We find a (nonconvex, but topologically equivalent to convex) polyhedron with seven vertices and six faces that cannot be unfolded to a flat polygon by cutting along its edges. Both the number of vertices and the number of faces are the minimum possible. The JCDCG3 version used the title "Minimal ununfoldable polyhedron".
We study problems in which we are given an origami crease pattern and seek to reconfigure one locally flat foldable mountain-valley assignment into another by a sequence of operations that change the assignment around a single face of the crease pattern.
Co-authors – Publications – David Eppstein – Theory Group – Inf. & Comp. Sci. – UC Irvine
Semi-automatically filtered from a common source file.