Faster Evaluation of Subtraction Games

David Eppstein

9th International Conference on Fun With Algorithms
(FUN 2018)

La Maddalena, ltaly, June 2018

Nim

Start with several piles of matches (or other objects)

Each turn: take any number of matches from one pile

Win by emptying the last pile

Featured in Last Year at Marienbad (1960)

Nim strategy

Aim to make bitwise xor of pile values become zero

If it is already zero, your opponent is winning

Subtract-a-square

Can only take a square number of objects per turn

Can be interesting even with only a single pile

Golomb (1966) credits its invention to Richard A. Epstein

Hot position

You want to move, because
you can win if you make the right move

Cold position

You don’t want to move, because
your opponent is already winning

Sieving algorithm for telling hot from cold

Mark all positions as cold
Fori=0,1,2...n:
if 7 is still marked cold:
Mark all i + j2 as hot

Evaluates first n positions in
time O(cp/n)

where ¢, = # cold positions

Les cribleuses de blé [the grain
sifters], Gustave Courbet, 1854

Divide-and-conquer for telling hot from cold

(Outside the recursion): Mark all positions as cold
Recursively evaluate the first half of the positions

Mark as hot all positions i + j2 in the second half
such that / is a cold position in the first half

Recursively evaluate the second half of the positions
000 00O oo]oo ©OO000

The middle “conquer” step is Boolean convolution, O(nlog n) time

So the whole algorithm takes O(nlog? n) time

log2 # cold

20

15

10

Which algorithm is faster?

€ =0.897244337916743 * n**0.698354314248528

log2 n

25

30

Experimentally, sieving
takes O(n'?) time

Divide-and-conquer is
faster in theory, but
only for n > 108

What about multiple piles?

Sprague—Grundy theorem:
Every position is equivalent to a position in standard nim

Strategy: Move to make xor of nim-values become zero

Dynamic programming for nim-values

For each position i =0,1,2,...n

» Look up nim-values of all positions i — 2

» Value for i is the smallest value that is not in this set

File:Puzzle_black-white_missing.jpg on Wikimedia commons, by Willi Heidelbach

Time: O(n%/?)

Divide-and-conquer for nim-values

For each nim-value v =0,1,2,...:
» Mark positions with value < v as hot, others as cold
> Apply the divide-and-conquer hot-cold algorithm

> Set the value of the remaining cold positions to v

"” Thermochromic mugs.
File:Hot_Cold_mug.jpg on Wikimedia
OT commons, by Damianosullivan.
-

Time: O(mnlog? n)
where m = max nim-value encountered

log2 max nim-value

Which algorithm is faster?

m = 1.3251885340723 * n**0.350735691549274

log2 n

Experimentally,
divide-and-conquer
takes O(n'%° log? n),
versus O(n') for
dynamic programming

Divide-and-conquer is
faster in theory, but
only for n > 10%°

Conclusions

New divide-and-conquer algorithms for subtract-a-square
Extends to any similar subtraction game
Improvement in theory but not in practice

Connections to deep results in number theory
Furstenberg—Sarkozy theorem: # cold = o(n)

Time comparison is experimental rather than proven;
can we prove n'/2t¢ < 4 of cold positions < n'~—¢
or n < max nim-value < n!/2-€?

