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Which strictly convex polygons can be made
by gluing together unit squares and equilateral triangles?

Strictly convex Not strictly convex



The Five Platonic Solids (and some friends)

M. C. Escher, Study for Stars, Woodcut, 1948



Octahedron and tetrahedron dihedrals add to 180!
So they pack together to fill space

M. C. Escher, Flatworms, lithograph, 1959



The Six Regular Four-Polytopes

Simplex, 5 vertices, 5 tetrahedral facets, analog of tetrahedron

Hypercube, 16 vertices,
8 cubical facets, analog of cube

Cross polytope, 8 vertices,
16 tetrahedral facets, analog of octahedron

24-cell, 24 vertices, 24 octahedral facets, analog of rhombic dodecahedron

120-cell, 600 vertices,
120 dodecahedral facets, analog of dodecahedron

600-cell, 120 vertices,
600 tetrahedral facets, analog of icosahedron



Mysteries of four-dimensional polytopes...

What face counts are possible?

For three dimensions, f0 − f1 + f2 = 2, f0 ≤ 2 f2 − 4, f2 ≤ 2 f0 − 4
describe all constraints on numbers of vertices, edges, faces

All counts are within a constant factor of each other 

For four dimensions, some similar constraints exist
e.g. f0 + f2 = f1 + f3 

but we don’t have a complete set of constraints 

Is “fatness” (f1 + f2)/(f0 + f3) bounded?
 

Known O((f0 + f3)1/3) [Edelsbrunner & Sharir, 1991]



Further mysteries of four-dimensional polytopes...

How can we construct more examples like the 24-cell?

All 2-faces are triangles (“2-simplicial”) 

All edges touch three facets (“2-simple”) 

Only few 2-simple 2-simplicial examples were known:

simplex
hypersimplex and its dual

24-cell
Braden polytope and its dual 



The Eleven Convex Square-Triangle Compounds



M. C. Escher, Order and Chaos, lithograph, 1950

Polytopes and Spheres



Theorem [Koebe, 1936]:

Any planar graph can be represented by circles on a sphere,
s.t. two vertices are adjacent iff the corresponding two circles touch

Replacing circles by apexes of tangent cones
forms polyhedron with all edges tangent to the sphere



Polarity

Correspond points to lines in same direction from circle center 
distance from center to line = 1/(distance to point) 

Line-circle crossings equal point-circle horizon
Preserves point-line incidences! (a form of projective duality)

Similar dimension-reversing correspondence in any dimension

Converts polyhedron or polytope (containing center) into its dual

Preserves tangencies with unit sphere 



Convex Hull of (P union polar), P edge-tangent
Edges cross at tangencies; hull facets are quadrilaterals

M. C. Escher, Crystal, mezzotint, 1947



Same Construction for Edge-Tangent 4-Polytopes?

Polar has 2-dimensional faces (not edges) tangent to sphere

Facets of hull are dipyramids over those 2-faces

All 2-faces of hull are triangles (2-simple)

Three facets per edge (2-simplicial) if and only if edge-tangent polytope is simplicial

This construction leads to all known 2-simple 2-simplicial polytopes

Simplex ⇒ hypersimplex

Cross polytope ⇒ 24-cell

600-cell ⇒ new 720-vertex polytope, fatness=5 

So are there other simplicial edge-tangent polytopes?



But when will the result be convex?

Need a space where we can measure convexity
independent of warping (projective transformations)

Answer: hyperbolic geometry!

How to make more edge-tangent simplicial 4-polytopes?

Glue together simple building blocks: regular polytopes

Warp (preserving tangencies) so facets match



Hyperbolic Space (Poincaré model)
Interior of unit sphere; lines and planes are spherical patches perpendicular to unit sphere 

M. C. Escher, Circle Limit II, woodcut, 1959



Size versus angle in hyperbolic space

Smaller shapes have larger angles Larger shapes have smaller angles

What are the angles in Escher’s triangle-square tiling?

3 triangle + 3 square = 360
2 triangle + 1 square = 180
square < 90, triangle < 60

Another impossible figure!



