We characterize the graphs of two-dimensional soap bubble clusters as being exactly the bridgeless 3-regular planar graphs. The proof uses the Möbius invariance of the properties characterizing these clusters together with our previous circle packing method for constructing Lombardi drawings of graphs.
For the journal version, see "A Möbius-invariant power diagram and its applications to soap bubbles and planar lombardi drawing.".
(Slides)
Publications – David Eppstein – Theory Group – Inf. & Comp. Sci. – UC Irvine
Semi-automatically filtered from a common source file.