asymmetric Sys-
tems) public benchmarking tool [VAM22] and identified the Rockchip RK3288 ARM
Cortex-A17 CPU, running at 1800 MHz, produced with a 28nm HKMG technology, as
the nearest one to a XC7A35T platform, included in the AMD Artix-7 lineup produced
with a 28nm HPL technology, which can easily accomodate our design. Note that the
current bulk price of the AMD Artix-7 XC7A35T chip and of the Rockchip RK3288
ARM Cortex-A17 CPU is 16 vs 19 US dollars, respectively. The benchmarked software
complies to the HQC round 1 submission, and is the optimized variant provided by the
authors of HQC. The runtime execution of the key generation, the encapsulation, and
the decapsulation takes 8, 901, 18, 430, and 31, 917 kcycle for the three parameter sets,
thus 4.94, 10.2, and 17.7 ms considering the 1, 800 MHz clock frequency. By compari-
son, the unified hardware accelerator takes only 0.249, 0.601, and 1.13 ms, which makes
it 19.8×, 16.9×, and 15.6× faster than the CPU counterpart.

161

Chapter 8. Top-level design

Upscale

Vector-matrix
multiplier Vector

subtraction

Vector
subtraction

Vector
exponentiation

Vector
point-wise

multiplication

Memory 1
Port B

Vector-matrix
multiplication

Vector
subtraction

Vector
point-wise

multiplication

Vector
addition

Memory 1
Port A

R W

Replicate

Replicate

Downscale

Upscale

RW

Memory 2
Port A

RW

Upscale

Clone

Clone

Clone

-

Figure 8.14: Arithmetic unit design for CROSS supporting all the arithmetic operations of
CROSS.KEYGENERATION, CROSS.SIGN, and CROSS.VERIFY composed as a partially repro-
grammable chain of modules. The elements outlined with a dashed line are specific to R-SDP(G)
parameters, and can be omitted by the designs supporting a R-SDP parameter set.

8.3 CROSS

In this section are presented the missing components required to complete the design
of the CROSS digital signature scheme, starting from the development of an arith-
metic unit collecting all the arithmetic modules in a single component to simplify the
logic of the top-level design FSA. Afterwards, the tree unit module is briefly pre-
sented, with some insights on the performance and the required resources. Finally,
the scheduling of the operations carried out during the three DS primitives, namely the
CROSS.KEYGENERATION, CROSS.SIGN, and CROSS.VERIFY, is described before
presenting the results of the CROSS hardware accelerator.

8.3.1 Arithmetic unit

Analyzing the arithmetic operations carried out during the CROSS.KEYGENERATION,
CROSS.SIGN and CROSS.VERIFY, such as the vector addition, subtraction and point-
wise multiplication, exponentiation, and the vector-matrix multiplications, it can be no-
ticed that the sequence of arithmetic operations is mostly fixed. Therefore, to reduce the
size of the point-to-point network and the size of the FSA in the top-level design, it can
be designed an arithmetic unit combining the aforementioned modules, previously de-
scribed in section 7.5, with a semi-flexible chain structure depicted in Figure 8.14. Each
module transfers data using a 64-bits wide Advanced eXtensible Interface (AXI) stream
interface, which is part of the Advanced Microcontroller Bus Architecture (AMBA)
open-standard from ARM.

Inside the arithmetic unit there are some locally memories to access the matrices V⊤

and W using large 192-bits words, which are loaded during an initialization phase re-
ceiving a single coefficient in Fz or Fp per clock cycle in parallel. Furthermore, another
memory contains all the t distinct e′[i] determined during the computation of the com-
mitments cmt0[i] during the CROSS.SIGN operation, used to generate the first chal-

162

8.3. CROSS

Table 8.12: Logic of the FSA managing the CROSS arithmetic unit, and elements transferred in the
input/output stream interfaces. a ∨ b means that a is stream when using a R-SDP parameters set,
and b in case of R-SDP(G) parameter sets. Text in red (respectively, blue) means that the element is
streamed from the CSPRNG (respectively, memory).

Stream
interface

Arithmetic operation
Init. Key Expand cmt0[i] chall1[i] Verify Verify

generation e computation response chall2[i]=0 chall2[i]=1
I0 V⊤ – – – chall1[i] chall1[i] chall1[i]
I1 – e∨eG eG e′[i]∨e′G[i] – v[i]∨vG[i] e′[i]∨e′G[i]
I2 – – – – u′[i] s u′[i]
I3 – – – u′[i] – y[i] –
I4 W – – – – – –
I5 – – – e∨(eG, e) – – –
O0 – s – s′[i] – s′[i] –
O1 – – – – y[i] – y[i]
O2 – – e v[i]∨vG[i] – – –

lenge responses y[i] during the same operation. As a consequence, the sampling unit
and the vector-matrix multiplication unit specialized for the matrix M are not executed
a second time, sensibly speeding-up the computation of the first challenge responses.

The streams used by the modules are 64-bits wide, allowing to compute multiple op-
erations on Fz and Fp coefficients each clock cycle. When a R-SDP(G) parameter set is
used, some parts of the arithmetic unit can be safely removed, such as the vector-matrix
multiplication specialized for the matrix M. These modules are denoted by dashed bor-
ders in Figure 8.14. Moreover, by looking at the figure, the schematic can be partitioned
in two isolated sections, separated by the vector exponentiation unit. The first section
involves arithmetic in Fz where the vector coefficients represent the exponents of the
element g generating the group En, while the other section involves arithmetic in Fp

after the conversion of a vector in Fn
z to a vector in Fn

p by means of the exponentiation
unit. Considering 64-bits wide AXI streams, the number Fp and Fz coefficients encoded
in a single word differs, as z < p. Therefore, a small FIFO buffer at the input of the
exponentiation unit is used to compose a smaller word having fewer Fz coefficients in
it, matching the number of the Fp ones contained in a single 64-bits word.

In Table 8.12 is reported the logic of the FSA managing the semi-programmable
computation chain. For each arithmetic operation is defined the expected elements re-
ceived at the input stream interfaces, and the elements generated at some output stream
interface.

The initialization operation loads the matrices V⊤ and W into the local memo-
ries with the data received from the CSPRNG during the CROSS.KEYGENERATION,
CROSS.SIGN and CROSS.VERIFY procedures.

The key generation operation receives the private key error vectors e or eG, depend-
ing on the underlying hard problem, and produces the syndrome s. This operation is
clearly performed in the CROSS.KEYGENERATION algorithm, and is executed only

163

Chapter 8. Top-level design

Table 8.13: Synthesis results for the CROSS arithmetic unit when targeting an AMD Artix-7 FPGA
and using 64-bits wide AXI streams. The latencies consider the throughput of the rejection sampler
unit, and exclude the contribution of the initialization phase and the one-time expansion of eG. and
consider the t parallel executions of the CROSS-ID protocol and the second challenge Hamming
weight w. The area of the arithmetic unit does not vary depending on the fast, balanced, or small
optimization corners, with the only exception being the BRAM units.

Parameter Resources Freq. Latency (CC)
set LUT FF BRAM DSP eSlice MHz KeyGen. Sign Verify

CROSS-RSDP-1-f 4715 2808 10.0 0 3299 138 355 (360+27)t 298(t−w)+210w
CROSS-RSDP-3-f 4746 2971 14.0 0 4155 136 716 (710+33)t 650(t−w)+274w
CROSS-RSDP-5-f 5019 2929 14.0 0 4223 137 1074 (1084+40)t 1020(t−w)+347w
CROSS-RSDPG-1-f 9141 4153 10.0 29 8306 109 188 (193+21)t 190(t−w)+145w
CROSS-RSDPG-3-f 9122 4479 10.0 29 8301 112 343 (349+25)t 344(t−w)+248w
CROSS-RSDPG-5-f 9158 4693 14.0 29 9158 111 482 (488+29)t 485(t−w)+348w

once.
The expand e operation is only required by R-SDP(G) parameters to expand eG into

the secret error exponents e using the matrix M at the beginning of the CROSS.SIGN
algorithm, before performing the computation of the commitment cmt0[i] for t times.
This arithmetic operation produces the vector transformation element v[i]∨vG[i] and
the round syndrome s′[i] starting from e′[i]∨e′G[i] and u′[i], both generated from the
expansion of seed[i] by the CSPRNG. During the process, each transformed error
vector e′[i] is stored in a local memory, to avoid the expensive re-expansion of e′G[i] via
the vector-matrix multiplication specialized for the matrix M in the following arithmetic
operation performed by CROSS.SIGN, the computation of the first challenge response.
In such operation, executed t times, the first challenge chall1[i] and the previously
sampled element u′[i] are used to compute the first challenge response y[i].

In the CROSS.VERIFY algorithm one of the two verification routines implemented
by the arithmetic unit is executed depending on the value of the second challenge
chall2[i]. If it is equal to 0, then the arithmetic unit uses the fist challenge value
chall1[i], the vector transformation element v[i]∨vG[i], the syndrome from the pub-
lic key s, and the first challenge response y[i] to retrieve the round syndrome s′[i]. If
chall2[i] = 1, then the transformed error vector e′[i]∨e′G[i] and the vector u′[i] are
expanded from the seed[i] by the CSPRNG and provided to the input stream inter-
faces, along with the first challenge value chall1[i]. In this case, the arithmetic unit
will recompute the first challenge response and provide it to the output interface.

In Table 8.13 is reported the out-of-context synthesis of the CROSS arithmetic unit
for the AMD Artix-7 FPGA platform when varying the parameter sets in use and us-
ing 64-bits wide AXI streams. In line with the synthesis results of each component
presented in section 7.5, the vector-matrix multiplication units take roughly 2/3 of the
occupied area, while the point-wise multiplier units take the majority of the remaining
logic area. Only the parameters instantiating the R-SDP(G) hard problem use the DSP
units in the first multiplication of the Barrett reduction. The local memories account

164

8.3. CROSS

for 10 to 14 BRAM resources when using the parameter sets from the fast optimization
corner, growing linearly with the parameter t and utilizing up to 42 BRAMs when the
parameter set CROSS-RSDP-5-s is used. Note that with the exception of BRAMs,
the occupation of the remaining resources in the FPGA fabric do not vary depending on
the optimization corner. By looking at the maximum working frequency of the arith-
metic unit, it is easy to notice that the additional modules introduced by the R-SDP(G)
parameters slightly decrease the clock frequency to ≈ 110 MHz when compared to the
≈ 135 MHz reached by designs using R-SDP parameters.

In the remaining section of Table 8.13 are reported the latencies, in clock cycles, of
the arithmetic computations performed in the three DS primitives, namely the genera-
tion of the private and public keys, the singing of a message, and the verification of the
signature. The latencies are expressed as formulas in t and w variables to generalize
the latency for every optimization corner, and highlight the cost of each arithmetic op-
eration performed by the arithmetic unit. These results do not consider the cost of the
initialization phase when loading the two matrices V⊤ and W, and the expansion of the
secret error vector e. The reason is that the latency cost of the initialization is already
accounted in the sampling operation of such elements, as the execution of the two tasks
are overlapped. Regarding the latency of the expansion of e, such cost of a single ex-
pansion execution is only paid by R-SDP(G) parameters and is by far dominated by the
t parallel executions of the CROSS-ID protocol, thus having a negligible contribution
in the overall sign operation.

The generation of the key pair is extremely fast, particularly for R-SDP(G) parame-
ters, taking from 188 to 1074 clock cycles to generate the syndrome s. Computing each
commitment cmt0[i] takes from 193 to 488 clock cycles using the R-SDP(G) parame-
ters, and from 360 to 1084 clock cycles for the R-SDP ones, and this task is repeated
for each one of the t CROSS-ID executions. The computation of the first challenge
response y[i] is only taking few tens of clock cycles thanks to the relatively large size
of the streams connecting the modules compared to the size of vector coefficients, and
since there are no vector-matrix multiplications in this arithmetic operation. This op-
eration is repeated t times during the signing of the message. The two arithmetic op-
erations involved during the verification have similar latency, with the verification of
chall2[i] = 1 taking ≈ 3/4 the clock cycles of the other verification operation. Re-
calling that in the CROSS.VERIFY function the second challenge has w out of t times
the value 1, with 1

2
< w < t, the slightly faster verification operation is executed more

frequently than the other one.

8.3.2 Merkle and seed trees

An interesting aspect of CROSS is the availability of multiple optimization corners for
each parameter set defined the specification, providing a trade-off between the size of
the produced signatures, and the latency of the sign and verify operations. Specifically,
by unbalancing the second binary challenge in order to transmit within the signature
more seed[i] and cmt0[i] rather than the vector tuple (y[i],v[i]∨vG[i]) and cmt1[i], it

165

Chapter 8. Top-level design

Table 8.14: Synthesis results for CROSS Merkle tree of cmt0[i] and binary tree containing seed[i]
as leafs when targeting an AMD Artix-7 FPGA and using 64-bits word sizes. The signer computes the
SEEDLEAVES, SEEDPATH, TREEROOT, and TREEPROOF routines, while the verifier computes only
REBUILDLEAVES and RECOMPUTEROOT. Credits to Patrick Karl from the Technical University of
Munich.

Parameter Resources Freq. Latency (CC)
set LUT FF BRAM DSP eSlice MHz Sign Verify

CROSS-RSDP-1-f 1072 266 6.5 0 1646 171 4213 2381
CROSS-RSDP-1-b 972 259 6.5 0 1621 178 10536 9649
CROSS-RSDP-1-s 1138 310 28.5 0 6327 153 21376 19099
CROSS-RSDP-3-f 1149 273 12.5 0 2938 135 8439 4943
CROSS-RSDP-3-b 1143 298 28.5 0 6328 131 20075 17141
CROSS-RSDP-3-s 1282 312 28.5 0 6363 135 30261 25120
CROSS-RSDP-5-f 1136 297 28.5 0 6326 154 14055 8402
CROSS-RSDP-5-b 1032 289 28.5 0 6300 150 32455 26303
CROSS-RSDP-5-s 1221 310 56.5 0 12284 148 52610 41117

CROSS-RSDPG-1-f 1067 266 6.5 0 1645 173 3945 2225
CROSS-RSDPG-1-b 972 259 6.5 0 1621 188 10538 9589
CROSS-RSDPG-1-s 1022 280 12.5 0 2906 164 21032 18795
CROSS-RSDPG-3-f 1092 272 12.5 0 2923 148 7937 4664
CROSS-RSDPG-3-b 1207 297 12.5 0 2952 142 14055 12312
CROSS-RSDPG-3-s 1113 293 28.5 0 6321 133 26692 22245
CROSS-RSDPG-5-f 1142 296 28.5 0 6328 154 13105 7807
CROSS-RSDPG-5-b 1148 297 28.5 0 6329 150 22746 18991
CROSS-RSDPG-5-s 1215 313 56.5 0 12282 146 40608 32103

166

8.3. CROSS

is possible to achieve a reduced signature size since the size of seed[i] is much smaller
than (y[i],v[i] ∨ vG[i]). Note that the security loss caused by this unbalanced choice is
compensated by increasing the number of parallel executions of the ZK identification
scheme CROSS-ID. With the exclusion of the fast parameter set where w ≈ t/2t, the
large amount of seed[i] and cmt0[i] are efficiently transmitted by using the binary
expansion tree and the Merkle tree.

