EXPRESSIQN

User Manual

Version 1.0
05/28/2003

Authors: Partha Biswas, Sudeep Pasricha, Prabhat Mishra, Aviral

Shrivastava, Nikil Dutt and Alex Nicolau
{partha, sudeep, pmishra, aviral, dutt, nicolau}@cecs.uci.edu
http://www.cecs.uci.edu/~aces

ACESLaboratory
Center for Embedded Computer Systems
School of Information and Computer Science
Univerdsity of California, Irvine

1 EXPRESSION User Manual © 2003 ACES Laboratory

EXPRESSION User Manual © 2003 ACES Laboratory

TABLE OF CONTENTS

L INTRODUCTION . 1 ettt vttt et et et e et e et e e e e e et e e e e e et e eennaeneenaee D)
2. EXPRESSION TOOLKIT SETUP. .. vttt vt et et eieaetiee eeaetieseneaeneenennenenennaenens D
3. COMMAND LINE OPTIONS. ..ttt ettt et tetanaaeaneenaaseneaenanssnenennesenennenenenees 10
4. ARCHITECTURE ENTRY 11ttt ittt et ettt eatees tataae eetate e aae e eae e ae s aneeenssnnenas 19
5. DESIGN SPACE EXPLORATION . .1ttt tutiise et vttte et et vae e eae e se e seenesennae enes 44
7. OPEN ISSUESAND FUTURE DIRECTIONS. ...ttt vt ettt etees eetate eenvteanaenenes eennenns 73

APPENDIX A EXPRESSION ADLuiiiii it 75

APPENDIX B: GENERIC MACHINE MODEL....... v it iiiiieceeeseee e s s 78

EXPRESSION User Manual © 2003 ACES Laboratory

Acknowledgements

We would like to thank and acknowledge the contributions of several former and
current members of the ACES Lab in CECS, who helped make the EXPRESSION
project a reality. EXPRESSION would not have been possible without the
invaluable contributions of the following people: Ashok Halambi, Peter Grun,
Asheesh Khare, Nick Savoiu, Radu Cornea, Srikanth Srinivasan and Vijay Ganesh.

We are also grateful to all the members of the ACES Lab who took time out of their
busy schedulesto test and give feedback on therelease, which helped usimmensely.

4 EXPRESSION User Manual © 2003 ACES Laboratory

1. Introduction

EXPRESSION is an Architecture Description Language (ADL) as well as a
retargetable compiler/simulator tool-kit for architectural design space
exploration (DSE). A processor architecture can be captured using the
Graphical User Interface (GUI). The front-end of the tool-kit generates the
EXPRESSION description for the processor, which in turn steers automatic
generation of retargetable compiler and simulator.

The key features of our design methodology include:
Ease of specification and modification of architecture from the GUI.
Mixed behavioral/structural representation supporting a natural,
concise specification of the architecture.
Explicit specification of the memory subsystem allowing novel
memory organizations and hierarchies.
Efficient specification of architectural resource constraints allowing
extraction of detailed Reservation Tables (RTs) for compiler
scheduling.

This document will serve as a manual for users involved in rapid exploration
of programmable embedded systems.

1.1. Organization of User M anual
This user manual is organized as follows.
Section 2 explains how to set up the EXPRESSI ON framework.

Section 3 describes different command line options available for running
different components of EXPRESSI ON.

Section 4 discusses the whole process of architecture entry in detail.

Section 5 is especially important for designers who want to play around with
a base architecture and explore interesting design points in the architecture.

5 EXPRESSION User Manual © 2003 ACES Laboratory

Tool Set-up

!

Cmd Line Options

!

Ar chitecture Entry

!

Exploration
Benchmarking

Refer ences

Section 6 presents the benchmarks used to evaluate the framework on a base
architecture.

Section 7 talks about the open issues and directions for research in this
framework.

Finally, Section 8 provides useful references for anyone interested in
understanding the theory behind the framework.

Appendix A briefly describes different sections of EXPRESSION ADL
language. The detailed description of the EXPRESSION language can be
found in[2].

Appendix B describes the generic machine model used by our retargetable
compiler.

6 EXPRESSION User Manual © 2003 ACES Laboratory

1.2. Exploration Features Supported in This Release

Release 1.0 of the EXPRESSION toolkit supports the following exploration
features:

1. 1SA Exploration
+ Adding new complex instructions (Section 5.1.1).
+ Changing register accessibility (Section 5.1.2).

2. Pipeline Exploration
4 Adding a single/multi cycle functional unit (Section 5.2.1).
+ Adding a new pipelined functional unit (Section 5.2.2).
+ Deleting a pipeline path (Section 5.2.3).

3. Memory Subsystem Exploration
+ Modifying access times of caches/ memories (Section 5.3.1).
+ Modifying associativity of caches (Section 5.3.2).
+ Changing sizes of caches/memories (Section 5.3.3).
+ Adding new memory components in the memory subsystem (Section
5.3.4).

1.3. Recommended System Configuration

The EXPRESSION toolkit has been tested on the following system:
System:

OS Name: Microsoft Windows XP Professional

Version: 5.1.2600 Build 2600

System Type: X86-based PC

Processor: x86 Family 15 Model 1 Stepping 2 Genuinel ntel ~1 Ghz
Total Physical Memory: 512.00 MB

Total Virtual Memory: 1.72 GB

Page File Space: 1.22 GB

Development Platform: Visual C++ 6.0 Enterprise Edition

7 EXPRESSION User Manual © 2003 ACES Laboratory

1.4. Contact

To give comments, feedback or report bugs, send email to:
express@cecs.uci.edu

8 EXPRESSION User Manual © 2003 ACES Laboratory

2. EXPRESSION Toolkit Setup
The current release of EXPRESSION can be downloaded from

http://www.cecs.uci.edu/~expr ess

There are two main components in EXPRESSION: the EXPRESS
compiler and the SIMPRESS simulator. This tool-kit is implemented with
Microsoft Visual C++ 6.0 on an i686 machine running Microsoft Windows
XP. It has also been tested on Microsoft Windows NT and Windows 2000.
A Sparc/Solaris 2.7 machine is also required for preprocessing an input
application in C using a GCC-based front-end. However, this latter step can
also be performed from

http://www.cecs.uci.edu/cqi-bin/cgiwr ap/sudeep/file upload.cai

by uploading the C application to the server which generates the required
files for the EXPRESSION toolkit, in which case a Sparc/Solaris 2.7
machine is not required.

EXPRESS is a retargetable compiler centered around a generic machine
(described in Appendix B). An application in C is preprocessed by the GCC-
based front-end to generate front-end files, <fi | enanme>. procs and
<fil ename>.defs using the generic machine Instruction Set
Architecture (ISA). EXPRESS then reads the front-end files, builds an
Intermediate Representation (IR) amenable to different optimizations and
targets the architecture described in an EXPRESSION ADL (Architecture
Description Language) description. The output of EXPRESS is a special
assembly file named <f i | enane> DUVP_| R_ AFTER REGALLOQOC. t xt

SIMPRESS reads the special assembly file, simulates the running of
assembly on an architecture template generated from the ADL description
and finally generates area, power, and performance numbers including cycle
count and memory usage statistics. The purpose of the simulator is to assess
the efficacy of the code generated by the EXPRESS compiler for the given
architecture.

9 EXPRESSION User Manual © 2003 ACES Laboratory

The EXPRESSION tool-kit also comes with a GUI front-end to
schematically enter the architecture connectivity and instruction set
description. The GUI back-end converts the schematic description and
instruction set description into EXPRESSION ADL format. For details on
EXPRESSION ADL, please refer to [2].

2.1. EXPRESSION Package

Unzipping acesM PS. zi p yields the following directories:
e scripts: Useful scripts for preprocessing the input application, and
* expr: EXPRESS and SIMPRESS source code.

 benchmar ks: Applications in C that we tested our system on.
(Livermore loops and M ultimedia kernels)

The objective is to run the applications in the benchmar ks directory
through the EXPRESSION framework comprising EXPRESS and
SIMPRESS.

First, copy the filesin the expr directory to a suitable work directory on an
1686 machine. This directory is referred to as <wor k> directory in Section
2.3.

Then copy the filesinthe scri pt s directory to a suitable scripts directory
(<scripts_dir>) on a Sparc/Solaris 2.7 machine. This step is for
anyone wishing to compile C applications other than those provided in the
benchmark suite included with the release. The EXPRESSION framework
executes a C application only after it has been compiled/preprocessed first,
using the scripts in this directory to generate two files — xxx. def s and
XXX. procs where xxx is the name of the C file (see figure below).

10 EXPRESSION User Manual © 2003 ACES Laboratory

C program
(e.aLL1.c)

Preprocessing
(using scripts or
online)

LL1.defs, LL1 procs

Now ready to
execute

EXPRESSION
framework

If you do not have a SUN Sparc machine and want to compile your own C
applications for use with the EXPRESSION framework, you can do this
compilation online at

http://www.cecs.uci.edu/cqi-bin/cgiwr ap/sudeep/file upload.cai

by uploading the C application to the server which generates the required
files (two files : xxx. defs and xxx. procs) for the EXPRESSION
toolkit.

Note that the included benchmarks are aready compiled/preprocessed (the
corresponding .defs and .procs files for each application are included in the
benchmar ks directory) and if you just plan to use these benchmarks, you
can ignore the scripts directory and the entire preprocessing phase (Section
2.2).

2.2. Preprocessing the Application

An application in C (<f i | ename>. c¢) in the <sun_wor k> directory is
first translated into two files:
 <filenanme>. procs containing the text section in GENERIC
assembly, and
o <fil enanme>. def s containing the data section of the program.

The conversions from <fi |l enane>. c to <fil enanme>. procs and
<fil ename>. def s files are done on a Sparc/Solaris 2.7 machine using

11 EXPRESSION User Manual © 2003 ACES Laboratory

a GCC-based front-end tool provided in the release package. Before running
the scripts, go to <scri pt s_di r >. Give execute permissions to the files
in the <scripts_ dir> directory. Copy the benchmarks
(<fil enanme>. c) to be run to a work directory, <sun_wor k>. Open
m ps2expr-al | inan editor and set the variable SCR_PATH to the path
to <scripts_dir>. Save m ps2expr-all and change directory to
<sun_wor k>. Run the following commands in sequence to perform the
conversions.

1. csh; set path = (<path to scripts_dir> $path)

2. mps-fe-all <filenane>.c

3. m ps2expr-all <fil enanme>
The generated files (<fi | enanme>. procs and <fil enane>. defs)
will be referred to as benchmarks in Section 2.3.

Note that if you do not have a SUN Sparc machine and want to compile your
own C applications for use with the EXPRESSION framework, you can do
this compilation online at

http://www.cecs.uci.edu/cqi-bin/cgiwr ap/sudeep/file upload.caqi

by uploading the C application to the server which generates the required
files (<filename>.procs and <filenane>.defs) for the
EXPRESSION toolkit.

2.3. EXPRESSION Flow

To begin with, we take a MIPS-R4000 based architecture, developed in our
ACES laboratory. We call this architecture, acesM | PS. All the subsequent
sections will frequently refer to this architecture for the purpose of
illustrations. The EXPRESSION ADL description of acesMIPS is available
in<wor k>\ acesM PSDI | \ bi n\ Exanpl e_acesM PS. xnd.

The complete flow from setting up the framework followed by the loading
of acesM I PS architecture in graphical user interface (GUI) to the evaluation
of the architecture consists of following steps in sequence:

(1) The run directory is <wor k>\ acesM PSDI | \ bi n. Copy all the
benchmarks (<fi | enanme>. procs and<fil enanme>. defs)to
be run to this directory.

12 EXPRESSION User Manual © 2003 ACES Laboratory

13

(2) Invoke Microsoft Visual C++ (of Microsoft Visual Studio 6.0) and
open the workspace <wor k>\ acesM PS. dsw. In the FileView,
following projects should appear in this workspace:

+ acesM|PS Base Class Lib

+ acesM|PS Build System Lib
+ acesMIPS Derived Class Lib
acesM|PS Simulator Functions Lib
+ acesM|PSConsole

+ acesM|PSDII

+ acesM I PSfuncSimulator

% expression console

* expression dl

+ graphViz

+ pcProGUI

(3) Select acesM|PSConsole from the Workspace window and press ALT
+ F7. This invokes the Settings window for acesMIPSConsole
project. (shown in Fig. 1) Make sure you have the following Settings
for the projects:

a In the Link tab of the settings window for the ‘General’
Category, the *Output file name’ of the projects should be set as
follows:

I. acesMIPS console:
..\acesM PSdI | \ bi n\ acesM PSconsol e. exe
il. acesMIPSI:
..\acesM PSdI I \ bi n\ acesM PSdl | . dl |
lii. expression console:
.. \acesM PSdl |\ bi n\ expressi on consol e. exe
Iv. expressiondll:
..\acesM PSdl |\ bi n\ expression dll.dll

V. graphViz:
..\..\‘acesM PSD I\ bi n\ graphVi z. dl |
vi. pcProGUI:

..\acesM PSdl | \ bi n\ pcProGUJl . exe
b. In the Debug tab for the ‘General’ Category, the ‘Working
Directory’ for the projects ‘acesMIPS console’, ‘expression
console’ and ‘pcProGUI" should all be set to the run directory,
<wor k>\ acesM PSDI | \ bi n.

EXPRESSION User Manual © 2003 ACES Laboratory

Project Settings

Ssftings For. [\/in32 Debug

rﬂ--@s"' acesMIPS Baze Class Lib
FEH acesMIPS Build Systern Lib
- ED acesMIPS Derived Class Lib
[ﬂ--@ aceshIPS Simulator Functions Lib
[ﬂ--@ acesMIFSconzole

w B8 acesMIPSdI

[ﬂ--@ acestdPSfuncSimulator
[ﬂ--@ expreszion conzole

[ﬂ--@ expreszian dll

fﬂ--@ araphiiz

B8 pePraGLl

JAN

General | [Drebug i EHE+E‘SDurDl:: 3

General Beset |

Categony:

Catput fle nanne:

!..a’acesMIF'S di/bindaceskIPSconzole exe

Objectilibran modules;
ikerneISE.Iib wzerd.lib gdid2 lib winzpool lib comdlg32. lib ad

¥ Generatedebuginfo [lgnare all default libraries

W' Link incrementally [Gererats mapfile

[Enable prafiling

Project Options:

kernel32 ib uzerd2 ik gdid2 lib winspool lib comdlg32. lib
advapidZ lib shell32 lib ale32 ik oleaut32.lib uid. lib
odbe32 b odboop32 b kemel 32 b uzer32 b gdi3Z b :J

B 21x

Cancel

o |

Figure 1: Setting " Output File Name" under theLink tab

(4) Set pcProGUI as the active project. This project contains the GUI

front-end.

(5) Compile pcProGUI project and run pcPr oGUI . exe by pressing F5.

