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On Triangulating Three-Dimensional Polygons
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Abstract

A three-dimensional polygon is triangulable if it has a non-self-intersecting tri-
angulation which defines a simply-connected 2-manifold. We show that the prob-
lem of deciding whether a 3-dimensional polygon is triangulable is NP-Complete.
We then establish some necessary conditions and some sufficient conditions for a
polygon to be triangulable, providing special cases when the decision problem may
be answered in polynomial time.
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1 Introduction

A 3-dimensional polygon is a closed chain of straight segments, where every two suc-
cessive segments share exactly one point and the intersection of every non-successive
pair of segments is empty. A triangulation of a 3-dimensional polygon has the same
combinatorial structure as that of a planar polygon, that is, every edge of the polygon
appears in exactly one triangle, all the other edges of the triangulation appear in ex-
actly two triangles, and the surface defined by the triangulation is topologically a disk
(simply connected). Figure 1(a) shows a complex 3-dimensional polygon. The surface
shown in Figure 1(b) is not a valid triangulation of the polygon since it is not simply
connected. We require in addition that no two triangles intersect in their interiors, so
that a valid triangulation defines a piecewise-linear non-self-intersecting 2-manifold with
one boundary (the original polygon). Figure 2(a) shows another 3-dimensional polygon.
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(a) Polygon (b) Non-triangulation

Figure 1: An invalid multiply-connected triangulation

(a) Polygon (b) Non-triangulation (¢) Triangulation

Figure 2: A valid triangulation does not intersect itself



Figures 2(b,c) show two triangulations of it, the first of which is invalid because it inter-
sects itself. Note that it is clear that every simple planar polygon has a triangulation [12,
proposition 30]. A 3-dimensional polygon need not be planar, nor triangulable. In this
paper we investigate the triangulability of 3-dimensional polygons.

The triangulation of a planar polygon attracted considerable attention in the litera-
ture during the past decade. See, for example, papers by Edelsbrunner [8] or Bern and
Eppstein [4] for comprehensive reviews on this subject. The complexity of triangulating
a planar polygon was an open problem in computational geometry until Chazelle [T7]
closed the issue by presenting an ingenious optimal O(n) algorithm. The main tool
used in this algorithm is the wisibility map, which crucially depends on the planarity
of the polygon. Unfortunately, for a polygon in three dimensions, the visibility notion
becomes irrelevant. (In general position every vertex “sees” every other vertex, thus the
visibility-map is not useful any more.) Moreover, the triangulation problem ceases to
be decomposable in any simple way (as it is in the plane). A candidate triangle whose
vertices are on the polygon does not necessarily split the problem into three independent
(smaller) triangulation subproblems; valid solutions of the subproblems may intersect
in 3-space, thus their union is not a valid solution of the original problem. The goal
is therefore to compute a triangulation of a 3-dimensional polygon if one exists, or to
report that no such triangulation exists.

We point out that in three dimensions, the term ‘triangulation’ usually refers to
the tetrahedralization of a 3-dimensional polyhedron or a set of points. We are not
aware of previous work on the triangulation of 3-dimensional polygons. However spe-
cial cases of this problem arise in various contexts, in which the problem is to compute
an unknown (polyhedral) surface when only its (polygonal) boundary is known. The
surface-reconstruction algorithm of Barequet and Sharir [3] computes (as a subprob-
lem) optimal (minimum-area) triangulations of 3-dimensional biplanar polygons. This
algorithm has applications to medical imaging and to the reconstruction of topographic
terrains. Several algorithms for repairing CAD objects [2, 5, 14] use 3-dimensional tri-
angulation procedures for filling cracks in polyhedral surfaces.

A more general question is: if a 3-dimensional polygon is triangulable, how many
triangulations are there? If we neglect the possible intersections between triangles in
3-space, then the number of triangulations of an n-gon identifies with that of a planar
convex polygon: Jj(zs__;) [8, p. 76]. This is, in fact, the (n — 2)th Catalan number. In
general, however, computing the number of valid (non-self-intersecting) triangulations
of a 3-dimensional polygon is a non-trivial problem. This leads to another interesting
problem which is to compute an optimal triangulation for some measure of optimality.
This goal is naturally more ambitious than computing any valid triangulation or just
determining triangulability. If we allow self-intersecting triangulations (in contrast with
our definition), then computing the optimal triangulation can be done (in cubic time)

by applying a simple dynamic-programming procedure (see [2, 3]).

