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The big picture

Tour of some recent developments in the computational complexity of paperfolding

▶ Parameterized complexity
▶ Fine-grained complexity

▶ Galois complexity
▶ Space complexity

▶ Counting complexity
▶ Undecidability



The main idea

We can design origami structures that perform computations
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Folding these structures cannot be easier than doing the computation!
... because if it were, that would be a way of doing the computation



Can it fold?



Flat foldability is NP-complete

Outline of idea by [Bern and Hayes 1996]: convert Boolean circuit into folding pattern

Blue and green lines: pleats can fold in two ways, act like wires + binary signals

Red shaded regions: logical “gates” that test whether three incoming signals are unequal

Original construction is incorrect but was patched by Akitaya et al. [2016]
Two variations for labeled and unlabeled crease types, both hard

All fold lines on octagonal grid



Parameterized complexity:
Analyze difficulty by more than input size

Quantify features of an input that make it difficult by numerical parameters

Separate time bound into function of parameters × polynomial of input size

Can solve very large problems as long as the parameters stay small

Maybe it’s easy to fold grid-like crease patterns in which
one of the two grid dimensions is small?



Grid dimension is the wrong parameter

Reason 1: It doesn’t apply to non-grid folding patterns

Reason 2: We don’t even know how to fold 3 × n square grids

The still-unsolved “map folding problem”: flat-fold a grid
given as input a mountain–valley assignment on all grid edges



Better parameters

Parameterize by cutting flat-folded state (whatever it is) by vertical lines, and looking
at the geometry of the cross-sections

width: cross-section crosses 3 fold points

ply: 5 layers thick

▶ Ply: how many layers are there, for the cross section with the most layers?

▶ Width: what is the maximum # fold points that a cross-section passes through?

(Actual definition uses treewidth of planar graphs, similar but more complicated,
does not require cross-sections to be parallel lines)



Fine-grained complexity

Focus on tightness of time bounds rather than the cruder
distinction between polynomial and exponential time

Algorithm: Sweep vertical cross-section line left to right

Track cross-sections of folds of left side of line

Fewer cross-sections than folds, O
(
(ply!)width+1n

)
“Fixed-parameter tractable”: bad function of parameters
but linear in crease pattern size

Exponential time hypothesis ⇒ exponential dependence on width cannot be improved

Proof idea: For NP-complete crease pattern, width is proportional to # circuit variables

(But to understand dependence on ply, we need progress on map folding!)

[Eppstein 2023]



What does it fold to?



Alexandrov’s theorem

Fold paper to form a surface that is topologically spherical, with finitely many “cone
points” of total angle < 360◦ ⇒ exactly one way for it to form a convex polyhedron

But how does the shape of the polyhedron depend on the folding pattern?
And where do the creases go?



An easy(?) special case

Bipyramid with
▶ All faces isosceles triangles
▶ All edge lengths integers
▶ Same length for the two equal sides of each face
▶ Base lengths allowed to vary



One dimension lower

Equator must be a cyclic polygon!

▶ Symmetry of face dimensions + uniqueness of
realization ⇒ top and bottom are mirrored ⇒
equator is a plane polygon

▶ All vertices at equal distances from top and
bottom apex ⇒ they lie on a circle

▶ Equator edge lengths must be as specified from
the folding pattern



Galois complexity

Coordinates for a cyclic polygon with given edge lengths are roots of polynomials with:

High algebraic degree (for regular p-gon with p prime, the polynomial is xp − 1)

Unsolvable Galois groups ⇒ no closed-form formula [Varfolomeev 2004]

The same difficulties extend to finding the shape of a bipyramid from its folding pattern

⇒ numerical approximations rather than exact symbolic descriptions may be necessary



How to fold it?



A mismatch between theory and practice

Previous hardness proofs:

Difficult to find folded state of crease pattern

Many simulation tasks:

We know both crease pattern and folded goal

Seek motion from one to the other



Reconfiguration complexity

Define combinatorial system of states+moves

Study complexity of problems:

▶ Can I reach one state from another?

▶ Are all states connected?

▶ How to reach goal in fewest moves?

Often PSPACE-complete (harder than NP)



Face flips in origami tessellations

States = locally valid mountain-valley assignments
on a tessellation:
▶ Satisfies Kawasaki’s & Maekawa’s theorems
▶ Not required to have a global flat folding

Move = reverse the assignment on a single face

On triangular tiling, O(n) flips always suffice, but it
is NP-complete to minimize length

[Akitaya et al. 2020b]

Weaknesses: NP vs PSPACE; local vs global folding;
do moves make sense?



When even a single step is hard to find

For flat-foldable unlabeled crease patterns, starting from a completely unfolded state,
rigidly flexing every crease simultaneously is weakly NP-complete

Must subdivide certain angles into two subsets with equal sums
Weakly NP-complete ⇒ high numerical precision is necessary for accurate results
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Finding a subset of a given crease system that can flex rigidly, starting from a
completely unfolded state, is strongly NP-complete

[Akitaya et al. 2020a]



Flaps and flips

A toy problem for origami reconfiguration

State: Equal-sized squares of paper lie flat on a flat
table, attached to the table by a hinge along one side

Move: flip one square to new flat position
with hinged edge attached in same place

All other squares remain where they were

Moving square can be pulled from or inserted into
pockets (non-rigidly); can flip across hinge even if
other squares lie above hinge

Example: The green square can flip across its hinge
but must remain under the lower red square



Nondeterministic constraint logic

Circuit-like reconfiguration problem used by [Hearn
and Demaine 2009] to prove PSPACE-hardness of
many puzzles and games

State: planar diagram of
▶ Blue and red arrows
▶ Gates: junction where three arrows meet
▶ OR (3 blue): ≥ 1 arrow must point inward
▶ AND (1 blue, 2 red): at least one blue or both

red arrows must point inward

Move: Reverse an arrow!



