A superpattern of a set of permutations is a permutation that contains as a pattern every permutation in the set. Previously superpatterns had been considered for all permutations of a given length; we generalize this to sets of permutations defined by forbidden patterns; we show that the 213-avoiding permutations have superpatterns half the length of the known bound for all permutations, and that any proper permutation subclass of the 213-avoiding permutations has near-linear superpatterns. We apply these results to the construction of universal point sets, sets of points that can be used as the vertices of drawings of all n-vertex planar graphs. We use our 213-avoiding superpatterns to construct universal sets of size approximately n2/4, and we also construct near-linear universal sets for graphs of bounded pathwidth.
We consider a broad class of highest averages methods for proportional allocation (the problems of allocating seats to parties after a parliamentary election, or of allocating congressmen to states based on total population). We show that these methods can be simulated by an algorithm whose running time is proportional only to the number of parties or states, independent of the number of seats allocated or the number of voters.
(Slides)
Co-authors – Publications – David Eppstein – Theory Group – Inf. & Comp. Sci. – UC Irvine
Semi-automatically filtered from a common source file.