Upon loading the per-signature randomness seed at the root of the binary tree, the
implemented SEEDLEAVES function computes the tree leafs corresponding to all the
seed[i]. Afterwards the signer includes a subset of w < t seed[i] in the signature
by only selecting the internal tree nodes that are the oldest ancestors to the transmitted
seed[i] (SEEDPATH). On the verifier side, the REBUILDLEAVES loads the internal
tree nodes transmitted in the signature, and expands them to retrieve the subset of the
seed[i] sent by the signer.

The Merkle tree is used in a specular way by loading all the computed commitments
cmt0[i] on the leafs of a binary tree, and computing the value of the parent node up to the
root of the tree (TREEROOT). The signer includes in the signature only the internal tree
nodes that are the the oldest ancestors of the commitments to be sent (TREEPROOF).
The verifier loads the internal nodes when receives the signature, and computes the
missing tree leafs, and retrieves the tree root via the RECOMPUTEROOT function.

In Table 8.14 are reported the results of the synthesis targeting the AMD Artix-7
FPGA of the trees module incorporating the designs of both the seed[i] binary tree and
the Merkle tree of commitments cmt0[i]. The table then includes the resulting latency of
the functions executing the SEEDLEAVES, SEEDPATH, TREEROOT, and TREEPROOF
routines on the signer side, and only REBUILDLEAVES and RECOMPUTEROOT on the
verifier side.

The trees unit occupies few resources in terms of LUT and FF, with a maximum
working frequency > 130 MHz. Each tree has at most 2t−1 nodes containing either λ or
2λ bits value. Moreover, two side trees containing the metadata for the valid tree nodes
are used, where each node has a negligible size. The trees are linearized and stored in a
centralized memory, which is composed by Vivado using an amount of BRAMs ranging
from 12.5 to 56.5 depending on the parameter sets.

Note that for the fast optimization corner the design does not generate the Merkle
tree, and the previously described routines result simplified, justifying the reduced FPGA
resource usage, higher maximum working frequency, and lower latency.

8.3.3 Operation scheduling

The top level design mainly consists in three dual-port memories, the arithmetic unit,
the sampler unit, and the tree unit. Furthermore, some logic is necessary to compose the
signature during the sign operation, and parse it during the verification. All this units
are managed by a FSA implementing a schedule of the macro functions implementing
the CROSS.KEYGENERATION, CROSS.SING, and CROSS.VERIFY algorithms in a
single design.

167

Chapter 8. Top-level design

Given the consistent number of data dependencies in the CROSS scheme, there is
not much parallelism to leverage, other than performing multiple CROSS-ID proto-
cols in parallel. However, that would require the replication of the arithmetic unit, the
introduction of further memories, and the addition of more SHAKE units, with a con-
siderable increment of the occupied area and complexity of the design. For this design
we decided to aim for a streamlined design with competitive performance to provide a
base reference for future works.

The generation of the key pair starts by receiving the secret key randomness seedsk

from a TRNG. However, to properly test the designs against the official KATs, we use
a deterministic value and store it in the memory. Afterwards, the seed is expanded
in seede and seedpk from the sampler unit directly using the output of the SHAKE
module. Afterwards, the two matrices M (only for R-SDP(G) parameters) and V⊤

are generated from seedpk via the sampler unit, and immediately used to initialize
the memory with wide data ports contained in the arithmetic unit. The private seed
seede is then used to generate the element eG or e, depending on the underlying hard
problem generated by the parameter sets, and the public syndrome s can be generated
by the arithmetic unit. Finally the private and public keys are read from the memories
packed back to save some memory space and comply with the format mandated by the
specification.

Regarding the generation of the signature, the secret key, the public matrices, the sig-
nature randomness seed, and the salt are prepared in memory. Similarly to the secret
key randomness, the signature randomness and salt are deterministic values provided
by the KATs. The signature randomness seed is expanded using the seed tree via the
SEEDLEAVES routine provided by the tree unit. Then the t loop iterations are executed
generating the elements e′G[i] ∨ e′[i] and u′[i] from each leaf seed[i] of the seed tree
via the sampler unit, and the arithmetic unit at the same time proceeds in parallel com-
puting the elements s′[i] and vG[i] ∨ v[i]. Those elements are immediately absorbed
by the SHAKE unit, yielding the cmt0[i] wrote in the leafs position of the Merkle tree.
Each cmt1[i] is then generated by the SHAKE module in the sampler unit as the digest
of seed[i]∥salt, and stored consecutively in memory. The root of the Merkle tree
digcmt0 can now be computed via the TREEROOT routine provided by the tree unit,
and the concatenated cmt1[i] are absorbed by the SHAKE module in the sample unit,
producing digcmt1 . The two digest are then concatenated and used to produce the digest
digcmt. Using the digest of the message to be signed, the digest of the commitments,
and the salt, the first challenges chall1[i] are generated by the sampler unit, and used
by the arithmetic unit to compute the t responses y[i]. Then the sampler unit gener-
ates the second challenges with fixed weight w by expanding the digest of all the first
challenge responses, and the previous digests, and then the signature can be assembled
by picking the internal nodes of the Merkle tree and seed tree via the TREEPROOF and
SEEDPATH routines provided by the tree unit, and w− t elements y[i] and vG[i]∨vG[i],
and pack everything to minimize the signature size.

When considering the verification procedure, the signature is loaded and unpacked,

168

8.3. CROSS

Table 8.15: Synthesis results for CROSS.KEYGENERATION, CROSS.SIGN, and CROSS.VERIFY
when targeting an AMD Artix-7 FPGA and using 64-bits word sizes. The efficiency indicator Area-
Time product is expressed in eSlices · ms. Credits to Patrick Karl from the Technical University of
Munich.

Design Parameter Resources Freq. KeyGen. Sign Verify
set LUT FF BRAM DSP eSlice MHz µs AT µs AT µs AT

This work

CROSS-RSDP-1-f 18852 8382 39.5 0 13087 119 35 467 764 10006 584 7653
CROSS-RSDP-1-b 19457 8537 52.0 0 15889 113 37 596 1444 22951 1016 16157
CROSS-RSDP-1-s 19957 8663 106.0 0 27462 115 36 1013 2858 78508 1960 53841
CROSS-RSDP-3-f 18185 8447 86.5 0 22885 110 82 1886 1905 43609 1455 33310
CROSS-RSDP-3-b 19002 8640 111.0 0 28283 108 84 2380 3230 91355 2067 58488
CROSS-RSDP-3-s 19339 8690 137.5 1 34120 105 86 2949 4984 170081 3037 103653
CROSS-RSDP-5-f 18612 8382 136.5 0 33591 105 153 5170 3762 126370 2843 95514
CROSS-RSDP-5-b 19339 8556 187.5 1 44720 101 160 7157 6297 281646 3744 167460
CROSS-RSDP-5-s 21500 8625 265.5 1 61796 101 160 9887 10153 627431 5564 343849

This work

CROSS-RSDPG-1-f 22886 9938 27.5 29 15452 100 10 163 601 9300 477 7376
CROSS-RSDPG-1-b 23453 9961 36.0 29 17396 103 10 178 1216 21154 886 15421
CROSS-RSDPG-1-s 23842 10011 62.0 29 23005 102 10 239 2433 55979 1762 40540
CROSS-RSDPG-3-f 22714 9789 41.5 29 18377 96 22 413 1260 23162 1033 18998
CROSS-RSDPG-3-b 23610 10104 66.0 29 23795 102 21 503 1604 38185 1201 28593
CROSS-RSDPG-3-s 23590 10052 120.5 29 35344 99 21 770 3103 109699 2214 78267
CROSS-RSDPG-5-f 22888 10085 85.5 29 27749 99 35 997 2223 61701 1860 51637
CROSS-RSDPG-5-b 23653 10223 116.5 29 34512 96 37 1278 2960 102183 2222 76717
CROSS-RSDPG-5-s 24053 10282 176.5 29 47332 98 36 1715 5133 242993 3613 171042

[BNG24]
Dilithium-II

48600 30000 22.5 32 21330 185
12.2 260 98.3 2096 14.4 307

Dilithium-III 22.6 482 166.7 3555 25.4 541
Dilithium-V 30.3 646 196.3 4187 33.2 708

[LSG21]
Dilithium-II 27433 10681 15.0 45 16091 163 115 1850 178/470 2864/7562 121 1947
Dilithium-III 30900 11372 21.0 45 18230 145 228 4156 310/850 5651/15495 221 4028
Dilithium-V 44653 13814 31.0 45 23788 140 363 8635 503/1042 11965/24787 377 8968

[BNG21] Dilithium-V 53187 28318 29.0 16 21597 116 121 2613 2520 54424 21 453

[Ami+20]
SPHINCS+-128f-s 47991 72505 11.5 1 14571 250/500 – – 1010 14716 16 233
SPHINCS+-192f-s 48398 73476 17.0 1 15838 250/500 – – 1170 18530 19 300
SPHINCS+-256f-s 51009 74539 22.5 1 17657 250/500 – – 2520 44495 21 370

the public matrices are generated and loaded in the arithmetic unit, and the w − t el-
ements y[i] and vG[i] ∨ vG[i] transmitted in the signature are unpacked. Afterwards,
the two challenges chall1[i] and chall2[i] are recomputed, and the transmitted seed
leafs are expanded via the REBUILDLEAVES routine of the tree unit. Depending on each
value of chall2[i], an appropriate sub-routine of the arithmetic unit is called to recom-
pute the missing cmt0[i] or cmt1[i], repeating the operation for each one of the t parallel
CROSS-ID protocols. Finally, cmt0 is reconstructed via the RECOMPUTEROOT rou-
tine from the tree unit, cmt1 is produced as the digest of the concatenated cmt1[i], and
the digest of these two is verified to match against the one in the signature.

8.3.4 Design synthesis and implementation

In Table 8.15 are reported the results of the synthesis for the AMD Artix-7 FPGA of
the top-level design modules specialized for each parameter set. Considering that the
SHAKE core within the sampler unit takes approximately 6500 LUT and 2700 FF,
this unit accounts for ≈ 30% of the LUT and FF used by the top-level design. Sim-

169

Chapter 8. Top-level design

ilarly, the arithmetic unit contributes for 23% to 33% to the area occupation in the
eSlice metric, depending on the considered parameter set. Recalling that the arith-
metic unit works many times coupled with the sampler unit, the arithmetic computa-
tions during the signature generation take from 43% (CROSS-RSDPG-1-s) to 91%
(CROSS-RSDP-5-f) of the overall clock cycle count of the whole primitive, and
from 42% (CROSS-RSDPG-1-s) to 72% (CROSS-RSDP-5-f) of the total number
of clock cycles used to verify a signature. The tree unit has a negligible cost when
compared with the whole top-level design, and takes from 3 to 10 % of the clock cycle
count during the sign and verification operations. Unsurprisingly for a code-based digi-
tal signature scheme, CROSS requires a considerable amount of BRAM, which limits
the compatibility of this top-level design on some products of the AMD Artix-7 product
family due to insufficient BRAM resources offered. For some reference, the low-budget
XC7A50T chip could fit 7 out of 18 designs, the widely available XC7A100T chip can-
not fit 5 design, and only the top-of-the-line XC7A200T chip is compatible with every
solution. When compared to the designs for R-SDP parameters, the R-SDP(G) param-
eters yield designs with lower requirements on BRAMs, although taking ≈ 20% more
LUT and FF, requiring 29 DSP units, and having a lower maximum operating frequency.
The key generation operation takes from 10 to 160 µs depending on the parameter set,
whereas the time required to generate a signature instead ranges from 600 µs to 10 ms,
with the verification of the signature procedure requiring from 500 µs to 5.5 ms.

When comparing the CROSS design with other hardware accelerators for post-
quantum digital signatures such as CRYSTALS-Dilithium and SPHINCS+ (respec-
tively standardized as ML-DSA and SLH-DSA), we can see that the designed accelera-
tor has a conservative consumption of LUT and FF resources, particularly when consid-
ering the parameter sets guaranteeing the highest security level. Considering the eSlice
area occupation metric, the CROSS designs specialized for parameter sets offering
the lowest security level, with the exclusion of the small optimization corner, represent
the solutions with the most compact area. However, the consistent amount of BRAM
used by the proposed designs rapidly inverts the trend when considering the small op-
timization corners and parameters with higher security margins, leading to solutions up
to 3.5× larger than the CRYSTALS-Dilithium and SPHINCS+ counterparts. The key
generation operation is competitive with the accelerators for CRYSTALS-Dilithium, but
the sign operation is from 7× to 50× slower. Moreover, the CROSS signature verifica-
tion is one to two orders of magnitude slower with respect to the other two post-quantum
digital signatures.

All things considered, the reader should also consider that the provided designs have
not leveraged yet any parallelism offered by the multiple executions of the CROSS-ID
scheme. Additionally, this first analysis allowed us to determine which components to
focus our future efforts on to improve latency and efficiency.

170

CHAPTER9
Conclusions

This thesis presents the analysis, design, and optimization of hardware accelerators for
three post-quantum cryptographic primitives: the lattice-based KEM NTRU, the code-
based KEM HQC, and the code-based DS CROSS. Through the development of these
hardware modules, the thesis highlights how a detailed analysis of data parallelisms of-
fered both within the algorithms implementing the required operations and at the higher
level of the scheduling of such operations in a top-level design can lead to significant
performance and efficiency improvements, both in terms of latency and occupied silicon
area.

The cryptosystems were introduced with a uniform notation to clearly identify the
operations that make up each algorithm and determine the common dependencies, such
as the Keccak family of hash functions, and identify the critical operations to develop
tailored hardware modules that were optimized for the unique characteristics of each
scheme. This approach ensured a systematic method for designing the hardware com-
ponents and facilitated the understanding of how each step of the cryptographic process
could be accelerated.

