
From Discrepancy to Majority

David Eppstein and Daniel S. Hirschberg

12th Latin American Theoretical Informatics Symposium
(LATIN 2016)

Ensenada, Mexico, April 2016

Fault diagnosis

Test whether a system is
behaving correctly
(and if not find the problem)
using few tests

Classical example:
combinatorial group testing

Developed in World War II to
identify sick army recruits
by applying expensive blood
tests to few mixtures of many
blood samples

Fault diagnosis of distributed systems

As modeled by De Marco and Kranakis [2015]:

I Majority of processors are assumed to be non-faulty

I Can test k-tuples of processors

I Each test returns discrepancy (difference between numbers of
processors with each of two answers) but not which processors
had which answers

I Goal: identify a non-faulty processor (one that produced a
majority answer)

1 3 5 3

Finding the majority from pairwise comparisons

The (well-studied) k = 2 case of De Marco and Kranakis [2015]

Can be solved by the following steps:

I Pair up items and
test each pair

I Eliminate both items in
mismatched pairs,
keep one item from each
matched pair

I Recurse on remaining
items and return their
majority (if there is one)

I If not, and n is odd, return
the left-over item

Total number of queries: n − O(log n)

New results

We can find a majority element in n/bk2 c+ O(k) queries

Best previous upper bound was n − k + k2/2

????
?

? ? ?
?
?

?? ? ?

?
?

??
? ?

?

?
?

? ?
?

?

We also improve the lower bound
from n/k − o(n) to n/(k − 1)− o(n)

showing that the upper bound is optimal to within
a factor of k−1

bk/2c + o(1) ≈ 2 for all k

Step 1: Find an element in the minority of [1, k]

I Test the k-tuple [1, k]

I Choose j > k, form (k + 3)/2 k-tuples by swapping j with an
element of [1, k], and test each k-tuple

I If all tests give discrepancy ≤ 1, j must be in the minority

1 2 k

j

(k+3)/2

I (If not, we have already found a high-discrepancy k-tuple and
can skip to step 3)

Step 2: Find an unbalanced k-tuple

Unbalanced: not evenly split,
i.e. discrepancy is > 1

I Use Step 1 to find
j , j ′ > k , both in the
minority of [1, k]; set
Y = {j , j ′}

I Repeatedly double |Y |
(with O(1) queries/step)
preserving the property
that maj(Y) 6= maj([1, k]),
until |Y | = k − 1

I One of {1} ∪ Y , {2} ∪ Y ,
or [3, k] ∪ {j , j ′} is
unbalanced

Step 3: Find a homogeneous k-tuple

Homogeneous: all elements equal to each other

U:

V:

0 1 0 0 1 0 1 1 1 0 1 0 1 1

Form a path alternating between the unbalanced k-tuple
and k − 1 other elements

For each edge, replace the unbalanced k-tuple element by its
neighbor, and test the resulting k-tuple to determine whether the

endpoints of each edge are equal (0) or unequal (1)

Use the results to 2-color of the path and return a k-tuple of
elements from the majority color class

Step 4: Calculate the discrepancy of [1, n]

I Partition the input (outside the homogeneous k-tuple)
into bk/2c-tuples

I Use a single test per bk/2c-tuple to count how many of its
items are equal to the items in the homogeneous tuple

I Sum the results

Step 5: Find a majority element

If the homogeneous k-tuple is in the majority, choose any of its
elements. Otherwise:

I Find a bk/2c-tuple that contains an item unequal to the
homogeneous k-tuple

I Repeatedly divide its size in two (preserving the property that
it contains a majority element), with a single test per
subdivision, until only one item remains

Analysis

I Step 1: O(k) tests

I Step 2: O(log k) tests

I Step 3: O(k) tests

I Step 4:

⌈
n − k

bk/2c

⌉
tests

I Step 5: O(log k) tests

Conclusions

New and nearly-tight solution to the problem of finding a majority
element by counting (discrepancy) queries

CC-BY-SA image “Nik Wallenda trains. . . ” by Jennifer Huber from Wikimedia commons

To reduce the gap between upper and lower bounds,
we probably need stronger lower bounds

Steps 1 and 2 (finding an unbalanced query) take
O(1) queries when k = 2 mod 4, and
O(log k) queries when k is even,

but O(k) when k is odd – can this be improved?

References

Gianluca De Marco and Evangelos Kranakis. Searching for majority with
k-tuple queries. Discrete Math. Algorithms Appl., 7(2):1550009, 2015.
doi: 10.1142/S1793830915500093.

