From Discrepancy to Majority

David Eppstein and Daniel S. Hirschberg

12th Latin American Theoretical Informatics Symposium
(LATIN 2016)
Ensenada, Mexico, April 2016

Fault diagnosis

Test whether a system is
behaving correctly

(and if not find the problem)
using few tests

Classical example:
combinatorial group testing

Developed in World War Il to
identify sick army recruits

by applying expensive blood
tests to few mixtures of many
blood samples

)

S

guT THERES N

VD o
BE CURED

0 MEDICINE FOR

Fault diagnosis of distributed systems

As modeled by De Marco and Kranakis [2015]:
» Majority of processors are assumed to be non-faulty
» Can test k-tuples of processors

» Each test returns discrepancy (difference between numbers of
processors with each of two answers) but not which processors
had which answers

» Goal: identify a non-faulty processor (one that produced a
majority answer)

OOO OOO
QO QO
1 3 5 3

Finding the majority from pairwise comparisons

The (well-studied) k = 2 case of De Marco and Kranakis [2015]
Can be solved by the following steps:
» Pair up items and
test each pair

» Eliminate both items in
mismatched pairs,
keep one item from each
matched pair

» Recurse on remaining TO‘WASTE TIME
items and return their MATEHING

majority (if there is one)

» If not, and n is odd, return SOEKS

the left-over item

Total number of queries: n — O(log n)

New results

We can find a majority element in n/| % | + O(k) queries

Best previous upper bound was n — k + k?/2

?

7?%777 xS
,

7??? '

We also improve the lower bound
from n/k — o(n) to n/(k — 1) — o(n)
showing that the upper bound is optimal to within
a factor of - Lk/2J + o(1) =~ 2 for all k

Step 1: Find an element in the minority of [1, k]

v

Test the k-tuple [1, k]

Choose j > k, form (k + 3)/2 k-tuples by swapping j with an
element of [1, k], and test each k-tuple

v

> If all tests give discrepancy < 1, j must be in the minority
1 2 (k+3)/2 I
(@0 000000000

*\l///

(If not, we have already found a high-discrepancy k-tuple and
can skip to step 3)

v

Step 2: Find an unbalanced k-tuple

Unbalanced: not evenly split,
i.e. discrepancy is > 1

» Use Step 1 to find
J,J' > k, both in the
minority of [1, k]; set
Y ={J}

> Repeatedly double |Y|
(with O(1) queries/step)
preserving the property
that maj(Y') # maj([1, k]),
until Y] =k -1

» Oneof {1}UY, {2} UY,
or [3,klu{j,j'}is
unbalanced

Step 3: Find a homogeneous k-tuple

Homogeneous: all elements equal to each other

vQ & & 0 Q & 9 O
NN N NN NN
V.
Form a path alternating between the unbalanced k-tuple
and k — 1 other elements

For each edge, replace the unbalanced k-tuple element by its
neighbor, and test the resulting k-tuple to determine whether the
endpoints of each edge are equal (0) or unequal (1)

Use the results to 2-color of the path and return a k-tuple of
elements from the majority color class

Step 4: Calculate the discrepancy of [1, n]

» Partition the input (outside the homogeneous k-tuple)
into | k/2]-tuples

» Use a single test per | k/2]-tuple to count how many of its
items are equal to the items in the homogeneous tuple

> Sum the results

Step 5: Find a majority element

If the homogeneous k-tuple is in the majority, choose any of its
elements. Otherwise:

» Find a | k/2]|-tuple that contains an item unequal to the
homogeneous k-tuple

» Repeatedly divide its size in two (preserving the property that
it contains a majority element), with a single test per
subdivision, until only one item remains

v

v

v

> Step 4: {

v

Step 1. O(k) tests
Step 2: O(log k) tests
Step 3: O(k) tests
n—k
[k/2]
Step 5: O(log k) tests

-‘ tests

Analysis

Do with less-
so theyll have

Conclusions

New and nearly-tight solution to the problem of finding a majority
element by counting (discrepancy) queries

CC-BY-SA image “Nik Wallenda trains..."” by Jennifer Huber from Wikimedia commons

To reduce the gap between upper and lower bounds,
we probably need stronger lower bounds

Steps 1 and 2 (finding an unbalanced query) take
O(1) queries when k =2 mod 4, and
O(log k) queries when k is even,
but O(k) when k is odd — can this be improved?

References

Gianluca De Marco and Evangelos Kranakis. Searching for majority with
k-tuple queries. Discrete Math. Algorithms Appl., 7(2):1550009, 2015.
doi: 10.1142/S1793830915500093.