In this paper we address several problems related to 3-dimensional polygons. Specifi-
cally, we prove that the triangulability of a polygon in 3-space is N"P-Complete. We then



prove a few necessary and sufficient conditions for the triangulability of a 3-dimensional
polygon, and present polynomial-time algorithms for determining whether the sufficient
conditions hold. We regard this work as an opening for this issue, with ample space for
many more findings.

The paper is organized as follows. In Section 2 we define the triangulability of a
3-dimensional polygon and prove the N"P-Completeness of the decision problem. In
Section 3 we discuss sufficient and necessary conditions for the 3-dimensional polygon
triangulability. In Section 4 we present polynomial-time algorithms for testing the suf-
ficient conditions. We terminate in Section 5 with some open problems.

2 N'P-Completeness of 3-Dimensional Polygon Tri-
angulability

We address the following question:

Problem 1 Given a 3-dimensional polygon, is it triangulable?

In other words, does a given polygon have a non-self-intersecting triangulation?

We first show that the problem of determining whether a three-dimensional poly-
gon admits a triangulation is N"P-Complete. (Tetrahedralization of three-dimensional
polyhedra is also known to be N"P-Complete [15].) The problem is obviously in NP:
testing whether two 3-dimensional triangles (whose vertices have integer coordinates)
intersect can be performed in time polynomial in the bit complexity of the coordinates,?
and checking whether a given candidate solution (a triangulation of a polygon P) does
not intersect itself requires O(n?) such tests, where n is the complexity of P.

We start with a somewhat simpler proof of a related hardness result. Define the
generalized three-dimensional triangulation problem to be one of, given a collection of
three-dimensional polygons, determine whether one can simultaneously triangulate all
polygons in the collection with a collection of triangulations that do not intersect them-
selves or each other. Our proof that generalized triangulation is hard is via a reduction
from 3-SAT. As is usual in this sort of proof, we construct gadgets corresponding to
3-SAT variables, clauses, and connections between them, in such a way that putting
together the gadgets corresponding to the objects in a 3-SAT instance results in a col-
lection of polygons, with the collection having a triangulation if and only if the 3-SAT
instance is satisfiable.

We construct most of our gadgets using a quadrilateral in which opposite edges
are skew. Any quadrilateral has exactly two triangulations. By stacking several such
quadrilaterals in a row, we construct gadgets resembling wires (Figure 3(a)). At each

!This can be done by expressing the intersection in terms of low degree polynomials—signs of 4 x 4
determinants. These polynomials can be evaluated exactly by using four times as much precision in the
intermediate results as the inputs coordinates.
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end of a wire, the quadrilateral can have either a convex projecting triangulation or
a concave inward triangulation; we think of a wire as carrying a signal (representing
the truth of a variable or its negation) when the triangulation is concave. As shown
in the figure, a signal can “fade out” when two adjacent quadrilaterals have opposite
triangulations, but the reverse transition is not possible: a signal cannot be created from
the absence of one without an intersection between triangles in adjacent quadrilaterals.

For each variable in the 3-SAT formula, we then create a “truth-setting” gadget sim-
ply consisting of one of these wires (indeed, it could just be a single skew quadrilateral).
One end of the wire will correspond to the variable itself, while the other will correspond
to the negation. Any such gadget can have at most one signal, either at the end cor-
responding to the variable (corresponding to assignments in which the variable is true)
or at the other end (corresponding to assignments in which the variable is false). It is
also possible to have no signal at either end, but this will turn out not to be a problem
in our construction (we can show that it is still possible to turn a triangulation into a
satisfying assignment in this case; the assignment can be thought of as having a “don’t
care” state in which either truth value leads to satisfaction).

We will need to create multiple signals for each variable, to be sent to each of the
clause gadgets in which the variable is involved. To do this, we use a second type of
gadget, a “splitter” (see Figure 3(b)). A wire carrying a signal is fed into one end of
this gadget (the left side of the figure), and two wires carrying the same signal come
out the other end (the right side of the figure). This splitter has the same property as
the wires, that a signal can fade or be propagated but it is not possible to create a new
signal from the absence of one.