(6) Click File->new followed by Architecture->new. The project is now
ready to load an existing architecture description or create a new
architecture from scratch.

(7) The schematic

description
acesM PS. gnd and

the

of acesMIPS
instruction

is stored
set description

in
in

acesM PS.isd. Load <run>\acesM PS. gnd by choosing

‘Load graphical description’
<run>\acesM PS.isd by selecting

from the File menu. Then,
‘Load

description’ from the Instruction Set menu.

load
instruction set

(8) After making necessary changes to the architecture, save the
EXPRESSION description of the architecture by clicking ‘Save

14

EXPRESSION User Manual

© 2003 ACES Laboratory

EXPRESSION description’ from the File menu. Choose
<run>\ acesM PS. xnd to save the ADL description.

(9) Exit from pcProGUI.

proect seungs 2
Eettings For: IWin32 Debug ;‘ General Debug | CAC++ i Link: I -HE‘SDurcﬂl: »

3 - acesMIPS Base Class Lib
B8 acesMIPS Build System Lib
B8 acesMIFS Derived Class Lib
f£|-- acezbd|PS Simulatar Functionz Lib
f£|-- acesMIPS conenle iE:"-.users'xpartha'xresearc:hhe:-:presshe:-:pressian consale Ll
B3 acesMIPSdI
[£|-- acestd| PS5 funcSimulator

Cateqony: | General LI

Executable for debug zeszion;

Wworking directony:

fﬂ-- EROIESSI0n Corsole !"I"'a':ESMlF.Sd"I"'bin
f£|-- emprezzion dil : .
& B graphiviz Pragram: arquments:

w1 E pePraGUI laceleF‘S.:-:md -SIM Rl -ASH -DUMP

Remaote executable path and file name:

(] | Cancel |

(20 Now, set expression console as the active project. This project
takes the EXPRESSION description in <run>\ acesM PS. xnd
and generates different intermediate files required to retarget the
compiler and the simulator. It also generates <r un>\ mem confi g
containing memory configuration.

(11) Compile the project and run with the following command line
options (program arguments): acesM PS. xnd —-SI M —Rl —ASM
—DUMP. The ‘debug tab in the settings window is used for
specifying the command line options (as shown below).

(12) Set acesM | PS console as the active project. This project contains

both EXPRESS compiler and SIMPRESS simulator. The various
command line options available are discussed in the next section.

15 EXPRESSION User Manual © 2003 ACES Laboratory

(13) Compile the project, set the command line options (discussed in
Section 3) and run the project.

The acesMIPS console application generates the number of cycles,
memory usage and other statistics in <run>/ <fil ename>. pw St at s.
These performance numbers will guide the designers to make favorable
choices to steer the effective exploration of the architectural design space.

16 EXPRESSION User Manual © 2003 ACES Laboratory

3. Command Line Options

EXPRESS switches that are supported in this release:

» -1Sel (Instruction Selection): Convert a set of generic opcodes into a
set of target opcodes.

* -RA (Register Allocation): Each operand in an instruction is bound to
atarget register based on its register accessibility.

» -Thz (Trailblazing Percolation Scheduling): Perform Trailblazing [4]
assuming that the latency of each operation is 1 cycle.

* -PipeTbz (Pipelined Trailblazing): Based on the reservation tables
automatically generated ([3]) from the datapath, perform Trailblazing
Percolation Scheduling.

« -EXPR -ENAME *“<xmd filename>": Specify the input ADL file
name for pipelined trailblazing.

* -PreSch (Prescheduling Transformations): Perform different target
independent optimizations.

0 Dead-code Elimination
o Copy propagation

e -plList: Dump Instruction List on the console.

e -pHTG: Dump Hierarchical Task Graph on the console.

e -pCFG: Dump Control Flow Graph on the console.

* -pASM: Generate assembly code run-able on a native machine.

* -pDUMP: Generate special assembly output (IR dump) understood by
the SIM PRESS simulator.

* -name “<prefix>": Use “<prefix>" to prefix the generated assembly
file name as well as the generated IR dump file name.

SIM PRESS switches supported:
* -SRA: Run cycle-accurate simulation after Register Allocation
» -fsRA: Run functional simulation after Register Allocation
* -memCfg mem.config: Use the memory configuration specified in
mem.config file.

To run EXPRESS without any optimization, which performs only
instruction selection and register allocation and then run SIMPRESS, use
the following command line options: (Assume input files are
<fil enanme>. procs and<fil enane>. defs)

17 EXPRESSION User Manual © 2003 ACES Laboratory

<fil ename>. procs <fil enane>. defs —pDUMP —nane
“<filename>" -l Sel —RA -nenCfg nem config —sRA

To run with different target-independent optimizations and Pipelined
Trailblazing, type the following as command line options:

<fil enanme>. procs <fil enane>. defs —pDUMP —nane
“<filename>" -1Sel —-RA —-EXPR —-ENAME *“acesM PS. xnd”
—pi peTbz —-Tbz —-PreSch —-nmenCfg nem config —sRA

To run the above optimizations and dump the instruction list, the control
flow graph and the hierarchical task graph after register allocation, use the
following command line options:

<fil enanme>. procs <fil enane>. defs —pDUMP —nane
“<filename>" -|1Sel —-RA —EXPR —-ENAME *“acesM PS. xnd”
—pi peTbz -Tbz —-PreSch —-nmenCfg nmem config —plList -
pCFG —pHTG -sRA

» Please also note that the command line options can be specified in
any order.

18 EXPRESSION User Manual © 2003 ACES Laboratory

4. Architecture Entry

The VSAT-GUI [1] is the front end to the EXPRESSION framework for
architectural design space exploration. This release focuses on the
acesM | PS architecture for exploration. We will show in section 5, how the
framework can be used to perform architectural exploration. This section is
broken up into two tutorials. The objective of the first tutorial (Section 4.1)
isto familiarize with the representation of different architectural components
and instruction set of acesM | PS architecture. The second tutorial (Section
4.2) teaches how to add a new component in the GUI.

4.1. Tutorial |
The aim of this tutorial is to load the acesM I PS design in GUI and to get
familiar with the graphical environment.

Il

File VEN Help

o T oo o e e T S R Y

Ll lsieE

For Help, press FL [
Figure 2. EXPRESSION GUI

This is the first screen you will see when you run the GUI
(pcProGUl . exe). Go to the File menu and select New or click on the
New icon on the toolbar.

19 EXPRESSION User Manual © 2003 ACES Laboratory

Next, go to the Architecture menu option and select New. Y ou should now
see the following screen.

EVEXPRESS - SIM View D =lol x|
File Components Instruction Set Simulator Wiew Window Help

Di|@] &2 +|=| Sl Nl] Sle] bl e go o] ml] sl nle]] 8]

v

=] (S @

kd

£

2

sl

bt

=l

For Help, press F1 |_,_|_ 4

Figure 3: Architecture Entry View

Now, from the “File” menu, choose the option to Load a Graphical Machine
Description. Select and open graphica machine description file,
<run>\ acesM PS. gnd. This graphical machine description file contains
a layout of all the components including pipeline stages, architecture units,
register files and the memory subsystem in acesM I PS architecture.

Then, from the “Instruction Set” menu, select the option to Load an
Instruction Set Description. Select and open instruction set description file,

<run>\ acesM PS. i sd. This instruction set description file contains the
description of acesMIPS instruction set.

Clicking on any entity on the screen will bring up its properties in the
Properties window.

The Properties window will be overlaid on the main window.

20 EXPRESSION User Manual © 2003 ACES Laboratory

Y EXPRESS - [SIM Yiew]

Al | (i)

Figure 4: acesM | PS ar chitectur e on the GUI

The screen above shows the different architectural components that can be
captured. They comprise the following:

- Pipeline Stages (called Units).
- Latches (between Units).
- Storage components
0 Register files.
0 Memory modules (SRAM & DRAM).
0 Caches (ICache and DCache).
- Ports (can be present in units as well as in memory and register files).
- Connections (between the ports, between storage elements and
between units).

Note : Although the ‘compound unit’ and ‘bus’ components are present in
the GUI, they have not been used in the acesM | PS architecture framework
and are not guaranteed to work. Note also that clicking on a component on
the screen and then clicking anywhere else on the screen may sometimes

21 EXPRESSION User Manual © 2003 ACES Laboratory

cause a‘ghost’ (aresidual image) of that component to appear on the screen.
This is normal and vanishes when you click another component on the
screen.

4.1.1. Architectural Components Specification
In this section, we gloss over the details of the aforementioned architectural
components.

4.1.1.1. Unit

5
M arne: Clazz Mame:
|DECODE |Decodellnit
Supported OpCodes: Capacity:

& Al 12

" Selected Timing:

LU_Unit_ops i’ [all 1]
FaLU_nit_ops
e o5
Irztruction lh

|4
Instruction Out

Cuztom Froperties: I2

[% [Irdo Spplp

Figure 5: DecodeUnit: An example of Unit

The Unit is characterized by properties that are displayed in the Properties
window that is displayed when any Unit is clicked on the screen.
The fields shown above are described below:

Name - hame of the unit
Class Name - hame of the class the unit belongs to. A unit can be one

of FetchUnit, DecodeUnit, OpreadUnit, ExecuteUnit,
BranchUnit, LoadStoreUnit and WriteBackUnit

22 EXPRESSION User Manual © 2003 ACES Laboratory

Supported

Opcodes - The opcode groups supported by the unit — these groups
are specified from the set OP_GROUPS itemin the
Instruction Set menu. More on that later.

Capacity - Capacity of the Instruction Buffer in the unit.

Timing - Thetime it takes for an instruction to pass through a

Unit. “(all 1)” means that all opcodes passing through
this stage takes 1 cycle. Y ou can specify how much
time
an individual opcode takes in the unit by appending
“(<opcode name> <time>)” in the text box above. For
example, if the mac instruction takes 2 cyclesto
execute in one of the ALU execute units, then we can
specify it as shown below

Properties - Unik h i il |
Mame: Clazz Mame:

[ALUZ_Ex |Executelnit

Supported OpCodes: Capacity;
Al 1

—f* Selected Tirning:

FaLU_Unit_ops j
‘B F_rnit_ops
Nehun ons .TJ

Cuztom Properties:

[all 1][mac 2]

Instruction In

|1

Ingtriiction Dok

1

| [ARGUMENT _UMNIT_]

IIxdo

| Apply I

Figure 6: ALU Execute Unit

I nstruction In

- The number of instructions coming into the unit per

cycle.

I nstruction Out

23

- The number of instruction dispersed out of the unit

EXPRESSION User Manual

© 2003 ACES Laboratory

Custom Properties - Other miscellaneous properties. For instance,
‘ARGUMENT _UNIT_’ needs to be specified for the
execute units and is used in pipeline trailblazing.

4.1.1.2. Latch

| Propetties - L.ﬁch #
Mame: Clagz Mame:
iFetDecLatch |In3t5trLatn:h
= Port Type:
= Irput i Dutput = Other ‘

Crztom Properties:

g e, | By |

Figure 7: Setting Latch Properties

A pipeline latch is characterized by properties that are displayed in the
Properties window that is displayed when any latch is clicked on the screen.
The fields shown above are described below:

Name - name of the latch

Class Name - class that the latch belongs to. Can be one of
InstStrLatch (carry instructions from Instruction
Memory), InstructionLatch (carry instructions prior to
decode), and OperationLatch (carry decoded
instructions).

Port Type - whether the direction of transfer is into or out of the

24 EXPRESSION User Manual © 2003 ACES Laboratory

latch. Each unit has latches associated with it and
these are specified by creating a latch within the unit
(which specifies an output or other type latch) or a
connection from alatch in another element to the unit
(implicitly specifying an input from the latch of that

unit)

Custom Properties - Other miscellaneous properties

4.1.1.3. Port

Properties - Pork |

Pharme:

Clasz Mame:

[41u1 ReadPort]

ILI ritFart

- Paort Tupe:
&+ Fead

= Wwhite

" Read/wiite

Custom Froperties:

[CAPSCITY 1)

ARGUMEMNT _SOURCE_1.]

Unde [Ap |

Figure 8: Setting Port Properties

A port is characterized by properties that are displayed in the Properties
window that is displayed when any port is clicked on the screen.
The fields shown above are described below:

Name

Class Name

25

- Name of the port.
- Class that the port belongs to. Must be either Port

(for ports bound with storage elements) or
UnitPort (for ports bound with units).

EXPRESSION User Manual © 2003 ACES Laboratory

Port Type - Specifies whether the port is aread, write or a
read/write Port.

Custom Properties - Other miscellaneous properties. For instance
‘ARGUMENT _SOURCE 1 ’ indicates that this
port will serve as the first source for operations
that are associated with the ALU1 unit.
‘CAPACITY 1 indicates that only 1 value can be
read from the port.

4.1.1.4. Connection

Properties - Conneckion g
I arne:; Clazz Mame:

IG prAeadPort24iul ReadPort2 |F| egisterConnection

Cuiztom Properties:

| | Aaply |

Figure 9: Setting Connection Properties

A connection is characterized by properties that are displayed in the
Properties window that is displayed when any connection is clicked on the
screen. The fields shown above are described below:
Name - Name of the connection.

Class Name - Class that the port belongs to. Must be either

26 EXPRESSION User Manual © 2003 ACES Laboratory

RegisterConnection (for a connection between
units

and aregister file) or MemoryConnection (for a

connection between unit and a memory element).

Custom Properties - Other miscellaneous properties.

4.1.1.5. Storage (Register File)
4
Type
{*" Fegister File i |Cache l iEsohs
" ERaM b\; " DRAM
MName: Elazzs Name
IEPHF"E |Stn:nrage
width Size
EZ |22
Aeaniatyity Eachelines:
- II_'l
L -
i Customn Properties:
'I"{‘r*"“"" i |[E.&F'.-“-‘«EITY 32)
L
Address R ange: tnemanic
Fram: I'J IH
Tim Il_'l e | Lpply ||

Figure 10: Register File Properties

A register file storage element is characterized by properties that are
displayed in the Properties window that is displayed when the storage
element is clicked on the screen. The fields shown above are described
below:

Name

Class Name

Width

27

- Name of register file.

- Class of the register file. Can only be Storage.

- Width of register file in bits.

EXPRESSION User Manual

© 2003 ACES Laboratory

Size

M nemonic

Custom Properties

- Number of registersin the register file.

- Prefix to be used for the registers in assembly
formats. For example, General Purpose Register
file has registers with prefix “R”.

- Other miscellaneous properties.

4.1.1.6. Storage (Cache)

Figure 11: Cache Properties

A cache storage element (ICache or DCache) is characterized by properties
that are displayed in the Properties window that is displayed when the
storage element is clicked on the screen. The fields shown above are

described below:

Name

Class Name

28

A
Type
" Register File % |Cache " DCache
" SRaAM " DR&M
MHarne: Clazs Mame
I”-'I IStnrage
Wiord Size Line Size
f4 2
Szzociativity Lache Lines:
i £
| I . Cusztom Properties:
Access Time:
|1 |
Address Fange: M FEmEHE
Fram; |0 I
To: [39933 Unda | [Al

- Name of cache.