The data parallelisms in the algorithms of the operations composing the cryptoschemes
were benchmarked through the use of DSE to pinpoint optimal configurations for min-
imizing latency and maximizing the efficiency of the hardware designs. Analyzing the
possible schedules of such operations (i.e. the generation of cryptographic elements,
arithmetic operations, and the computation of the hash digests) while considering the
data dependencies and the constraints imposed by the type and quantity of employed

171

Chapter 9. Conclusions

memories allowed their parallel execution, leading to a significant reduction in the over-
all execution time of each cryptosystem. In particular, for the code-based HQC it was
presented an optimization of the schedule through the re-ordering of the generated cryp-
tographic elements, producing a new opportunity of parallelism during the key genera-
tion and the encryption, and a cycle count reduction of the decryption without having
security implications. The importance of this optimization was also recognized by the
authors of the cryptographic scheme, who adopted it in the latest revision of the official
specification.

In conclusion, the work presented in this thesis contributes to the ongoing effort to
develop efficient and secure post-quantum cryptographic solutions. In particular, the
hardware accelerators developed in this research represent a step towards making post-
quantum cryptographic schemes more practical for real-world applications by focusing
on both the performance and efficiency of NTRU, HQC, and CROSS through hard-
ware acceleration. Building on the developed hardware accelerators presented in this
thesis, two orthogonal research lines can further investigate strategies and optimizations
for power or area efficient solutions, and determine side-channel security of the coun-
termeasures with the lowest overhead in terms of silicon area and runtime latency.

172

Bibliography

[ABP25] Francesco Antognazza, Alessandro Barenghi, and Gerardo Pelosi. “An Efficient and Unified
RTL Accelerator Design for HQC-128, HQC-192, and HQC-256”. In: IEEE Transactions
on Computers (2025), pp. 1–14. DOI: 10.1109/TC.2025.3558044.

[Ach+24] Rajeev Acharya et al. “Quantum error correction below the surface code threshold”. en.
In: Nature (Dec. 2024). Publisher: Nature Publishing Group, pp. 1–3. ISSN: 1476-4687.
DOI: 10.1038/s41586-024-08449-y. URL: https://www.nature.com/
articles/s41586-024-08449-y (visited on 01/10/2025).

[AD97] Miklós Ajtai and Cynthia Dwork. “A Public-Key Cryptosystem with Worst-Case/Average-
Case Equivalence”. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on the
Theory of Computing, El Paso, Texas, USA, May 4-6, 1997. Ed. by Frank Thomson Leighton
and Peter W. Shor. ACM, 1997, pp. 284–293. DOI: 10.1145/258533.258604. URL:
https://doi.org/10.1145/258533.258604.

[Ae22] Carlos Aguilar Melchor and et al. “Towards Automating Cryptographic Hardware Imple-
mentations: A Case Study of HQC”. In: CBCrypto 2022, Trondheim, Norway, May 29-30,
2022. Vol. 13839. LCNS. Springer, 2022, pp. 62–76. DOI: 10.1007/978-3-031-
29689-5_4. URL: https://doi.org/10.1007/978-3-031-29689-5_4.

[Agu+24a] Carlos Aguilar Melchor et al. HQC Documentation. [Online]. Available from: https:
//web.archive.org/web/20250128090526/https://pqc-hqc.org/
doc/hqc-specification_2024-10-30.pdf, (Archived on 28 Jan. 2025). 2024.
URL: https://pqc-hqc.org/doc/hqc-specification_2024-10-30.pdf.

[Agu+24b] Carlos Aguilar-Melchor et al. “Efficient error-correcting codes for the HQC post-quantum
cryptosystem”. In: Designs, Codes and Cryptography (Oct. 9, 2024). ISSN: 1573-7586. DOI:
10.1007/s10623- 024- 01507- 6. URL: https://doi.org/10.1007/
s10623-024-01507-6 (visited on 10/14/2024).

[Aja+19] Tutu Ajayi et al. “Toward an Open-Source Digital Flow: First Learnings from the Open-
ROAD Project”. In: Proceedings of the 56th Annual Design Automation Conference 2019,
DAC 2019, Las Vegas, NV, USA, June 02-06, 2019. ACM, 2019, p. 76. DOI: 10.1145/
3316781.3326334. URL: https://doi.org/10.1145/3316781.3326334.

173

https://doi.org/10.1109/TC.2025.3558044
https://doi.org/10.1038/s41586-024-08449-y
https://www.nature.com/articles/s41586-024-08449-y
https://www.nature.com/articles/s41586-024-08449-y
https://doi.org/10.1145/258533.258604
https://doi.org/10.1145/258533.258604
https://doi.org/10.1007/978-3-031-29689-5_4
https://doi.org/10.1007/978-3-031-29689-5_4
https://doi.org/10.1007/978-3-031-29689-5_4
https://web.archive.org/web/20250128090526/https://pqc-hqc.org/doc/hqc- specification_2024-10-30.pdf
https://web.archive.org/web/20250128090526/https://pqc-hqc.org/doc/hqc- specification_2024-10-30.pdf
https://web.archive.org/web/20250128090526/https://pqc-hqc.org/doc/hqc- specification_2024-10-30.pdf
https://pqc-hqc.org/doc/hqc-specification_2024-10-30.pdf
https://doi.org/10.1007/s10623-024-01507-6
https://doi.org/10.1007/s10623-024-01507-6
https://doi.org/10.1007/s10623-024-01507-6
https://doi.org/10.1145/3316781.3326334
https://doi.org/10.1145/3316781.3326334
https://doi.org/10.1145/3316781.3326334

Bibliography

[Ala+19] Gorjan Alagic et al. Status report on the first round of the NIST post-quantum cryptography
standardization process. Jan. 2019. DOI: 10.6028/nist.ir.8240. URL: http:
//dx.doi.org/10.6028/NIST.IR.8240.

[Ala+22a] Gorjan Alagic et al. Status Report on the Third Round of the NIST Post-Quantum Cryptog-
raphy Standardization Process. 2022. DOI: 10.6028/NIST.IR.8413-upd1. URL:
https://doi.org/10.6028/NIST.IR.8413-upd1.

[Ala+22b] Gorjan Alagic et al. Status report on the third round of the NIST Post-Quantum Cryptogra-
phy Standardization process. Sept. 2022. DOI: 10.6028/nist.ir.8413-upd1. URL:
http://dx.doi.org/10.6028/NIST.IR.8413-upd1.

[Ala+25a] Gorjan Alagic et al. Recommendations for Key-Encapsulation Mechanisms. Jan. 2025. DOI:
10.6028/nist.sp.800-227.ipd. URL: http://dx.doi.org/10.6028/
NIST.SP.800-227.ipd.

[Ala+25b] Gorjan Alagic et al. Status Report on the Fourth Round of the NIST Post-Quantum Cryp-
tography Standardization Process. Mar. 2025. DOI: 10.6028/nist.ir.8545. URL:
http://dx.doi.org/10.6028/NIST.IR.8545.

[Ami+20] Dorian Amiet et al. “FPGA-based SPHINCS+ Implementations: Mind the Glitch”. In: 23rd
Euromicro Conference on Digital System Design, DSD 2020, Kranj, Slovenia, August 26-
28, 2020. IEEE, 2020, pp. 229–237. DOI: 10.1109/DSD51259.2020.00046. URL:
https://doi.org/10.1109/DSD51259.2020.00046.

[ANS23] ANSSI. ANSSI views on the Post-Quantum Cryptography transition (2023 follow up). [On-
line]. Available from: https://web.archive.org/web/20240127124757/
https://cyber.gouv.fr/sites/default/files/document/follow_
up_position_paper_on_post_quantum_cryptography.pdf, (Archived
on 7 Aug. 2024). 2023. URL: https://cyber.gouv.fr/sites/default/
files/document/follow_up_position_paper_on_post_quantum_
cryptography.pdf.

[Ant+23a] Francesco Antognazza et al. “A Flexible ASIC-Oriented Design for a Full NTRU Acceler-
ator”. In: Proceedings of the 28th Asia and South Pacific Design Automation Conference,
ASPDAC 2023, Tokyo, Japan, January 16-19, 2023. Ed. by Atsushi Takahashi. ACM, 2023,
pp. 591–597. DOI: 10.1145/3566097.3567916. URL: https://doi.org/10.
1145/3566097.3567916.

[Ant+23b] Francesco Antognazza et al. “An Efficient Unified Architecture for Polynomial Multiplica-
tions in Lattice-Based Cryptoschemes”. In: Proceedings of the 9th International Conference
on Information Systems Security and Privacy, ICISSP 2023, Lisbon, Portugal, February
22-24, 2023. Ed. by Paolo Mori, Gabriele Lenzini, and Steven Furnell. SciTePress, 2023,
pp. 81–88. DOI: 10.5220/0011654200003405. URL: https://doi.org/10.
5220/0011654200003405.

[Ant+24a] Francesco Antognazza et al. “A High Efficiency Hardware Design for the Post-Quantum
KEM HQC”. In: IEEE International Symposium on Hardware Oriented Security and Trust,
HOST 2024, Tysons Corner, VA, USA, May 6-9, 2024. IEEE, 2024, pp. 431–441. DOI: 10.
1109/HOST55342.2024.10545409. URL: https://doi.org/10.1109/
HOST55342.2024.10545409.

174

https://doi.org/10.6028/nist.ir.8240
http://dx.doi.org/10.6028/NIST.IR.8240
http://dx.doi.org/10.6028/NIST.IR.8240
https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.6028/nist.ir.8413-upd1
http://dx.doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.6028/nist.sp.800-227.ipd
http://dx.doi.org/10.6028/NIST.SP.800-227.ipd
http://dx.doi.org/10.6028/NIST.SP.800-227.ipd
https://doi.org/10.6028/nist.ir.8545
http://dx.doi.org/10.6028/NIST.IR.8545
https://doi.org/10.1109/DSD51259.2020.00046
https://doi.org/10.1109/DSD51259.2020.00046
https://web.archive.org/web/20240127124757/https://cyber.gouv.fr/sites/default/files/document/follow_up_position_paper_on_post_quantum_cryptography.pdf
https://web.archive.org/web/20240127124757/https://cyber.gouv.fr/sites/default/files/document/follow_up_position_paper_on_post_quantum_cryptography.pdf
https://web.archive.org/web/20240127124757/https://cyber.gouv.fr/sites/default/files/document/follow_up_position_paper_on_post_quantum_cryptography.pdf
https://cyber.gouv.fr/sites/default/files/document/follow_up_position_paper_on_post_quantum_cryptography.pdf
https://cyber.gouv.fr/sites/default/files/document/follow_up_position_paper_on_post_quantum_cryptography.pdf
https://cyber.gouv.fr/sites/default/files/document/follow_up_position_paper_on_post_quantum_cryptography.pdf
https://doi.org/10.1145/3566097.3567916
https://doi.org/10.1145/3566097.3567916
https://doi.org/10.1145/3566097.3567916
https://doi.org/10.5220/0011654200003405
https://doi.org/10.5220/0011654200003405
https://doi.org/10.5220/0011654200003405
https://doi.org/10.1109/HOST55342.2024.10545409
https://doi.org/10.1109/HOST55342.2024.10545409
https://doi.org/10.1109/HOST55342.2024.10545409
https://doi.org/10.1109/HOST55342.2024.10545409

Bibliography

[Ant+24b] Francesco Antognazza et al. “A Versatile and Unified HQC Hardware Accelerator”. In:
Applied Cryptography and Network Security Workshops - ACNS 2024 Satellite Workshops,
AIBlock, AIHWS, AIoTS, SCI, AAC, SiMLA, LLE, and CIMSS, Abu Dhabi, United Arab
Emirates, March 5-8, 2024, Proceedings, Part II. Ed. by Martin Andreoni. Vol. 14587.
Lecture Notes in Computer Science. Springer, 2024, pp. 214–219. DOI: 10.1007/978-
3-031-61489-7_17. URL: https://doi.org/10.1007/978-3-031-
61489-7_17.

[Ant+24c] Francesco Antognazza et al. “Performance and Efficiency Exploration of Hardware Poly-
nomial Multipliers for Post-Quantum Lattice-Based Cryptosystems”. In: SN Comput. Sci.
5.2 (2024), p. 212. DOI: 10.1007/S42979-023-02547-W. URL: https://doi.
org/10.1007/s42979-023-02547-w.

[Ara+22] Nicolas Aragon et al. BIKE Supporting Documentation. [Online]. Available from: https:
//web.archive.org/web/20231221165734/https://bikesuite.org/
files/v5.0/BIKE_Spec.2022.10.10.1.pdf, (Archived on 21 Dec. 2023).
2022. URL: https://bikesuite.org/files/v5.0/BIKE_Spec.2022.10.
10.1.pdf.

[Bal+18] Marco Baldi et al. “LEDAkem: A Post-quantum Key Encapsulation Mechanism Based
on QC-LDPC Codes”. In: Post-Quantum Cryptography - 9th International Conference,
PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings. Ed. by Tanja
Lange and Rainer Steinwandt. Vol. 10786. Lecture Notes in Computer Science. Springer,
2018, pp. 3–24. DOI: 10.1007/978-3-319-79063-3_1. URL: https://doi.
org/10.1007/978-3-319-79063-3_1.

[Bal+20] Marco Baldi et al. “A New Path to Code-based Signatures via Identification Schemes with
Restricted Errors”. In: CoRR abs/2008.06403 (2020). arXiv: 2008.06403. URL: https:
//arxiv.org/abs/2008.06403.

[Bal+24a] Marco Baldi et al. CROSS Documentation. [Online]. Available from: https://web.
archive.org/web/20250122122245/https://www.cross- crypto.
com/CROSS_Specification_v1.2.pdf, (Archived on 22 Jan. 2025). 2024. URL:
https://www.cross-crypto.com/CROSS_Specification_v1.2.pdf.

[Bal+24b] Marco Baldi et al. “Zero Knowledge Protocols and Signatures from the Restricted Syn-
drome Decoding Problem”. In: Public-Key Cryptography - PKC 2024 - 27th IACR Inter-
national Conference on Practice and Theory of Public-Key Cryptography, Sydney, NSW,
Australia, April 15-17, 2024, Proceedings, Part II. Ed. by Qiang Tang and Vanessa Teague.
Vol. 14602. Lecture Notes in Computer Science. Springer, 2024, pp. 243–274. DOI: 10.
1007/978-3-031-57722-2_8. URL: https://doi.org/10.1007/978-3-
031-57722-2_8.

[Bar+24] Elaine Barker et al. Recommendation for Random Bit Generator (RBG) Constructions.
2024. DOI: 10.6028/nist.sp.800-90c.4pd. URL: http://dx.doi.org/10.
6028/NIST.SP.800-90C.4pd.

[Bar86] Paul Barrett. “Implementing the Rivest Shamir and Adleman Public Key Encryption Algo-
rithm on a Standard Digital Signal Processor”. In: Advances in Cryptology - CRYPTO ’86,
Santa Barbara, California, USA, 1986, Proceedings. Ed. by Andrew M. Odlyzko. Vol. 263.
Lecture Notes in Computer Science. Springer, 1986, pp. 311–323. DOI: 10.1007/3-
540-47721-7_24. URL: https://doi.org/10.1007/3-540-47721-7_24.

