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Outline

We use three-dimensional hyperbolic geometry to define
a novel type of power diagram for disks in the plane

that is invariant under Möbius transformations

Using this diagram and the circle packing theorem,
we show that every planar graph of degree at most three
(and some of degree four) has a planar Lombardi drawing

We also use it to characterize the graphs of planar soap bubble
clusters: they are exactly the bridgeless 3-regular planar graphs



Inversion through a circle

Transformation of the plane (extended by one point at infinity)
defined by a circle (e.g. the red circle in the image)

Each point moves to another point on same ray from circle center
product of old and new distances from center = squared radius

E.g. exterior blue point moves to interior black point, vice versa



Möbius transformations

Products of inversions with multiple
(different) circles

Conformal (preserve angles between
curves that meet at a point)

Preserve circularity (counting lines as
infinite-radius circles)

Include all translations, rotations,
congruences, and similarities

CC-BY-SA image “Conformal grid after Möbius
transformation.svg” by Lokal Profil and
AnonyScientist from Wikimedia commons



Möbius transformations

If we represent each point in the plane
by a complex number, the Möbius
transformations are exactly the
fractional linear transformations

z 7→ az + b

cz + d

and their complex conjugates,

where a, b, c , and d are complex
numbers with ad − bc 6= 0

CC-BY-SA image “Conformal grid after Möbius
transformation.svg” by Lokal Profil and
AnonyScientist from Wikimedia commons



Shadows of higher dimensional transformations

3d hyperbolic geometry can be
modeled as a Euclidean halfspace

Hyperbolic lines and planes are
modeled as semicircles and
hemispheres perpendicular to the
boundary plane of the halfspace

In this model, congruences of
hyperbolic space correspond
one-for-one with Möbius
transformations of the boundary plane

PD image “Hyperbolic orthogonal dodecahedral
honeycomb.png” by Tomruen from Wikimedia

commons



Things defined by circle incidences are Möbius invariant

The Delaunay triangulation has an
edge for circle containing two points

DT of transformed point set is (almost)
same as transformation of original DT

(Caveats: invariant as a topological
triangulation, not as straight line
segments, and must include farthest
point DT together with the usual DT)

CC-BY-SA image
“Delaunay Voronoi.svg” by Hferee from

Wikimedia commons



Is there a Möbius invariant Voronoi diagram?

Despite the close duality relation
between the Delaunay triangulation
and the Voronoi diagram, Voronoi is
not invariant as a geometric object

For instance, the Voronoi diagram has
straight line segment boundaries,
whereas its transformed images
generally have circular arcs.

CC-BY-SA image
“Delaunay Voronoi.svg” by Hferee from

Wikimedia commons



The (classical) power of a circle

For points outside circle,
power = (positive) length

of tangent segment

For points inside circle,
power = −1

2 × length of
chord bisected by point

In either case, squared power, multiplied by sign of power, equals
d2 − r2 where d is distance to circle center and r is circle radius



The (classical) power diagram

Minimization diagram of power distance

Bisectors between regions are radical axis lines of circles

Voronoi diagram is special case when all radii are equal



Variant diagrams from hyperbolic geometry

Given non-crossing circles in the plane

View the Euclidean plane as the boundary of a
model of 3d hyperbolic geometry

Each circle bounds a hemisphere
(modeling a hyperbolic plane)

Construct the 3d hyperbolic Voronoi diagram
of these hyperbolic planes

Restrict the Voronoi diagram
to the boundary plane of the model



Some properties of the variant diagram

Bisector of disjoint 3d hyperbolic planes is a
plane ⇒ bisector of disjoint circles is a circle

Voronoi diagram is invariant under hyperbolic
congruences ⇒ planar diagram is invariant
under Möbius transformations

Three tangent circles can be transformed to
equal radii ⇒ their diagram is a double bubble
(three circular arcs meeting at angles of 2π/3
at the two isodynamic points of the triangle of
tangent points)



What about circles that cross each other?

Möbius transformations can exchange inside and outside
So we need input to be disks and disk complements, not circles

Each disk is the boundary of a hyperbolic halfspace
(one side of a hyperbolic plane)

Define signed distance to a halfspace (in hyperbolic space) as
positive distance to plane for points outside the halfspace,

negative distance for points inside

Bisectors of signed distance are still planes
⇒ planar diagram still has same properties



Connectivity of regions in the diagram

In 3d hyperbolic geometry, regions are convex
(intersections of halfspaces)

But their restriction to the Euclidean plane can
be disconnected

e.g. figure shows six disks and one disk
complement forming eight regions

Same phenomenon can happen for
non-crossing disks
(e.g. one large disk ringed by many small ones)



Is this a Voronoi diagram? For what distance?