- Class of the cache. Can only be Storage.

EXPRESSION User Manual © 2003 ACES Laboratory

Word Size - Number of bytes in aword.

Line Size - Number of wordsin aline.

Associativity - Associativity level of cache.

Cachelines - Number of lines in cache.

Access Time - Time to access cache (in cycles).
Address Range - Range of addresses associated with cache.
Custom Properties - Other miscellaneous properties.

4.1.1.7. Storage (RAM)

r
- Type
" Register File i~ ICache { DCache
" SRAM * DRAM
Marmne: Clazz Mame
IMEiﬂMEFﬂ IStn:urage
e i Size
[E
fssomiativit Eache Lines

o

I:_ustn:um Froperties:

Access Time:

fr |

Address Range: fAnEman

From: Il:l |

Tor |9995904 Urdo ol ||

Figure 12: Main Memory Properties

A RAM (DRAM or SRAM) storage element is characterized by properties
that are displayed in the Properties window that is displayed when the
storage element is clicked on the screen. The fields shown above are

described below:

29 EXPRESSION User Manual © 2003 ACES Laboratory

Name - Name of memory.

Class Name - Class of the memory element. Can only be
Storage.

Access Time - Number of cycles to access datain memory.

Address Range - Range of addresses associated with memory. It is

used by the memory controller to decide from
where to fetch instruction/data.

Custom Properties - Other miscellaneous properties.

Now that you are familiar with the architecture layout, let's look at the
I nstruction Set description.

4.1.2. Instruction Set Specification

Go to the Instruction Set menu and select the Load Instruction Set
Description option. Select and load the file acesM | PS.isd.

2V EXPRESS - [SIM

fon Set | Simdlator Wiew tWindow Help

| Dl(E] 4[5 wvnmors o [os s e oo |]| e || m (o [e[| 8]
5

Set OPERAND_MAPPING

Set TREE_MAPPING
Set

Class Nanme:

me.
TCH [Fetchunk

Supported OpCodes: Capacity
| IO

| ()
#start|)8 Windows Explorer -J ©0 acesMIPS - M\cvasaf‘.‘i [ofl visusl Sourcesafe Ej (431 Inbo - Outlok. ExDH.] EXPRESSION_User_. . | B EXPRESS Cansale ﬂ;ﬁ EXPRESS - [SIM ¥i... |« 0] 2:50aM

Figure 13: acesM | PS |oaded with I nstruction Set.

30 EXPRESSION User Manual © 2003 ACES Laboratory

The loaded instruction set can be changed by invoking different options
from the “Instruction Set” menu. The changed instruction set can be saved
for future reference by invoking “Save Instruction Set Description” (as
shown in Fig. 13).

We discuss the different options in the Instruction Set menu in the following
sub-sections.

4.1.2.1. set VAR_GROUPS
Go to the Instruction Set menu and select the set VAR_GROUPS option.

x
Mame:; Bratatupe Components [Feeparated):
ary_call_param INT GFRFile[4-12] -
any_co INT CC =
any_fp IMT FF
ar_hilo INT HILO
any_pc INT FC
ar_retaddr INT GFRFile[31]
any_sp INT 5P
double_all DOUELE FPRFile (kb
double_any DOUELE FPRFil=[0 24 681012141618 20 22 24 26 28 30]
double_immediate DOUEBLE [b bd Il
doubled_normal DOUELE FPRFil=0 24 681012141618 20 22 24 26 28 30]
doublel_retyval DOUBLE FPRFile[0]
double?_normal DOUELE FPRFil=[1 257911 1315171921 2325 27 23 3]
double?_retval DOUBLE FPRFile[1]
float_all FLOAT FPRFile (kb
float_ary FLOAT FPRFile
float_immediate FLOAT [b b4
flaat_normal FLOAT FPRFile ;]
M arne: [Datatipe Components | |-=eparated):
=]
Cancel |] I

Figure 14: Setting VAR_GROUPS

The target registers are classified into new var_groups or register classes
based on their data types and mappings with the var_groups in generic
register files. For example, the var_group “int_hilo” refers to the register
holding the output of a multiplication. The var_group “int_fp” is used to
capture the register used as frame pointer. This section allows you to specify
the var_groups, which are used later when specifying the allowed storage
types associated to source and destination operands of an opcode. (See Set
OP_GROUPS). These var groups are aso wused while setting
OPERAND_MAPPINGS.

31 EXPRESSION User Manual © 2003 ACES Laboratory

Name - Name of the aggregate of storage elements.
Datatype - Type of data associated with the group.
Components - Storage elements actually associated with the group.

4.1.2.2. set OP_GROUPS

Dperation Groups EI

LU _Uni
FALI]_SIr:iE;s Narme: | 0p Type: | =l Al |
BR_Urit_ops Behavior: I
Debug ops
LDST Urit_ops —H
Operand 1 Operand T Tyupe Operand & Operand 2 Type
|] I | Fe!
Operand 3 Operand 3 Tupe Operand 4 Operand 4 Type
A | o | IR | | fd
T
Operand 1 Operand 1 Tyupe Operand 2 Operand 2 Type
|) || k2!
Operand 3 Operand 3 Type Opsrand 4 Operand 4 Type
|] I | Fe!
= |
Operand 1 Operand T Type Operand 2 Operand 2 Type
[| £ || g2 F7!
Operand 3 Operand 2 Type Operand 4 Operand 4 Type
[E F | R | | e
A5k FORMAT
IR DUMP FORMAT

@"Dl _gl —0 | ilil Carizel | 0k I

Figure 15: Setting OP_GROUPS

This section specifies the opcodes in the instruction set of the architecture
and groups them together into various opcode groups.

32 EXPRESSION User Manual © 2003 ACES Laboratory

Pressing ‘+g', as shown in Figure 15, allows the addition of a group. ‘+0’
allows adding opcodes within a group. The fields on the right hand side
become enabled once an item in the text box on the left hand side is selected.
To select an op group, simply click on it. On double clicking it, the list of
opcodes contained in the group will be displayed. Note that, “+0” is not

enabled unless you select/highlight an operation group.

For instance, on selecting ALU_Unit_Ops and double clicking on it, we see

the dialog below:

Operation Groups i

X

ALU rit_ops :I
dmfi

drmit

[t %
ol

and

cvb s d

cvb d 3

cvt_d w
trunc_w_s
trurnic_w_d

mifhi

mflo

mfc e
mitc

sgtu

zlew

zlu

li

div

il

and

or

o

andi
nri .L‘

T e e e

Figure 16: Operations supported by ALU Unit

33

Mame; I;‘-‘-.LLI_LInit_Dps

Op Type: | "i Al I

Behavior: I
=B
Operand 1 Operand T Tyupe Operand 2 Operand 2 Type
Operand 3 Operand 2 Type Operand 4 Operand 4 Type
T
Operand 1 Operand 1 Tyupe Operand 2 Operand 2 Type
Operand 3 Operand 3 Type Operand 4 Operand 4 Type
L
Operand 1 Operand T Tupe Opirand 2 Operand 2 Type
Operand 3 Dperand 3 Type Operand 4 Operand 4 Type
A5k FORMAT

IF DUME FORMAT

EXPRESSION User Manual

Cancel | 0K I

© 2003 ACES Laboratory

Clicking on any of the opcodes shown brings up its properties on the right
hand side of the dialog.

x
LU Unit_ops -~

A = |Mame: Iand Op Type: IDAT."—‘« "I Al |

dmtc1 Behavior: | DEST_=_SOURCE_1_A&ND _SOURCE_2_

cvl oz w

war v

% Operand 1 Operand 1 Type Operand 2 Operand 2 Type:

d ” :

Evt Z_s |5HE-I LI Ilnt_any j iSHEE ;I Ilnt_any ;I

cvt:d:w Opsrand 3 Operand 3 Type Operand 4 Operand 4 Type

tunc_w_z IDST LI |int_an_l.J j | LI I j

trunc_w_d

riafhi —

fl

;fco'l [Dperand 1 Operand 1 Type Operand 2 Operand 2 Type

i [| k2 ||| | 5

sgtu Operand 3 Operand 3 Type Operand 4 Operand 4 Type

zleu

zlhy | LI | ;I | LI I ;I

li B

div =

ik Operand 1 Operand 1 Tupe Opetand 2 Operand 2 Type

and [|| Es || [| F2

. Operand 3 Operand 3 Tupe Operand 4 Operand 4 Typs

o

andi _I I ll I d | LI I j
A5 FORMAT
[[COMD "dstl=reg.zrcl=reg.src2=reg" | [PRINT "t<opcodesStE<dstl> $<sn
IR DUMP FORMAT
[[COMD "detl=reg,srcl=reg,src2=imm" | [PRIMT "t4\t< opoode: \t$<dst] =)'

.|,g| +n| —gl —nl fl;l Cancel | 0K I

Figure 17: Operand Typesfor an Operation " and"”

The various fields are described below:

Name - Name of opcode.

Op Type - Type of opcode, can be either data, control or
flow.

Behavior - Describes the behavior of the opcode.

34 EXPRESSION User Manual © 2003 ACES Laboratory

Operand X - Specifies operands in the opcode.

Operand X Type - Specifies type of the operand. These types were
defined inthe VAR_GROUPs section.

ASM format - Specifies format for standard assembly dump
(enabled by option pASM).

IR Dump For mat - Specifies format for intermediate representation
dump, which acts as assembly for the simulator.
(The simulator expects the instruction format to be
in the following format: <opcode> (dst 1,
dst2,..), (srcl, src2,..).)

Clicking on ‘-0’ deletes the opcode.

4.1.2.3. set OPERAND_MAPPING

x|
FAND MAPPING =
{0P_MAPPING (GENERIC (DATATYFE ANY) {CLASSTYPE NORMAL)) (TARGET int normal)]
{0P MAPPING (GENERIC (DATATYFE INT) {CLASSTYPE TMH)) {TARGET int in
0P MAPPING (GENERIC (DATATYFE INT) {CLASSTTPE MNORMAL)) (TRRGET int normal))
{0P_MAPPING (GENERIC (DATATYPE INT) (CLASSTYPE ANY)) (TARGET int ar
{0P_MAPPING (GENERIC (DATATYFE INT) (CLASSTYPE CALL_PARM)] (TARGET int call ¢
(0P _MAPPING (GENERIC (DATATYFE INT) {CLASSTYPE ZERQ)) i TARGET int zero)]
{0P MAPPTNG (GENERIC (DATATYFE INT) {CLASSTYPE CC)) { TARGET int ceo))
{0P_MAPPING (GENERIC (DATATYFE INT) {CLASSTYPE 5P)) { TARGET int sp})
{0P_MAPPING (GENERIC (DATATYFE INT) {CLASSTYPE FFP)) {TARGET int fp)) —
{0P_MAPPING (GENERIC (DATATYFE INT) {CLASSTYPE PC)) i TARGET int pel)
{0P_MAPPING (GENERIC (DATATYFE INT) {CLASSTYPE RET VAL)] (TARGET int retwal
{0F MAPPTNG (GENERIC (DATATYFE INT) {CLASSTYPE RET ADDR)) (TARGET [}\: int retadd
0P MAPPING (GENERIC (DATATYPE INT) (CLASSTYPE HILO)) { TRRGET int hiloj]
{OP_MAPPING (GENERIC (DATATYFE INT) (CLASSTYPE RIZAZ)) i TARGET int rISAzZ)
{0P_MAPPING (GENERIC (DATATYFE INT) (CLASSTYPE RIZA4]) i TARGET int rISad)
{0P_MAPPING (GENERIC (DATATYFE INT) {CLASSTYPE RIZAS)) {TARGET int rIZas)
{0P_MAPPING (GENERIC (DATATYFE INT) {CLASSTYPE RIZALE)) {TARGET int rI3Ale
0P MAPPING (GENERIC (DATATYPE INT) {CLASSTYPE RISA)] {TARGET int rISA))
{0P_MAPPING (GENERIC (DATATYPE INT) ({CLASSTYPE TEMP RIS4)) (TARGET int temp
{0P_MAPPING (GENERIC (DATATYPFE INT) (CLASSTYPE ANY)) (TARGET int ar
{0P_MAPPING (GENERIC (DATATYFE INT) {CLASSTYPE MEM) | {TARGET if o
o oo
concer_|

Figure 18: Register Class mappings for Operands

35 EXPRESSION User Manual © 2003 ACES Laboratory

The registers in the generic machine are classified into a set of register
classes (based on types like GPRFile registers, FPRFile registers, return
address register, register hard-wired to zero etc.) or var_groups (already
discussed in Section 4.1.2.1). The mappings of these generic register classes
to a new set of target register classes are specified in this section.

4.1.2.4. set TREE_MAPPING

TREE MAPPING {Generic - Target Opcode Mapping) ﬂ

Prezs CNTEL Enter for newline after typing text

{TREE_MAPPING i’
TADD [}s
;0
l:
{ GENERIC

{
{IADD DST[1] = REG(1l) SRC[1] = REG(2) SRC[2] = IMM{3])
I
1
{ TARGET
{
{addu DST[1] = REG(1l) SRC[1] = REG(2) SRC[2] = IMM{3})
!

Figure 19: Tree Mapping

This section is used to specify the Tree Mapping, which is a mapping from
generic to target opcodes. This is the section that is used by the Instruction
Selection phase to convert the generic operations into the target operations.

4.1.2.5. Set Instruction Description

This section is used to specify the operation slots in a VLIW instruction. In
the acesMIPS example we have 4 slots for data operations (2 ALU
operations, 1 FALU operation, 1 LDST operation) and 1 slot for Control
operation. A valid VLIW instruction of word length 32 comprises of any
four out of these dlots.

36 EXPRESSION User Manual © 2003 ACES Laboratory

Instruction Description il

Wwiord Length: |32 >
— Inztruction Slats
Type Bitwidth ek
DaTA g ALUT_Ex
DATA, a ALUZ Ex
DaTa a Falll Ex 4
5] LOST Ex
COMTROL & BR_Ex ¥
—Slok
Tvpe: Bitwidth: Unik;
By i =]+ =]

Cancel |

ak.

Figure 20: VLIW Instruction Template

4.1.2.6. Edit datapaths

This section is used to specify the various data paths in the architecture —
between units and storage elements as well as paths between storage
elements (e.g L1 and L2 caches)

From the Component menu, select ‘ Edit datapaths'.

You can see in the dialog above the various datapaths between units and
storage elements like register files and memories. Data paths between
storage elements are shown prefixed with a*||STORAGE_PATH||' specifier.