[Bas+10] L E Bassham et al. A statistical test suite for random and pseudorandom number generators
for cryptographic applications. 2010. DOI: 10.6028/nist.sp.800-22r1a. URL:
http://dx.doi.org/10.6028/NIST.SP.800-22r1a.

175

https://doi.org/10.1007/978-3-031-61489-7_17
https://doi.org/10.1007/978-3-031-61489-7_17
https://doi.org/10.1007/978-3-031-61489-7_17
https://doi.org/10.1007/978-3-031-61489-7_17
https://doi.org/10.1007/S42979-023-02547-W
https://doi.org/10.1007/s42979-023-02547-w
https://doi.org/10.1007/s42979-023-02547-w
https://web.archive.org/web/20231221165734/https://bikesuite.org/files/v5.0/BIKE_Spec.2022.10.10.1.pdf
https://web.archive.org/web/20231221165734/https://bikesuite.org/files/v5.0/BIKE_Spec.2022.10.10.1.pdf
https://web.archive.org/web/20231221165734/https://bikesuite.org/files/v5.0/BIKE_Spec.2022.10.10.1.pdf
https://bikesuite.org/files/v5.0/BIKE_Spec.2022.10.10.1.pdf
https://bikesuite.org/files/v5.0/BIKE_Spec.2022.10.10.1.pdf
https://doi.org/10.1007/978-3-319-79063-3_1
https://doi.org/10.1007/978-3-319-79063-3_1
https://doi.org/10.1007/978-3-319-79063-3_1
https://arxiv.org/abs/2008.06403
https://arxiv.org/abs/2008.06403
https://arxiv.org/abs/2008.06403
https://web.archive.org/web/20250122122245/https://www.cross-crypto.com/ CROSS_Specification_v1.2.pdf
https://web.archive.org/web/20250122122245/https://www.cross-crypto.com/ CROSS_Specification_v1.2.pdf
https://web.archive.org/web/20250122122245/https://www.cross-crypto.com/ CROSS_Specification_v1.2.pdf
https://www.cross-crypto.com/CROSS_Specification_v1.2.pdf
https://doi.org/10.1007/978-3-031-57722-2_8
https://doi.org/10.1007/978-3-031-57722-2_8
https://doi.org/10.1007/978-3-031-57722-2_8
https://doi.org/10.1007/978-3-031-57722-2_8
https://doi.org/10.6028/nist.sp.800-90c.4pd
http://dx.doi.org/10.6028/NIST.SP.800-90C.4pd
http://dx.doi.org/10.6028/NIST.SP.800-90C.4pd
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.6028/nist.sp.800-22r1a
http://dx.doi.org/10.6028/NIST.SP.800-22r1a

Bibliography

[BCD20] Elaine Barker, Lily Chen, and Richard Davis. Recommendation for Key-Derivation Methods
in Key-Establishment Schemes. Aug. 2020. DOI: 10.6028/nist.sp.800-56cr2.
URL: http://dx.doi.org/10.6028/NIST.SP.800-56Cr2.

[Bec+22a] Hanno Becker et al. “Efficient Multiplication of Somewhat Small Integers Using Number-
Theoretic Transforms”. In: Advances in Information and Computer Security - 17th Interna-
tional Workshop on Security, IWSEC 2022, Tokyo, Japan, August 31 - September 2, 2022,
Proceedings. Ed. by Chen-Mou Cheng and Mitsuaki Akiyama. Vol. 13504. Lecture Notes
in Computer Science. Springer, 2022, pp. 3–23. DOI: 10.1007/978-3-031-15255-
9_1. URL: https://doi.org/10.1007/978-3-031-15255-9_1.

[Bec+22b] Hanno Becker et al. “Neon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72 and
Apple M1”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022.1 (2022), pp. 221–244.
DOI: 10.46586/TCHES.V2022.I1.221-244. URL: https://doi.org/10.
46586/tches.v2022.i1.221-244.

[Ber+11] Guido Bertorni et al. The Keccak reference. [Online]. Available from: https://web.
archive.org/web/20240128114601/https://keccak.team/files/
Keccak-reference-3.0.pdf, (Archived on 28 Jan. 2024). 2011. URL: https:
//keccak.team/files/Keccak-reference-3.0.pdf.

[Ber+12] Guido Bertorni et al. Keccak implementation overview. [Online]. Available from: https:
//web.archive.org/web/20240502130759/https://keccak.team/
files/Keccak-implementation-3.2.pdf, (Archived on 02 May 2024). 2012.
URL: https://keccak.team/files/Keccak-implementation-3.2.pdf.

[Ber+22] Daniel J. Bernstein et al. Classic McEliece Supporting Documentation. [Online]. Avail-
able from: https://web.archive.org/web/20231218203726/https:
//classic.mceliece.org/mceliece- spec- 20221023.pdf, (Archived
on 18 Dec. 2023). 2022. URL: https://classic.mceliece.org/mceliece-
spec-20221023.pdf.

[Ber+24] Daniel J. Bernstein et al. Report on evaluation of KpqC Round-2 candidates. Cryptology
ePrint Archive, Paper 2024/2077. 2024. URL: https://eprint.iacr.org/2024/
2077.

[Beu22] Ward Beullens. “Breaking Rainbow Takes a Weekend on a Laptop”. In: Advances in Cryp-
tology - CRYPTO 2022 - 42nd Annual International Cryptology Conference, CRYPTO 2022,
Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part II. Ed. by Yevgeniy Dodis
and Thomas Shrimpton. Vol. 13508. Lecture Notes in Computer Science. Springer, 2022,
pp. 464–479. DOI: 10.1007/978-3-031-15979-4_16. URL: https://doi.
org/10.1007/978-3-031-15979-4_16.

[BMT78] Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. “On the inherent in-
tractability of certain coding problems (Corresp.)” In: IEEE Trans. Inf. Theory 24.3 (1978),
pp. 384–386. DOI: 10.1109/TIT.1978.1055873. URL: https://doi.org/10.
1109/TIT.1978.1055873.

[BNG21] Luke Beckwith, Duc Tri Nguyen, and Kris Gaj. “High-Performance Hardware Implementa-
tion of CRYSTALS-Dilithium”. In: International Conference on Field-Programmable Tech-
nology, (IC)FPT 2021, Auckland, New Zealand, December 6-10, 2021. IEEE, 2021, pp. 1–
10. DOI: 10.1109/ICFPT52863.2021.9609917. URL: https://doi.org/10.
1109/ICFPT52863.2021.9609917.

176

https://doi.org/10.6028/nist.sp.800-56cr2
http://dx.doi.org/10.6028/NIST.SP.800-56Cr2
https://doi.org/10.1007/978-3-031-15255-9_1
https://doi.org/10.1007/978-3-031-15255-9_1
https://doi.org/10.1007/978-3-031-15255-9_1
https://doi.org/10.46586/TCHES.V2022.I1.221-244
https://doi.org/10.46586/tches.v2022.i1.221-244
https://doi.org/10.46586/tches.v2022.i1.221-244
https://web.archive.org/web/20240128114601/https://keccak.team/files/Keccak-reference-3.0.pdf
https://web.archive.org/web/20240128114601/https://keccak.team/files/Keccak-reference-3.0.pdf
https://web.archive.org/web/20240128114601/https://keccak.team/files/Keccak-reference-3.0.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf
https://web.archive.org/web/20240502130759/https://keccak.team/files/Keccak-implementation-3.2.pdf
https://web.archive.org/web/20240502130759/https://keccak.team/files/Keccak-implementation-3.2.pdf
https://web.archive.org/web/20240502130759/https://keccak.team/files/Keccak-implementation-3.2.pdf
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://web.archive.org/web/20231218203726/https://classic.mceliece.org/mceliece-spec-20221023.pdf
https://web.archive.org/web/20231218203726/https://classic.mceliece.org/mceliece-spec-20221023.pdf
https://classic.mceliece.org/mceliece-spec-20221023.pdf
https://classic.mceliece.org/mceliece-spec-20221023.pdf
https://eprint.iacr.org/2024/2077
https://eprint.iacr.org/2024/2077
https://doi.org/10.1007/978-3-031-15979-4_16
https://doi.org/10.1007/978-3-031-15979-4_16
https://doi.org/10.1007/978-3-031-15979-4_16
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1109/ICFPT52863.2021.9609917
https://doi.org/10.1109/ICFPT52863.2021.9609917
https://doi.org/10.1109/ICFPT52863.2021.9609917

Bibliography

[BNG24] Luke Beckwith, Duc Tri Nguyen, and Kris Gaj. “Hardware Accelerators for Digital Signa-
ture Algorithms Dilithium and FALCON”. In: IEEE Des. Test 41.5 (2024), pp. 27–35. DOI:
10.1109/MDAT.2023.3305156. URL: https://doi.org/10.1109/MDAT.
2023.3305156.

[Bod07] Marco Bodrato. “Towards Optimal Toom-Cook Multiplication for Univariate and Multi-
variate Polynomials in Characteristic 2 and 0”. In: Arithmetic of Finite Fields, First Inter-
national Workshop, WAIFI 2007, Madrid, Spain, June 21-22, 2007, Proceedings. Ed. by
Claude Carlet and Berk Sunar. Vol. 4547. Lecture Notes in Computer Science. Springer,
2007, pp. 116–133. DOI: 10.1007/978- 3- 540- 73074- 3_10. URL: https:
//doi.org/10.1007/978-3-540-73074-3_10.

[BR21] Andrea Basso and Sujoy Sinha Roy. “Optimized Polynomial Multiplier Architectures for
Post-Quantum KEM Saber”. In: 58th ACM/IEEE Design Automation Conference, DAC
2021, San Francisco, CA, USA, December 5-9, 2021. IEEE, 2021, pp. 1285–1290. DOI:
10.1109/DAC18074.2021.9586219. URL: https://doi.org/10.1109/
DAC18074.2021.9586219.

[BS86] Yair Be’ery and Jakov Snyders. “Optimal soft decision block decoders based on fast Hadamard
transform”. In: IEEE Trans. Inf. Theory 32.3 (1986), pp. 355–364. DOI: 10.1109/TIT.
1986.1057189. URL: https://doi.org/10.1109/TIT.1986.1057189.

[BSI24] BSI. BSI TR-02102-1: "Cryptographic Mechanisms: Recommendations and Key Lengths"
Version: 2024-1. [Online]. Available from: https://web.archive.org/web/
20240807092324/https://www.bsi.bund.de/SharedDocs/Downloads/
EN/BSI/Publications/TechGuidelines/TG02102/BSI- TR- 02102-
1.pdf, (Archived on 7 Aug. 2024). 2024. URL: https://www.bsi.bund.de/
SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/
BSI-TR-02102-1.pdf.

[BSI25] BSI. Study: Status of quantum computer development V2.1. [Online]. Available from: https:
//web.archive.org/web/20250103231418/https://www.bsi.bund.
de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/
Entwicklungstand_QC_V_2_1.html, (Archived on 7 Jan. 2025). Jan. 2025.
URL: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/
Publikationen/Studien/Quantencomputer/Entwicklungstand_QC_V_
2_1.html.

[Car] Jose Cardona. “Fundamentals of Lattice-Based Cryptography”. [Online]. Available from:
https://web.archive.org/save/https://github.com/jmcardon/
Lattices_Talk_LC2019/raw/master/Fun_WithLattices.pdf, (Archived
on 12 Feb. 2025). URL: https://github.com/jmcardon/Lattices_Talk_
LC2019/raw/master/Fun_WithLattices.pdf.

[Cas23] Davide Castelvecchi. “IBM releases first-ever 1,000-qubit quantum chip”. In: Nature 624.7991
(2023), pp. 238–238. DOI: 10.1038/d41586-023-03854-1. URL: https://doi.
org/10.1038/d41586-023-03854-1.

[CD23] Wouter Castryck and Thomas Decru. “An Efficient Key Recovery Attack on SIDH”. In:
Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023,
Proceedings, Part V. Ed. by Carmit Hazay and Martijn Stam. Vol. 14008. Lecture Notes in
Computer Science. Springer, 2023, pp. 423–447. DOI: 10.1007/978-3-031-30589-
4_15. URL: https://doi.org/10.1007/978-3-031-30589-4_15.

177

https://doi.org/10.1109/MDAT.2023.3305156
https://doi.org/10.1109/MDAT.2023.3305156
https://doi.org/10.1109/MDAT.2023.3305156
https://doi.org/10.1007/978-3-540-73074-3_10
https://doi.org/10.1007/978-3-540-73074-3_10
https://doi.org/10.1007/978-3-540-73074-3_10
https://doi.org/10.1109/DAC18074.2021.9586219
https://doi.org/10.1109/DAC18074.2021.9586219
https://doi.org/10.1109/DAC18074.2021.9586219
https://doi.org/10.1109/TIT.1986.1057189
https://doi.org/10.1109/TIT.1986.1057189
https://doi.org/10.1109/TIT.1986.1057189
https://web.archive.org/web/20240807092324/https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://web.archive.org/web/20240807092324/https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://web.archive.org/web/20240807092324/https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://web.archive.org/web/20240807092324/https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://web.archive.org/web/20250103231418/https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/Entwicklungstand_QC_V_2_1.html
https://web.archive.org/web/20250103231418/https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/Entwicklungstand_QC_V_2_1.html
https://web.archive.org/web/20250103231418/https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/Entwicklungstand_QC_V_2_1.html
https://web.archive.org/web/20250103231418/https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/Entwicklungstand_QC_V_2_1.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/Entwicklungstand_QC_V_2_1.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/Entwicklungstand_QC_V_2_1.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/Entwicklungstand_QC_V_2_1.html
https://web.archive.org/save/https://github.com/jmcardon/Lattices_Talk_LC2019/raw/master/Fun_WithLattices.pdf
https://web.archive.org/save/https://github.com/jmcardon/Lattices_Talk_LC2019/raw/master/Fun_WithLattices.pdf
https://github.com/jmcardon/Lattices_Talk_LC2019/raw/master/Fun_WithLattices.pdf
https://github.com/jmcardon/Lattices_Talk_LC2019/raw/master/Fun_WithLattices.pdf
https://doi.org/10.1038/d41586-023-03854-1
https://doi.org/10.1038/d41586-023-03854-1
https://doi.org/10.1038/d41586-023-03854-1
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-031-30589-4_15

Bibliography

[CGF21] Ana Covic, Fatemeh Ganji, and Domenic Forte. “Circuit Masking: From Theory to Stan-
dardization, A Comprehensive Survey for Hardware Security Researchers and Practition-
ers”. In: CoRR abs/2106.12714 (2021). arXiv: 2106.12714. URL: https://arxiv.
org/abs/2106.12714.