Simulating an arrow

arrow points toward the hinged side of each square

each square overlaps the hinges of its neighbors on both sides,
impossible for squares at both ends of arrow to flip inward (double arrowhead) 

to reverse arrow, flip squares one at a time starting from the arrowhead
(intermediate states have no arrowhead at either end, not problematic)



Simulating an and-gate



Simulating an or-gate

three outward-pointing arrows: impossible
cyclic above-below order in central triangle

if one arrow points in, all squares lie flat

if two point in, either can be flipped out



Space complexity

For the “flaps and flips” reconfiguration problem:
▶ Testing whether one state can reach another is

PSPACE-complete
▶ Testing whether all states are connected is

PSPACE-complete
▶ Completeness holds even for patterns of

bounded ply and bounded width
▶ Hard configurations can have integer vertex

coordinates
▶ Getting from one state to another may require

exponentially many flips



Counting complexity

Counting valid states of flaps-and-flips instance is #P-complete

Reduce counting cubic bipartite
matchings to constraint logic
[E, unpublished, Barbados 2019]

Crossover gadget



Single-sheet flat-folding

We can make single-sheet crease patterns that produce flaps!

Hardness proof should extend to reconfiguring flat foldings of single-sheet patterns
with O(1) changes of crease orientation per move

or only allowing refolding along one line segment at a time



Undecidability



Does a finite perturbation stay finite?

Given as input:
▶ A repeating unlabeled crease pattern on an

infinite half-plane with optional folds
▶ The folded state along the edge of the

half-plane, repeating except for a finite
perturbation

There is no algorithm to test the existence of a
folded state of the entire half-plane in which the
perturbation remains finite, even if each fold is
uniquely determined and easy to find

[Hull and Zakharevich 2023]

Main idea: simulate “Rule
110” cellular automaton



Alternative proof of Turing completeness

Build computer circuits (CPU + memory) out of Boolean gates based on “not all equal”
and crossover gadgets of Bern and Hayes [1996], without optional folds [Assis 2024]

Figure 8: The crease pattern schematic (left) and full crease pattern (right) of the origami NAND gate.

In presentation at 8OSME, Assis stated: like Hull and Zakharevich [2023],
this needs an infinite sheet of paper. But does it?



Tomoko Fuse’s “infinite origami”

Origami art from fractal crease patterns

Presented by Fuse at 8OSME, same day as my
talk (earlier version of this one) and Assis’s talk



Recursive subdivision of origami square into rectangles

Main idea:

Use recursive tiling by
similar rectangles

Use the same crease
pattern within every tile,
simulating a fixed (but
arbitrary) Boolean circuit

Combine tiled circuits for
universal computation



This is the binary tiling of the hyperbolic plane

(in the Poincaré half-plane model). Studied by Böröczky [1974]; earlier precedents:

Smith chart in radio engineering
[Mizuhashi 1937; Smith 1939; Volpert 1940]

M. C. Escher, Regular Division
of The Plane VI, May 1957



Circuitry within each tile

Octagonal-grid gadgets of Akitaya et al. [2016]
▶ Crossover
▶ White circle: split/merge
▶ Dark circle: not all equal

Grid layout
▶ Each grid row or column carries a (possibly

unused) signal
▶ Each grid vertex can be a crossover or

four-gadget cluster

Grid scale transition at tile boundary

Signal width and gadgets automatically scale
correctly!
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Local vs global

Intuition: Choosing folds step by step cannot produce inconsistencies in the limit

For a locally finite crease pattern, the following
are equivalent:
▶ The whole crease pattern folds flat
▶ Every patch with finitely many creases

folds flat

Main idea: Kőnig’s infinity lemma [Kőnig 1927]



Turing machines on the binary tiling

Initial state enters on left
side

Each tile can either
compute single local
update of TM, shifted
down by one or copy local
state from left to right

Tile tells its two children
which of these two
behaviors to follow

Global TM states ⇒
vertical chains of tiles
nested down and to right



Setting a logic bomb

We can make our origami simulation explode
(or at least fail to fold) whenever the Turing
machine stops

(use not-all-equal gadget with equal inputs)

But testing whether it will stop is the
undecidable halting problem

⇒ It is undecidable (co-RE-complete) to
determine whether an infinite crease pattern on
square paper (with a fractally repeating design
+ finitely many fixed choices) folds flat

(for either labeled or unlabeled creases)



End matter



Conclusions

Origami is hard!

. . . that’s part of what makes it interesting

NP-hardness, ETH ⇒ if you don’t already know what you’re folding, figuring it out
from the crease pattern is non-obvious

Galois complexity ⇒ for fully 3d folds, numerical approximation may be necessary

PSPACE-hardness ⇒ repeated folding and unfolding may be necessary

Undecidability ⇒ infinite origami is super hard, but maybe worth exploring more
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Electrical Communication Eng. Japan, 1937(12):1053–1058, December 1937.

P. H. Smith. Transmission line calculator. Electronics, 12(1):29–31, January 1939. URL
https://worldradiohistory.com/Archive-Electronics/30s/
Electronics-1939-01.pdf.

V. V. Varfolomeev. Galois groups of the Heron-Sabitov polynomials for pentagons
inscribed in a circle. Matematicheskĭı Sbornik, 195(2):3–16, 2004. doi:
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