
Stable-Matching Voronoi Diagrams

David Eppstein
University of California, Irvine

21st Japan Conference on Discrete and Computational
Geometry, Graphs, and Games (JCDCG3)

Ateneo de Manila University, Philippines, 2018



Acknowledgement

This is joint work with:

Gill
Barequet

Mike
Goodrich

Doruk
Korkmaz

Nil
Mamano

and is based on papers presented at IWCIA 2017,
SIGSPATIAL 2017, LATIN 2018, and ICALP 2018



I. Background



Geometric clustering

Goal: Given points in the
plane, group them into
“meaningful” clusters

Sometimes, # clusters is
given, other times it must
be inferred

Classical example:
Hertzsprung–Russell
diagram of stars, plotted by
color and brightness

CC-BY-SA image H-R diagram -edited-3.gif
by Richard Powell from Wikimedia commons



Beyond data analysis

Grouping geometric points
into well shaped subsets
also has real-world
applications

E.g. in political
redistricting,

clusters of places ⇔
government officeholders

CC-BY-SA image North Carolina Congressional
Districts 1992-2001.svg by Furfur from
Wikimedia commons

1992

1997

2001



Optimal clustering

Define a quality measure on clustering:

I max diameter of a cluster

I max circumradius of a cluster

I average distance between points in
same cluster

I max distance between points in
same cluster

I min distance between points in
different clusters

I min perimeter of boundaries
between clusters

I etc etc

Search for the clustering that optimizes
that measure



Voronoi clustering

Choose center points for each cluster
Assign each one the region closer to it than other centers

Can be optimal for some measures
(with the right placement of center points)

CC-BY-SA image KMeans-Gaussian-data.svg by Chire from Wikimedia commons



Facility location

Distribute facilities (points) to best serve surrounding regions

Map of US Starbucks locations from https://www.redliondata.com/chain-store-maps-tim-hortons-vs-starbucks/

Typically, each facility serves its nearest neighbors So the regions it

serves are Voronoi clusters



EM / Lloyd / k-means

Solve both clustering and facility location (and even finite element
mesh smoothing!) by shifting cluster centers in Voronoi clustering

Repeat:
I Compute the Voronoi clustering for the current centers
I Move each center to the centroid (or circumcenter)

of its new cluster

CC-BY-SA image K-means convergence to a local minimum.png by Agor153 from Wikimedia commons



II. Definition and basic properties



Capacity / size constraints

Political redistricting requires each region to have equal population

Load-balanced data distribution, property subdivision require each
region to have equal area

Free Art License image SubdivisionCoving.svg by Zephram Stark from Wikimedia commons

Capacity constraints are also standard in facility location problems

How can we achieve this?



Stable-marriage Voronoi diagrams

Given centers, match regions of given areas to each center so that
no unmatched point & center are closer than their matches



Why “stable marriage”?

Classical stable marriage: n men, n women, each with preferences

Goal: Pair men and women so no unmatched pair likes each other
better than their matches (avoid unstable pairs)

Mass wedding at Unification Church, 2013, from
https://www.cnn.com/2013/02/17/asia/gallery/mass-wedding/index.html

Widely used e.g. to assign medical students to residencies

Here, we are matching points to centers in the same way
with Euclidean distances as preferences



Existence and uniqueness

[Hoffman, Holroyd, and Peres, 2006]

Grow circles around each center at equal rates

Match regions to the first circle that covers them

Stop growing when the target region area has been assigned

All region–center matches are stable and forced



III. Pixelation



But how can we calculate it?

Our first approach [IWCIA 2017]: Pixelate!

Partition the area we are trying to partition into a grid of pixels

Find a stable marriage between pixels and cluster centers



Strawman: Gale–Shapley algorithm

Each center ⇒ a number of men equal
to its capacity

Each pixel ⇒ one woman

Repeat:

I Each single man proposes to the
nearest woman he hasn’t already
proposed to

I Each woman agrees to marry the
nearest man who proposes to her
(possibly dumping an agreement
she made earlier)

Time to match an n × n grid: O(n4)

Time to find priorities: bigger?

DE, Tanaka Farms, 2003



How to prioritize the pixels

Maintain convex hull of pixels
generated so far

Next pixel is offset from a
convex hull edge at distance
1/length(edge)

Maintain O(1) candidates/edge
prioritized using a bucket queue

O(1) time per pixel

Can stream sorted pixels of
n × n grid in space O(n2/3)



Pixelated circle-growing

For each vector v ∈ Z2

(in sorted order by length):

For each center c that has not
reached capacity:

If c + v is inside the grid and
not already assigned:

Match c + v to c

With C centers in an n × n grid, worst
case time is O(Cn2)

A. V. Tyranov, Boy with Bubbles, 1856



Bichromatic closest pairs

Repeatedly match closest (unmatched pixel, hungry center) pair

Closest pair from two dynamic sets ⇒
dynamic nearest neighbors× O(log2 n) [Eppstein 1995]

Dynamic nearest neighbor search O(log5 n) per operation
[Kaplan et al. 2016, improving Chan 2010]

Total O(n2 log7 n), but complicated and impractical



Neighbor chains

Shave logs by finding mutual nearest neighbors instead of closest
pairs (an idea previously used in hierarchical clustering)

Starting at any point, build a stack by repeatedly
pushing nearest neighbor of stack top

When top two points are mutual nearest neighbors, match and pop

Reduces time to O(n2 log5 n), still impractical



A practical hybrid algorithm

Use circle-growing up to some cutoff radius
(while few of the pixels it finds are unmatched)

Then switch to closest pairs
(slower per pixel but no penalty for unmatched)

Integer centers

T
im

e 
(s

)

0

0.5

1

1.5

2

Cutoff
0 0.5 1 1.5 2 2.5 3

Real centers

CG
PH
Total

0

2

4

6

8

Cutoff
0 0.5 1 1.5 2 2.5 3



IV. Road networks



Stable Voronoi in road networks

Problem: Cluster real-world
geography [SIGSPATIAL 2017]

Difficulties:

I Geographic barriers make
distances inaccurate

I We want clusters by
population, not area

Solution: Use road network
shortest paths!