[Che+19] Cong Chen et al. NTRU: Algorithm Specifications And Supporting Documentation. [On-
line]. Available from: https://web.archive.org/web/20240913141001/
https://ntru.org/f/ntru-20190330.pdf, (Archived on 13 Sep. 2024). 2019.
URL: https://ntru.org/f/ntru-20190330.pdf.

[Che+22] Po-Jen Chen et al. “Complete and Improved FPGA Implementation of Classic McEliece”.
In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022.3 (2022), pp. 71–113. DOI: 10 .
46586/TCHES.V2022.I3.71-113. URL: https://doi.org/10.46586/
tches.v2022.i3.71-113.

[Chu+21] Chi-Ming Marvin Chung et al. “NTT Multiplication for NTT-unfriendly Rings New Speed
Records for Saber and NTRU on Cortex-M4 and AVX2”. In: IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2021.2 (2021), pp. 159–188. DOI: 10.46586/TCHES.V2021.I2.159-
188. URL: https://doi.org/10.46586/tches.v2021.i2.159-188.

[Com90] P. G. Comba. “Exponentiation cryptosystems on the IBM PC”. In: IBM Systems Journal
29.4 (1990), pp. 526–538. DOI: 10.1147/sj.294.0526.

[Coo+20] David A. Cooper et al. Recommendation for Stateful Hash-Based Signature Schemes. Oct.
2020. DOI: 10.6028/nist.sp.800-208. URL: http://dx.doi.org/10.
6028/NIST.SP.800-208.

[Cro+23] Luca Crocetti et al. “Review of Methodologies and Metrics for Assessing the Quality of
Random Number Generators”. In: Electronics 12.3 (2023). ISSN: 2079-9292. DOI: 10.
3390/electronics12030723. URL: https://www.mdpi.com/2079-9292/
12/3/723.

[CVA10] Pierre-Louis Cayrel, Pascal Véron, and Sidi Mohamed El Yousfi Alaoui. “A Zero-Knowledge
Identification Scheme Based on the q-ary Syndrome Decoding Problem”. In: Selected Areas
in Cryptography - 17th International Workshop, SAC 2010, Waterloo, Ontario, Canada, Au-
gust 12-13, 2010, Revised Selected Papers. Ed. by Alex Biryukov, Guang Gong, and Dou-
glas R. Stinson. Vol. 6544. Lecture Notes in Computer Science. Springer, 2010, pp. 171–
186. DOI: 10.1007/978-3-642-19574-7_12. URL: https://doi.org/10.
1007/978-3-642-19574-7_12.

[Dae17] Joan Daemen. “Changing of the Guards: A Simple and Efficient Method for Achieving
Uniformity in Threshold Sharing”. In: Cryptographic Hardware and Embedded Systems
- CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,
Proceedings. Ed. by Wieland Fischer and Naofumi Homma. Vol. 10529. Lecture Notes in
Computer Science. Springer, 2017, pp. 137–153. DOI: 10.1007/978-3-319-66787-
4_7. URL: https://doi.org/10.1007/978-3-319-66787-4%5C_7.

[Des+23] Sanjay Deshpande et al. “Fast and Efficient Hardware Implementation of HQC”. In: Se-
lected Areas in Cryptography - SAC 2023 - 30th International Conference, Fredericton,
Canada, August 14-18, 2023, Revised Selected Papers. Ed. by Claude Carlet, Kalikinkar
Mandal, and Vincent Rijmen. Vol. 14201. Lecture Notes in Computer Science. Springer,
2023, pp. 297–321. DOI: 10.1007/978- 3- 031- 53368- 6_15. URL: https:
//doi.org/10.1007/978-3-031-53368-6_15.

178

https://arxiv.org/abs/2106.12714
https://arxiv.org/abs/2106.12714
https://arxiv.org/abs/2106.12714
https://web.archive.org/web/20240913141001/https://ntru.org/f/ntru-20190330.pdf
https://web.archive.org/web/20240913141001/https://ntru.org/f/ntru-20190330.pdf
https://ntru.org/f/ntru-20190330.pdf
https://doi.org/10.46586/TCHES.V2022.I3.71-113
https://doi.org/10.46586/TCHES.V2022.I3.71-113
https://doi.org/10.46586/tches.v2022.i3.71-113
https://doi.org/10.46586/tches.v2022.i3.71-113
https://doi.org/10.46586/TCHES.V2021.I2.159-188
https://doi.org/10.46586/TCHES.V2021.I2.159-188
https://doi.org/10.46586/tches.v2021.i2.159-188
https://doi.org/10.1147/sj.294.0526
https://doi.org/10.6028/nist.sp.800-208
http://dx.doi.org/10.6028/NIST.SP.800-208
http://dx.doi.org/10.6028/NIST.SP.800-208
https://doi.org/10.3390/electronics12030723
https://doi.org/10.3390/electronics12030723
https://www.mdpi.com/2079-9292/12/3/723
https://www.mdpi.com/2079-9292/12/3/723
https://doi.org/10.1007/978-3-642-19574-7_12
https://doi.org/10.1007/978-3-642-19574-7_12
https://doi.org/10.1007/978-3-642-19574-7_12
https://doi.org/10.1007/978-3-319-66787-4_7
https://doi.org/10.1007/978-3-319-66787-4_7
https://doi.org/10.1007/978-3-319-66787-4%5C_7
https://doi.org/10.1007/978-3-031-53368-6_15
https://doi.org/10.1007/978-3-031-53368-6_15
https://doi.org/10.1007/978-3-031-53368-6_15

Bibliography

[DMG21] Viet Ba Dang, Kamyar Mohajerani, and Kris Gaj. “High-Speed Hardware Architectures and
FPGA Benchmarking of CRYSTALS-Kyber, NTRU, and Saber”. In: IACR Cryptol. ePrint
Arch. (2021), p. 1508. URL: https://eprint.iacr.org/2021/1508.

[DMG23] Viet Ba Dang, Kamyar Mohajerani, and Kris Gaj. “High-Speed Hardware Architectures and
FPGA Benchmarking of CRYSTALS-Kyber, NTRU, and Saber”. In: IEEE Trans. Comput-
ers 72.2 (2023), pp. 306–320. DOI: 10.1109/TC.2022.3222954. URL: https:
//doi.org/10.1109/TC.2022.3222954.

[EBB23] Donald L. Evans, Phillip J. Bond, and Karen H. Brown. Advanced Encryption Standard
(AES). NIST standard FIPS 197. May 2023. DOI: 10.6028/nist.fips.197-upd1.
URL: http://dx.doi.org/10.6028/NIST.FIPS.197-upd1.

[ETS17] ETSI. GR QSC 006 Quantum-Safe Cryptography (QSC); Limits to Quantum Computing
applied to symmetric key sizes. [Online]. Available from: hhttps://web.archive.
org/web/20241009041101/https://www.etsi.org/deliver/etsi_gr/
QSC/001_099/006/01.01.01_60/gr_QSC006v010101p.pdf, (Archived on 13
Feb. 2025). 2017. URL: https://portal.etsi.org/webapp/WorkProgram/
Report_WorkItem.asp?WKI_ID=49740.

[ETS20] ETSI. TS 103 744 Quantum-safe Hybrid Key Exchanges. [Online]. Available from: https:
/ / web . archive . org / web / 20240702014511 / https : / / www . etsi .
org/deliver/etsi_ts/103700_103799/103744/01.01.01_60/ts_
103744v010101p.pdf, (Archived on 7 Aug. 2024). 2020. URL: https://www.
etsi.org/deliver/etsi_ts/103700_103799/103744/01.01.01_60/
ts_103744v010101p.pdf.

[Far+19] Farnoud Farahmand et al. “Evaluating the Potential for Hardware Acceleration of Four
NTRU-Based Key Encapsulation Mechanisms Using Software/Hardware Codesign”. In:
Post-Quantum Cryptography - 10th International Conference, PQCrypto 2019, Chongqing,
China, May 8-10, 2019 Revised Selected Papers. Ed. by Jintai Ding and Rainer Stein-
wandt. Vol. 11505. Lecture Notes in Computer Science. Springer, 2019, pp. 23–43. DOI:
10.1007/978-3-030-25510-7_2. URL: https://doi.org/10.1007/978-
3-030-25510-7_2.

[FH15] Haining Fan and M. Anwar Hasan. “A survey of some recent bit-parallel GF(2n) multipli-
ers”. In: Finite Fields Their Appl. 32 (2015), pp. 5–43. DOI: 10.1016/j.ffa.2014.
10.008. URL: https://doi.org/10.1016/j.ffa.2014.10.008.

[For65] George David Forney. “Concatenated codes.” eng. Thesis. Massachusetts Institute of Tech-
nology, 1965. DOI: 1721.1/13449. URL: https://doi.org/1721.1/13449
(visited on 10/16/2024).

[FOS19] FOSSi Foundation. cocotb - coroutine-based cosimulation testbench environment for ver-
ifying VHDL and SystemVerilog RTL using Python. [Online]. Available from: https:
//web.archive.org/web/20250130130459/https://www.cocotb.org/,
(Archived on 30 Jan. 2025). 2019. URL: https://www.cocotb.org.

[FS86] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical Solutions to Identification
and Signature Problems”. In: Advances in Cryptology - CRYPTO ’86, Santa Barbara, Cal-
ifornia, USA, 1986, Proceedings. Ed. by Andrew M. Odlyzko. Vol. 263. Lecture Notes in
Computer Science. Springer, 1986, pp. 186–194. DOI: 10.1007/3-540-47721-7_12.
URL: https://doi.org/10.1007/3-540-47721-7_12.

[Gab05] Philippe Gaborit. “Shorter keys for code based cryptography”. In: Proceedings of the 2005
International Workshop on Coding and Cryptography (WCC 2005). 2005, pp. 81–91.

179

https://eprint.iacr.org/2021/1508
https://doi.org/10.1109/TC.2022.3222954
https://doi.org/10.1109/TC.2022.3222954
https://doi.org/10.1109/TC.2022.3222954
https://doi.org/10.6028/nist.fips.197-upd1
http://dx.doi.org/10.6028/NIST.FIPS.197-upd1
hhttps://web.archive.org/web/20241009041101/https://www.etsi.org/deliver/etsi_gr/QSC/001_099/006/01.01.01_60/gr_QSC006v010101p.pdf
hhttps://web.archive.org/web/20241009041101/https://www.etsi.org/deliver/etsi_gr/QSC/001_099/006/01.01.01_60/gr_QSC006v010101p.pdf
hhttps://web.archive.org/web/20241009041101/https://www.etsi.org/deliver/etsi_gr/QSC/001_099/006/01.01.01_60/gr_QSC006v010101p.pdf
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=49740
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=49740
https://web.archive.org/web/20240702014511/https://www.etsi.org/deliver/etsi_ts/103700_103799/103744/01.01.01_60/ts_103744v010101p.pdf
https://web.archive.org/web/20240702014511/https://www.etsi.org/deliver/etsi_ts/103700_103799/103744/01.01.01_60/ts_103744v010101p.pdf
https://web.archive.org/web/20240702014511/https://www.etsi.org/deliver/etsi_ts/103700_103799/103744/01.01.01_60/ts_103744v010101p.pdf
https://web.archive.org/web/20240702014511/https://www.etsi.org/deliver/etsi_ts/103700_103799/103744/01.01.01_60/ts_103744v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/103700_103799/103744/01.01.01_60/ts_103744v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/103700_103799/103744/01.01.01_60/ts_103744v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/103700_103799/103744/01.01.01_60/ts_103744v010101p.pdf
https://doi.org/10.1007/978-3-030-25510-7_2
https://doi.org/10.1007/978-3-030-25510-7_2
https://doi.org/10.1007/978-3-030-25510-7_2
https://doi.org/10.1016/j.ffa.2014.10.008
https://doi.org/10.1016/j.ffa.2014.10.008
https://doi.org/10.1016/j.ffa.2014.10.008
https://doi.org/1721.1/13449
https://doi.org/1721.1/13449
https://web.archive.org/web/20250130130459/https://www.cocotb.org/
https://web.archive.org/web/20250130130459/https://www.cocotb.org/
https://www.cocotb.org
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12

Bibliography

[Gal+22] Andrea Galimberti et al. “FPGA implementation of BIKE for quantum-resistant TLS”. In:
25th Euromicro Conference on Digital System Design (DSD 2022), Maspalomas, Spain,
August 31 - Sept. 2, 2022. IEEE, 2022, pp. 539–547. DOI: 10.1109/DSD57027.2022.
00078. URL: https://doi.org/10.1109/DSD57027.2022.00078.

[GE21] Craig Gidney and Martin Ekerå. “How to factor 2048 bit RSA integers in 8 hours using 20
million noisy qubits”. In: Quantum 5 (2021), p. 433. DOI: 10.22331/Q-2021-04-
15-433. URL: https://doi.org/10.22331/q-2021-04-15-433.

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. “Public-Key Cryptosystems from Lat-
tice Reduction Problems”. In: Advances in Cryptology - CRYPTO ’97, 17th Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August 17-21, 1997,
Proceedings. Ed. by Burton S. Kaliski Jr. Vol. 1294. Lecture Notes in Computer Science.
Springer, 1997, pp. 112–131. DOI: 10.1007/BFB0052231. URL: https://doi.
org/10.1007/BFb0052231.

[GLK22] Wenbo Guo, Shuguo Li, and Liang Kong. “An Efficient Implementation of KYBER”. In:
IEEE Trans. Circuits Syst. II Express Briefs 69.3 (2022), pp. 1562–1566. DOI: 10.1109/
TCSII.2021.3103184. URL: https://doi.org/10.1109/TCSII.2021.
3103184.

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. “Domain-Oriented Masking: Compact
Masked Hardware Implementations with Arbitrary Protection Order”. In: Proceedings of
the ACM Workshop on Theory of Implementation Security, TIS@CCS 2016 Vienna, Aus-
tria, October, 2016. Ed. by Begül Bilgin, Svetla Nikova, and Vincent Rijmen. ACM, 2016,
p. 3. DOI: 10.1145/2996366.2996426. URL: https://doi.org/10.1145/
2996366.2996426.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. “Trapdoors for hard lattices and
new cryptographic constructions”. In: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008. Ed. by
Cynthia Dwork. ACM, 2008, pp. 197–206. DOI: 10.1145/1374376.1374407. URL:
https://doi.org/10.1145/1374376.1374407.

[Gro96] Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database Search”. In: Proceed-
ings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadel-
phia, Pennsylvania, USA, May 22-24, 1996. Ed. by Gary L. Miller. ACM, 1996, pp. 212–
219. DOI: 10.1145/237814.237866. URL: https://doi.org/10.1145/
237814.237866.