Right-angled dodecahedra tile hyperbolic space

From Not Knot, Charlie Gunn, The Geometry Center, 1990



Two Models of Hyperbolic Space

Klein Model

Hyperbolic objects are straight or convex
iff their model is straight or convex

Angles are severely distorted

Hyperbolic symmetries are modeled as
Euclidean projective transformations

Poincaré Model

Angles in hyperbolic space
equal Euclidean angles of their models

Straightness/convexity distorted

Hyperbolic symmetries are modeled as
Möbius transformations



Hyperbolic angles of edge-tangent 4-polytopes

Recall that we need a definition of angle that’s invariant
under the projective transformations used to glue polytopes together

Given an edge-tangent 4-polytope, view portion inside sphere as
Klein model of some (unbounded) hyperbolic polytope

Use Poincaré model of the same polytope to measure its dihedral angles

Dihedrals are well-defined at finite hyperbolic points on incenter of each 2-face

Invariant since projective transformations correspond to hyperbolic isometries

Gluing is convex iff sum of dihedrals is less than 180 degrees
Can also glue cycle of polytopes with dihedrals adding to exactly 360 degrees



How to compute hyperbolic dihedrals

From Not Knot, Charlie Gunn, The Geometry Center, 1990

For ideal 3d polyhedron

Near ideal vertex, looks like a prism
dihedral = cross-section angle

e.g. here rhombic dodecahedron
has square cross-section

⇒ 90-degree dihedral angles

For edge-tangent 4-polytope

Slice by hyperplane through tangency
Apply 3d method to cross section

Regular polytopes have
regular-polygon cross sections!

Dihedral(simplex) = 60 degrees
Dihedral(cross polytope) = 90 degrees

Dihedral(600-cell) = 108 degrees



Simplex - Simplex Compounds

Only two possible

Two simplices (dual of tetrahedral prism)
leads to Braden’s 2-simplicial 2-simple polytope

Two-dimensional analog

Six simplices sharing a common dihedral (dual of C3 x C6)
leads to new 2-simplicial 2-simple polytope

All other stacked 4-polytopes (or other simplex compounds)
can not be edge-tangent

Three-dimensional analog



Simplex / Cross-polytope Compounds I

Glue simplices onto independent facets of cross polytope

Dually, truncate independent vertices of a hypercube

How many different truncations possible?

i.e., how many independent subsets of a hypercube
modulo symmetries of the hypercube

New entry in Sloan’s encyclopedia, sequence A060631:
2, 2, 3, 6, 21, 288, ...

Starts at d=0; figures above are two of the three choices for d=2

So 20 (not counting original untruncated hypercube) for d=4



Simplex / Cross-polytope Compounds II

Glue two cross polytopes together at a facet

Dihedral = 90, so gluing forms four flat dihedrals
Make strictly convex by adding chains of three simplices

Can repeat, or glue additional simplexes onto the cross polytopes

As long as sets of glued faces are non-adjacent,
all dihedrals will be at most 90 + 60 = 150

E.g., glue n cross polytopes end-to-end, additional three-simplex chains don’t interfere

Leads to infinitely many 2-simple 2-simplicial polytopes!



Simplex / Cross-polytope Compounds III

Start with a simplex, two simplices, or six simplices

Glue cross polytopes on some facets
At 120 degree dihedrals, both or neither facets must be glued

Fill remaining concavities with more simplices

Many ways of combining these constructions...



Simplex / Cross-polytope Compounds IV

Same cross-section idea used in angle measurement
can also lead to impossibility results, e.g.:

No edge-tangent simplex / cross polytope compound
can include three simplices glued to a central simplex

or four cross polytopes in a ring

Proof sketch:

Some edge in the compound would have a link including one of the figures above
But these do not appear in the list of 11 convex triangle-square compounds

Further gluing can not cover over the bad edge link



Simplex / 600-cell compounds

Glue simplices onto independent faces of 600-cell

Dihedrals are 108 + 60 = 168 degrees

How many different choices are there?

Equivalently, how many independent sets of 120-cell vertices
up to 120-cell symmetries?



600-cell / 600-cell compounds

Slice one vertex from a 600-cell, form convex hull of remaining vertices

Sliced facet is an icosahedron bounded by 72-degree dihedrals
so can glue along slices forming 144-degree angles

End-to-end gluing is closely related to Kuperberg-Schramm construction of
3d sphere packings with high average kissing number

Even better: two adjacent slices form 36 degree dihedrals
wrap cycles of ten doubly-sliced 600-cells around a common triangle

POV-ray rendering based on scene descriptions by Russell Towle



M. C. Escher, Dragon, wood-engraving, 1952

Conclusions

2-simple 2-simplicial
4-polytope construction

New infinite families of
edge-tangent simplicial  4-polytopes

and 2s2s 4-polytopes

Slight improvement to
avg kissing # of spheres in 3d

Interesting combinatorics
of edge-tangent compounds

Fatter f-vectors but
boundedness still open

...topological-sphere cell complexes
do have unbounded fatness!

E, K, and Z, unpublished...


