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Context

Goal: Data structure for a set of n identifiers (keys)
drawn from a larger universe of U potential identifiers

Want fast membership queries, small memory footprint

Other options (insert, delete, union, intersect) also useful
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Exact solutions: Bit vector

Store an array of bits, one per possible key
1 for set members, 0 for nonmembers
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Fast queries, and vectorized union and intersection operations
But memory requirement ©(U) is too large



Exact solutions: Cuckoo hashing (1)

[Pagh and Rodler 2004]

Each key is hashed to two home locations

Assign keys to homes and store one key per home
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Constant worst-case query time (check both locations)

Constant average-case updates
Failure (unable to match keys to homes) has probability O(1/n)



Exact solutions: Cuckoo hashing (Il)

Succeeds in matching keys to homes <> the graph (homes, pairs
selected by keys) is a pseudoforest (each component has < 1 cycle)
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Two weaknesses:
Failure probability of O(1/n) may be too high
To achieve this, must leave > 1/2 of the homes empty
(too much wasted memory)



Exact solutions: Blocked cuckoo hashing

Store multiple keys/location [Dietzfelbinger and Weidling 2007]

Succeeds when no subset of location has too many keys
Allows near-optimal space (1 + €)nlog, U
Improves failure probability to 1/polynomial [Kirsch et al. 2010]



When even optimal space is too much

Reasons to use very little memory: Gioamnocioes
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VIC2A,  SUPER EXPANDER WITH
» Huge data sets, O RAM CARTRIGE

too large to fit into main memory

» Small embedded devices
with little available memory

» Performance from fitting in cache

Solution: Approximate data structures!
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Approximate solutions: Bloom filter

[Bloom 1970]

Uses bitvector idea, but hashes each key to O(1) bitvector cells
Query answer true <> all hashed cells nonzero
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A small number of keys that are not in the set will also have
all cells nonzero — false positives

Uses O(nlog1/p) bits for false positive rate p



Bloom filters: enormously popular in practice
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Fast hash table lookup using extended bloom filter: an aid to network processing
H Song, S Dharmapurikar, J Tumer. . - ACM SIGCOMM ..., 2005 - dl.acm.org

Abstract Hash tables are fundamental compenents of several network processing algorithms

and applications, including route lookup, packet classification, per-flow state management

and network monitoring. These applications, which typically occur in the data-path of high- ...
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Abstract—Per-flow trafiic measurement is critical for usage accounting, traffic engineering,

and anomaly detection. Previous methedologies are either based on random sampling (eg,

Cisco's NetFlow), which is inaccurate, or only account for the *elephants.” We introduce a ...
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A Kirsch, M Mitzenmacher - Algerithms—ESA 2008, 2006 - Springer

Abstract A standard technique from the hashing literature is to use two hash functions h 1 (x)

and h 2 (x) to simulate additional hash functions of the form gi (x)= h 1 (x)+ ih 2 (x). We

demonstrate that this technique can be usefully applied to Bloom filters and related data ...
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Designing a Bloom filter for differential file access

LL Gremillien - Communications of the ACM, 1882 - dl.acm.org

Abstract The use of a differential file for a database update can yield integrity and

performance benefits, but it can also present problems in providing current data to
accessing i A ism known as a Bloom filter can solve these
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A Pagh, R Pagh, SS Rao - Proceedings of the sixteenth annual ACM- ..., 2005 - dl.acm.org
Abstract This paper considers space-efficient data structures for storing an approximation
S'o a set S such that Sc S'and any element not in S belongs to S'with probability at moste.
The Bloem filter data structure, solving this problem, has found widespread use. Our main ...
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Drawbacks of Bloom filters

» Suboptimal memory
44% worse than lower bound
» Unable to delete items

(counting Bloom filter can but
uses w(1) more memory)

» Poor memory access pattern
More accurate = more hits/query
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Better than Bloom filters

“An optimal Bloom filter replacement” [Pagh et al. 2005]

“Cuckoo filter: Practically better than Bloom” [Fan et al. 2014]

Both have optimal space, locality of reference, allow deletions
Pagh et al.: proven, but no practical implementation

Fan et al.: practical implementation but no proofs
... until now



Cuckoo filter main idea

Cuckoo hash, but save space by storing fingerprints instead of keys

Based on File:Ninhydrin staining thumbprint.png by Horoporo on Wikimedia commons

Answer query by checking whether the query key's
fingerprint is at one of its homes



Complication: How to reshuffle keys after an insert?

In cuckoo hashing, homes are independent functions of key

But cuckoo filter reshuffle only knows fingerprint+location, not key

Not enough information for second home to be independent

Solution: use hash(key) and hash(key) xor hash(fingerprint)
Simplification: hash(key) and hash(key) xor fingerprint



Graph of pairs of homes for all fingerprints

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

Second home = first home Second home = first home
xor hash(fingerprint) xor fingerprint
Colors show different Colors show different

hash values (2-bit) fingerprints



Main ideas of analysis

When we use simplified home placement,
we are effectively partitioning the cuckoo filter
into many smaller cuckoo filters

4 4 <4 <4

The partition is highly likely to be well balanced
(standard argument using Chernoff bounds)

Within each of the smaller cuckoo filters,
pairs of homes are independent of each other
so we can use existing cuckoo hash analysis



Conclusions

The simplified cuckoo filter with sufficiently large constant b
fingerprints/home and fingerprint size f = Q((log n)/b)
can place all fingerprints with high probability

When it succeeds, it achieves false positive rate p = O(b/2)
using memory arbitrarily close to optimal, (1 + €)nlog, 1/p bits
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Still open: Analyze cuckoo filtering without the simplification
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