[Guo+22] Qian Guo et al. “Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection-Sampling
in HQC and BIKE”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022.3 (2022), pp. 223–
263. DOI: 10.46586/tches.v2022.i3.223-263. URL: https://doi.org/
10.46586/tches.v2022.i3.223-263.

[Gut+16] Matthew R. Guthaus et al. “OpenRAM: an open-source memory compiler”. In: Proceedings
of the 35th International Conference on Computer-Aided Design, ICCAD 2016, Austin,
TX, USA, November 7-10, 2016. Ed. by Frank Liu. ACM, 2016, p. 93. DOI: 10.1145/
2966986.2980098. URL: https://doi.org/10.1145/2966986.2980098.

[Har15] Michael Hartmann. “The Ajtai-Dwork Cryptosystem and Other Cryptosystems Based on
Lattices”. Master’s thesis. University of Zurich, 2015.

180

https://doi.org/10.1109/DSD57027.2022.00078
https://doi.org/10.1109/DSD57027.2022.00078
https://doi.org/10.1109/DSD57027.2022.00078
https://doi.org/10.22331/Q-2021-04-15-433
https://doi.org/10.22331/Q-2021-04-15-433
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.1007/BFB0052231
https://doi.org/10.1007/BFb0052231
https://doi.org/10.1007/BFb0052231
https://doi.org/10.1109/TCSII.2021.3103184
https://doi.org/10.1109/TCSII.2021.3103184
https://doi.org/10.1109/TCSII.2021.3103184
https://doi.org/10.1109/TCSII.2021.3103184
https://doi.org/10.1145/2996366.2996426
https://doi.org/10.1145/2996366.2996426
https://doi.org/10.1145/2996366.2996426
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.46586/tches.v2022.i3.223-263
https://doi.org/10.46586/tches.v2022.i3.223-263
https://doi.org/10.46586/tches.v2022.i3.223-263
https://doi.org/10.1145/2966986.2980098
https://doi.org/10.1145/2966986.2980098
https://doi.org/10.1145/2966986.2980098

Bibliography

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. “A Modular Analysis of the Fujisaki-
Okamoto Transformation”. In: Theory of Cryptography - 15th International Conference,
TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part I. Ed. by Yael
Kalai and Leonid Reyzin. Vol. 10677. Lecture Notes in Computer Science. Springer, 2017,
pp. 341–371. DOI: 10.1007/978-3-319-70500-2_12. URL: https://doi.
org/10.1007/978-3-319-70500-2_12.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. “NTRU: A Ring-Based Public Key
Cryptosystem”. In: Algorithmic Number Theory, Third International Symposium, ANTS-III,
Portland, Oregon, USA, June 21-25, 1998, Proceedings. Ed. by Joe Buhler. Vol. 1423. Lec-
ture Notes in Computer Science. Springer, 1998, pp. 267–288. DOI: 10.1007/BFB0054868.
URL: https://doi.org/10.1007/BFb0054868.

[HTX23] Pengzhou He, Yazheng Tu, and Jiafeng Xie. “LOCS: LOw-Latency and ConStant-Timing
Implementation of Fixed-Weight Sampler for HQC”. In: IEEE International Symposium
on Circuits and Systems, ISCAS 2023, Monterey, CA, USA, May 21-25, 2023. IEEE, 2023,
pp. 1–5. DOI: 10.1109/ISCAS46773.2023.10181319. URL: https://doi.
org/10.1109/ISCAS46773.2023.10181319.

[Hül+17] Andreas Hülsing et al. “High-Speed Key Encapsulation from NTRU”. In: CHES 2017. Ed.
by Wieland Fischer and Naofumi Homma. Vol. 10529. LNCS. 2017, pp. 232–252. DOI:
10.1007/978-3-319-66787-4_12. URL: https://doi.org/10.1007/
978-3-319-66787-4_12.

[IEE20] IEEE. “IEEE Standard for Universal Verification Methodology Language Reference Man-
ual”. In: IEEE Std 1800.2-2020 (Revision of IEEE Std 1800.2-2017) (2020), pp. 1–458. DOI:
10.1109/IEEESTD.2020.9195920.

[ISE] ISE Crypto PQC working group. Securing tomorrow today: Why Google now protects its
internal communications from quantum threats. [Online]. Available from: https : / /
web.archive.org/web/20250203232759/https://cloud.google.
com/blog/products/identity- security/why- google- now- uses-
post-quantum-cryptography-for-internal-comms, (Archived on 3 Feb.
2025). URL: https://cloud.google.com/blog/products/identity-
security/why-google-now-uses-post-quantum-cryptography-for-
internal-comms.

[ISO24] ISO Central Secretary. Information technology – Security techniques – Testing methods
for the mitigation of non-invasive attack classes against cryptographic modules. Standard
ISO/IEC 17825:2024. Geneva, CH: International Organization for Standardization, Jan.
2024. URL: https://www.iso.org/standard/82422.html.

[ISO25a] ISO Central Secretary. Information security, cybersecurity and privacy protection – Secu-
rity requirements for cryptographic modules. Standard ISO/IEC 19790:2025. Geneva, CH:
International Organization for Standardization, Feb. 2025. URL: https://www.iso.
org/standard/82423.html.

[ISO25b] ISO Central Secretary. Information security, cybersecurity and privacy protection – Test
requirements for cryptographic modules. Standard ISO/IEC 24759:2025. Geneva, CH: In-
ternational Organization for Standardization, Feb. 2025. URL: https://www.iso.
org/standard/82424.html.

[JC19] Wilbur L. Ross Jr. and Walter Copan. Security requirements for cryptographic modules.
NIST standard FIPS 140-3. Mar. 2019. DOI: 10.6028/nist.fips.140-3. URL:
http://dx.doi.org/10.6028/NIST.FIPS.140-3.

181

https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/BFB0054868
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1109/ISCAS46773.2023.10181319
https://doi.org/10.1109/ISCAS46773.2023.10181319
https://doi.org/10.1109/ISCAS46773.2023.10181319
https://doi.org/10.1007/978-3-319-66787-4_12
https://doi.org/10.1007/978-3-319-66787-4_12
https://doi.org/10.1007/978-3-319-66787-4_12
https://doi.org/10.1109/IEEESTD.2020.9195920
https://web.archive.org/web/20250203232759/https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms
https://web.archive.org/web/20250203232759/https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms
https://web.archive.org/web/20250203232759/https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms
https://web.archive.org/web/20250203232759/https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms
https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms
https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms
https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms
https://www.iso.org/standard/82422.html
https://www.iso.org/standard/82423.html
https://www.iso.org/standard/82423.html
https://www.iso.org/standard/82424.html
https://www.iso.org/standard/82424.html
https://doi.org/10.6028/nist.fips.140-3
http://dx.doi.org/10.6028/NIST.FIPS.140-3

Bibliography

[JR23] Samuel Jaques and Arthur G Rattew. “Qram: A survey and critique”. In: arXiv preprint
arXiv:2305.10310 (2023). DOI: 10.48550/arXiv.2305.10310. URL: https:
//doi.org/10.48550/arXiv.2305.10310.

[Kar63] Anatolii Karatsuba. “Multiplication of multidigit numbers on automata”. In: Soviet physics
doklady. Vol. 7. 1963, pp. 595–596.

[Knu98] Donald E. Knuth. The art of computer programming. Addison-Wesley, 1998.

[Li+23] Chen Li et al. “An Efficient Hardware Design for Fast Implementation of HQC”. In: 36th
IEEE International System-on-Chip Conference, SOCC 2023, Santa Clara, CA, USA, Septem-
ber 5-8, 2023. Ed. by Jürgen Becker et al. IEEE, 2023, pp. 1–6. DOI: 10.1109/SOCC58585.
2023.10257054. URL: https://doi.org/10.1109/SOCC58585.2023.
10257054.

[LJ83] Shu Lin and Daniel J. Costello Jr. Error control coding - fundamentals and applications.
Prentice Hall computer applications in electrical engineering series. Prentice Hall, 1983.
ISBN: 978-0-13-283796-5.

[LSG21] Georg Land, Pascal Sasdrich, and Tim Güneysu. “A Hard Crystal - Implementing Dilithium
on Reconfigurable Hardware”. In: Smart Card Research and Advanced Applications - 20th
International Conference, CARDIS 2021, Lübeck, Germany, November 11-12, 2021, Re-
vised Selected Papers. Ed. by Vincent Grosso and Thomas Pöppelmann. Vol. 13173. Lecture
Notes in Computer Science. Springer, 2021, pp. 210–230. DOI: 10.1007/978-3-030-
97348-3_12. URL: https://doi.org/10.1007/978-3-030-97348-3_12.

[LW15] Bingxin Liu and Huapeng Wu. “Efficient architecture and implementation for NTRUEn-
crypt system”. In: IEEE 58th International Midwest Symposium on Circuits and Systems,
MWSCAS 2015, Fort Collins, CO, USA, August 2-5, 2015. IEEE, 2015, pp. 1–4. DOI: 10.
1109/MWSCAS.2015.7282143. URL: https://doi.org/10.1109/MWSCAS.
2015.7282143.

[Mar+15] Honorio Martín et al. “Fault Attacks on STRNGs: Impact of Glitches, Temperature, and Un-
derpowering on Randomness”. In: IEEE Trans. Inf. Forensics Secur. 10.2 (2015), pp. 266–
277. DOI: 10.1109/TIFS.2014.2374072. URL: https://doi.org/10.1109/
TIFS.2014.2374072.

[Mas69] James L. Massey. “Shift-register synthesis and BCH decoding”. In: IEEE Trans. Inf. Theory
15.1 (1969), pp. 122–127. DOI: 10.1109/TIT.1969.1054260. URL: https://
doi.org/10.1109/TIT.1969.1054260.

[Mas88] Edoardo D. Mastrovito. “VLSI Designs for Multiplication over Finite Fields GF (2m)”.
In: 6th International Conference on Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes, (AAECC-6), Rome, Italy, July 4-8, 1988, Proceedings. Ed. by Teo Mora.
Vol. 357. Lecture Notes in Computer Science. Springer, 1988, pp. 297–309. DOI: 10.
1007/3-540-51083-4_67. URL: https://doi.org/10.1007/3-540-
51083-4_67.

[Mil+24] Carl Miller et al. Status Report on the First Round of Additional Digital Signature Schemes
for Post-Quantum Cryptography. Oct. 2024. DOI: 10.6028/nist.ir.8528. URL:
http://dx.doi.org/10.6028/NIST.IR.8528.

182

https://doi.org/10.48550/arXiv.2305.10310
https://doi.org/10.48550/arXiv.2305.10310
https://doi.org/10.48550/arXiv.2305.10310
https://doi.org/10.1109/SOCC58585.2023.10257054
https://doi.org/10.1109/SOCC58585.2023.10257054
https://doi.org/10.1109/SOCC58585.2023.10257054
https://doi.org/10.1109/SOCC58585.2023.10257054
https://doi.org/10.1007/978-3-030-97348-3_12
https://doi.org/10.1007/978-3-030-97348-3_12
https://doi.org/10.1007/978-3-030-97348-3_12
https://doi.org/10.1109/MWSCAS.2015.7282143
https://doi.org/10.1109/MWSCAS.2015.7282143
https://doi.org/10.1109/MWSCAS.2015.7282143
https://doi.org/10.1109/MWSCAS.2015.7282143
https://doi.org/10.1109/TIFS.2014.2374072
https://doi.org/10.1109/TIFS.2014.2374072
https://doi.org/10.1109/TIFS.2014.2374072
https://doi.org/10.1109/TIT.1969.1054260
https://doi.org/10.1109/TIT.1969.1054260
https://doi.org/10.1109/TIT.1969.1054260
https://doi.org/10.1007/3-540-51083-4_67
https://doi.org/10.1007/3-540-51083-4_67
https://doi.org/10.1007/3-540-51083-4_67
https://doi.org/10.1007/3-540-51083-4_67
https://doi.org/10.6028/nist.ir.8528
http://dx.doi.org/10.6028/NIST.IR.8528

Bibliography

[MM09] A. Theodore Markettos and Simon W. Moore. “The Frequency Injection Attack on Ring-
Oscillator-Based True Random Number Generators”. In: Cryptographic Hardware and Em-
bedded Systems - CHES 2009, 11th International Workshop, Lausanne, Switzerland, Septem-
ber 6-9, 2009, Proceedings. Ed. by Christophe Clavier and Kris Gaj. Vol. 5747. Lecture
Notes in Computer Science. Springer, 2009, pp. 317–331. DOI: 10.1007/978-3-642-
04138-9_23. URL: https://doi.org/10.1007/978-3-642-04138-9_23.

[Mon+24] Puja Mondal et al. “ZKFault: Fault Attack Analysis on Zero-Knowledge Based Post-quantum
Digital Signature Schemes”. In: Advances in Cryptology - ASIACRYPT 2024 - 30th Interna-
tional Conference on the Theory and Application of Cryptology and Information Security,
Kolkata, India, December 9-13, 2024, Proceedings, Part VIII. Ed. by Kai-Min Chung and
Yu Sasaki. Vol. 15491. Lecture Notes in Computer Science. Springer, 2024, pp. 132–167.
DOI: 10.1007/978-981-96-0944-4_5. URL: https://doi.org/10.1007/
978-981-96-0944-4_5.

[Moo+20] Dustin Moody et al. Status report on the second round of the NIST post-quantum cryp-
tography standardization process. July 2020. DOI: 10.6028/nist.ir.8309. URL:
http://dx.doi.org/10.6028/NIST.IR.8309.

[Moo+24] Dustin Moody et al. Transition to Post-Quantum Cryptography Standards. Nov. 2024. DOI:
10.6028/nist.ir.8547.ipd. URL: http://dx.doi.org/10.6028/NIST.
IR.8547.ipd.

[Ney+24] Samuel Neyens et al. “Probing single electrons across 300-mm spin qubit wafers”. In: Na-
ture 629.8010 (2024), pp. 80–85. DOI: 10.1038/s41586- 024- 07275- 6. URL:
https://doi.org/10.1038/s41586-024-07275-6.

[NRS08] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. “Secure Hardware Implementation of
Non-linear Functions in the Presence of Glitches”. In: Information Security and Cryptology
- ICISC 2008, 11th International Conference, Seoul, Korea, December 3-5, 2008, Revised
Selected Papers. Ed. by Pil Joong Lee and Jung Hee Cheon. Vol. 5461. Lecture Notes in
Computer Science. Springer, 2008, pp. 218–234. DOI: 10.1007/978-3-642-00730-
9_14. URL: https://doi.org/10.1007/978-3-642-00730-9%5C_14.

