
Solving Single-digit Sudoku Subproblems

David Eppstein

Int. Conf. Fun with Algorithms, June 2012



Sudoku

Newspaper images from L.A. Times, May 27, 2012

An ab × ab array of
cells, partitioned into
a× b blocks, partially
filled in with numbers
from 1 to ab.

Must fill in remaining
cells so that each
number appears exactly
once in each row,
column, and block



Sudoku variations

Commonly used sizes
for Sudoku puzzles
include 6× 6, 9× 9,
and 16× 16

Many other variations
such as Samurai
Sudoku (left), formed
by five overlapping
9× 9 Sudoku puzzles
that must be solved
simultaneously.



A brief history of Sudoku

Similar puzzles of finishing partial magic squares
go back to the 19th century

Modern Sudoku was invented by Howard Garns
and published in 1979 as “Number Place”

Introduced to Japan in 1984 as “Suji wa dokushin ni kagiru”
(“the digits must be single”)
later abbreviated as Sudoku

Brought back from Japan to U.S. and Europe in 2004–2005

Now commonly found in newspapers, on the web,
in smartphone apps, etc.

From Wikipedia, http://en.wikipedia.org/wiki/Sudoku



Human vs computer problem solving

Humans

• Solve the puzzle one
step at a time without
backtracking

• Each step involves
either logical
deduction or (more
often) matching
known patterns

• Solution must be
unique; some
deduction patterns
make use of that
knowledge

Computers

• Can solve most
puzzles very quickly by
simple backtracking
techniques

• Nevertheless, Sudoku
is NP-hard in general
[Yato & Seta 2003]

(The assumption of a
unique solution
complicates its
complexity class.)



Making computers work more like humans

Instead of backtracking, implement a repertoire of deductive rules

Repeatedly search for a rule that fits the puzzle and apply it until
either the puzzle is solved or the solver is stuck.

Slower and less effective than backtracking, so why?

• Automatically grade puzzle difficulty
(more complex deductions mean a more difficult puzzle)

• Provide insight into human problem solving abilities

• Explain solution to a human learner



An example

In this “tough” 6× 6
example, the first few
deductions are easy:

The top and middle 5’s are
the only possible location
for a 5 in their rows

The bottom 5 is the only
possible location for a 5 in
its column



An example

Where can the 6’s go?

Suppose that we place a 6
in either cell x or cell y

Then a becomes the only
possible location for a 6 in
its row

And b becomes the only
possible location for a 6 in
its column

But after these choices, there is nowhere
available to put a 6 in the second column

So neither x nor y is possible



An example

There is only one
remaining location for a 6
in the left middle block

Once that digit is placed,
the remaining deductions
are easy



Nishio

Steps in which we only look at one digit at a time
(in the example, first 5’s, then 6’s)

and make all possible deductions involving only that digit
are called Nishio (after Tetsuya Nishio).

We are given a set of potential placements for a digit (as
determined by previous placements and deductions)

Which cells in the set can be part of a valid placement that
includes one cell in each row, column, and block?

Which cells must be part of all valid placements?

A complex deduction rule but very powerful



How hard is Nishio deduction?

NP-complete, by reduction from 3-SAT

?
? ?

?

? ?

?

? ?

?
? ?

?

?

?

?
?
?

?
? ?

?

?

?

?
? ?

?

?

?

?
? ?

?

? ?

?

? ?

?
?
?

?
? ?

?

? ?

?

? ?

?
?
?

x:

y:

z:

xyz:

xyz:

xyz:

__

__

So the best we can hope for is an exponential time algorithm

But some exponential algorithms are more practical than others...



Best previously-used algorithm

Pattern overlay method:

• Precompute list of
valid placements

• Test whether each
uses cells still available
to the given digit

• Compute union of the
available placements

ab × ab Sudoku
has a!bb!a placements

All 16 valid placements
for 4× 4 Sudoku

688 for 6× 6, 46656 for 9× 9, 110075314176 for 16× 16, ...



Main idea of new algorithm

Precompute a DAG in which

• Edges correspond to puzzle cells

• Paths from source s to sink t correspond to valid placements

Form subgraph of edges
that come from cells available to the given digit

Use DFS-based reachability analysis
to find edges that belong to s–t paths



A graph that almost works

0000

0001
0101

0011

0010 0110

0100

1000

1011

0111

1110

1111

1101

1100

1010

1001

n-dimensional hypercube
(where puzzle is n × n)

2n vertices (n-bit numbers)

Edge = two numbers that
differ in a single bit

Puzzle cell in row i , column j corresponds to
edges at distance j from ~0 that change the ith bit from 0 to 1

Every path from ~0 to ~1 gives a placement with

• One cell per row (one edge that sets bit i from 0 to 1)

• One cell per column (one edge at distance j from ~0)

But what about the constraint of having only one cell per block?



Eliminating the bad paths

Instead of n-bit binary numbers, use b × a binary matrices

Puzzle rows in the same block ⇔ bits in the same matrix row

Vertex can be part of a valid placement ⇔ matrix is balanced
(numbers of nonzero bits in all rows are within ±1 of each other)

Delete unbalanced matrix vertices from hypercube

0000

0001
0101

0011

0010 0110

0100

1000

1011

0111

1110

1111

1101

1100

1010

1001

Vertex 0011⇒
 0 0

1 1


gives placements with two
cells in bottom left block
and two in top right block

Similarly 1100 gives two
cells in top left block etc

Paths in remaining graph correspond to valid placements as desired



Analysis of the new algorithm

Total time is within a polynomial factor of the number of graph
vertices = the number of b × a balanced matrices

So how many can there be?

290 for 9× 9 Sudoku, 19442 for 16× 16 Sudoku

In general,

b−1∑
i=0

((
b

i

)
+

(
b

i + 1

))a

−
b−1∑
i=1

(
b

i

)a

(i = smaller number of nonzeros in balanced matrix rows; second
sum corrects double counting when all rows have equal nonzeros)

Stirling’s formula ⇒ 2n−Ω(
√
n log n)



Conclusions

New algorithm for important subproblem in human-like Sudoku

Scales singly exponentially instead of factorially

Simple, implemented, works well in practice

Even for 9× 9 should be much faster than pattern overlay

Open: can we solve full Sudoku puzzles in 2o(n2)?

More generally, many more problems to be studied in
exponential-time algorithms for puzzles and games