Radial power distance:

For points outside circle,
power = (positive) radius
of equal circles tangent to

each other at point and
tangent to circle

For points inside circle,
power = negative radius of

equal circles tangent to
each other at point and

tangent to circle

In either case, it has the formula
d2 − r2

2r



Radial power is not Möbius-invariant; why does it work?

For points in (Euclidean or hyperbolic) 3d space, nearest neighbor
= point that touches smallest concentric sphere

For boundary points of hyperbolic space, replace concentric spheres
by horospheres (Euclidean spheres tangent to boundary plane)

Tangent circles for radial power = cross-sections of horospheres



Some local art

Hugo Demartini
Untitled, undated
Kampa Museum



Conclusions (so far):

Minimization diagram of radial power provides a
Möbius-invariant decomposition of the plane

analogous to the classical power diagram

Its boundary curves are circular arcs and
for triples of tangent circles they meet at equal angles



Mark Lombardi

World Finance Corporation and Associates, ca 1970–84: Miami,
Ajman, and Bogota–Caracas (Brigada 2506: Cuban Anti-Castro
Bay of Pigs Veteran), 7th version, Mark Lombardi, 1999, from Mark
Lombardi: Global Networks, Independent Curators, 2003, p. 71

American neo-conceptual
fine artist (1951–2000)

“Narrative structures”,
drawings of social networks
relating to international
conspiracies, based on
newspapers and legal
documents

Unlike much graph drawing
research, used curved arcs
instead of polylines



Lombardi Drawing

A style of graph drawing
inspired by Lombardi’s art
[Duncan, E, Goodrich, Kobourov, & Nöllenburg,
Graph Drawing 2010]

Edges drawn as circular arcs

Edges must be equally spaced
around each vertex

The Folkman Graph

Smallest edge-transitive but not vertex-transitive graph



Past results from Lombardi drawing

All plane trees (with ordered children) may be drawn with perfect
angular resolution and polynomial area [Duncan et al, GD 2010]

(Straight line drawings may require exponential area)



Past results from Lombardi drawing

k-Regular graphs have drawings with
circular vertex placement if and only if

• k = 0 (mod 4),

• k is odd and the graph has a
perfect matching,

• the graph has a bipartite 2-regular
subgraph, or

• there is a Hamiltonian cycle

[Duncan et al, GD 2010]

The 9-vertex Paley graph



Past results from Lombardi drawing

Halin graphs and the graphs of symmetric polyhedra
have planar Lombardi drawings

[Duncan et al, GD 2010]



Past results from Lombardi drawing

Not every planar graph has a planar Lombardi drawing
[Duncan et al, GD 2010; Duncan, E, Goodrich, Kobourov, Löffler, GD 2011]



Koebe–Andreev–Thurston circle packing theorems

The vertices of every maximal
planar graph may be

represented by interior-disjoint
circles such that vertices are

adjacent iff circles are tangent

The vertices of every
3-connected planar graph and
its dual may be represented by
circles that are perpendicular
for incident vertex-face pairs

Both representations are unique up to Möbius transformations



More local art

Čestḿır Suška
Chmý̌ŕı / Fuzz, 2007
Kampa Museum



Lombardi drawing for 3-connected 3-regular planar graphs

Find a circle
packing for the

dual (a maximal
planar graph)

[Mohar, Disc. Math. 1993;
Collins, Stephenson, CGTA 2003]

Use a Möbius
transformation to
make one circle

exterior, maximize
smallest radius

[Bern, E, WADS 2001]

The
Möbius-invariant

power diagram is a
Lombardi drawing

of the original
graph



Examples of 3-connected planar Lombardi drawings

Smallest
power-of-two cycle

has length 16

[Markström, Cong. Num. 2004]

Non-Hamiltonian
cyclically

5-connected graph
[Grinberg, Latvian Math.

Yearbook 1968]

Buckyball
(truncated

icosahedron)



Lombardi drawing for arbitrary planar graphs of degree ≤ 3

For 2-connected graphs, decompose using an SPQR tree, and use
Möbius transformations to glue together the pieces

For graphs with bridges:

• Split into 2-connected subgraphs by cutting each bridge

• Use SPQR trees to decompose into 3-connected components

• Modify 3-connected drawings to make attachments for bridges

• Möbius transform and glue back together



Lombardi drawing for (some) 4-regular planar graphs

Two-color the faces of the graph G

Construct the incidence graph H of one
color class

If H is 3-connected, then:

Find an orthogonal circle packing of H
and its dual

The Möbius-invariant power diagram is
a Lombardi drawing of G



But it doesn’t work for all 4-regular graphs

A 3-connected 4-regular graph
for which H is not 3-connected

[Dillencourt, E, Elect. Geom. Models 2003]

A 2-connected 4-regular planar
graph with no planar Lombardi

drawing



Summary of new Lombardi drawing results

Every planar graph of maximum degree ≤ 3
has a planar Lombardi drawing

Runtime depends on numerics of circle packing
but implemented for the 3-connected case

4-regular medial graphs of 3-connected planar graphs
have planar Lombardi drawings

But other 4-regular planar graphs
may not have a planar Lombardi drawing



Soap bubbles and soap bubble foams

CC-BY photograph “cosmic soap bubbles (God
takes a bath)” by woodleywonderworks from
Flickr

Soap molecules form double layers
separating thin films of water from
pockets of air

A familiar physical system that
produces complicated arrangements of
curved surfaces, edges, and vertices

What can we say about the
combinatorics of these structures?