[ORM22] Andreas Olofsson, William Ransohoff, and Noah Moroze. “A Distributed Approach to Sili-
con Compilation: Invited”. In: Proceedings of the 59th ACM/IEEE Design Automation Con-
ference. San Francisco, California, 2022, pp. 1343–1346.

[Pan66] V Ya Pan. “Methods of computing values of polynomials”. In: Russian Mathematical Sur-
veys 21.1 (1966), pp. 105–136. URL: https://api.semanticscholar.org/
CorpusID:250869179.

[Pen+21] Bo-Yuan Peng et al. “Streamlined NTRU Prime on FPGA”. In: IACR Cryptol. ePrint Arch.
(2021), p. 1444. URL: https://eprint.iacr.org/2021/1444.

[Pen+23] Bo-Yuan Peng et al. “Streamlined NTRU Prime on FPGA”. In: J. Cryptogr. Eng. 13.2
(2023), pp. 167–186. DOI: 10.1007/S13389-022-00303-Z. URL: https://
doi.org/10.1007/s13389-022-00303-z.

[PM15] Penny Pritzker and Willie May. SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions. NIST standard FIPS 202. 2015. DOI: 10.6028/NIST.FIPS.202.
URL: https://doi.org/10.6028/NIST.FIPS.202.

[Ric+22] Jan Richter-Brockmann et al. “Racing BIKE: Improved Polynomial Multiplication and
Inversion in Hardware”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022.1 (2022),
pp. 557–588. DOI: 10.46586/TCHES.V2022.I1.557-588. URL: https://doi.
org/10.46586/tches.v2022.i1.557-588.

183

https://doi.org/10.1007/978-3-642-04138-9_23
https://doi.org/10.1007/978-3-642-04138-9_23
https://doi.org/10.1007/978-3-642-04138-9_23
https://doi.org/10.1007/978-981-96-0944-4_5
https://doi.org/10.1007/978-981-96-0944-4_5
https://doi.org/10.1007/978-981-96-0944-4_5
https://doi.org/10.6028/nist.ir.8309
http://dx.doi.org/10.6028/NIST.IR.8309
https://doi.org/10.6028/nist.ir.8547.ipd
http://dx.doi.org/10.6028/NIST.IR.8547.ipd
http://dx.doi.org/10.6028/NIST.IR.8547.ipd
https://doi.org/10.1038/s41586-024-07275-6
https://doi.org/10.1038/s41586-024-07275-6
https://doi.org/10.1007/978-3-642-00730-9_14
https://doi.org/10.1007/978-3-642-00730-9_14
https://doi.org/10.1007/978-3-642-00730-9%5C_14
https://api.semanticscholar.org/CorpusID:250869179
https://api.semanticscholar.org/CorpusID:250869179
https://eprint.iacr.org/2021/1444
https://doi.org/10.1007/S13389-022-00303-Z
https://doi.org/10.1007/s13389-022-00303-z
https://doi.org/10.1007/s13389-022-00303-z
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.46586/TCHES.V2022.I1.557-588
https://doi.org/10.46586/tches.v2022.i1.557-588
https://doi.org/10.46586/tches.v2022.i1.557-588

Bibliography

[RL23a] Gina M. Raimondo and Laurie E. Locascio. Digital Signature Standard (DSS). NIST stan-
dard FIPS 186. Feb. 2023. DOI: 10.6028/nist.fips.186-5. URL: http://dx.
doi.org/10.6028/NIST.FIPS.186-5.

[RL23b] Gina M. Raimondo and Laurie E. Locascio. Module-Lattice-Based Digital Signature Stan-
dard. RFC NIST standard FIPS 204. Aug. 2023. DOI: 10.6028/nist.fips.204.
ipd. URL: http://dx.doi.org/10.6028/NIST.FIPS.204.ipd.

[RL23c] Gina M. Raimondo and Laurie E. Locascio. Module-Lattice-Based Key-Encapsulation Mech-
anism Standard. RFC NIST standard FIPS 203. Aug. 2023. DOI: 10.6028/nist.fips.
203.ipd. URL: http://dx.doi.org/10.6028/NIST.FIPS.203.ipd.

[RL23d] Gina M. Raimondo and Laurie E. Locascio. Stateless Hash-Based Digital Signature Stan-
dard. RFC NIST standard FIPS 205. Aug. 2023. DOI: 10.6028/nist.fips.205.
ipd. URL: http://dx.doi.org/10.6028/NIST.FIPS.205.ipd.

[Saa23] Markku-Juhani O. Saarinen. Introduction to Side-Channel Security of NIST PQC Stan-
dards. Invited talk at PQC Seminars, NIST 2023 [Online]. Available from: https://
web.archive.org/web/20250319051738/https://csrc.nist.gov/
csrc/media/Projects/post-quantum-cryptography/documents/pqc-
seminars / presentations / 2 - side - channel - security - saarinen -
04042023.pdf, (Archived on 19 Mar. 2025). 2023. URL: https://csrc.nist.
gov/csrc/media/Projects/post-quantum-cryptography/documents/
pqc-seminars/presentations/2-side-channel-security-saarinen-
04042023.pdf.

[Sch] Sophie Schmieg. PQC at Google. Invited talk at The 14th International Conference on
Post-Quantum Cryptography, PQCrypto 2023 [Online]. Available from: https://web.
archive.org/web/20240420093321/https://pqcrypto2023.umiacs.
io / slides / Invited . 3 . pdf, (Archived on 20 Apr. 2024). URL: https : / /
pqcrypto2023.umiacs.io/slides/Invited.3.pdf.

[Sen21] Nicolas Sendrier. “Secure Sampling of Constant-Weight Words – Application to BIKE”.
In: IACR Cryptol. ePrint Arch. (2021), p. 1631. URL: https://eprint.iacr.org/
2021/1631.

[Sho94] Peter W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms and Factor-
ing”. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe, New
Mexico, USA, 20-22 November 1994. IEEE Computer Society, 1994, pp. 124–134. DOI:
10.1109/SFCS.1994.365700. URL: https://doi.org/10.1109/SFCS.
1994.365700.

[Sil] Joseph H Silverman. “NTRU and Lattice-Based Crypto: Past, Present, and Future”. [On-
line]. Available from: https://web.archive.org/web/20240814062435/
http://archive.dimacs.rutgers.edu/Workshops/Post-Quantum/
Slides/Silverman.pdf, (Archived on 14 Aug. 2024). URL: http://archive.
dimacs.rutgers.edu/Workshops/Post-Quantum/Slides/Silverman.
pdf.

[Sny+] Wilson Snyder et al. Verilator. [Online]. Available from: https://web.archive.
org/web/20250109003634/https://verilator.org, (Archived on 9 Jan.
2025). URL: https://verilator.org.

184

https://doi.org/10.6028/nist.fips.186-5
http://dx.doi.org/10.6028/NIST.FIPS.186-5
http://dx.doi.org/10.6028/NIST.FIPS.186-5
https://doi.org/10.6028/nist.fips.204.ipd
https://doi.org/10.6028/nist.fips.204.ipd
http://dx.doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/nist.fips.203.ipd
https://doi.org/10.6028/nist.fips.203.ipd
http://dx.doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/nist.fips.205.ipd
https://doi.org/10.6028/nist.fips.205.ipd
http://dx.doi.org/10.6028/NIST.FIPS.205.ipd
https://web.archive.org/web/20250319051738/https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/pqc-seminars/presentations/2-side-channel-security-saarinen-04042023.pdf
https://web.archive.org/web/20250319051738/https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/pqc-seminars/presentations/2-side-channel-security-saarinen-04042023.pdf
https://web.archive.org/web/20250319051738/https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/pqc-seminars/presentations/2-side-channel-security-saarinen-04042023.pdf
https://web.archive.org/web/20250319051738/https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/pqc-seminars/presentations/2-side-channel-security-saarinen-04042023.pdf
https://web.archive.org/web/20250319051738/https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/pqc-seminars/presentations/2-side-channel-security-saarinen-04042023.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/pqc-seminars/presentations/2-side-channel-security-saarinen-04042023.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/pqc-seminars/presentations/2-side-channel-security-saarinen-04042023.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/pqc-seminars/presentations/2-side-channel-security-saarinen-04042023.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/pqc-seminars/presentations/2-side-channel-security-saarinen-04042023.pdf
https://web.archive.org/web/20240420093321/https://pqcrypto2023.umiacs.io/slides/Invited.3.pdf
https://web.archive.org/web/20240420093321/https://pqcrypto2023.umiacs.io/slides/Invited.3.pdf
https://web.archive.org/web/20240420093321/https://pqcrypto2023.umiacs.io/slides/Invited.3.pdf
https://pqcrypto2023.umiacs.io/slides/Invited.3.pdf
https://pqcrypto2023.umiacs.io/slides/Invited.3.pdf
https://eprint.iacr.org/2021/1631
https://eprint.iacr.org/2021/1631
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://web.archive.org/web/20240814062435/http://archive.dimacs.rutgers.edu/Workshops/Post-Quantum/Slides/Silverman.pdf
https://web.archive.org/web/20240814062435/http://archive.dimacs.rutgers.edu/Workshops/Post-Quantum/Slides/Silverman.pdf
https://web.archive.org/web/20240814062435/http://archive.dimacs.rutgers.edu/Workshops/Post-Quantum/Slides/Silverman.pdf
http://archive.dimacs.rutgers.edu/Workshops/Post-Quantum/Slides/Silverman.pdf
http://archive.dimacs.rutgers.edu/Workshops/Post-Quantum/Slides/Silverman.pdf
http://archive.dimacs.rutgers.edu/Workshops/Post-Quantum/Slides/Silverman.pdf
https://web.archive.org/web/20250109003634/https://verilator.org
https://web.archive.org/web/20250109003634/https://verilator.org
https://verilator.org

Bibliography

[Sou+11] Mathilde Soucarros et al. “Influence of the temperature on true random number generators”.
In: HOST 2011, Proceedings of the 2011 IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), 5-6 June 2011, San Diego, California, USA. IEEE
Computer Society, 2011, pp. 24–27. DOI: 10 . 1109 / HST . 2011 . 5954990. URL:
https://doi.org/10.1109/HST.2011.5954990.

[SP24] D Sarah and C Peter. On the Practical cost of Grover for AES Key Recovery. [Online]. Avail-
able from: https://web.archive.org/web/20240420015549/https://
csrc.nist.gov/csrc/media/Events/2024/fifth-pqc-standardization-
conference/documents/papers/on-practical-cost-of-grover.pdf,
(Archived on 24 Apr. 2024). 2024. URL: https://csrc.nist.gov/csrc/media/
Events/2024/fifth-pqc-standardization-conference/documents/
papers/on-practical-cost-of-grover.pdf.

[SS18] Ray Salemi and Siemens EDA. pyuvm - Universal Verification Methodology based on the
IEEE 1800.2 specification implemented in Python. [Online]. Available from: https://
web.archive.org/web/20250116095223/https://github.com/pyuvm/
pyuvm, (Archived on 16 Jan. 2025). 2018. URL: https://github.com/pyuvm/
pyuvm.

[Ste12] Marc Martinus Jacobus Stevens. “Attacks on hash functions and applications”. Doctoral
thesis. Leiden University, 2012. URL: https://hdl.handle.net/1887/19093.

[Ste93] Jacques Stern. “A New Identification Scheme Based on Syndrome Decoding”. In: Advances
in Cryptology - CRYPTO ’93, 13th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 22-26, 1993, Proceedings. Ed. by Douglas R. Stinson.
Vol. 773. Lecture Notes in Computer Science. Springer, 1993, pp. 13–21. DOI: 10.1007/
3-540-48329-2_2. URL: https://doi.org/10.1007/3-540-48329-2_2.

[Sti+07] James E. Stine et al. “FreePDK: An Open-Source Variation-Aware Design Kit”. In: IEEE
International Conference on Microelectronic Systems Education, MSE ’07, San Diego, CA,
USA, June 3-4, 2007. IEEE Computer Society, 2007, pp. 173–174. DOI: 10.1109/MSE.
2007.44. URL: https://doi.org/10.1109/MSE.2007.44.

[SXY18] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. “Tightly-Secure Key-Encapsulation
Mechanism in the Quantum Random Oracle Model”. In: EUROCRYPT 2018. Ed. by Jesper
Buus Nielsen and Vincent Rijmen. Vol. 10822. LNCS. Springer, 2018, pp. 520–551. DOI:
10.1007/978-3-319-78372-7_17. URL: https://doi.org/10.1007/
978-3-319-78372-7_17.

[The22] The OpenSSH Team. OpenSSH Changelog for version 9.0. [Online]. Available from: https:
//web.archive.org/web/20250203084110/https://www.openssh.
com/txt/release-9.0, (Archived on 3 Feb. 2025). 2022. URL: https://www.
openssh.com/txt/release-9.0.

[The25a] The OpenSSH Team. OpenSSH Changelog for version 10.0. [Online]. Available from:
https://web.archive.org/web/20250411145536/https://www.
openssh.com/txt/release- 10.0, (Archived on 11 Apr. 2025). 2025. URL:
https://www.openssh.com/txt/release-10.0.

[The25b] The OpenSSL Team. OpenSSL Changelog for version 3.5.0. [Online]. Available from:
https://web.archive.org/web/20250410160838/https://github.
com/openssl/openssl/releases/tag/openssl-3.5.0, (Archived on 10
Apr. 2025). 2025. URL: https://github.com/openssl/openssl/releases/
tag/openssl-3.5.0.