To complete the construction, we need a clause gadget, that takes three incoming
wires and is triangulable if and only if a signal is present on at least one wire. Unlike the
other gadgets, it is not possible to build clauses out of quadrilaterals; for if a generalized
triangulation instance consisted solely of quadrilaterals it could be translated to a form
of 2-SAT and solved in polynomial time. Instead we use a hexagon formed from the
vertices of a regular octahedron. Figure 3(c, top-left) shows such an octahedron, with
a front face and three other faces visible. The hexagon we wish to use in that figure is
the silhouette of the octahedron. This hexagon has fourteen triangulations: one with
the front face, one with the other internal triangle, and twelve others each using one of
the three main diagonals of the hexagon (none of which contain an internal triangle).
In the figure we show four triangulations: the one using the front face, and one for each
main diagonal.

To eliminate the possibility of using an internal triangle in a triangulation, we add to
our collection of polygons two small triangles intersecting those faces but not interfering
with any other possible face of a triangulation. Finally we attach three wires to the
gadget, corresponding to the variables in the clause. Each wire is attached by placing
it at the back of the gadget shown in Figure 3(c), near one of the three main diagonals,
at the end of the diagonal nearest the back face of the octahedron. As can be seen
in the figure, the two triangulations using the other two main diagonals use faces well
separated from this connection point. If the wire is appropriately placed, it will avoid



the third triangulation as well when there is a signal on the wire, but when there is no
signal the last quadrilateral of the wire will be triangulated with a triangle that links
around the corresponding main diagonal of the hexagon, preventing the use of that main
diagonal in any triangulation. Thus this clause gadget will have a triangulation if and
only if there is a signal on at least one of the three incoming wires.

This completes the description of the gadgets involved in our NP-Completeness
construction for generalized triangulation. To complete the construction, we need only
hook the gadgets together. We place them roughly in a common plane, and make
them well separated in that plane. The connections necessary between them can be
approximated by polygonal chains with O(1) links, leaving and returning to the plane
by two long edges. Each such connection can then be filled out by a wire with O(1)
quadrilaterals. In this way the total number of vertices needed in the construction is
linear in the complexity of the input 3-SAT formula, and explicit integer coordinates for
each vertex can easily be constructed in polynomial time.

Theorem 1 The construction outlined above is a polynomial reduction from 3-SAT
to generalized triangulation, and therefore shows that generalized triangulation is N'P-
Complete.

Proof: As discussed above, the reduction is polynomial time. It remains to show that
satisfying 3-SAT assignments correspond to non-self-intersecting triangulations and vice
versa. From any satisfying assignment to the 3-SAT formula, form a triangulation by
setting each quadrilateral to represent a signal on wires corresponding to true variables
(or to the negations of false variables) and the absence of a signal on all other wires.
Then each clause gadget will have at least one incoming signal, so as discussed above
it can be triangulated. Conversely suppose one has a triangulation of the collection of
polygons. Each clause gadget must use one main diagonal in its triangulation, and must
therefore have an incoming signal; because signals cannot be created except at truth-
setting gadgets, the assignment coming from the state of each truth-setting gadget must
be a satisfying assignment. O

We now describe how to modify this construction to prove N"P-Completeness of our
original problem, triangulation of a single three-dimensional polygon. The idea is simple:
we start with the generalized triangulation problem constructed above, and connect the
individual polygons of that problem by narrow “ribbons” to form a single simple polygon
(Figure 3(d)). (To connect each ribbon, we split one vertex of the polygon into two
vertices very near to each other). For the generalized polygon problem constructed by
the reduction above, it is easy to place ribbons in a way that does not interfere with any
existing triangulation of the generalized problem (although it is not clear how to do this
in general).