37

EXPRESSION User Manual

© 2003 ACES Laboratory

x

[ISTORAGE_PATHI IL1 L2 M

[ISTORAGE _PATHI L1 L2

ISTORAGE_PATHI L2 Maintemn

FPRFile ALUZ2_READ FprReadPort] FprReadPortlaluzReadPaort] Cin Alu2F eadPaort
FPRFile ALUZ2 READ FpiReadPort? FprR eadPort24lu2R eadPort 2Cxn AluZReadPort2
FPRFile FALU_READ FprReadPort3 FprReadPort3F aluR eadPort1 Can FaluReadPaort]
FPRFile FALU_READ FprReadPortd FpriReadPortdF aluR eadPort2Cen FaluR eadPart2
FPRFile LDST_READ FprReadPorts FprReadPortbLdStReadFort3Cxn LdStReadPort3
GPRFile ALLUT_READ GpiReadPort] GpriReadPort] Alul ReadPort] Cen Alu1ReadFaort 1
GFRFile ALUT_READ GpiReadPort? GprR eadPort28lul BeadPort2Cen AlulReadPort2
GPRFile ALUZ READ GpiReadPort3 GprReadPort34lu2R eadPort] Cun AluZR eadPort]
GPRFile ALUZ READ GpriReadPortd GprReadPortddluZR eadPort2Cxn AluZR eadPort2
GPRFile BR_READ GprReadPorth GprReadPort5BiReadPort1 Cen BiReadPort]
GFPRFie BR_READ GprReadPorts GprReadPortGB iR eadFort2Can BiReadPort2
GPRFile LDST_READ GprReadPort? GprR eadPortfLdStR eadPoit Can Ld5tR eadPort1
GPRFile LDST_READ GprReadPort8 GprReadPortBLd5tR eadPort2Cxn LdStReadPort2
GPRFile LDST_READ GprReadPort3 GprReadPort3LdStR eadPort 3Cxn LdStReadPort3
LDST_EX L1 LdStReadwitePort LdStdemCrn L1ReadwiitePaort

YWB FPRFile Wb/ ritePart wihiwfritePortF preditePortCen FpradritePart

“WB GPRFile whwiitePort wWbwiitePoG piaditePort Cen Gprw/rikePort

Rermaoyve All Rermove i (] I Cancel

Figure 21: Adding datapath

4.2. Tutorial Il

The aim of this tutorial isto show you how to add various components in the
architecture.

To add various components in the architecture, all that are required is a click
on a button on the appropriate toolbar to select the component to be added
and another click on the screen to place the component. You can drag the
component to place it anywhere on the screen or right click on it to resize it.
To delete a component, just click on it on the screen and press the DELETE
key on your keyboard.

Once the component is placed on the screen, clicking on it displays its
properties in the Properties window, which can then be updated.

38 EXPRESSION User Manual © 2003 ACES Laboratory

4.2.1. Adding Unit

=

]k

Ly

1

-
o
[

unik |

|| B

-
-

|1

Figure 22: Add Unit

To add a new unit, click on the Add Unit button on the toolbar located on
the left and click on the screen to place it. Note that if you want to resize the
unit, make sure that it lies completely within the screen.

4.2.2. Adding Storage

b3 e L]

| |

-
-

=
Figure 23: Add Storage

Adding storage elements is similar to adding units. Just click on the Add
Storage button on the toolbar located on the left and click on the screen to

place it. Note that if you want to resize the unit, make sure that it lies
completely within the screen.

39 EXPRESSION User Manual © 2003 ACES Laboratory

4.2.3. Adding Latch

Figure 24: Add Latch

After clicking on the appropriate button you must click within a unit already
present on the screen to add a latch to it. A latch outside a unit or within a
storage element does not have any significance.

4.2.4. Adding Port

Add port

¢| W0 |ele|m|

-
o

Kb

Figure 25: Add Port

After clicking on the appropriate button you must click within a unit or a
storage element already present on the screen to add a port to it. A port
outside a unit or a storage element does not have any significance.

40 EXPRESSION User Manual © 2003 ACES Laboratory

4.2.5. Adding Connection

Figure 26: Add Connection

A connection can be added between

1) alatchinaunit and another unit :
In this case the latch should be an output latch and adding the
connection means (implicitly) adding an input latch to the target unit.

2) aport and another port (unit -> storage or storage -> unit):
In this case the connection specifies alink between a port of a unit and
aport of a storage element (like aregister file or memory)

3) astorage element and another storage element:
In this case we are adding a storage connection i.e. connections
between storage elements of the memory subsystem

4.2.6. Adding Pipeline stage

g G o Fall A i e 4]

=

oy

Add pipeline stage

Figure 27: Add Pipdine stage

41 EXPRESSION User Manual © 2003 ACES Laboratory

To add a pipeline stage just click on the appropriate button and click on the
screen.

4.2.7. Adding Datapath

||| 8 | =€ |mm]=

-
s

..-?'ﬂ

5| Add datapath

Figure 28: Add datapath

Datapaths are added between units and storage elements or between two
storage elements. Whenever new ports and connections are added, datapaths
must also be added explicitly.

To add a data path between a storage element and a unit, click on the
appropriate button to add datapath (Fig. 28). Click on the storage element
(make sure not to click on a port within the storage element). Next click on
the unit (make sure not to click on a port or a latch within the unit). Next
click on a port in the storage element. Next click on the connection from that
port to the port in the unit you clicked on earlier. Finally click on the port in
that unit to which the connection is attached. To finish adding the datapath,
right click anywhere on the screen (make sure not to click on any component
on the screen). The datapath has now been added and you can go to the
Component menu and select the Edit datapath menu item to see the datapath.
Y ou can also remove a datapath by highlighting it and pressing the Remove
button.

To add a data path between two storage elements, click on the appropriate

button to add datapath. Next click on the first storage element. Click on the
connection from that element to the second storage element. Finally click on

42 EXPRESSION User Manual © 2003 ACES Laboratory

the second storage element. To finish adding the datapath, right click
anywhere on the screen (make sure not to click on any component on the
screen). The datapath has now been added and you can go to the Component
menu and select the Edit datapath menu item to see the datapath. You can
also remove a datapath by highlighting it and pressing the Remove button.

43 EXPRESSION User Manual © 2003 ACES Laboratory

5. Design Space Exploration

We present in this section, some of the exploration directions, which are
important for a system designer. An architectural modification can affect
another architectural change positively or negatively. So, the designer has to
do a trade-off between different performance goals, respecting the
architectural constraints. For details on how to perform design space
exploration of an architecture having processor, co-processor, and memory
subsystem, please refer to [7] [8] [9].

The different architecture explorations comprise Instruction Set Architecture
exploration, Micro-architecture exploration and Memory architecture
exploration. The users should be able to follow the steps enumerated in the
following sections and explore various interesting design points starting
from any base architecture. For each exploration, we also present the results
to be expected. The following subsections will take you through a tour of
explorations starting from acesM | PS architecture as a base architecture. Fig.
29 shows a snapshot of the base architecture. It has five pipeline stages:
Fetch, Decode, Operand Read, Execute and Writeback. The Operand Read
and Execute stages have five parallel pipeline paths: ALU1, ALUZ,
Floating-Point, Branch, and Load Store. It has two register files: integer and
float. It has two level of cache hierarchy with common L2 for both data and
instruction. It also uses SRAM as a scratch-pad memory.

5.1. | SA Exploration

Most of the instructions of a target machine are obtained from the generic
instruction set by one-to-one mapping of generic to target operations. When
two or more generic operations combine together to form atarget operation,
we call the target operation, a complex operation.

The target instruction set can be made richer by incorporation of large
number of useful complex operations. A complex operation is useful for a
given application, when a sequence of operations forming the complex
operation is frequently used. A profiler can come up with useful complex
operations to be added to a base instruction set. Another advantage of adding
a complex operation is that it gets rid of extra fetch delays. Section 5.1.1
discusses how to add a complex operation.

44 EXPRESSION User Manual © 2003 ACES Laboratory

B
A
=
=]
—&
=]
Si=
=
|
]

EEOEBEDRS

Figure 29: Base ar chitecture

Register accessibility plays an important role in instruction set design. The
number of supported opcodes can be increased by decreasing the
accessibility to registers. However, decreasing the register accessibility can
lead to spilling due to increased register pressure. A user can study the
instruction set design trade-offs by varying the register accessibility of
different operations. Section 5.1.2 shows how to play with register
accessibility.

5.1.1. Adding New (Complex) Operations

A complex operation usually needs more number of input ports than the
constituent simple operations. Consequently, addition of new operations
may need addition of new read ports in the register file.

Instruction Selection plays a pivotal role in converting a set of simple
generic operations into a complex target operation. This is based on a tree-
based mapping rules where the priority of mapping is determined by the
order of specified rules. For example, the rule for mac operation, viz.,

45 EXPRESSION User Manual © 2003 ACES Laboratory

(GENERIC

(IMUL DST[1] = REG(1) SROJ 1] = REG2) SRC[2] = REG3))
(MFLO DST[1] = REG(4) SRJ 1] = REG 1))
(1ADD DST[1] = REG(5) SRJ 1] = REG(6) SRC[2] = REG4))
)
)
(TARGET
(mac DST[1] = REG(5) SR 1] = REG(2) SRC 2] = REQ 3)

) SRA 3] = REX6))
)
)

should be specified before the rules for mult and addu, which are as follows:

(

(GENERIC
| (IMJL DST[1] = REG(1) SRC[1] = REG2) SRC[2] = REQ3))

% TARGET
((mult DST[1] = REG(1) SRC[1] = REG2) SRC2] = REQ3))

)) |

((GENERIC
) (1ADD DST[1] = REG(1) SRC[1] = REG2) SRC[2] = REQ3))

% TARGET
(addu DST[1] = REG(1) SRC[1] = REG2) SRC[2] = REQ3))

)

This will ensure that whenever there is an opportunity to generate a mac
operation, the compiler will generate it.

Unlike the operations already present in acesMIPS, mac operation has three
sources. However, there are only two input in the ALU units. We need to
add another read port to each of the ALU units and then bind the operation
group containing mac operation to the units.

Y ou must perform following steps to add the mac operation using the GUI:

46 EXPRESSION User Manual © 2003 ACES Laboratory

(1) Load acesMIPS.gmd and acesMIPS.isd using “Load Graphical
Machine Description” and “Load Instruction Set Description”
respectively.

(2) Invoke*“Set OP_GROUPS’ from the “Instruction Set” menu.

(3) Add mac operation to the ALU_Unit_ops and set its attributes as
shown in Fig. 30. Y ou need to perform the following steps in sequence to
accomplish that:

 Click ALU_Unit_ops.

 Select ‘+0’ to create a NewOp and add to the list of
ALU_Unit_ops operations.

» Select NewOp and change it's Name to mac. Set all the fields
as shown in Fig. 30.

. Set the ASM FORMAT as:

((COND "dst1=reg,srcl=reg, src2=reg,src3=reg")
(PRINT "\t4\t<opcode>\t $<dst 1>, $<srcl>, $<src2>, $<src3>\n"))

e Setthe|lR DUMP FORMAT as.
((COND "dst1l=reg, srcl=reg,src2=reg,src3=reg") (PRINT
"\t 4\t <opcode>\t ($<dst 1>)\t ($<srcl>, $<src2>, $<src3>)\n"))

* Click ‘Apply’ and then ‘OK’ to commit all the changes.
(4) Select “set TREE_ MAPPING” option from the “Instruction Set”

menu and add the rule for mac operation as shown in Fig. 31. Make sure
the rule appears before the rules for IMUL, MFLO and IADD.

a7 EXPRESSION User Manual © 2003 ACES Laboratory

Operation Groups [|}

=l

LU Urit_ops =
drmfc
drbcl
cvl_s w
wol

and
ocwt_z d
vt d s
cvhod w
trunc_ w3
trunc_w_d
riafhi

miflo

mfc

mitc

sgtu

e

by

li

div

Ll

and

o

worn
andi .:]

o] 40 o] | 2] 3]

I e Imac

Op Typs: |DATA 'I Aonly |

Behavior: | DEST_=_SOURCE_3_+_SOURCE_1_*_SOURCE_Z_

v
Operand Operand T Type Operand 2 Operand 2 Type
[sR1 =] fint_any =lisrcz =] fint_any -]
Dperand 3 Operand 3 Type Operand 4 Operand 4 Tope
[sRC3 =] Jint_any FlosT =] fint_any i
—
Operand1 Operand 1 Type Operand 2 Operand 2 Type:
| i | JE | | =
Opetand 3 _Dperand 3 Type Operand 4 Operand 4 Tope.
]l i = #
_
Operand? Operand T Type Operand 2 Dperand 2 Type
S || =i = E
Operand 3 Operand 3 Type Operand 4 Operand 4 Type
I FZ| BEZ | i
S5 FORMAT

1B DUMPEORMAT

[[COMD “dst1=reg.zrcl=req,sic2=reg.sic3=reg” | [PRINT "tdhtopoodes Wi

[[COMD "dstl=reg.zrcl=req.src2=reg,zic3=reg” | [PRIMT "stdht<opoodes W

tancel [ok]

48

Figure 30: mac operation

EXPRESSION User Manual

© 2003 ACES Laboratory

TREE MAPPING (Generic - Target Dpcode Mapping)] _ﬂ

Press CNTRL Enter for newline after typing text

] -
(el
c
[GENERIC
[
[IMUL DAT[L1] = REG(l) 3RC[1l] = RFEG(2) BRC[Z] = BEG(3))
(MFLO DST[1] = REG(4) SRC[L1] = FEG(1)]
({IADD DST[1] = REG(5) SRC[1] = REG(6) SEC[Z] = REG(4]]
j
j
{ TARGET
[
{mac D3T[L] = REG(5] SRO[L] = FEG(2] SRC[2] = REG(3] SRC[3] = REG(&)]
]
)
]
S
(
[GENERIC
[
{IADD DST[1] = BEG(1) SRC[1] = REG(2) SRC[2] = FEG(3)) =]

Cancel | OE I

Figure 31: Rule for mac operation

(5 Do the following to add a new port to the GPR register file:
. Select “ Components->Add Port” and click anywhere inside the
GPRFile box.
. Click on the port and set the attributes shown in Fig. 32.
. Click *Apply’.

49 EXPRESSION User Manual © 2003 ACES Laboratory

i Properties - Pork H =l

I arne: Clazz Mame:
||3|:|rFl eadPort10 IF'u:urt
—Port Type:
¢ Fead £ drite " Readfnfite

Custom Properties:

[CAPACITY 1]

[| FTm |1 |

Figure 32: Add new GPR port

(6) Now add anew port to ALU2 READ unit. To do so, execute the
following steps:

. Select “ Components->Add Port” and click anywhere inside the
ALU2 READ box.

. Click on the newly added port and set the attributes shown in
Fig. 33.