Plateau’s laws

In any soap bubble cluster:

• Each surface has constant mean
curvature

• Each curve bounds three surfaces
with 2π/3 dihedral angles

• Each vertex is the endpoint of four
curves with angles of cos−1(−1/3)

Observed in 19th c. by Joseph Plateau

Proved in 1976 by Jean Taylor
Stereographic projection of a 4-dimensional
hypercube, visualized using Jenn



Young–Laplace equation

For any surface in a soap bubble
cluster:

Its mean curvature (the average of the
two principal curvatures) is
proportional to the pressure difference
between the volumes it separates

Formulated in 19th c., by Thomas
Young and Pierre-Simon Laplace

Édouard Manet, Les Bulles de savon, 1867



Planar soap bubbles

PD image “2-dimensional foam (colors
inverted).jpg” by Klaus-Dieter Keller from
Wikimedia commons

3d is too complicated, let’s restrict to
two dimensions

Equivalently, form 3d bubbles between
parallel glass plates

Bubble surfaces are perpendicular to
plates, so principal curvature in that
direction is zero



The soap bubble computer

Soap film connecting pins between the plates forms a minimal
Steiner tree (approximate solution to an NP-hard problem)

Image from Dutta, Khastgir, and Roy, Amer. J. Phys. 2010; see also Isenberg, Amer. Scientist 1976; Hoffman,
Math. Teacher 1979; Aaronson, SIGACT News 2005; etc.

However, we are interested in free-standing bubbles without pins

They can be described by planar graphs, but which graphs?



Plateau and Young–Laplace for planar bubbles

In any planar soap bubble cluster:

• Each curve is an arc of a circle or
a line segment

• Each vertex is the endpoint of
three curves with angles of 2π/3

• It is possible to assign pressures to
the bubbles so that curvature is
inversely proportional to pressure
difference



Local-global principle for planar bubbles

Existence of a global pressure assignment is equivalent to requiring
that at each vertex the (signed) curvatures sum to zero

X

C1
C2 C3

Zero-curvature condition is equivalent to requiring three incident
arcs to be part of a standard double bubble (three collinear centers

forming two circles with three triple crossings)



Möbius transformation of bubbles

CC-NC photograph “Funhouse Anna at the
Museum of Science & Industry” by The Shifted
Librarian from Flickr

Möbius transformation is not physically
meaningful: it does not preserve
volume, surface area, inside-outside
relations, etc.

Nevertheless, Möbius transformation of
a planar soap bubble cluster is another
planar soap bubble cluster

Why? Because it preserves circularity
of arcs, 2π/3 angles between arcs, and
the triple crossing property in the local
characterization



Planar soap bubbles are bridgeless

Proof idea:

If the bridge is a circular arc, it would
violate Young–Laplace

If the bridge is a straight line segment,
it can be made into an arc by a Möbius
transformation, after which it would
violate Young–Laplace

This is not a soap bubble



Bridgeless planar graphs are soap bubbles

Proof idea:

Use power diagrams and SPQR trees
to find a Lombardi drawing

Each three tangent circles can be
transformed to equilateral position

So the edges at each junction can be
transformed to straight line segments

Therefore, it meets the local curvature
conditions on soap bubbles



Conclusions

We have defined a new
Möbius-invariant power
diagram of disks

Using it, we show that every
planar graph of degree at most
three has a planar Lombardi
drawing

and that planar soap bubble
graphs are exactly bridgeless
3-regular planar graphs

CC-BY image “Bubbles!” by Murray Barnes on Flickr



Future work?

Complexity and
algorithms for invariant
power diagrams?

(Circle packings are an
easy linear special case;
disconnected regions
make general case
messier.)

CC-SA image “world of soap” by Martin Fisch on Flickr



Future work?

For which other graphs
does circle packing +
power diagram give
Lombardi drawings?

(Can check numerically
by constructing a
drawing and checking
whether it works, using
uniqueness of circle
packings, but can we
do it combinatorially?)

CC-SA image “world of soap” by Martin Fisch on Flickr



Future work?

How stable are our
soap bubbles? Can
they ever be in an
unstable equilibrium?

Can this be extended
to any interesting
classes of 3d bubbles?

CC-SA image “world of soap” by Martin Fisch on Flickr