However in order to prove N'P-Completeness we also need a translation in the other
direction, from constructed triangulations to satisfying assignments; therefore we must
be careful that in the process of adding ribbons we do not allow extra triangulations not
coming from the original generalized triangulation problem. We do this by making three



small non-collinear knots near the start of each ribbon (not shown in Figure 3(d)). Any
diagonal connecting a vertex of the polygon at the end of the ribbon to another part of
the input would pass around (“outside”) at least one of these knots, and therefore form
a knot with the ribbon boundary, perhaps compounded with other knotting elsewhere.
Since a compound of knots is always itself knotted [1, pp. 9 and 104]* and knots cannot
be triangulated (see Section 3.1), such a diagonal cannot be part of any triangulation of
the input, so any triangulation of the input must triangulate each polygon independently,
in roughly the same shape as a triangulation of the original generalized triangulation
problem. Thus we have the following result:

Theorem 2 Three-dimensional triangulation is N'P-Complete.

3 Triangulability in Special Cases

Since triangulability of a 3-dimensional polygon is A P-Complete, we now focus our
attention on some special cases. In this section we present some necessary conditions
for triangulability, and some sufficient conditions for triangulability.

3.1 Knotted Polygons

It is fairly easy to prove that:

Theorem 3 A knotted 3-dimensional polygon does not have a non-self-intersecting tri-
angulation.

Proof: Assume to the contrary that a knotted 3-dimensional polygon has a non-self-
intersecting triangulation. The triangulation is thus outerplanar. Every outerplanar
triangulation has an ear (a triangle connected to the rest by a single edge) and can
be reduced to a single triangle by removing ears one at a time. Consequently, this ear
removal process provides a recipe for untangling the triangulation’s boundary, contra-
dicting the fact that it is knotted. O

In fact, the last claim is a special (piecewise-linear) case of a more general theorem
that states that a closed curve is unknotted if and only if it has a spanning disk (see,
e.g., [17, Lemma 1]):

Theorem 4 A non-self-intersecting simply-connected surface (2D manifold topologically
equivalent to a disk) cannot have a knotted boundary.

2See also [13, p. 80, corollary 11]), where Livingstone attributes this result to Schubert [16].



Figure 4: Triangulations of 3-dimensional pentagons

3.2 Unknotted Polygons

A known result in knot theory states that all k-gons with & < 5 are unknotted (see,
e.g., [1, §1.6]). We prove a slightly stronger claim:

Theorem 5 FEvery 3-dimensional triangle, quadrilateral, or pentagon, is triangulable.

Proof: A triangle in 3-space is the triangulation of itself.

Every 3-dimensional quadrilateral has two triangulations formed by its two diagonals,
with the single exception where the four vertices lie in the same plane and define a
concave quadrilateral. In this case only the triangulation formed by the diagonal that
fully lies inside the quadrilateral (within the containing plane) is valid.

Refer now to a 3-dimensional pentagon ( Py, P, Ps, Py, P5). Assume first that Py and
Ps are on the same side of the plane ) defined by the vertices P, P, and Ps (e.g.,
as shown in Figure 4(a)). In this case we initialize the triangulation by the triangle
Ty = (P, Py, P3). The remaining quadrilateral (P, Ps, Py, Ps) lies on the same side of

(), so its triangulation cannot intersect with Tj.

Assume now that Py and Ps are separated by @), but the edge P, Ps does not intersect
with Tj. Here we have three subcases. In the first subcase (shown in Figure 4(b)) the
edge P;Ps is not on the same side of the segment Py P; (which is not an edge of the



Figure 5: A non-triangulable 3-dimensional biplanar hexagon

polygon) as P, (where the side is determined according to whether the intersection
point of Py Ps with the plane that contains T is on the same side of Py P5 as P5). This
means that there is a plane that contains P; and FPs, and separates between P, to P, and
Ps. Hence the triangulation of (Py, Ps, Py, P5) does not intersect with Tj. In the other
subcases the edge P, Ps is on the same side of the segment P, P; as P, but still does not
intersect with Ti. So Py Ps is either (second subcase) not on the same side of P, Ps as
Py (that is, “below” it), or (third subcase) not on the same side of Py P, as Ps (that is,
“above” it). In the second subcase we have the same triangulation as of the first subcase,

and in the third subcase we have the triangulation (( Py, Py, Ps), (P1, Py, P3), (P, Ps, P2)).

In the remaining case Py and Ps are separated by (), but the edge P,Ps intersects
with Ty (see Figure 4(c)). For this to happen, P5 and P, have to be on the same side of
the plane defined by Ps, P;, and P,, and P, and Ps have to be on the same side of the
plane defined by P, P3, and P;. Thus we apply the same argument as in the first case,
and obtain the valid triangulation ((P1, Py, Ps), (Ps, Py, Ps), (Ps, Ps, Py)).