. Click *Apply’.

iProperties-Port £
Iarne: Clazs Mame:
|aluzReadPorts | UnitFart
— Fort Tope:
' Fead ke " Readfwrite

Custan Properties:

ARGUMENT _SOURCE_3 |
[CAPACITY 1)

[y Al

Figure 33: Add new port tothe ALU2_READ

50 EXPRESSION User Manual © 2003 ACES Laboratory

(7) Add connection between newly added port of ALU2_READ and that
of GPRFile by following the steps below:

. Select “ Components->Add Connection”.
. Click on the newly added ports one after another.
. Set the attributes for the connection as shown in Fig. 34.

. Click *Apply’.

(8) Add datapath (by following the steps explained in Section 4.2.7)
corresponding to the connection between ALU2 _READ and GPRFile.

Properties - Connecktion i #
[+ arne: Clazz Mame;

IEeri eadPort] 04lLER eadPort3 iHegisterEnnnectiDn

Cuztom Properties;

[dhdo | Sl |

Figure 34: Add Connection between the new ports

(90 So far, we have added a capability to ALU2_READ unit to accept
ALU_Unit_ops operations includes mac operation having three source
operands. Now, repeat steps (5) through (9) to add the same capability to
ALU1 READ unit. Keep in mind to keep the names of ports and
connection different from the names shown in Fig. 32, Fig. 33 and Fig.
34.

(10) Save Expression Machine description into acesM | PS.xmd.

51 EXPRESSION User Manual © 2003 ACES Laboratory

(11) Repeat the steps described in Section 2.3 to evaluate the modified
architecture.

Expected result: You should be able to notice that the generated code
contains mac instruction instead of a chain of mult, mflo and addu
instructions. This will lead to an increase in performance because of
reduction in the number of fetches.

5.1.2. Changing Register Accessibility

Individual operands of each operation are mapped to particular register
classes. These register classes effectively partition the register file and have
aunique mapping to a particular set of registers.

There is a fixed set of generic register classes expressed as class types and
data types. Target register classes are specified by invoking *“set
VAR _GROUP’ from the “Instruction Set” menu. Each target register class
has a unique mapping to a set of target registers. The mappings of the
generic register classes to the target register classes are specified by
selecting “set OPERAND_MAPPING”. The register accessibilities of the
operands of operations are changed from “set OP_GROUPS’ option in the
“Instruction Set” menu.

In acesMIPS architecture, the target register class for the destination of mult
operation is int_hilo, which maps to any of the registers in GPRFile[1-28].

Let us modify the register accessibility of the destination operand of mult
and source operands of mfhi and mflo. Suppose, we want these operands to
access only the odd-numbered registers in GPRFile[1-29]. We perform the
following steps:

(1) Load acesMIPS into the GUI.
(2) Create a new register class, int_odd using “set VAR_GROUPS’ from
the “Instruction Set” menu. Set the Datatype to INT and Components to

GPRFile[1 357 9 11 13 15 17 19 21 23 25 27 29]. The following
snapshot clearly shows the portion to be added.

52 EXPRESSION User Manual © 2003 ACES Laboratory

x|

i ame:; Cratatype Components [[-separated);

any_call_param INT GPRFile[4-12] a

any_ ot INT CC (i

any_fp INT FF

any_hilo IMNT HILO

any_pc IMT FC

any_retaddr INT GFRFile[31]

any_sp IMT 5P

double_all DOUELE FPFRFile kb

dauble_any DOUEBLE FPRFile0 24681012 14161820 22 24 26 28 30]

double_immediate DOUELE Ikt i

doublel_narmal DOUEBLE FRRFile0 24 631012141618 20 22 24 26 28 30]

doublel_retval DOLBLE FPRFile[0]

double2_normal DOUEBLE FPRFile1 357911131517 19.271 23 25 27 29 31]

double2_retval DOUBLE FFPRFile[1]

float_all FLOAT FFPRFile Ihkd

float_ atyy FLOAT FFRFile

float_immediate FLOAT IhAb4

flaat_mormal FLOAT FPRFile ;]

M ame: Datatype Componentz [-separated]:
int_odd INT GPRFie1 357911131517 13 2 _l;l

Cancel ok |

Figure 35: New register class, int_odd

Press‘+’ to add to the list and click OK.

(3) After successfully adding int_odd to the set of target register classes,
specify mapping of generic HILO class to int_odd instead of int_hilo.
To do so, choose “Instruction Set->set OPERAND_MAPPING”.
Replace int_hilo by int_odd. The changed window is shown as follows:

53 EXPRESSION User Manual © 2003 ACES Laboratory

OPERAND MAPPING

3 x|

A

{GENERIC (DATATYPE INT) {CLASSTYPE IMM)) { TARGET int immediate])
{GENERIC (DATATYPE INT) {CLASSTYPE NORMALJ) (TARGET int_normal))

{GENERIC (DATATYPE INT) ({CLASSTYPE ANY)) { TARGET int any))

(GENERIC (DATATYPE INT) {CLASSTYPE CALL PARM)) (TARGET int_call param))

{GENERIC (DATATYPE INT) {CLASSTYPE ZERD]) (TARGET int_zero))

{GENERIC (DATATYFE INT) {CLASSTYEE CC)) {TARGET int cc))

{GENERIC (DATATYPE INT) {CLASSTYPE 5P)) (TARGET int_sp))

(GENERIC (DATATYPE INT) {CLASSTYPE FP)) (TARGET int_fp))

{GENERIC (DATATYFE INT) {CLASSTYEE PC)) (TARGET int pc))

(GENERIC (DATATYPE INT) {CLASSTYPE RET WAL)) (TARGET int_retwal))

GENERIC DATATYPE INT CLASSTYPE RET ADDE TLRGET int_retaddr
[{GENERIC (DATATYPE INT) {CLASSTYPE HILOY) (TARGET int_odd)) .

int_any

{GENERIC (DATATYPE INT) {CLASSTYPE MEM)) { TARGET int mem))
(GENERIC (DATATYPE DOUBLE] (CLASSTYPE IMM)) {TARGET double immediate))
{GENERIC (DATATYPE DOUBLE} (CLASSTYPE DOUBLEL)) (TARGET doublel normal))

{GENERIC (DATATYPE DOUBLE)] (CLASSTYPE DOUELEZ)) (TARGET douhleZ normal))

{(GENERIC (DATATYFE DOUELE) (CLASSTYFE DOUELE]) (TARGET douhle normalj)

(GENERIC (DATATYPE DOUBLE] (CLASSTYPE ENY)) { TARGET double anyj)

{GENERIC (DATATYPE DOUBLE) (CLASSTYPE RET WAL)] (TARGET douhlel retwal))

{GENERIC (DATATYPE DOUELE) (CLASSTYPE RET ¥AL))] (TARGET douhleZ retwal)) i
i o

Cancel | OE I

Figure 36: operand mapping toint_odd

(4) Now, change the register accessibility of destination operand of mult
and source operand of mflo and mfhi, from int_hilo to int_odd. This
can be done as follows:

* Select “set OP_GROUPS’ from the “Instruction Set” menu.

» Double-click on ALU_Unit_ops to list the operations in this
operation group.

» Select mult from the list and change the value of “Operand 3
Type” to int_odd. The changed window for mult is shown in Fig.
33. Click *Apply’ to commit changes.

» Similarly, select successively mflo and mfhi operations. Change
the value of “Operand 1 Type” for each operation to int_odd.
Click *Apply’ to commit changes.

* Click “"OK’ to commit all the changes and close the window.

54 EXPRESSION User Manual © 2003 ACES Laboratory

Operation Groups 1

X

LU Urnit_ops
drmfc
dmitcl
cvl_s W
wol

and
cvt_z d
vt d =
cvt_d w
trunc.w_z
trunc_w d
mfhi

miflo

mfcl e
mtc

sgtu

zlew

by

li

div

and

o

won

andi

i vl
irl

Y

to| 4o —o| —o| 4] %]

I e Imult

Op Type: |DATA 'l Aonly |

Behavior: | DEST_=_SOURCE_1_*_SOURCE_2_

v
Operand 1 Dperand T Tupe Operand 2 Operand 2 Tope
[sR1 =] fint_any =lisrcz =] fint_any -]
:Elperand 3 | Operand 3'T'_I,!|:|e Operand 4 Operand 4 Type
psT =]fint odd = =l [
—
Operand1 Operand 1 Type Operand 2 Operand 2 Type
I | | JEZ || =
Operand 3 Dperand 3 Type Operand 4 Operand 4 Type
L E i = F2
ol
Operand 1 Operand T Type Operand 2 Operand 2 Tupe:
S || [£7
Operand 3 Operand 3 Tvpe Operand 4 Operand 4 Type
=] FZ| BEZ | i
a5k FORMAT

IR DUMPEORMAT

[[COMD "dst1=reg.zicl=req,zc2=reg" | [PRINT "\t<opcode:\tE<dsts,
[[COMD "dztT=reg,zrcl=regecZ=imm’] [PRINT "t opoodes bt

[[COMD "dstl=reg.zrcl=regsrc2=reg" | [PRINT "t4'ut<opoodes W$< dsl
[[COMD "dstl=reg.srcl=reg src2=imm'" | [PRIMT "4 opoode:

Cancel | ok |

Figure 37: Destination operand mapping for mult
(5) Save Expression description into acesM|PS.xmd.

(6) Repeat the steps described in Section 2.3 to evaluate the modified

architecture.

Expected Result: If you run EXPRESS with —plList, you can check the
instruction list generated on the console window to find the register allocated
for the destination operand of mult operation. Y ou should observe that any
of the odd register in the set GPRFilg[1-29] is allocated. Similar is the case
for the source operand of mflo and mfhi operations. The performance
however, wouldn't have been affected. The performance can be affected

55 EXPRESSION User Manual

© 2003 ACES Laboratory

adversely by reducing the register accessibility of the operations to an extent
that results in spilling of registers.

5.2. Pipeline Exploration

An architecture can be modified by changing its pipeline. The pipeline
changes can be made by just adding a new functional unit and have a new
pipeline path go through the functional unit. The number of existing pipeline
paths can also be reduced by deleting the resources.

5.2.1. Adding a Single-cycle/M ulti-cycle Functional unit

A new functional unit can be added as a single-cycle, multi-cycle or a
pipelined unit. An OP_GROUP containing multi-cycle operations is linked
with a multi-cycle functional unit.

The general process to create a new multi-cycle unit as a parallel resource
requires the following steps:

. Add new “Read” unit and “Execute” units by using ‘add Unit’
(Fig. 22). Add a latch (Fig. 24) to the Read unit and ‘add
Connection’ (Fig. 25) from the Read Unit latch to Execute Unit.

ii. Add new port to the register file and also to the “Read” unit and
establish a connection between the ports. Make sure that you
gpecify the proper class names for all of the components
(ports/latches/units) that you add.

iii. Create anew OP_GROUP (‘+g') and add the multi-cycle operation
(‘+0") to the operation group. (Refer to Fig. 15)

iv. Link the newly created OP_GROUP with both “Read” and
“Execute” units. (‘ Supported opcodes’ in the unit properties must
contain this OP_GROUP.)

V. In the timing section of the units, specify appropriate number of
cycles along with the opcode. For example, If a multiplier takes
two cycles, the corresponding “Read” and “execute” units will
have * (mult 2)" specified in the timing section.

vi. Increase the capacity of the connection by one from WriteBack
unit to RegisterFile.

Adding a new functional unit as a parallel resource is potentially equivalent
to adding a new pipeline path.

56 EXPRESSION User Manual © 2003 ACES Laboratory

In the base architecture, both ALU1 and ALU2 support the same set of
single-cycle operations. As an example, let's modify the base architecture to
adlow a two cycle multiply (mult) operation on ALU2 and rest of the
operations (which are all single-cycle operations) on ALUL. To accomplish
this, execute in sequence the following steps:

(1) Load acesMIPS architecture.

(2) Invoke “set OP_GROUPS’ again. Click ‘+g’ to add a new operation
group. Click on the newly added “NewGroup” and change the name to
“MultGroup” and press the * Apply’ button.

e N |
F:EGEISL:“DE;S I anne: lMuItGmup Op Type: | ”’i Apply |
BR_Lnit_ops Behavior: I
Debug_ops
LDST_Unit_ops =

Operandl Dperand T Tupe Operand 2 Operand-2 Type
]| iz ||]| 2
'Elperand 3 DOperand 3.T_|.J|:|E Operand 4 Operand 4 Tope
I FZ| kAl 7
=1
Operand 1 Operand 1 Type Operand 2 Operand 2 Type
I | =l =] 2
Dperand 3 Dperand 3 Type Operand 4 Operand 4 Type
IR F B[=
L
Operand 1 Operand 1 Type Dperand 2 Operand 2 Type
I=E | | ¥
Operand 3 Operand 3 Type Operand 4 Operand 4 Type
=l FZ| Ik i
a5k FORMAT
IR DURMPEORMAT
4+ m —g | —0 | ilil Cancel | 0K I
=

57

Figure 38: Adding MultGroup
(3) Click ‘OK’ to save and close the current window.

EXPRESSION User Manual

© 2003 ACES Laboratory

(4) Select “set OP_GROUPS’ again. Select “MultGroup” from the list of
op_groups.

(5) Click ‘+0’ (asshown in Fig. 38) and add ‘mult’ operation with the

attributes shown in Fig. 39. Set the ASM FORMAT as:
((COND "dst1=reg,srcl=reg,src2=reg") (PRINT
"\t <opcode>\t $<dst 1>, $<srcl>, $<src2>\n"))
((COND "dst1=reg,srcl=reg,src2=imi) (PRINT
"\t <opcode>\t $<dst 1>, $<srcl>, <src2>\n"))

Set the IR DUMP FORMAT as follows:
((COND "dst1=reg,srcl=reg,src2=reg") (PRINT

"\t4\t <opcode>\t ($<dst 1>)\t ($<srcl>, $<src2>)\n"))
((COND "dst1l=reg,srcl=reg,src2=imi) (PRINT

"\t4\t <opcode>\t ($<dst 1>)\t ($<srcl>, <src2>)\n"))

(6) Click ‘Apply’ and then’OK’ to commit the changes.

(7) Select “set OP_GROUPS’ from “Instruction Set” menu. Double-click
on ALU1 Unit_Opsto list the supported operations. Select “mult” from
the list and delete it by clicking *-0’.

(8) Click ‘OK’ to effect the change.