185

https://doi.org/10.1109/HST.2011.5954990
https://doi.org/10.1109/HST.2011.5954990
https://web.archive.org/web/20240420015549/https://csrc.nist.gov/csrc/media/Events/2024/fifth-pqc-standardization-conference/documents/papers/on-practical-cost-of-grover.pdf
https://web.archive.org/web/20240420015549/https://csrc.nist.gov/csrc/media/Events/2024/fifth-pqc-standardization-conference/documents/papers/on-practical-cost-of-grover.pdf
https://web.archive.org/web/20240420015549/https://csrc.nist.gov/csrc/media/Events/2024/fifth-pqc-standardization-conference/documents/papers/on-practical-cost-of-grover.pdf
https://csrc.nist.gov/csrc/media/Events/2024/fifth-pqc-standardization-conference/documents/papers/on-practical-cost-of-grover.pdf
https://csrc.nist.gov/csrc/media/Events/2024/fifth-pqc-standardization-conference/documents/papers/on-practical-cost-of-grover.pdf
https://csrc.nist.gov/csrc/media/Events/2024/fifth-pqc-standardization-conference/documents/papers/on-practical-cost-of-grover.pdf
https://web.archive.org/web/20250116095223/https://github.com/pyuvm/pyuvm
https://web.archive.org/web/20250116095223/https://github.com/pyuvm/pyuvm
https://web.archive.org/web/20250116095223/https://github.com/pyuvm/pyuvm
https://github.com/pyuvm/pyuvm
https://github.com/pyuvm/pyuvm
https://hdl.handle.net/1887/19093
https://doi.org/10.1007/3-540-48329-2_2
https://doi.org/10.1007/3-540-48329-2_2
https://doi.org/10.1007/3-540-48329-2_2
https://doi.org/10.1109/MSE.2007.44
https://doi.org/10.1109/MSE.2007.44
https://doi.org/10.1109/MSE.2007.44
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-319-78372-7_17
https://doi.org/10.1007/978-3-319-78372-7_17
https://web.archive.org/web/20250203084110/https://www.openssh.com/txt/release-9.0
https://web.archive.org/web/20250203084110/https://www.openssh.com/txt/release-9.0
https://web.archive.org/web/20250203084110/https://www.openssh.com/txt/release-9.0
https://www.openssh.com/txt/release-9.0
https://www.openssh.com/txt/release-9.0
https://web.archive.org/web/20250411145536/https://www.openssh.com/txt/release-10.0
https://web.archive.org/web/20250411145536/https://www.openssh.com/txt/release-10.0
https://www.openssh.com/txt/release-10.0
https://web.archive.org/web/20250410160838/https://github.com/openssl/openssl/releases/tag/openssl-3.5.0
https://web.archive.org/web/20250410160838/https://github.com/openssl/openssl/releases/tag/openssl-3.5.0
https://github.com/openssl/openssl/releases/tag/openssl-3.5.0
https://github.com/openssl/openssl/releases/tag/openssl-3.5.0

Bibliography

[VAM22] VAMPIRE lab. SUPERCOP: System for Unified Performance Evaluation Related to Cryp-
tographic Operations and Primitives. [Online]. Available from: https://web.archive.
org / web / 20250115002136 / https : / / bench . cr . yp . to / results -
kem.html, (Archived on 15 Jan. 2025). 2022. URL: https://bench.cr.yp.
to/results-kem.html.

[Wan+20] Wen Wang et al. “Parameterized Hardware Accelerators for Lattice-Based Cryptography
and Their Application to the HW/SW Co-Design of qTESLA”. In: IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2020.3 (2020), pp. 269–306. DOI: 10.13154/TCHES.V2020.I3.
269-306. URL: https://doi.org/10.13154/tches.v2020.i3.269-306.

[Web+22] Mark Webber et al. “The impact of hardware specifications on reaching quantum advantage
in the fault tolerant regime”. In: AVS Quantum Science 4.1 (2022). DOI: 10.1116/5.
0073075. URL: https://doi.org/10.1116/5.0073075.

[Weg+24] Violetta Weger et al. “On the hardness of the Lee syndrome decoding problem”. In: Adv.
Math. Commun. 18.1 (2024), pp. 233–266. DOI: 10.3934/AMC.2022029. URL: https:
//doi.org/10.3934/amc.2022029.

[Wu15] Yingquan Wu. “New Scalable Decoder Architectures for Reed-Solomon Codes”. In: IEEE
Trans. Commun. 63.8 (2015), pp. 2741–2761. DOI: 10.1109/TCOMM.2015.2445759.
URL: https://doi.org/10.1109/TCOMM.2015.2445759.

[Xin18] Homer Xing. Keccak core. [Online]. Available from: https://web.archive.org/
web/20240804051140/https://opencores.org/projects/sha3, (Archived
on 1 Aug. 2024). 2018. URL: https://opencores.org/projects/sha3.

[XL21] Yufei Xing and Shuguo Li. “A Compact Hardware Implementation of CCA-Secure Key
Exchange Mechanism CRYSTALS-KYBER on FPGA”. In: IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2021.2 (2021), pp. 328–356. DOI: 10.46586/TCHES.V2021.I2.328-
356. URL: https://doi.org/10.46586/tches.v2021.i2.328-356.

[XLF13] Tao Xie, Fanbao Liu, and Dengguo Feng. “Fast Collision Attack on MD5”. In: IACR Cryp-
tol. ePrint Arch. (2013), p. 170. URL: http://eprint.iacr.org/2013/170.

[Ylo06] Tatu Ylonen. IETF RFC 4252 - The Secure Shell (SSH) Authentication Protocol. [Online].
Available from: https://web.archive.org/web/20250126230533/https:
//www.rfc-editor.org/rfc/rfc4252, (Archived on 26 Jan. 2025). 2006. URL:
https://www.rfc-editor.org/rfc/rfc4252.

186

https://web.archive.org/web/20250115002136/https://bench.cr.yp.to/results-kem.html
https://web.archive.org/web/20250115002136/https://bench.cr.yp.to/results-kem.html
https://web.archive.org/web/20250115002136/https://bench.cr.yp.to/results-kem.html
https://bench.cr.yp.to/results-kem.html
https://bench.cr.yp.to/results-kem.html
https://doi.org/10.13154/TCHES.V2020.I3.269-306
https://doi.org/10.13154/TCHES.V2020.I3.269-306
https://doi.org/10.13154/tches.v2020.i3.269-306
https://doi.org/10.1116/5.0073075
https://doi.org/10.1116/5.0073075
https://doi.org/10.1116/5.0073075
https://doi.org/10.3934/AMC.2022029
https://doi.org/10.3934/amc.2022029
https://doi.org/10.3934/amc.2022029
https://doi.org/10.1109/TCOMM.2015.2445759
https://doi.org/10.1109/TCOMM.2015.2445759
https://web.archive.org/web/20240804051140/https://opencores.org/projects/sha3
https://web.archive.org/web/20240804051140/https://opencores.org/projects/sha3
https://opencores.org/projects/sha3
https://doi.org/10.46586/TCHES.V2021.I2.328-356
https://doi.org/10.46586/TCHES.V2021.I2.328-356
https://doi.org/10.46586/tches.v2021.i2.328-356
http://eprint.iacr.org/2013/170
https://web.archive.org/web/20250126230533/https://www.rfc-editor.org/rfc/rfc4252
https://web.archive.org/web/20250126230533/https://www.rfc-editor.org/rfc/rfc4252
https://www.rfc-editor.org/rfc/rfc4252

Acronyms

µCVP Approximate Closest Vector Problem.

µSVP Approximate Shortest Vector Problem.

CROSS Codes and Restricted Objects Signature Scheme.

FN-DSA Fast-Fourier Transform over NTRU-Lattice-Based Digital Signature Algorithm.

HQC Hamming Quasi-Cyclic.

LMS Leighton-Micali Signature.

ML-DSA Module-Lattice-Based Digital Signature Standard.

ML-KEM Module-Lattice-Based Key-Encapsulation Mechanism.

NTRU N-th degree Truncated polynomial Ring Units.

RSA Rivest-Shamir-Adleman.

SHAKE Secure Hash Algorithm Keccak.

SLH-DSA Stateless Hash-Based Digital Signature Standard.

XMSS eXtended Merkle Signature Scheme.

AEAD Authenticated Encryption with Associated Data.

AES Advanced Encryption Standard.

AMBA Advanced Microcontroller Bus Architecture.

ANNSI Agence nationale de la sécurité des systèmes d’information (French Cybersecurity Agency).

API Application Programming Interface.

ASIC Application Specific Integrated Circuit.

AT Area-Time.

AXI Advanced eXtensible Interface.

BCH Bose-Chaudhuri-Hocquenghem.

BGF Black-Gray-Flip.

BKZ Block Korkine-Zolotarev.

BM Berlekamp-Massey.

187

Acronyms

BRAM Block RAM.

BSI Bundesamt für Sicherheit in der Informationstechnik (German Federal Office for Information Security).

CDF Cumulative Distribution Function.

CIV Continuous Integration for Verification.

CLB Configurable Logic Block.

CPA Correplation Power Analysis.

CPU Centra Processor Unit.

CSPRNG Cryptographically Secure Random Number Generator.

CVP Closest Vector Problem.

DFR Decoding Failure Rate.

DFT Discrete Fourier Transforms.

DOM Domain-Oriented Masking.

DPA Differential Power Analysis.

DPKE Deterministic Public-Key Encryption.

DRC Design Rule Check.

DS Digital Signature.

DSE Design Space Exploration.

DSL Digital Subscriber Line.

DSP Digital Signal Processor.

DVB Digital Video Broadcasting.

EC Elliptic Curve.

ECC Error-Correcting Code.

ECDLP Elliptic Curve Discrete logarithm Problem.

eCSEE Enhanced Chien Search and Error Evaluation.

EDA Electronic Design Automation.

EM electromagnetic.

ePIBMA Enhanced Parallel Inversionless Berlekamp-Massey Algorithm.

ETSI European Telecommunications Standards Institute.

EUF-CMA Existential Unforgeability under Chosen Message Attacks.

FF Flip-Flop.

FIFO First-In First-Out.

FIPS Federal Information Processing Standard.

FPGA Field Programmable Gate Array.

FS Fiat-Shamir.

FSA Finite State Automata.

FSM Finite State Machine.

GCM Galois Counter Mode.

GDP Generic Decoding Problem.

188

Acronyms

GE Gate Equivalent.

GPV Gentry-Peikert-Vaikuntanathan.

GV Gilbert-Varshamov.

HHK Hofheinz-Hövelmanns-Kiltz.

HLS High Level Synthesis.

HMAC Hash Message Authentication Code.

HSM Hardware Security Modules.

HSP Hidden Subgroup Problem.

HW Hardware.

IEEE Institute of Electrical and Electronics Engineers.

IFP Integer Factorization Problem.

IND-CCA2 INDistinguishability under adaptive Chosen Ciphertext Attack.

IP Intellectual Property.

IR Interagency Report.

ISA Instruction Set Architecture.

IV Initialization Vector.

KAT Known Answer Test.

KDF Key Derivation Function.

KEM Key Establishment Mechanism.

KiB kibibyte, kilo binary bytes (1 KiB = 210 bytes, 2.4% more than 1 kilo bytes (KB) = 103 bytes).

LFSR Linear-Feedback Shift Register.

LLL Lenstra-Lenstra-Lovász.

LSB Least Significant Bit.

LUT Look-Up Table.

LVS Layout Versus Schematic.

LWE Learning With Errors.

LWR Learning With Rounding.

M-LWE Module-LWE.

M-LWR Module-LWR.

MAC multiply-and-accumulate.

MD Merkle-Damgård.

MDPC Moderate-Density Parity-Check.

MiB Mebibyte, mega binary bytes (1 MiB = 220 bytes, 4.8% more than 1 mega bytes (MB) = 106 bytes).

MPCitH Multy-Party Computation in-the-Head.

MSB Most Significant Bit.

NIC Network Interface Card.

NIST National Institute of Standards and Technology.

189

Acronyms

NTT Number-Theoretic Transform.

PDK Process Design Kit.

PGP Pretty Good Privacy.

PGZ Petterson-Gorenstein-Zierler.

PiB Pebibyte, tera binary bytes (1 PiB = 250 bytes, 1024 tebibytes).

PKC Public-Key Cryptography.

PPKE Probabilistic Public-Key Encryption.

PQC Post-Quantum Cryptography.

PRNG Pseudo-Random Number Generator.

PVT Process, Voltage, and Temperature.

QC Quasi-Cyclic.

QPU Quantum Processor Unit.

QRAM Quantum Random-Access Memory.

R-LWE Ring-LWE.

R-LWR Ring-LWR.

R-SDP Restricted Syndrome Decoding Problem.

R-SDP(G) Restricted Syndrome Decoding Problem in the subgroup G .

RAM Random-Access Memory.

REST REpresentational State Transfer.

RFC Request For Comments.

RM Reed-Muller.

RM/RS Reed-Muller/Reed-Solomon.

RNG Random Number Generator.

ROM Read-Only Memory.

RS Reed-Solomon.

RTL Register Transfer Level.

SCA Side-Channel Attack.

SDP Syndrome Decoding Problem.

SHA Secure Hash Algorithm.

SIMD Single Instruction Multiple Data.

SPA Simple Power Analysis.

SRAM Static RAM.

SSH Secure SHell.

SSP Subset Sum Problem.

SV SystemVerilog.

SVP Shortest Vector Problem.

SW Software.

TI Threashold Implementations.

190

Acronyms

TLD Top-Level Design.

TLS Transport Layer Security.

TRNG True-Random Number Generator.

UART Universal Asynchronous Receiver-Transmitter.

UVM Universal Verification Methodology.

VPN Virtual Private Network.

XOF eXtendable-Output Function.

ZK Zero-Knowledge.

191

	Introduction
	Brief overview on Quantum Computers
	Applications of Quantum Algorithms to Cryptography
	Post-Quantum Cryptography standardization
	Challenges of a Post-Quantum transition
	Contributions
	Thesis outline

	Preliminaries and design methodology
	Theoretical background and notation
	Vector space
	Algebraic structures
	Polynomials and Galois fields
	Complexity theory for classical computers

	Design Methodology
	Design Tools
	Latency, area and efficiency metrics

	Lattice-based cryptography
	NTRU and LWE
	NTRU HPS and NTRU HRSS
	Algebraic structures and parameters sets
	NTRU DPKE
	NTRU KEM

	Expressing NTRU hardness as lattice problems

	Code-based cryptography
	Syndrome Decoding Problem
	Quasi-Cyclic codes
	Restricted error vectors

	Hamming Quasi-Cyclic
	Algebraic structures and parameters sets
	HQC PPKE
	HQC KEM
	Comparison with BIKE

	Codes and Restricted Objects Signature Scheme
	Algebraic structures and parameters sets
	CROSS ZK protocol
	CROSS digital signature

	Cryptographic hash functions
	Merkle-Damgård construction
	Sponge construction
	Keccak scheme
	SHA-3 hardware designs

	Element generation
	Pack and unpack vectors into and from bit strings
	Sampling random vectors
	Sampling random vectors with fixed Hamming weight
	Hardware designs
	NTRU
	HQC
	CROSS

	Arithmetic
	Addition
	Modular arithmetic
	Vector space and polynomials

	Multiplication
	Modular arithmetic
	Vector space and polynomials

	Arithmetic in NTRU
	Polynomial addition/subtraction
	Polynomial multiplication
	Ring embed and lift

	Arithmetic in HQC
	Polynomial addition/subtraction
	Polynomial multiplication

	Arithmetic in CROSS
	Vector addition/subtraction and point-wise multiplication
	Vector exponentiation
	Vector-matrix multiplication

	Arithmetic in lattice-based schemes

	Top-level design
	NTRU
	Operation scheduling
	Design synthesis and implementation

	HQC
	Encoders and decoders for rs and rm codes
	Operation scheduling
	Design synthesis and implementation

	CROSS
	Arithmetic unit
	Merkle and seed trees
	Operation scheduling
	Design synthesis and implementation

	Conclusions
	Bibliography
	Acronyms