It is also easy to handle cases where the vertices are not in general position. In case
all the five vertices lie in one plane, we have to triangulate a simple pentagon in the
plane. In case only four of the vertices lie in the same plane, and the fifth vertex Ps
(with no loss of generality) lies outside that plane (see Figure 4(d)), we construct, again,
the triangulation ((Pi, Py, Ps), (Ps, Ps, Ps), (P2, Ps, Py)). (Note that we could not start
with the triangle (P, Py, Ps), since the remaining quadrilateral (P, Pz, Ps, Py) might be,
as in this example, a non-simple planar polygon.) a

It is not true that every simple (unknotted) 3-dimensional polygon is triangulable.
Consider the 3-dimensional hexagon shown in Figure 5. The six vertices of the hexagon
are P1 = (0,1.73,0), P2 = (1,-0.2,3), P3 = (2,1.73,0), P4 = (0,1.73,3), P5 =
(1,0.1,0), and P6 = (2,1.63,3). It is easy to verify that this hexagon is not a knot.
According to the formula given in Section 1, every hexagon has exactly 14 triangulations,
which are listed in Table 1. Each triangulation of the hexagon contains at least one
pair of intersecting triangles. Thus we have the following:

10



Triangulation
T T T3 Ty Intersecting Triangles
V|| (Ps, P1,Ps) | (Ps, P1, P2) | (Ps, P2, Ps) | (Pa, P2, Ps) || (Th,T4)
2 || (Ps,P1,Ps) | (Ps,P1,P2) | (Ps, P2, Ps) | (Ps,Ps,Py) || (T1,T4)
31| (Ps,P1,P5) | (Ps,P1,Ps) | (Pa,P1,P5) | (Ps,P1,Pa) || (Th,T4), (T2, Ty)
4 || (Ps,P1,Ps) | (Ps,P1,P5) | (P3, P1,Ps) | (Ps, P, Py) || (Th,T5), (Th,Ta), (T5,T4)
5 || (Ps, P1,Ps) | (Ps,P1,Ps) | (Ps, P, Pa) | (Pa,Po,Ps) | (T1,Ta)
6 || (P, Ps, Ps) | (Pa,Ps,P1) | (Py, P, P5) | (Ps,P1,Pa) || (T1,T4)
7 || (Pay Ps, Ps) | (Pa,Ps,P1) | (Pa, P1,Pa) | (Py, Po,Ps) || (Th,T4), (T2, Ty)
8 || (Pa, Ps, P3) | (Ps,Ps,Ps) | (Ps,Ps,P1) | (Ps,P1,Pa) || (Th,T5), (T1,T4), (T2, Ty)
9 || (Pa, Ps,Ps) | (Pa,Ps,Ps) | (Ps,Ps,P1) | (Ps,P1,Pa) || (T1,T4)
10 || (Ps, P1, P2) | (Ps, P2, P3) | (Ps, Ps, Ps) | (Ps, Ps, Pa) || (Th,T4)
11 || (Ps, P1, P2) | (Ps, P2, P3) | (Ps, Ps, Pa) | (Ps, Pa, Ps) || (T1,T4)
12 || (Ps, P1, P2) | (Ps, P2, Ps) | (Ps, P2, P3) | (Ps, Ps, Pa) || (Th,T4)
13 || (Ps, P1, P2) | (Ps, Pa, Ps) | (Ps, P2, Pa) | (Pa, P2, P3) || (Th,T3), (Th,T4), (T2, T4)
14 || (Ps, P1, P2) | (Ps, Pa, Py) | (Ps, Pa, Ps) | (Pa, P2, P3) || (Th,T3), (Th,T4), (T5,T4)

Table 1: The 14 triangulations of a hexagon

Theorem 6 There exist unknotted 3-dimensional n-gons (for n > 6) which are not
triangulable.

Thus unknottedness is a necessary but not sufficient condition for triangulability.
Furthermore, efficiently determining knottedness is itself a difficult open question. The
question whether a 3-dimensional polygon is knotted is decidable [10], but it is not even

known to be in NP [17].