58 EXPRESSION User Manual © 2003 ACES Laboratory

Operation Groups E |

AL i
FALG_S:E?E;S I arne: Imult Elp T_ppe: |DATA 'l ﬂj
BR_Unit_ops Behavior: [DEST_=_SOURCE_1_*_SOURCE_2_
Debug_ops
LDST_Unit_ops 4
Multmup Operand] Dperand T Tupe Operand 2 Operand 2 Tupe
Al [sRC1 =] fint_any = fsre2 =] fintany ~
'Elperand 3 Operand 3.T_|.J|:|E Operand 4 Operand 4 Tope
[DsT =] Jint_hio =] Ral ~]
—m
Operand 1 Operand 1 Type Operand 2 Operand 2 Type
I | =] R
Dperand 3 Dperand 3 Type Operand 4 Operand 4 Type
IR F B[#
ol
Operand 1 Operand 1 Type Dperand 2 Operand 2 Type
I=E | | ¥
Operand 3 Operand 3 Type Dperand 4 Operand 4 Tope
=l FZ| Ik i
A5k FORMAT

[[COMD "dstl=reg,zricl=req.ercZ=reg"] [FRINT "t<opcodeshtf<dstl > §<
[[COMD "dztT=reg,zrcl=regecZ=imm'] [FRINT "t opoodes bt

IR DUMPEORMAT

[[COMD "'dstl=reg,zrcl=req,src2=reg” | [PRIMT "4\ opoodes W $<dzt] =]
[[COMD "dst1=reg.zrcl=reqg srce=imm' | [PRIMT "\t45%< opoode:

+_=j| +D| —gl - | ilil Cancel: | 0K I

Figure 39: Add 'mult’ operation

(9) Click ALU2_READ box and set the attributes shown in Fig. 40. Then,
click ALU2_EX box and set the parameters shown in Fig. 41. Select
“MultGroup” to be the operation group supported by both
ALU2 READ and ALU2 _EX units. Set the Timing to “(mult 2)" to
indicate that mult is a 2-cycle operation.

59 EXPRESSION User Manual © 2003 ACES Laboratory

Properties - Unit

I arne:- Clazs Mame:
[4LU2_READ |OpFieadUnit
Suppaorted OpCodes: Capacity:
= al 1
—i{¥ Selected Timing:
LDST_Unit_ops S
rrdlt j
Irztruction fn
|1
Irigtroction Bt
Custom Properties; I1
(At | Sl I

Figure 40: ALU2 _READ parameters

Propetrties - Unit] |
karne: Clazs Marne;
[LU2_Ex |ExecuteUrit
Suppaorted OpCodes: Capacity:
= al 1
—i{¥ Selected Timing:
LOST_Urit_ops | [2)
it j
i Irvstruction [k
|1
Irvstrochion Clut
Custom Properties; I1
[ARGUMEMT _UMIT_)
(A | Smpi |

Figure41: ALU2_EX parameters

(10) Save EXPRESSION description and evaluate the changes done to the

60

architecture.

EXPRESSION User Manual

© 2003 ACES Laboratory

Expected Result: A degraded performance owing to increase in ‘mult’
latency and decrease in the number of resources for all operations.

5.2.2. Adding a New Pipelined Functional Unit

Adding a new pipeline path helps increase the parallelism in the datapath.
The parallel resource can be a single-cycle/multi-cycle functional unit or a
pipelined unit.

A multi-cycle operation can be equivalently performed on a pipelined
functional unit that will lead to an increase in the number of pipeline stages.
Pipelining a multi-cycle operation should lead to increase in performance in
cases where the multi-cycle operation is extensively used.

A pipelined functional unit for operations running for n cycles is modeled by
having one stage of class ExecuteUnit and (n-1) stages of class
SimpleStageUnit in the pipeline path.

As an illustration, let's convert the 2-cycle ‘mult’ operation discussed in
Section 5.2.1 into a two-stage pipelined operation. You need to perform
following changes to the architecture obtained in Section 5.2.1:

(1) Click on ALU2_EX box and change the timing for “MultGroup” to
‘“(mult 1)’. (asshownin Fig.)

61 EXPRESSION User Manual © 2003 ACES Laboratory

Properties - Unit

Farne: Clagz Mame:

|aLU2_EX |Executellni

Supported DpCodes: Capacity:
) 1

i Selected ———— Timing:

Al e

Itstruction [n

|1

Iristraztion Eut

Cuzgtom Froperties:; J1

. ABRGUMENT _UNIT_]

[ydi

Figure 42: First stage of 'mult’

5

4|2 |w] 8 |e]elm ~] o

2

For Help, press F1 [l

Figure 43: Modified architectur e after adding a pipeline sage

62 EXPRESSION User Manual © 2003 ACES Laboratory

(2) Add a new pipeline stage and add a dummy stage with the attributes
shown in Fig 44. The modified architecture would resemble Fig. 43.

Properties-unit £
I arne: Clasz Mame:
fluLuz s2 | SimpleStagelnit
Supported DpCodes: Capacity:
o) 1
—i* Selected Timing:

[roult 1]

Cuztom Froperties: I1

| BRGUMENT _UNIT_]

Istruction [n

|1

Iriztraztion Dt

(i | Sl |

Figure 44: Dummy stage

(3)Save EXPRESSION description and evaluate the architectural
modification.

Expected Result: Pipelining a multi-cycle operation should enhance the
performance.

5.2.3. Deleting a Pipeline Path

Often times, there are more resources in the architecture than what an
application requires. If we are designing an architecture suitable for a given
application, we need to remove resources unutilized by the application.

We show using an example how to delete a pipeline path. Starting with
acesMIPS as the base architecture, we will delete the pipeline path through
ALU2. Here are the steps:
(1) Load acesMIPS architecture.
(2) First select ALU2_READ and click “Components->Delete” to delete it.
Now, select ALU2 EX and delete it. You will find that all the
connections to and from the units are also deleted automatically. Then,

63 EXPRESSION User Manual © 2003 ACES Laboratory

delete the unused latch in the Decode unit. The architecture devoid of
ALU2 unitisshownin Fig. 45.

In|
ey
.
g
—£]
ol

o

]

il
E

Blo[ElE

Figure 45: After deletion of ALU2_READ and ALU2 EX

(3) After deleting the components, it is also necessary to delete the
datapaths. This can be done as follows:

* Invoke “ Components->Edit Datapaths’.

» Select each datapath going through ALU2_READ and remove
it by Clicking ‘Remove’. Fig. 46 shows a datapath to be
removed.

* Click ‘OK” inthe end.

64 EXPRESSION User Manual © 2003 ACES Laboratory

Data Paths x|

ISTORAGE_FATHI IL1 L2

[ISTORAGE_PATHI L1 L2

ISTORAGE_PATHI L2 Maintdem

FPRFile ALII1_REALD FprReadPortE FprReadFPortBAlL 1R eadPort] AlulReadPort]
FPRFile ALUT_READ FprReadPort? FprReadPort /AL ReadPort 2Cxn Al ReadPort2
FPRFile L1112 READ FprBeadForml FprBeadPortléZB eadPort] Can Alu2B eadPort
FPRFile ALILZ2 READ FprReadPort? FprReadPort28lu2E eadPort2Crn AluZR eadPort2
FPRFile FaLL_READ FprAeadPort3 FprReadPaort 3F aluF eadPort1 Cen FaluF eadPortd
FFPRFile FALU_READ FprReadPortd FpriReadPortdFaluReadPort2Crn FaluR eadPort2
FPRFile LOST_READ FprReadParth FprReadPartbldStR eadPart 3C8n LdStReadPart3
GPRFile ALUT_READ GpiReadPaortl GpriReadPaortlAlu]ReadPortl Crn &l BeadPort1
GPRFile AL _READ GprReadPort? GpiReadPortZau] ReadPort2C0xn Alul R eadPort2
GFPRFile ALUZ READ GpiReadPorts GpiReadPort 38lu2R eadPort] Crn A2 eadPortl
GPRFile ALUZ READ GpiReadPortd GpiReadPortddlu2R eadPort 2C8n AllZF eadFort?
GPRFile BR_READ GprReadPorts GprReadPort5BiReadFort1 Crn BrReadPort]
GPRFile BR_READ GprReadPortt GprReadPortEE iR eadPaortZ2Cen BrReadPort?
GPRFile LOST_READ GpiReadPort? GpriReadPort7LdStR eadPaort] Crn LdStR eadPort
GFPRFile LDST_READ GprReadPartd GprReadPartBLdS R eadPort2Cen LdStHeadPart 2
GPRFile LDST_READ GprReadPortd GpriReadPaortAldStReadPort3Cxn LdS R eadPort 3
LOST_EX L1 LdStReadwntePaort LdStkemCan L1Readw/rtePort

WwB FPRFile \wWhhwiniteFaort Wb ritePortFpiwiitePortCrn FprisfritePort

WwiB GPRFile whiwiiteFart WhwritePortG piwritePortCrn GpiwikePork

Hemu:we.i;-.lll @ k. I | Cancel |

Figure 46: Remove pipeline pathsthrough ALU2_READ

(4) Finally, we must remove the entry for ALU2_EX from the Instruction
Description Section. This can be done as follows:
* Invoke “Instruction Set->Set I nstruction Description”.
» Select the entry for ALU2_EX and remove it by Clicking ‘-’.
* Click ‘OK” inthe end.

(5) Save EXPRESSION description and evaluate the architectural
modification.

Expected Result: A degraded performance owing to decrease in resources.

5.3. Memory Subsystem Exploration for Area, Power and
Perfor mance

The memory subsystem consists of data and instruction caches, and main
memory (DRAM) modules. All of these components are fully

65 EXPRESSION User Manual © 2003 ACES Laboratory

parameterizable. In this section we describe few experiments on memory
exploration. For further details on memory exploration please refer to [6].

5.3.1. Changing Access Times
Access times of caches and main memory have a big impact on system
performance. The access time of every memory subsystem component can
be modified by varying the ACCESS TIMES attribute of the component.
Y ou must perform following steps to change Access Times using the GUI:
(1) Load acesMIPS.gmd and acesMIPS.isd using “Load Graphical
Machine Description” and “Load Instruction Set Description”
respectively.
(2) Click on the storage component whose Access Time is to be changed

(3) Change the value in the Access Time field.

i
~ Type
™ Register Fils " ICache (¢ DCache
" SRAM " DRAM
Hame: Clazs Mams
|L2 iStnrage
Wword Size Line Size
[-
Azzociabivity Cache Lines:

|c4

IB : Custam Properties:
Acoess Time: f |

[£

rFEmanic

Addresz Range:

Fram: ID I

To: [3995304 Urde | el |

Figure 47: Changing accesstime

(4) Save Expression Machine description into acesM I PS.xmd.

(5 Repeat the steps described in Section 2.3 to evaluate the modified
architecture.

66 EXPRESSION User Manual © 2003 ACES Laboratory

Expected Result: In most cases, decreasing the access time improves
performance. However there might not be a significant change if the storage
component is not accessed by the application. Still, the performance cannot
deteriorate if access time is decreased.

5.3.2. Changing Associativity

Associativity in caches is an important parameter that can affect miss rate
and hit time. Greater associativity can come at the cost of increased hit time.
By varying the ASSOCIATIVITY attribute of caches, the impact of this
parameter on system performance can be determined.

Y ou must perform following steps to change Associativity using the GUI:
(1) Load acesMIPS.gmd and acesMIPS.isd using “Load Graphical

Machine Description”
respectively.

and

“Load

Instruction Set Description”

(2) Click on the cache component whose Associativity is to be changed

(3) Change the value in the Associativity field.

Properties - Storage L

i~ Tvpe

" Register Fils " ICache (+ DCache

" SRAM " DRAM
Mame: Clazs Mams
|L2 iStDrage
Wiord Size Line Size
[o E
Azzociativity ':IaChE Lines:

B4
&

IE Custom Properties:
Access Time:
£ |
Address Hange: fdriemanic
Fram: ID I
To: [3395304 Urde | el |

Figure 48: Changing associativity

(4) Save Expression Machine description into acesM I PS.xmd.

67

EXPRESSION User Manual

© 2003 ACES Laboratory

(5 Repeat the steps described in Section 2.3 to evaluate the modified
architecture.

Expected Result: Changing the associativity can affect the performance
significantly. Higher associativity reduces miss rate but also increases hit
time. Complicated tradeoffs mean that results obtained on changing
associativity require careful analysis of the memory subsystem and the
application being executed.

5.3.3. Changing Sizes

Sizes of all the memory subsystem components can be varied by changing
the SIZE attribute of the component.

Y ou must perform following steps to change storage size using the GUI:

(1) Load acesMIPS.gmd and acesMIPS.isd using “Load Graphical
Machine Description” and “Load Instruction Set Description”
respectively.

(2) Click on the storage component whose size is to be changed

(3) Change the value in the Size/Line Size/Word Size field.

£
~ Tupe
*" Begister Fila ™ ICache " DCache
" SRAM " DRAM
Marme: Clazz Mame
[GPRFile [Storage
Yidth Size 7
[32 |32 &3

Easariativity Eachellines

- - B
lu Custom Properties:
I[E.&F'.-’-'«I:ITY 32)

ete= =
||'_I

Address Hange: Mnemonic
IFI

Fromm: !['

T i[' lhda | Appli |

Figure 49: Changing size
(4) Save Expression Machine description into acesM | PS.xmd.

68 EXPRESSION User Manual © 2003 ACES Laboratory

(5 Repeat the steps described in Section 2.3 to evaluate the modified
architecture.

Expected Result: Increasing storage component size may not improve the
performance if the magjority of the data used by the application program fits
in lower size. Power should definitely vary with size. However, power also
depends on number of read/writes. Hence, increasing size may not increase
power drastically, if number of read/writes remains same. Careful analysis
of tradeoffs needs to be done to understand performance figures obtained by
changing storage sizes.

5.3.4. Adding/Deleting Memory M odules

It is possible to add new memory modules, for example an L3 cache
between the L2 cache and the main memory module. It is also possible to
delete any of the existing modules, for example the L2 cache, connecting the
L1 caches directly to main memory.

L et us enumerate the steps for deleting the L2 cache using the GUI:

(1) Load acesMIPS.gmd and acesMIPS.isd using “Load Graphical
Machine Description” and “Load Instruction Set Description”
respectively.

(2) Click on the L2 cache and press ‘DELETE’. This removes the cache
aswell as all of its connections.

(3) From the *Components menu select ‘Edit datapaths'. Click on the

three storage paths, which have a reference to L2 to select them and then
click on ‘Remove’ repeatedly till all three of the references are deleted.

