Cuckoo Filter: Simplification and Analysis

David Eppstein

15th Scandinavian Symposium and Workshops
on Algorithm Theory (SWAT 2016)

Reykjavik, Iceland, June 2016

Context

Goal: Data structure for a set of n identifiers (keys)
drawn from a larger universe of U potential identifiers

Want fast membership queries, small memory footprint

Other options (insert, delete, union, intersect) also useful

File:Wafer Lock Try-Out Keys.jpg by Willh26 on Wikimedia commons

Exact solutions: Bit vector

Store an array of bits, one per possible key
1 for set members, 0 for nonmembers

LL[ofolt]1]oJof1]o]1]o]1]1]oJo]1]1]0]1]O]

Fast queries, and vectorized union and intersection operations
But memory requirement ©(U) is too large

Exact solutions: Cuckoo hashing (1)

[Pagh and Rodler 2004]

Each key is hashed to two home locations

Assign keys to homes and store one key per home

N
Z S -

Constant worst-case query time (check both locations)

Constant average-case updates
Failure (unable to match keys to homes) has probability O(1/n)

Exact solutions: Cuckoo hashing (Il)

Succeeds in matching keys to homes <> the graph (homes, pairs
selected by keys) is a pseudoforest (each component has < 1 cycle)

o o o
@) @)

@) @) @)
@) @) @)

Two weaknesses:
Failure probability of O(1/n) may be too high
To achieve this, must leave > 1/2 of the homes empty
(too much wasted memory)

Exact solutions: Blocked cuckoo hashing

Store multiple keys/location [Dietzfelbinger and Weidling 2007]

Succeeds when no subset of location has too many keys
Allows near-optimal space (1 + €)nlog, U
Improves failure probability to 1/polynomial [Kirsch et al. 2010]

When even optimal space is too much

Reasons to use very little memory: Gioamnocioes
VT
VIC2A, SUPER EXPANDER WITH
» Huge data sets, O RAM CARTRIGE

too large to fit into main memory

» Small embedded devices
with little available memory

» Performance from fitting in cache

Solution: Approximate data structures!

Less memory but imprecise answers File:4856 - VIC-1211A Super Expander
w 3k RAM open.JPG by Sven.petersen

on Wikimedia commons

Approximate solutions: Bloom filter

[Bloom 1970]

Uses bitvector idea, but hashes each key to O(1) bitvector cells
Query answer true <> all hashed cells nonzero

O B B

[oftjoftfrjrjofofoJojoftfoJr1jojoft]o]

O

A small number of keys that are not in the set will also have
all cells nonzero — false positives

Uses O(nlog1/p) bits for false positive rate p

Bloom filters: enormously popular in practice

Google

Scholar

Articles
Case law

My library

Any time
Since 2016
Since 2015
Since 2012
Custom range...

Sort by relevance
Sort by date

" include patents
+ include citations

i Create alert

"bloom filter" - “

Fast hash table lookup using extended bloom filter: an aid to network processing
H Song, S Dharmapurikar, J Tumer. . - ACM SIGCOMM ..., 2005 - dl.acm.org

Abstract Hash tables are fundamental compenents of several network processing algorithms

and applications, including route lookup, packet classification, per-flow state management

and network monitoring. These applications, which typically occur in the data-path of high- ...

Cited by 302 Related articles All 17 versions Web of Science: 28 Import into BibTeX Save More

Space-code bloom filter for efficient per-flow traffic measurement

A Kumar, J Xu, J Wang - Selected Areas in Gommunications, ..., 2006 - iseexplore.ieee.org
Abstract—Per-flow trafiic measurement is critical for usage accounting, traffic engineering,

and anomaly detection. Previous methedologies are either based on random sampling (eg,

Cisco's NetFlow), which is inaccurate, or only account for the *elephants.” We introduce a ...

Cited by 247 Related articles Al 18 versions Web of Science: 18 Importinto BibTeX Save More

Less hashing, same performance: Building a better Bloom filter

A Kirsch, M Mitzenmacher - Algerithms—ESA 2008, 2006 - Springer

Abstract A standard technique from the hashing literature is to use two hash functions h 1 (x)

and h 2 (x) to simulate additional hash functions of the form gi (x)= h 1 (x)+ ih 2 (x). We

demonstrate that this technique can be usefully applied to Bloom filters and related data ...