A biplanar polygon is a 3-dimensional polygon whose vertices lie in two parallel
planes. The number of edges that connect (“jump”) between the two planes is not
limited. Computing a triangulation of biplanar polygons appears, for example, in in-
terpolation problems (see, e.g., [3]?). Unfortunately, biplanarity (even of an unknotted
polygon) is not a sufficient condition for triangulability. The hexagon shown in Figure 5
is an unknotted biplanar polygon which is not triangulable.

It is easy to verify that we may still triangulate every unknotted 3-dimensional poly-
gon if we allow the addition of Steiner points in space. Snoeyink [17] shows that the
number of such Steiner points may be in the worst case exponential in the complexity
of the original polygon.*

3.3 Sufficient Conditions for Triangulability

In this section we discuss a few sufficient conditions for triangulability. The common
aspect of all the presented conditions is the simplicity of some projection of the polygon.
Unfortunately, it is fairly easy to show that none of them is a necessary condition.

3Note that the 3-dimensional polygons of [3], so-called clefts, always have simple orthogonal projec-
tions, hence they are triangulable.
*Snoeyink refers to unknotted polygons as “trivial knots”.
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3.3.1 Simple Orthogonal Projection

Theorem 7 [f the orthogonal projection of a 3-dimensional polygon P onto some plane
Q) is simple, then P is triangulable.

Proof: Denote the projection of P onto () by P’. As noted above, every simple planar
polygon has a triangulation. Triangulate P’ within @), and lift the triangulation back
to the original vertices of P. Fach 3-dimensional triangle is fully contained in a prism
perpendicular to () and bounded by the triangle itself and by the corresponding triangle
within ). No two such prisms intersect; neighboring prisms share a face that corresponds
to an edge of the triangulation. Hence, the triangulation of P’ within ) induces a non-
self-intersecting triangulation of P in 3-space. O

In Section 4 we present an algorithm for computing a plane (if one exists) on which
the projection of a given 3-dimensional polygon is simple.

3.3.2 Simple Perspective and Spherical Projections

Perspective and spherical projections have the same triangulability property as orthog-
onal projections. It is easy to prove the following:

Theorem 8 [f the perspective projection of a 3-dimensional polygon P from some point
o onto some plane () is simple, then P is triangulable.

Proof: ldentical to that of Theorem 7. O

Let S be a sphere in 3-space centered at o. Assume that a 3-dimensional polygon P
is fully contained in S and does not pass through o. Each point p on P defines a ray r,
that starts at o and passes through p. A spherical projection of P onto S maps every
point p € P to the intersection point of r, with S.

We now show that:

Theorem 9 [f the spherical projection of a 3-dimensional polygon P outward from a
point o onto some sphere S (centered at o) is simple, then P is triangulable.

Proof: Let P’ be the spherical projection of P from o onto S. The edges of P’ on
S are arcs portions of great circles on S. Perform a central projection G [18, pp. 16-
18] of P’ from o onto a plane tangent to S at any point not in P’.*> In such mapping
every orthodrom (the shortest path between two points) on S is mapped to a straight
segment in the plane. Define P” = G(P’). We compute a triangulation 7" of the planar
polygon P” and map the triangulation back to S: 7' = G=(7"). Every edge of T" is

°In geographic terms this projection is called a gnomonic mapping. In fact, it maps only half of the
sphere into a plane, so we need to consider two planes when we triangulate the polygon.
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mapped back to an arc (portion of a great circle) on S. No two such arcs intersect, for
if they did, the corresponding edges of the planar triangulation 7" would also intersect.
This triangulation of P’ is a partition of one of the two portions of S bounded and
separated by P’ into spherical triangles. The combinatorial structure of 77 is identical
to the planar case: each such triangle is bounded by three arcs; every arc is shared by
exactly two triangles, except for arcs that belong to P’, which bound only one triangle;
and no two such triangles intersect in their interiors. This triangulation of P’ induces
a “tetrahedralization” of a portion of S. Fach “tetrahedron” T} is defined by o and by
the three vertices of a triangle ' € 7’ on 5, forming a shape with three planar faces and
one spherical face. It is easy to verify that these “tetrahedra” do not intersect in their
interiors and share faces which contain the edges of P. Moreover, for every triangle
t' € T’ the triangle G7'(#') is fully contained by Ty. Otherwise the interiors of the
“tetrahedra” would not be pairwise disjoint. Thus we can lift back the triangulation 7’
on S to 3-space and obtain a triangulation 7 = G~'(7") of the original 3-dimensional
polygon P. a