I Most algorithms still work

I Network complexity stands
in for population



Circle-growing in road networks

Run C parallel copes of Dijkstra’s shortest path algorithm
(one per cluster center)

Match each vertex to the first copy that reaches it

When one center gets enough matches, stop its copy

Total time (for n vertices and C centers) O(Cn log n)

CC-BY-SA image Magic Roundabout in Hemel Hempstead.JPG by Cathcam from Wikimedia commons



Dynamic nearest neighbors in road networks

Needed for nearest-neighbor chain, potentially useful for other
applications e.g. vehicle dispatching [LATIN 2018]

Build separator hierarchy
– Each separator vertex stores priority queue of dynamic points
– Query compares candidate neighbors from separator vertices

Heuristic optimization: sort separator vertices by distance,
stop query when distance > best found so far

O(n1/2) / query, O(n1/2 log log n) / update

Updates onlyQueries onlyQueries and updates

T
im

e 
(s

)

0

0.1

0.2

0.3

0.4

2 8 32 128 512 2048 8192

Number of sites
2 8 32 128 512 2048 8192

Dijkstra
Separator
Separator (with opt.)

2 8 32 128 512 2048 8192



Comparison of algorithms for road networks

Gale–Shapley is only usable for small numbers of clusters

Neighbor chain is Õ(n3/2), independent of # clusters but too slow

Circle growing is best for small to moderate # clusters

GSC

GSN

CG
NNC

DC State

T
im

e 
(s

)

0

1

2

3

4

5

6

7

k

2 4 8 16 32 64 12
8

25
6

51
2
10

24
20

48
40

96

GSC

GSN

CG
NNC

DE State

0

5

10

15

20

25

k

2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
81

92

16
38

4



V. Continuous diagrams



Breaking out of the frame

Diagram lives in whole plane, not just a square [ICALP 2017]

Each center has a capacity (area), usually all equal

Cell boundaries are lines (between two growing disks)
and circular arcs (when a disk’s growth stops)



Lower bound on combinatorial complexity

Place n/2 points near center to form rainbow
and n/2 points in surrounding circle to take bites out

Cells may be disconnected,
with Ω(n2) total components
and Ω(n2) total complexity



Upper bound from lifting

Grow cones in 3d above plane of centers
Stop growth when each cone has a shadow of the right area

As lower envelope of piecewise algebraic surfaces, diagram has
complexity O(n2+ε) for any ε > 0

But they are not pseudospheres! If they were, bound would be O(n2)



Paint-by-numbers algorithm

Maintain (classical) Voronoi
diagram of still-hungry centers

Repeat:

I For each remaining center,
find disk s.t. intersection
with unmatched points in
its cell has target area

I Choose the smallest disk

I Match all points in the
disk to their cells

I Remove the disk center
from the Voronoi diagram



Algorithmic primitive

Given a convex polygon P (the Voronoi cell of center p),
a target area A, and a set C of disks,

find the radius for which A = area
(
Br (p) ∩ (P \

⋃
C )
)

This primitive is transcendental
(can’t be computed using roots of polynomials)

CC-BY-NC image https://xkcd.com/10/

Paint-by-numbers takes time O
(
n3 + n2f (n)

)
where f (x) is the time for the primitive on inputs of complexity x



VI. Moving the centers



Optimized center location

Original goal: Find geographically compact clusters
(e.g. for redistricting)

Modified goal: Place centers to make stable-matching diagram
have connected regions

Approach: Lloyd’s algorithm – alternate between constructing the
diagram and moving centers to better locations in their cells



Results of Lloyd’s algorithm

Disconnected cells and
odd shapes still exist,
but are greatly reduced



Alternative metrics

Also gives interesting results for L1 and L∞ metrics



Conclusions and open problems



Conclusions

I Interesting partition of the plane, achieves area constraints
but at the expense of connectivity

I Near-linear algorithms for pixelated approximations
I Nontrivial but slower algorithms for planar or near-planar

networks
I Cubic-time algorithm (with necessary but nonstandard

computational assumptions) for the continuous case
I Near-tight combinatorial complexity bounds

CC-BY-SA image 2013-06-28 14 19 06 View of the Jarbidge Mountains of Nevada from the end of pavement on
Three Creek Road near Murphy’s Hot Springs in Idaho.jpg by Famartin from Wikimedia commons



Some open problems

I Tighter upper and lower bounds
on combinatorial complexity?

I Subcubic algorithm for the
continuous problem?

I Which regions can be partitioned
by stable-matching Voronoi
diagrams into a given number of
connected subsets?
Is this always possible for square
regions?

I Approximation? Would letting
areas be approximate help make
cells connected? What about
faster approximate near neighbors?

CC-BY-SA image Question Mark
Cloud.jpg by Micky Aldridge from
Wikimedia commons