Cited by 129 Related articles All 20 versions Web of Science: 25 Import info BibTeX Save More

Designing a Bloom filter for differential file access

LL Gremillien - Communications of the ACM, 1882 - dl.acm.org

Abstract The use of a differential file for a database update can yield integrity and

performance benefits, but it can also present problems in providing current data to
accessing i A ism known as a Bloom filter can solve these

Cited by 101 Related articles Web of Science: 17 Import into BibTeX Save More

An optimal Bloom filter replacement

A Pagh, R Pagh, SS Rao - Proceedings of the sixteenth annual ACM- ..., 2005 - dl.acm.org
Abstract This paper considers space-efficient data structures for storing an approximation
S'o a set S such that Sc S'and any element not in S belongs to S'with probability at moste.
The Bloem filter data structure, solving this problem, has found widespread use. Our main ...
Cited by 123 Related articles All 10 versions Importinto BibTeX Save More

w1 Rnare_afficiant and avart de Rriiin aranh renrecantatinn haced nn a Rlnam filter

[PDF] from ut.ee
UC-eLinks

PoF] from columbia.edu
UC-eLinks

PDF] from astrometry.net

UC-eLinks

UC-eLinks

poF] from it-c.dk

a1 fram hinmadrantral

Drawbacks of Bloom filters

» Suboptimal memory
44% worse than lower bound
» Unable to delete items

(counting Bloom filter can but
uses w(1) more memory)

» Poor memory access pattern
More accurate = more hits/query

File:2008 08 19 Einbreid Bru
Iceland.JPG by Crux on Wikimedia
commons

Better than Bloom filters

“An optimal Bloom filter replacement” [Pagh et al. 2005]

“Cuckoo filter: Practically better than Bloom” [Fan et al. 2014]

Both have optimal space, locality of reference, allow deletions
Pagh et al.: proven, but no practical implementation

Fan et al.: practical implementation but no proofs
... until now

Cuckoo filter main idea

Cuckoo hash, but save space by storing fingerprints instead of keys

Based on File:Ninhydrin staining thumbprint.png by Horoporo on Wikimedia commons

Answer query by checking whether the query key's
fingerprint is at one of its homes

Complication: How to reshuffle keys after an insert?

In cuckoo hashing, homes are independent functions of key

But cuckoo filter reshuffle only knows fingerprint+location, not key

Not enough information for second home to be independent

Solution: use hash(key) and hash(key) xor hash(fingerprint)
Simplification: hash(key) and hash(key) xor fingerprint

Graph of pairs of homes for all fingerprints

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

Second home = first home Second home = first home
xor hash(fingerprint) xor fingerprint
Colors show different Colors show different

hash values (2-bit) fingerprints

Main ideas of analysis

When we use simplified home placement,
we are effectively partitioning the cuckoo filter
into many smaller cuckoo filters

4 4 <4 <4

The partition is highly likely to be well balanced
(standard argument using Chernoff bounds)

Within each of the smaller cuckoo filters,
pairs of homes are independent of each other
so we can use existing cuckoo hash analysis

Conclusions

The simplified cuckoo filter with sufficiently large constant b
fingerprints/home and fingerprint size f = Q((log n)/b)
can place all fingerprints with high probability

When it succeeds, it achieves false positive rate p = O(b/2)
using memory arbitrarily close to optimal, (1 + €)nlog, 1/p bits

File:Success sign.jpg by rmgimages from Wikimedia commons

Still open: Analyze cuckoo filtering without the simplification

References |

Burton H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM, 13(7):422-426, 1970. doi:
10.1145/362686.362692.

Martin Dietzfelbinger and Christoph Weidling. Balanced allocation
and dictionaries with tightly packed constant size bins. Theoret.
Comput. Sci., 380(1-2):47-68, 2007. doi:
10.1016/j.tcs.2007.02.054.

Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D.
Mitzenmacher. Cuckoo filter: Practically better than Bloom. In
Proc. 10th ACM Int. Conf. Emerging Networking Experiments
and Technologies (CoNEXT '14), pages 75-88, 2014. doi:
10.1145/2674005.2674994.

Adam Kirsch, Michael D. Mitzenmacher, and Udi Wieder. More
robust hashing: cuckoo hashing with a stash. SIAM J. Comput.,
39(4):1543-1561, 2010. doi: 10.1137/080728743.

References |l

Anna Pagh, Rasmus Pagh, and S. Srinivasa Rao. An optimal
Bloom filter replacement. In Proc. 16th ACM-SIAM Symposium
on Discrete Algorithms (SODA '05), pages 823-829. ACM, New
York, 2005.

Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J.
Algorithms, 51(2):122-144, 2004. doi:
10.1016/j.jalgor.2003.12.002.