4 Computing Simple Projections of a 3-Dimensional
Polygon

4.1 Computing a Simple Orthogonal Projection

In this section we describe an algorithm for determining whether there exists a simple
orthogonal projection of a 3-dimensional polygon. Since this is a sufficient condition (as
shown in Section 3.3.1), a positive answer implies the triangulability of the polygon.

Problem 2 Given a 3-dimensional polygon P, report a plane Q (if one exists) on which
the projection of P is simple. (Alternatively, report all the planes with this property.)

4.1.1 Overview of the Algorithm

The main idea of the proposed algorithm is to exclude all the invalid directions of
projections of P. An invalid direction is one that causes the projection of two edges of P
to intersect. Thus each pair of edges of P determines a set of invalid directions. Each such
set is a 4-sided region on the sphere of directions. First we construct the arrangement of
these regions on the sphere; then we look for a depth-0 point in the arrangement. A point
on the sphere not contained in any of the 4-sided regions corresponds to a projection in
which the image of P is simple.

4.1.2 Computing the Elements of the Arrangement

First we compute all the “forbidden zones” on the sphere of directions. Denote the
projection along a direction ¢ onto a plane orthogonal to ¢ by P,. The projected polygon
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Pu(P) is non-simple if the projections of any two edges €1, e € P intersect. Therefore,
all the invalid directions ¢ along which Ps(e1) and Ps(es) intersect are defined by lines
passing through points of e; and e;. We represent such direction ¢ by its intersection with
the sphere of directions. In this representation, all the invalid directions that correspond
to each pair of edges €1, es € P define a simply connected 4-sided region on the sphere.

Each vertex of this quadrilateral is the direction that connects between endpoints of ¢,
and e;. The ‘edges’ of the quadrilaterals are arcs: portions of great circles on the sphere
of directions. To illustrate this, simply fix a point of the line ¢ to be an endpoint of ey,
and move another point of ¢ continuously from one endpoint of 3 to its other endpoint.
Thus for computing the invalid directions determined by e; and es, we need only compute
the four vertices of the quadrilateral. (Note that if one endpoint of e; is collinear with
€9, then the quadrilateral may degenerate into a triangle: a quadrilateral with side of
length 0. Similarly, two parallel segments generate a degenerate “quadrilateral” that is
only a “segment” on the sphere of directions.)

We repeat this procedure for all the (;) pairs of edges of P and get ©(n?) forbidden

zones on the sphere of directions. (Actually each pair of edges defines two such quadri-
laterals, but for our purpose we may consider only half of the sphere of directions.) In
this representation, the question whether there exists a direction along which the pro-
jection of P is simple amounts to determining whether there is a point of depth 0 in the
arrangement of the (;) quadrilaterals on the sphere of directions.

4.1.3 Constructing and Investigating the Arrangement

In order to simplify the arrangement, we regard the sphere of directions as a plane. There
is an obvious problem with the poles, which is easily resolved by checking whether the
poles are contained in any of the quadrilaterals. If not, then we have found a valid
direction and may abort the algorithm. If yes, the poles are invalid directions. We
thus ignore some small neighborhood of each pole which is fully contained in some
quadrilateral. The size of such neighborhood can be computed, with no additional cost,
during the pole-quadrilateral containment tests. Now we split the sphere along some
longitude, and obtain the desired planar domain. (Splitting along a longitude may
require the split of some, possibly all, the quadrilaterals, each into two parts. By doing
that we may create pentagons which are further split into triangles.)

n
2

whether there exists a point in the plane (clipped to the rectangular image of the sphere)

Finally we investigate the arrangement of the ( ) quadrilaterals, aiming to find
of depth 0, that is, a point which is not covered by any quadrilateral. By splitting
all the quadrilaterals and the target rectangle into two triangles each, we obtain the
triangles-cover-triangle problem which belongs to the collection of so-called 3SUM-Hard
problems [11]. Constructing the entire arrangement can be done, for example, by using
topological sweeping [9]. The output of the algorithm may be an indication whether
such point exists, or a description of the region (or regions) of depth 0.
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4.1.4 Complexity Analysis

We measure the complexity of the algorithm as a function of n, the number of edges of
the 3-dimensional polygon P.