69 EXPRESSION User Manual © 2003 ACES Laboratory

Data Paths x|

_READ FprReadPortt FprReadPorted LU 1R eadFort] AlulReadPort
FPRFile ALIT_READ FprReadPort? FprReadPaort7ZALUTReadPort2Can AlulReadPart2
FPRFile ALUZ READ FprlReadPartl FprReadParttAluZReadPortt Crn AluzZR eadPart]
FPRFile ALUZ READ FprReadForts FprReadPort28lu2R eadPot2Cun Alu2ReadPort
FPRFile FALU_READ FprlReadFort3 FprlReadPort3F aluReadPort] Cen FaluReadPaort
FPRFile FALU_READ FprReadPortd FprReadFortdF aluReadPort2Cen FaluReadPart2
FPRFile LDST_READ FpiReadPorth FprReadPart5Ld5tR eadFart30xn LdS R eadPart3
GPRFile aLUN_READ GprReadPortl GpiReadPort]dlul ReadPort Crn Alul R eadPort]
GPRFile sl _READ GprReadPort2 GprReadPort 28] ReadPot2Cxn AlulReadFort2
GPRFile ALUZ_READ GprReadPort3 GprReadPort 342 eadPort] Can Alu2R eadPaort
GPRAFile ALUZ_READ GprReadPaortd GpiReadPortdAluZA eadPort2Can AluZB eadPaort2
GPRFile BR_READ GprReadPortd GprReadForntbBrReadPort] Cen BrReadPort]
GPRFile BR_READ GprReadPorts GprR eadForntEBReadFort2Cyn BrReadPort2
GPRFile LDST_READ GprReadPort? GprReadPortyLdStReadPaort] Cun LASIR eadPaort]
GPRFile LOST_READ GprReadPortd GprReadPort8lLdStReadPort2Cxn LdStR eadPort2
GPRFile LDST_READ GprReadPortd GprReadPortSLdStReadPort3Cxn LdStR eadPort3
LDST_EX L1 LdStReadwiitePort LSt emCun L1ReadwriteFPort

W FPRFile wWhwritePort wbiwfritePortF prosritePortCan FpiafritePort

wB GPRFile WhiwiitePaort wWhwiitePortGprwritePortCrn GprwritePart

F!emove.t’-‘-.lll Remove | (i I Cancel

Figure 50: Removing stor age paths

(4) Click ‘OK’ to commit changes.

(5) Now we need to add storage paths between IL1 and MainMem, and
L1 and MainMem. First click on the button to add a connection
component from the toolbar on the left (or select * Add Connection’ from
the ‘ Components' menu). Click inside the IL1 component and then click
inside the MainMem component on the screen. A connection component
will be added between the IL1 and the MainMem component.

(6) Repeat the procedure to add a connection between L1 and MainMem.

(7) Now we need to add the storage paths. Click on the button to add
datapath from the toolbar on the left (or select * Add Datapath’ from the
‘Components’ menu). Click inside the IL1 component. Next click on the
connection component connecting IL1 to MainMem. Finally click inside
the MainMem component. Right click anywhere on the screen to finish
the capture.

70 EXPRESSION User Manual © 2003 ACES Laboratory

(8) Repeat the above procedure to add the datapath between L1 and
MainMem. On selecting ‘ Edit datapaths' from the * Components’ menu,
it should look like the figure below.

x
15TORAGE FATHIILT Mankdem i :

ISTORAGE_PaTHI L1 MainMem L%

FPRFile ALUT_RBEAD FprReadFortE FprlReadPortBal 1R eadPort] Alul ReadPort]
FPRFile ALLN_READ FprReadPorty FprReadPort?AlL I 1ReadPort2Can Alul1ReadPort2
FPRFile ALUZ READ FprReadPortl FprReadPort] Aluz2ReadPart] Cun AluZR eadPort]
FPRFile ALUZ READ FprReadPart? FprReadPaort2Alu2R eadPart2Cen Alu2ReadPart 2
FPRFile FALU_READ FprlReadPort3 FprReadPort3F aluR eadPort] Cen FaluReadPaort]
FPRFile FALU_READ FprReadPortd FprReadPortdFaluR eadPort2Cen FaluReadPort2
FPRFilz LDST_READ FprReadPortd FprReadPort5LdStR eadFort3Cxn LdSIR eadPort3
GPRFile ALLN_READ GprReadPaort] GprReadPortlalulReadPort Cxn Alul ReadPaort
GPRAFile ALUT_READ GprReadPort2 GpiReadPort24lu1 R eadPort2Can AlulReadPart2
GPRFileALUZ READ GprReadPartd GprReadPort 3R eadPart] Cun AluZReadPart
GPRFile aLUZ_READ GprReadFortd GprReadPortdaluZReadPot2Cun AluZReadPort2
GPRFile BR_READ GprReadPortd GpiR eadFornbBrReadPort] Crn BrReadPort]
GPRFile BR_READ GprReadPorts GprR eadFortEBrReadFort2Cywn BrR eadFort2
GPRFile LOST_READ GprReadPoit? GprReadPort7LdStReadPortl Cxn LdStReadPaort]
GPRFile LOST_READ GprReadPortd GprReadPortELdStReadPort2Cxn LdStR eadPort2
GPRFile LDST_READ GprReadPortd GprReadPortSLdStReadFort3Cxn LdStR eadPort3
LDST_EX L1 LdStReadwiitePort LdStemCun L1ReadwritePaort

WB FPRFile wWhwiitePort whiwiitePortF prafitePortCen FpiafritePort

WwB GPRFile WhwritePort WhinitePortG prwfitePortCrn GpiwfritePort

Remave all I Remaove | (8] I Cancel ||

Figure 51: Adding new stor age paths
(9) Save Expression Machine description into acesM I PS.xmd.

(10) Repeat the steps described in Section 2.3 to evaluate the modified
architecture.

Expected Result: You can see a marked depreciation of performance on
removing the L2 cache. This does not imply however that adding a new
level of cache to the original memory subsystem configuration is guaranteed
to improve performance.

71 EXPRESSION User Manual © 2003 ACES Laboratory

6. Benchmarks

The benchmarks that can be used for testing the EXPRESSION framework
comprise the following:

* Livermore Loops. (Benchmarks/LLS)

» Multimedia kernels. (Benchmarks/MMs)

For each benchmark, the IR dump is generated by EXPRESS and
SIMPRESS gives the number of cycles of running the generated code on
acesM|PS architecture. For <filename>.c, the generated IR dump is stored in
<filename> DUMP_IR_AFTER_REGALLOC.txt.

72 EXPRESSION User Manual © 2003 ACES Laboratory

7. Open Issues and Future Directions

This is the first release of EXPRESSION and there are some limitations in
the usage of the tool-set. We enumerate the limitations observed so far as
follows:

* In this release, the applications having function calls are not
supported.

» Compilation steps exist as three passes. PcProGUI, Expression
console, acesMIPS console.

* A complex instruction supported in the target architecture must be
composed of generic instructions having same types.

* The compiler is not aware of the presence of the memory hierarchy.
But, the simulator is.

» The register file is partitioned to the extent there is partition in the
generic machine.

73 EXPRESSION User Manual © 2003 ACES Laboratory

8. References

[1] A. Khare, N. Savoiu, A. Halambi, P. Grun, N. Dutt and A. Nicolau. V-
SAT: A visual gspecification and analysis tool for system-on-chip
exploration. Proc. EUROMICRO, 1999.

[2] P. Grun, A. Halambi, A. Khare, V. Ganesh, N. Dutt and A. Nicolau.
EXPRESSION: An ADL for System Level Design Exploration. ICS
Technical Report # 98-29, University of California, Irvine, September 1999.
[3] P. Grun, A. Halambi, N. Dutt and A. Nicolau. RTGEN: An algorithm for
automatic generation of reservation tables from architectural descriptions.
ISSS San Jose, CA, 1999.

[4] A. Nicolau and S Novack. Trailblazing: A hierarchical approach to
percolation scheduling. ICPP, S. Charles, IL, 1993.

[5] P. Mishra, P. Grun, N. Dutt, A. Nicolau. Memory Subsystem Description
in EXPRESSION. ICS Technical Report # 00-31, University of California,
Irvine, October 2000.

[6] P. Mishra, M. Mamidipaka, N. Dutt. A Framework for Memory
Subsystem Exploration. CECS Technical Report # 01-20, University of
California Irvine, May 2001.

[7] P. Mishra, F. Rousseau, N. Dutt, and A. Nicolau. Architecture
Description Language driven Design Space Exploration in the Presence of
CoProcessors. SASMI, October 2001.

[8] P. Mishra, P. Grun, N. Dutt, and A. Nicolau. Processor-Memory Co
Exploration driven by a Memory-Aware Architecture Description Language.
VLS Design, January 2001.

[9] P. Mishra, N. Dutt, and A. Nicolau. Functional Abstraction driven
Design Space Exploration of Heterogeneous Programmable Architectures.
ISSS, October 2001.

[10] S Pasricha, P. Biswas, P. Mishra, A. Shrivastava, A. Mandal, N. Duitt,
A. Nicolau, A Framework for GUI-driven Design Space Exploration of a
MIP3AK-like Processor, CECS Technical Report 03-17, April, 2003

74 EXPRESSION User Manual © 2003 ACES Laboratory

Appendix A: EXPRESSION ADL

EXPRESSION employs a simple LISP-like syntax to ease specification and
enhance readability. An EXPRESSION description is composed of two main
sections: Behavior (or 1S) and Structure. The Behavior section is further
sub-divided into Operations, Instruction and Operation Mappings sections.
The Structure section is sub-divided into Components, Pipeline/Data
Transfer Paths and Memory Subsystem sections.

A.l. Operations

This subsection describes the IS of the processor. The IS is organized into
operation groups, with each group containing a set of operations having
some common characteristics. Each operation is then described in terms of
its opcode, operands and behavior. Each operand is classified either as
source or as destination. Further, each operand has an associated list of
register files to which it can be bound. These lists are specified in the VAR
GROUPS subsection.

A.2. Instruction

This subsection captures the parallelism available in the architecture. An
Instruction is viewed as containing operations that can be executed in
parallel. Each Instruction contains a list of slots (to be filled with
operations), with each slot corresponding to a Functional Unit.

A.3. Operation M appings

In this subsection the user specifies information needed by Instruction
Selection and architecture specific optimizations of the compiler. Each entry
in this subsection represents the mapping of a (sequence of) operation to
another (sequence of) operations. The mapping can be from generic
compiler operations to target processor operations, in which

case it is used by the instruction selection algorithm, or from target
operations to target operations, to be used as architecture dependent
optimizations. The instruction selection algorithm uses a tree parsing
technique utilizing dynamic programming.

75 EXPRESSION User Manual © 2003 ACES Laboratory

A.4. Components

This subsection describes each RT level component in the architecture. The
components can be any of Pipeline units, Functional units, Storage elements,
Ports and Connections. Each component also has a list of attributes
(optional). The attributes can be any of the following:

SUBCOMPONENTS: If the component is a compound component, specifies
the list of subcomponents.

LATCHES: If the component is a unit, specifies the list of latches that the
unit is attached to.

PORTS The list of ports attached to this component.

CONNECTIONS: The list of connections attached to this component.
OPCODES The list of opcode groups that this component accepts. (Note: If
this attribute is all then it means that the component does not make a
distinction between opcodes.)

TIMING: For multi cycle or pipelined units, specifies the timing behavior.
Timing can be specified on a per opcode basis if necessary.

CAPACITY: The number of operations that can be accepted by this
component in asingle cycle. The default is a single operation per cycle.

A.5. Pipeline and Data Transfer Paths

This subsection describes the net-list of the processor. The pipeline
description provides a mechanism to specify the units that comprise the
pipeline stages, while the data-transfer paths description provides a
mechanism for specifying the valid data-transfers. This information is used
to both retarget the simulator, and to generate reservation tables needed by
the scheduler.

The pipeline paths and the data transfers represent the structural net-list
information for the architecture. They can be generated automatically from a
schematic capture tool. When writing/generating this information, false
paths may be present in the architecture. This problem is solved by the fact
that besides the net-list, behavioral information is also present. False paths
due to illegal operations will never be activated, since the illegal operations
are omitted from the description. False paths due to illegal groups of
operations (either in sequence or in paralel) can be tackled by either
specifying the common resource used by the operations to raise a conflict in

76 EXPRESSION User Manual © 2003 ACES Laboratory

the reservation tables, or by explicitly specifying the group of operations as
illegal.

A.6. Memory Subsystem

This subsection describes the properties of the components in the memory
subsystem that are required by the memory-aware compiler optimizations.

In EXPRESSION, the net-list specification provides the connectivity
between the various storage component and units. The attributes of each
storage component (that are useful for the memory-aware compiler
optimizations) are specified in this section. EXPRESSION can be used to
describe diverse traditional and non-traditional memory systems.
Non-traditional memory systems differ from the conventional, simple
memory hierarchies in several ways. First, the complex organization of the
components in these systems may result in a partitioned address space. The
partitioned address space is captured using the ADDRESS RANGE
parameter associated with the relevant memory units. The ACCESS TIMES
parameter captures the latency information for individual memory
components in the architecture. The latency associated with any level of the
memory hierarchy can be easily computed using the hierarchy information
(from the net-list) and the ACCESS TIMES attribute of each component.
Second, they may contain novel components (e.g. SDRAM, Frame buffer,
Stream buffer, etc). These components may allow for varying access times
depending on the mode of access. The user can specify this

feature as a list of access times in the ACCESS TIMES attribute of the
component. The language provides certain pre-defined parameters (like
TYPE, SIZE etc). The TYPE parameter is used to identify each storage
component. EXPRESSION contains certain predefined types like REGFILE,
DRAM, CACHE, SRAM etc. New types can be easily added as a user
defined type. The user can also add new parameters in order to specify the
features of novel components (for use by the compiler optimizations). Note
that some parameters like the number and type of ports associated with each
component are described in the Components Specification subsection. For
details on memory subsystem description, please refer to [5].

The EXPRESSION ADL description of the acesMIPS is available
in<wor k>\ acesM PSDI | \ bi n\ Exanpl e_acesM PS. xnd.

7 EXPRESSION User Manual © 2003 ACES Laboratory

Appendix B: Generic Machine M odel

The front-end of the retargetable EXPRESS compiler translates the input
application in “C” to generic instructions, and generic operands. The
machine comprising of a generic instruction set is called “ Generic Machine”.
Instruction Selection and Register Allocation phases of the compiler
transform the code from the generic to the instruction set of the target
architecture.

The phases of a retargetable compiler can be divided into two distinct
phases, first the generic, machine independent compiler phases, and second
the machine dependent compiler phases. The machine independent phases
optimize the code for generic machine, and are applied for any target
machine.

The “Generic Machine” has a RISC ISA, very similar to MIPS ISA. The
operations of “Generic Machine’, their functionality and the register
accessibility of operands are explained in the table below.

The “Generic Machine” has three data-types namely, Integer, Double, and
Floats.

It has 7 register files, R, F, CC, SP, FP, PC, HILO.

R is the integer register file, and F is the floating-point register file. The
pairs of F registers are used for Double data-types. The double operands are
accessed by the “even numbered” registers. The second “odd numbered”
register is an implicit operands in such operations.

HILO is a special 64-bit register. The multiply operations write the result in
this register. Later the results are extracted from this register file using the
operations, MFLO and MFHI. The CC is a separate register file into which
the evaluation results of conditionals are written.

The register files, SP, PC and FP contain one register each, namely sp, pc

and fp respectively. The following table presents the Instruction Set
Architecture of the generic machine.

