
Set-Difference Range Queries

David Eppstein, Michael T. Goodrich, and Joseph A. Simons

25th Canadian Conference on Computational Geometry
Waterloo, Ontario, August 2013



Spot the difference

A popular type of children’s puzzle

CC-BY-SA image File:Spot the difference.png by ja:user:Muband on Wikimedia commons



The discovery of Pluto

The original plates from Clyde Tombaugh’s discovery of Pluto,
recolored to make the arrow markers more obvious



Detecting alterations of photographic images

Kliment Voroshilov, Vyacheslav Molotov,
Joseph Stalin, and Nikolai Yezhov, 1937

Before After



Local differencing

Find differences within a restricted subset of the input

(e.g. to avoid getting distracted by bigger differences elsewhere)



Non-imaging applications of local differencing

I Synchronize calendars for
a range of dates

I Reconcile a range of
database transactions

I Find variant DNA in one
or more genes of a genome

I Track a small set of
moving objects among
many non-moving objects

I Communicate updated
data for a windowed view
of a road map

Google Maps live traffic display near Orange County

Airport, California, 2013-08-01 16:30



Our contributions

Main contribution: Formulate set difference range querying, a
formalization of the local differencing problem within the
framework of range query data structures

Secondary contribution: Combine known data structural techniques
for decomposition of range queries and for streaming straggler
detection to solve set difference range queries efficiently



Range spaces

A range space consists of

I A family of objects
parameterized by O(1)
real numbers

I A family of ranges
parameterized by O(1)
real numbers

I An incidence relation
between objects and
ranges

e.g. points in the plane,
rectangles, containment



Range querying

Input: finite set of objects from a
range space, a value for each object,
and an (associative, commutative)
aggregation operator

Preprocessing: construct a
space-efficient data structure

Query: find points in a query range
and return their aggregate value

To count points in range: value = 1, aggregate = addition
To find top priority point: value = priority, aggregate = max
To list all points in range: value = self, aggregate = union



Set difference range queries

Data: One or more sets of objects

Object values = members of some universe of sets

Query: two ranges (possibly in different sets of objects)

Aggregation: Elements that belong to one range but not both
(symmetric difference of sets)



Canonical ranges

Standard strategy for range
query problems:

I Identify a small set of
canonical ranges

I Store the aggregate value
of each canonical range

I Decompose query ranges
into few canonical ranges

Example: kD-tree

O(n) canonical rectangles

Query rectangle decomposes
into O(

√
n) canonical rects



Group vs semigroup models

Semigroup: query decomposed
into disjoint canonical ranges

Can be combined using only
the aggregate operator

Allows more general types of
aggregation

+
-

Group: query decomposed into
overlapping canonical ranges

Inclusion-exclusion formula
using subtraction

Allows more general types of
decomposition



Set differencing in the group model

Instead of sets, use multisets:
integer counts of how many times each element appears

The members of a multiset are the elements with nonzero counts

Vectors of counts can be added and subtracted

The set difference is just the subtraction of two vectors

PD image File:Tally marks counting visitors.jpg by Achird on Wikimedia commons



Invertible Bloom filters
[E & Goodrich, WADS 2007 & IEEE TKDE 2011]

{x, y, z}

Hash each element to O(1) cells of a table, #cells = O(capacity)

Each cell stores
∑

elements, #elements, checksum

Can add/subtract multisets of arbitrary size
(by adding/subtracting values in each cell)

Decode by finding cells containing only one element,
possible whenever size of result ≤ capacity



How to perform set-difference range queries

I Construct a family of canonical sets

I Decorate each set with invertible Bloom
filters of capacities 1, 2, 4, . . . set size

I To handle a query:

I Decompose into canonical ranges

I For capacity = 1, 2, 4, . . . , add/subtract
canonical IBFs to construct an IBF for
the difference of the two query ranges

I When capacity is large enough for the
resulting IBF to be successfully decoded,
stop and return the result

U.S. Navy photo

050215-N-2636M-015,

Nick Leones, by Kleynia

McKnight



Analysis

Space = input size × number of canonical sets per object, similar
to other typical range query data structures

(Slightly more space-efficient if output size fixed in advance)

Query time = output size × number of canonical sets per query

Can also be modified to return approximate cardinality of result,
with query time polylog × number of canonical sets

(Uses frequency moment estimation sketch in place of IBFs)



Conclusions

New, natural and useful range querying problem

Efficient solutions, independent of the exact shape of the ranges,
that can be combined with most other range querying techniques

The blink comparator used by Clyde Tombaugh to discover Pluto

CC-BY-SA image File:Lowell blink comparator.jpg by Pretzelpaws on Wikimedia commons


