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What’s in this talk?

Three problems of constructing a geometric output
from a combinatorial input:

grid embeddings of planar graphs

partitions of rectangles into smaller rectangles

polyhedra with axis-parallel faces

Combinatorial descriptions of these objects
as “regular labelings” of (near-)maximal planar graphs

by edge orientations and colors

Unexpected analogies between these types of labeling
and underlying structure as a distributive lattice

...leading to efficient algorithms for constructing these structures



Grid embedding problem

Combinatorial part (not today): cyclically order edges around each vertex

Geometric part: place the vertices in a grid

Given as input a planar graph Produce as output integer coordinates 
for the vertices, describing a planar 

embedding of the graph



Preliminaries on planar embedding

The cyclic ordering of edges around each vertex
uniquely defines faces of a surface embedding
(cycles of edges that are consecutive in the ordering)

The embedding might be nonplanar, but is planar
iff V - E + F = 2 (Euler’s formula)

A planar embedding, represented by cyclic orderings,
can be constructed in linear time [Hopcroft & Tarjan]

Without loss of generality, all faces are triangles
(if larger faces exist, split them by adding edges).
Equivalently, the graph is maximal planar.



Schnyder’s regular labeling

Given a maximal planar graph,
cyclically ordered at each vertex:

• Choose the outer triangle

• Orient each remaining edge
and color it red, green, or blue

• Outer vertices have only
incoming edges, in one color

• Inner vertices have cyclic
order out-red, in-green,
out-blue, in-red, out-green, 
in-blue (one out in each color)

[Schnyder, SODA 1990]



Existence and construction of regular labelings

Contract an edge
adjacent to an 
outer vertex

Label the
contracted graph

recursively

Uncontract and
locally relabel



Acyclicity

Form a subgraph from the edges of two colors in a regular labeling
but reverse the orientations of the edges of one color

The resulting subgraph is st-planar
(acyclic, with a single source and sink, both on the outer face)

? ? ? ?
?

?

???
?

?
?
?

Proof idea: a cycle would lead to inward paths with nowhere to go

Corollary: edges of a single color form a tree (acyclic, outdegree = 1)



Root paths and face counts

Each inner vertex has one-color
paths to each outer vertex

(one-color subgraphs are trees)

These paths don’t cross
(a crossing would form a
two-color cycle with
one color reversed)

So they partition the faces of
the graph into three regions

The counts of faces in these 
regions add up to F – 1

26
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Schnyder’s grid embedding

Use face counts as barycentric
coordinates (distances from edges)

in an equilateral triangle grid

Or, use two face counts
as Cartesian coordinates
and forget the third one

(6,2,7)



Why is the embedding planar?

Each face can be inscribed in an upside-down equilateral triangle

With all faces consistently oriented, there can be no local nonplanarity

(6,2,7)



Consequences of Schnyder’s grid embedding

Every n-vertex planar graph can be drawn in an (n – 2) x (n -2) grid

Uses vertex counts in place of face counts

Still the current record

Embedding can be constructed in linear time

Every maximal planar graph has a greedy embedding [Dhandapani, DCG 2010]

There exists a distance-decreasing path between every two vertices

Found using sums of weights of faces in place of face counts

Existence of good weights proven non-constructively using fixed-point theorems



Partition an outer rectangle
into smaller rectangles

Ubiquitous in many
application areas as a way of
subdividing space into
useful sub-areas

In general, three rectangles
meet at each vertex
(four-rectangle vertices
are a degenerate case)

Not necessarily formed by
recursive bisection

Rectangular subdivisions



Rectangular cartogram by Raisz 1934



 Furniture design

Tema Domino and Seletti shelves;
typecase by SuzetteSuzette on flickr, http://www.flickr.com/photos/suzettesuzette/4846983081/



Floor plan of Judge Samuel Holten House, Danvers, Massachusetts



Treemap-based stock market visualization (Wattenberg, 1999)
http://commons.wikimedia.org/wiki/File:Smart_Money_magazine%E2%80%99s_Map_of_the_Market.jpg



Subdivision of VLSI circuits into functional subunits
http://commons.wikimedia.org/wiki/File:Diopsis.jpg

http://commons.wikimedia.org/wiki/File:InternalIntegratedCircuit2.JPG



Screenshot from the
Goblin graph library,

http://sourceforge.net/projects/goblin2/

 Confluent graph drawing
guided by a rectangular subdivision

(Quercini & Ancona, GD 2010)