78 EXPRESSION User Manual © 2003 ACES Laboratory

OPCODE PARAMETERS | REGISTER ACCESS FUNCTIONALITY

NOP (No operation)

ICONSTANT | DEST, SRC1 DEST =R, SRC1 =IMM DEST = SRC1 (Moves
aconstant to aregister)

DCONSTANT | DEST, SRC1 DEST =F_EVEN, SRC1 = | DEST = SRC1

IMM

FCONSTANT | DEST, SRC1 DEST = F, SRC1 =IMM DEST = SRC1

IASSIGN DEST, SRC1 DEST =R, SRC1=R DEST = SRC1 (Move
operation)

ASSIGN DEST, SRC1 DEST = SRC1

DASSIGN DEST, SRC1 DEST =F_EVEN, SRC1 = | DEST = SRC1

F EVEN

FASSIGN DEST, SRC1 DEST =F, SRC1=F DEST = SRC1

MFLO DEST, SRC1 DEST =R, SRC1=HILO | DEST = SRC1 (Moves
the lower bits of HILO
to aregister inR.)

MFHI DEST, SRC1 DEST =R, SRC1=HILO | DEST = SRC1 (Moves
the higher bits of HILO
to aregister inR.)

MTLO DEST, SRC1 DEST =HILO, SRC1=R | DEST = SRC1 (Moves
aregister in R to lower
bits of HILO.)

MTHI DEST, SRC1 DEST =HILO, SRC1=R | DEST = SRC1 (Moves
aregister in R to lower
bits of HILO.)

IADD DEST, SRC1, DEST =R, SRC1 =R, DEST = SRC1 + SRC2

SRC2 SRC2 =R
DADD DEST, SRC1, DEST = F_EVEN, SRC1 = | DEST = SRC1 + SRC2
SRC2 F EVEN, SRC2 =
F EVEN
FADD DEST, SRC1, DEST =F, SRC1=F, DEST = SRC1 + SRC2
SRC2 SRC2=F
ISUB DEST, SRC1, DEST =R, SRC1 =R, DEST = SRC1 - SRC2
SRC2 SRC2 =R
DSUB DEST, SRC1, DEST = F_EVEN, SRC1 = | DEST = SRC1 - SRC2
SRC2 F EVEN, SRC2 =
F EVEN
FSUB DEST, SRC1, DEST =F, SRC1=F, DEST = SRC1 - SRC2
SRC2 SRC2=F
IMUL DEST, SRC1, DEST =R, SRC1 =R, DEST = SRC1 * SRC2
SRC2 SRC2 =R
IMULU DEST, SRC1, DEST =R, SRC1 =R, DEST = SRC1 * SRC2
SRC2 SRC2=R (Unsigned multiply,
79 EXPRESSION User Manual © 2003 ACES Laboratory

however we do not
distinguish between

signed and unsigned
datatypes)
DMUL DEST, SRC1, DEST =F EVEN, SRC1 = | DEST = SRC1 * SRC2
SRC2 F EVEN, SRC2 =
F EVEN
FMUL DEST, SRC1, DEST =F, SRC1 =F, DEST = SRC1 * SRC2
SRC2 SRC2=F
IDIV DEST, SRC1, DEST =R, SRC1 =R, DEST = SRC1/SRC2
SRC2 SRC2 =R
IDIVU DEST, SRC1, DEST =R, SRC1 =R, DEST = SRC1/SRC2
SRC2 SRC2 =R
DDIV DEST, SRC1, DEST =F EVEN, SRC1 = | DEST = SRC1/SRC2
SRC2 F EVEN, SRC2 =
F EVEN
FDIV DEST, SRC1, DEST =F, SRC1 =F, DEST = SRC1/SRC2
SRC2 SRC2=F
IREM DEST, SRC1, DEST =R, SRC1 =R, DEST = SRC1%SRC2
SRC2 SRC2 =R
IEQ DEST, SRC1, DEST =CC, SRC1 =R, DEST = (SRC1 ==
SRC2 SRC2=R SRC2) (SetsCCto 1 if
sicl == src2)
IEQU DEST, SRC1, DEST =CC, SRC1 =R, DEST = (SRC1 ==
SRC2 SRC2=R SRC2)
DEQ DEST, SRC1, DEST =CC, SRC1 = DEST = (SRC1 ==
SRC2 F EVEN, SRC2 = SRC2)
F EVEN
FEQ DEST, SRC1, DEST = CC, SRC1 =F, DEST = (SRC1 ==
SRC2 SRC2=F SRC2)
INE DEST, SRC1, DEST =CC, SRC1 =R, DEST = (SRC1 !=
SRC2 SRC2=R SRC2)
INEU DEST, SRC1, DEST =CC, SRC1 =R, DEST = (SRC1 !=
SRC2 SRC2 =R SRC2)
DNE DEST, SRC1, DEST =CC, SRC1 = DEST = (SRC1 !=
SRC2 F EVEN, SRC2 = SRC2)
F EVEN
FNE DEST, SRC1, DEST =CC, SRC1 =F, DEST = (SRC1 !=
SRC2 SRC2=F SRC2)
ILE DEST, SRC1, DEST =CC, SRC1 =R, DEST = (SRC1 <=
SRC2 SRC2=R SRC2)
ILEU DEST, SRC1, DEST =CC, SRC1 =R, DEST = (SRC1 <=
SRC2 SRC2 =R SRC2)
DLE DEST, SRC1, DEST =CC, SRC1 = DEST = (SRC1 <=
SRC2 F EVEN, SRC2 = SRC2)
80 EXPRESSION User Manual © 2003 ACES Laboratory

F EVEN
FLE DEST, SRC1, DEST = CC, SRC1 =F, DEST = (SRC1 <=
SRC2 SRC2=F SRC2)
IGE DEST, SRC1, DEST =CC, SRC1 =R, DEST = (SRC1 >=
SRC2 SRC2=R SRC2)
IGEU DEST, SRC1, DEST =CC, SRC1 =R, DEST = (SRC1 >=
SRC2 SRC2 =R SRC2)
DGE DEST, SRC1, DEST =CC, SRC1 = DEST = (SRC1 >=
SRC2 F EVEN, SRC2 = SRC2)
F EVEN
FGE DEST, SRC1, DEST = CC, SRC1 =F, DEST = (SRC1 >=
SRC2 SRC2=F SRC2)
ILT DEST, SRC1, DEST =CC, SRC1 =R, DEST = (SRC1 <
SRC2 SRC2=R SRC2)
ILTU DEST, SRC1, DEST =CC, SRC1 =R, DEST = (SRC1 <
SRC2 SRC2 =R SRC2)
DLT DEST, SRC1, DEST =CC, SRC1 = DEST = (SRC1 <
SRC2 F EVEN, SRC2 = SRC2)
F EVEN
FLT DEST, SRC1, DEST = CC, SRC1 =F, DEST = (SRC1 <
SRC2 SRC2=F SRC2)
IGT DEST, SRC1, DEST =CC, SRC1 =R, DEST = (SRC1 >
SRC2 SRC2 =R SRC2)
IGTU DEST, SRC1, DEST =CC, SRC1 =R, DEST = (SRC1 >
SRC2 SRC2 =R SRC2)
DGT DEST, SRC1, DEST =CC, SRC1 = DEST = (SRC1 >
SRC2 F EVEN, SRC2 = SRC2)
F EVEN
FGT DEST, SRC1, DEST = CC, SRC1 =F, DEST = (SRC1 >
SRC2 SRC2=F SRC2)
ILSH DEST, SRC1, DEST =R, SRC1 =R, DEST = SRC1 <<L
SRC2 SRC2=R SRC2
(Logical shift
operation, if src2 is
positive shift left, else
shift right)
IASH DEST, SRC1, DEST =R, SRC1 =R, DEST = SRC1 <<A
SRC2 SRC2 =R SRC2
IRASH DEST, SRC1, DEST =R, SRC1 =R, DEST = SRC1 >>A
SRC2 SRC2 =R SRC2
ILASH DEST, SRC1, DEST =R, SRC1 =R, DEST = SRC1 <<A
SRC2 SRC2 =R SRC2
IRLSH DEST, SRC1, DEST =R, SRC1 =R, DEST = SRC1 >>L
SRC2 SRC2=R SRC2
ILLSH DEST, SRC1, DEST =R, SRC1 =R, DEST = SRC1 <<L
81 EXPRESSION User Manual © 2003 ACES Laboratory

SRC2 SRC2 =R SRC2
ILAND DEST, SRC1, DEST =R, SRC1 =R, DEST = SRC1 &
SRC2 SRC2=R SRC2 (Bitwise AND)
ILOR DEST, SRC1, DEST =R, SRC1 =R, DEST = SRC1 | SRC2
SRC2 SRC2=R
IAND DEST, SRC1, DEST =R, SRC1 =R, DEST = SRC1 &&
SRC2 SRC2=R SRC2
(Logical AND)
IOR DEST, SRC1, DEST =R, SRC1 =R, DEST = SRC1 || SRC2
SRC2 SRC2=R
INOR DEST, SRC1, DEST =R, SRC1 =R, DEST = SRC1 NOR
SRC2 SRC2=R SRC2
IXOR DEST, SRC1, DEST =R, SRC1 =R, DEST = SRC1 XOR
SRC2 SRC2=R SRC2
FNEG DEST, SRC1 DEST =F, SRC1=F DEST =-1* SRC1
DNEG DEST, SRC1 DEST =F_EVEN, SRC1 = | DEST =-1* SRC1
F EVEN
IVLOAD DEST, SRC1 DEST =R, SRC1 =R, DEST = M[SRC1 +
SRC2 SRC2 = IMM SRC2] (Loadsthe
value in memory at
address srcl + src2 into
destination)
DVLOAD DEST, SRC1 DEST =F_EVEN, SRC1 = | DEST = M[SRCL1 +
SRC2 R, SRC2 = IMM SRC2]
FVLOAD DEST, SRC1 DEST =F, SRC1 =R, DEST = M[SRC1 +
SRC2 SRC2 = IMM SRC2]
HIVLOAD DEST, SRC1 DEST =R, SRC1 =R, DEST = M[SRC1 +
SRC2 SRC2 = IMM SRC2]
(Load only half aword)
HIVLOADU | DEST, SRC1 DEST =R, SRC1 =R, DEST = M[SRC1 +
SRC2 SRC2 = IMM SRC2]
QIVLOAD DEST, SRC1 DEST =R _FOUR, SRC1 | DEST = M[SRCL1 +
SRC2 =R, SRC2 =IMM SRC2] (Load 4 words)
QIVLOADU | DEST, SRC1 DEST =R _FOUR, SRC1 | DEST = M[SRCL1 +
SRC2 =R, SRC2 =IMM SRC2]
IVSTORE SRC1, SRC2, SRC1 =R, SRC2=IMM, | M[SRC2 + SRC3] =
SRC3 SRC3=R SRC1 (Store srcl
register into memory
location of address src2
+ src3)
DVSTORE SRC1, SRC2, SRC1=F EVEN, SRC2= | M[SRC2 + SRC3] =
SRC3 IMM, SRC3=R SRC1
FVSTORE SRC1, SRC2, SRC1=F, SRC2=IMM, | M[SRC2+ SRC3] =
SRC3 SRC3=R SRC1
HIVSTORE SRC1, SRC2, SRC1 =R, SRC2=IMM, | M[SRC2 + SRC3] =
82 EXPRESSION User Manual © 2003 ACES Laboratory

SRC3 SRC3=R SRC1
HIVSTOREU | SRC1, SRC2, SRC1 =R, SRC2=IMM, | M[SRC2+ SRC3] =
SRC3 SRC3=R SRC1
QIVSTORE SRC1, SRC2, SRC1 =R _FOUR, SRC2 = | M[SRC2 + SRC3] =
SRC3 IMM, SRC3=R SRC1
QIVSTOREU | SRC1, SRC2, SRC1 =R _FOUR, SRC2 = | M[SRC2 + SRC3] =
SRC3 IMM, SRC3=R SRC1
IF SRC1, SRC2 SRC1=CC, SRC2=LAB |If(CC==1)thenPC=
LAB
IFFT SRC1, SRC2 SRC1=CC, SRC2=LAB |If(CC==1)thenPC=
LAB
GOTO SRC1 SRC1=LAB PC =LAB
IGOTO SRC1 SRC1=LAB PC =LAB
CALL SRC1, SRC2 SRC1=LAB, SRC2=R RA = PC; PC = LAB,
PARAM_LIST First parameter issrc2,
rest parameters have to
be passed in explicit
parameter list
RETURN SRC1 SRC1=RA PC=RA
CVTDI DEST, SRC1 DEST =F _EVEN, SRC1 = | DEST = (Double)
R SRC1 (Convert Integer
to Double)
CVTID DEST, SRC1 DEST =R, SRC1 = DEST = (Integer)
F EVEN SRC1
CVTS DEST, SRC1 DEST =F, SRC1=R DEST = (Float) SRC1
CVTSD DEST, SRC1 DEST =F, SRC1 = DEST = (Float) SRC1
F EVEN
CVTDS DEST, SRC1 DEST =F _EVEN, SRC1 = | DEST = (Double)
F SRC1
DMTC1 DEST, SRC1 DEST=F SRC1=R DEST = SRC1 (Move a
value of aregister inR
to aregister in F)
DMFC1 DEST, SRC1 DEST=R,SRC1=F DEST = SRC1 (Move a
value of aregister in F
to aregister inR)
MTC1 DEST, SRC1 DEST=F SRC1=R DEST = SRC1 (Move a
value of aregister inR
to aregister in F)
MFC1 DEST, SRC1 DEST=R,SRC1=F DEST = SRC1 (Move a
value of aregister in F
to aregister in R)
TRUNCID DEST, SRC1 DEST =R, SRC1 = DEST = SRC1
F EVEN (Truncate a Double to
make a I nteger)
TRUNCIS DEST, SRC1 DEST=R,SRC1=F DEST = SRC1
83 EXPRESSION User Manual ~ © 2003 ACES Laboratory

IABS DEST, SRC1 DEST =R, SRC1=R DEST = abs(SRC1)

DABS DEST, SRC1 | DEST = F EVEN, SRC1 = | DEST = abs(SRC1)
F EVEN

SQRT DEST, SRC1 | DEST =R, SRC1=R DEST = srt(SRC1)

EXP DEST, SRC1 | DEST =R, SRC1 =R DEST = exp(SRC1)

Table1l: ThelSA of Generic Machine

L egend:

R={R0, R1, R2, ..., R31}, Integer Register File

RA = R31

F EVEN ={R0, R2, R4, ..., R30}, Pair the registers to form Double
Register File. Note that the second odd numbered register is implicit.
F={FO, F1, F2, ... F31}.

<<L : Logical Left Shift.

<<A : Arithmetic Left Shift

IMM : Immediate value

LAB : Address of an instruction. Could be actual address, or name.

84 EXPRESSION User Manual © 2003 ACES Laboratory