Computing the forbidden 4-sided regions on the sphere of directions requires ©(n?)
time, since each pair of edges contributes a quadrilateral. Testing the poles for being
contained in these quadrilaterals and mapping the sphere into a plane also require ©(n?)
time.

The main time-consuming step is constructing and investigating the arrangement
of the quadrilaterals. Each pair of the ©(n?) quadrilaterals intersects in at most four
points. Hence we may have O(n') intersection points. A standard plane-sweep proce-
dure requires O(n*logn) time. However, constructing the whole arrangement of ©(n?)
quadrilaterals can be done in O(n') time by using topological sweeping [9].

To conclude, the whole algorithm runs in O(n*) time in the worst case.® The space
complexity of the algorithm is O(n?).

4.1.5 Remarks

First, we note that the bottleneck of our algorithm is the topological sweeping of the
arrangement. We were not able to exploit the fact that the quadrilaterals are not
independent. Considering this fact may speed up the sweeping step. As indicated
n [11], finding a faster algorithm for the covering problem will speed up a lot of other
3SUM-Hard problems.

Second, the existence of a simple orthogonal projection of P implies only its trian-
gulability. Triangulating the projected polygon and then lifting the triangulation back
to 3-space does not guarantee the minimality in any sense (e.g., surface area) of this
triangulation.

Finally, this is only a sufficient but not a necessary condition. In other words, the
absence of such projection does not rule out the triangulability of P.

4.2 Computing Simple Perspective and Spherical Projections

In this section we propose an algorithm for determining whether there exists a simple
perspective (resp., spherical) projection on a plane (resp., sphere) of a 3-dimensional
polygon. The idea of this algorithm is almost identical to that of the algorithm described
in Section 4.1, so we provide only a sketch of the algorithm.

We use again the idea of “forbidden zones” that correspond to illegal projections.
Both types of projections are performed from a single point (source). Each pair of

SRecently, Bose et al. [6] presented the same algorithm and pointed out that its time complexity is
actually O(n?logn + k), where k is the number of intersections between the quadrilaterals, which is
O(n*) in the worst case.
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Figure 6: Two prisms containing forbidden sources of perspective and spherical projec-
tions

edges defines two such forbidden zones, delimited by the edges and by infinite portions
of rays shot from the endpoints of one edge towards the endpoints of the other edge
(see Figure 6). Thus each forbidden zone contains all the points that cannot serve as
the source of projection. These are simple 3-dimensional (infinite) prisms with (low)
constant complexity, and the goal is to determine whether their union covers the whole
3-space.

For this purpose we use a simple plane-sweep algorithm. We have two types of events:
1. ©(n?) vertices of the prisms; and 2. O(n®) intersection vertices of the prisms. Standard
sweeping technique handles each event in O(logn) time, so the covering question can be
answered in O(n®log n) time. Any point that does not belong to the union of the prisms
can serve as the source of a perspective projection (if it is outside the convex hull of the
polygon) or as the source of a spherical projection (if it is inside the convex hull of the

polygon).

5 Conclusion

In this paper we show that the triangulability of a 3-dimensional polygon is an NP-
Complete problem. We also establish some necessary conditions and some sufficient
conditions for a polygon to be triangulable, and provide algorithms for testing the suf-
ficient conditions.

Many interesting problems related to the triangulability of 3-dimensional polygons
remain open, including:

1. What is the complexity of finding the triangulation that optimizes some objective
function?

2. Is the decision problem of the triangulability of a biplanar polygon easier than the
general problem?
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3.

4.

Specify more necessary triangulability conditions, other than unknottedness.

Specity more sufficient triangulability conditions, other than the projection condi-
tions described above.

Can one do better than O(n?) for finding whether there exists a simple orthogonal
projection of a 3-dimensional polygon? (Either by considering the relations be-
tween the O(n?) quadrilaterals on the sphere of directions, which we have totally
ignored, or by using another technique.)
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