Commercial art:
CD cover for Sea Sew, Lisa Hannigan

(cover art also by Hannigan)

 Fine art:
Tableau 2, Piet Mondrian, 1922

Solomon R. Guggenheim Museum



Algorithmic construction of rectangular subdivisions

Input: a planar graph representing desired rectangle adjacencies

(possibly also additional information about orientation, size, etc)

Output: a rectangular subdivision with those adjacencies



Augment adjacency graph
with four extra vertices:
one for each side of the
outside rectangle

Color side-by-side
adjacencies blue and orient
them from left to right

Color above-below
adjacencies red and orient
them from top to bottom

Regular labelings from rectangular subdivisions

[Koźmiński & Kinnen 1985; He 1993; Kant & He 1997]



The “extended adjacency graph”
is maximal planar except for
a quadrilateral outer face

Outer four edges are uncolored

Each outer vertex has edges
of a single color and orientation

Each inner vertex has edges
of all colors and orientations
in the cyclic order in-red,
out-blue, out-red, in-blue

Defining regular labelings for rectangular subdivisions



Necessary and sufficient
condition: no separating triangle

(Would lead to region
surrounded by 3 rectangles,
geometrically impossible)

Proof and linear time algorithm
use same idea as Schnyder:

contract an edge

recursively label smaller graph

uncontract and locally relabel

Existence and construction of labelings



Each one-color subgraph
is st-planar (acyclic)

(same argument as before:
a cycle would have incoming
paths of the other color,
nowhere for them to go)

Boundary line segment =
face in single-color subgraph

Topologically order the boundary
line segments of the partition

Use position in topological order
as Cartesian coordinate

Rectangular subdivisions from labelings



Consequences of rectangular regular labelings

Simple criterion for existence of a rectangular partition
(no separating triangles in adjacency graph)

Linear time construction of a partition from its dual

Separation of combinatorics (left-to-right and top-to-bottom
ordering of boundary segments) from shape (coordinates of segments)

Later in this talk:

Language to describe constraints on orientations in a layout
and ability to find orientation-constrained layouts



Orthogonal polyhedra

Used frequently in architecture

Fallingwater
Frank Lloyd Wright

Sxenko, http://commons.
wikimedia.org/wiki/

File:Wrightfallingwater.jpg

Habitat 67
Moshe Safdie, Montreal

nnova on Flickr, http://
www.flickr.com/photos/

nnova/2919165183/

Offices in 
Hannover, Germany

Jasmic on Flickr, http://
www.flickr.com/photos/

jasmic/2318463768/



Orthogonal polyhedra in papercraft

Ingrid Siliakus



Orthogonal polyhedra

Geometric puzzles such as the Soma Cube

Mr. Hobbie on Picasa, 
http://picasaweb.

google.com/lh/photo/
bx8Cj3M8hSXTdIr6xSA1_w



Orthogonal polyhedra

Special case of a
more general
problem:

Embedding graphs
in a 3d grid
without bends



Simplifying assumptions:

Three perpendicular edges
at each vertex

Each face is parallel to
two coordinate axes

Topology of a sphere

As a result:

Underlying graph is
planar, bipartite,
and 3-regular

Characterizing orthogonal polyhedra
[E. & Mumford, SoCG 2010]



Restricted classes of orthogonal polyhedra

Corner polyhedron:
all but three faces
oriented positively

xyz polyhedron:
Each axis-parallel line

has ≤ 2 vertices

Unconstrained



Corner polyhedra as base case

Unconstrained polyhedra can be formed by gluing together corner polyhedra

Each corner-polyhedron component has no separating triple of faces
(dual graph is 4-connected)



Draw polyhedron isometrically
(120 degree angles)

Color edges of dual graph
red, green, and blue
according to slopes of the
polyhedron edge they cross

Direct edges of each color
from one side of the drawing
to the other

Regular labelings from corner polyhedra



Each triangle has edges
of all three colors

Each vertex has edges
alternating between two colors

At the three outside vertices,
orientations strictly alternate

At the inside vertices, there
are exactly two breaks in
alternation of orientations
(one with two incoming edges,
one with two outgoing edges)

Defining regular labelings for corner polyhedra



Sufficient condition:

Dual graph is 4-connected,
Eulerian, maximal planar

Proof and near-linear-time
construction algorithm:

Contract two edges or
split on a 4-cycle

Recurse on smaller graph(s)

Undo simplification and
locally relabel

Existence and construction of labelings



Corner polyhedra from labelings

Each two-color subgraph
with one color reversed
is st-planar (acyclic)

(same argument as before)

Topologically order these
st-planar graphs

Face coordinate =
position in ordering for graph 
with same colors as dual vertex

Vertex coordinate =
coordinates of 3 adjacent faces



Consequences of polyhedral regular labelings

Underlying graphs of corner polyhedra are exactly
planar bipartite 3-connected 3-regular graphs

s.t. every dual separating triangle has same parity

Underlying graphs of xyz polyhedra are exactly
planar bipartite 3-connected 3-regular graphs

Underlying graphs of simple orthogonal polyhedra are exactly
planar bipartite 2-connected 3-regular graphs

such that removing any two vertices leaves ≤ 2 components

All can be recognized (and a polyhedral representation constructed)
in linear randomized expected time or near-linear deterministic time



Structure in the set of all regular labelings

Fix a (near-)maximal planar graph and its outer face

Look at all possible regular labelings on the graph

Set of labelings forms a distributive lattice
connected by local twist operations
allowing efficient listing of all labelings,
construction of constrained labelings

Theory is best-developed for rectangular subdivisions
but applies equally well to all three kinds of labeling
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Local moves in rectangular subdivisions

Find a 4-cycle with alternating colors
change the color of everything inside it, adjust orientations as necessary



Local moves in rectangular subdivisions

Find a 4-cycle with alternating colors
twist boundaries between edge color/orientation groups at its four vertices
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Distributive lattice of rectangular subdivisions [Fusy, GD 2005]

Orient twist operations
from counterclockwise to clockwise

Form DAG from all possible
rectangular subdivisions,
connected by twists

Any two nodes have
unique join (minimal
ancestor) and meet

Joins and meets  
obey distributive laws:

(x ⋀ y) ⋁ (x ⋀ z) = x ⋀ (y ⋁ z)
(x ⋁ y)  ⋀ (x ⋁ z) = x ⋁ (y ⋀ z)
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Birkhoff’s representation theorem for distributive lattices

Any finite distributive lattice can be
represented as lower sets of a partial order

For rectangular subdivisions,
elements of partial order are 
pairs (4-cycle, twist count)

Lattice join & meet
are union & intersect
of sets of pairs

Polynomial size, can be
constructed in polynomial time

Represents exponentially large
set of rectangular subdivisions

[Buchin, Speckmann, Verdonschot, GD’10]



Consequences of distributive lattice structure

List all regular labelings in time poly(n) + O(k) 
Build partial order and use algorithms for listing

all lower sets of a partial order [Habib et al., Disc. Appl. Math. 2001]

Fixed-parameter-tractable algorithms for
finding area-universal rectangular cartograms

(can be morphed to match any assignment of areas)
param is # separating 4-cycles [E., Mumford, Speckmann, Verbeek, SoCG 2009]

Find layout with constraints on orientations of
adjacent rectangles in polynomial time

(translate constraints into edge contractions of underlying partial order)
[E., Mumford, WADS 2009]



Summary of common features of regular labelings
for grid embeddings, rectangular partitions, polyhedra

Base graph is (near-)maximal planar
with specified outer face

Each edge is directed and
colored from a finite set of colors

Local constraints on the cyclic order
of labels at each vertex

Single-colored and two-colored
subgraphs are automatically st-planar

Every geometric structure
gives a labeling and every labeling

gives a geometric structure

Characterize labelable graphs
in terms of their connectivity 

Inductive proof of characterization
leads to recursive labeling algorithm

Local twist operations
generate a distributive lattice

on all possible labelings

Partial order dual to the lattice
represents all labelings

in polynomial space



Some questions

Why do these three different geometric objects
lead to such similar combinatorial structures?

Distributive lattice structure can be explained in terms of
bounded-outdegree orientations of planar graphs [Propp 1993]

but this doesn’t help explain the other similarities

What other analogies do these three types of object have?

Are there other geometric structures that can
also be explained by similar kinds of regular labeling?

Washington D.C., 1922
http://commons.wikimedia.org/wiki/

File:Unclothed_woman_behind_question_mark_sign.jpg


