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(a) Polygon (b) Non-triangulationFigure 1: An invalid multiply-connected triangulation
(a) Polygon (b) Non-triangulation (c) TriangulationFigure 2: A valid triangulation does not intersect itself2



Figures 2(b,c) show two triangulations of it, the �rst of which is invalid because it inter-sects itself. Note that it is clear that every simple planar polygon has a triangulation [12,proposition 30]. A 3-dimensional polygon need not be planar, nor triangulable. In thispaper we investigate the triangulability of 3-dimensional polygons.The triangulation of a planar polygon attracted considerable attention in the litera-ture during the past decade. See, for example, papers by Edelsbrunner [8] or Bern andEppstein [4] for comprehensive reviews on this subject. The complexity of triangulatinga planar polygon was an open problem in computational geometry until Chazelle [7]closed the issue by presenting an ingenious optimal �(n) algorithm. The main toolused in this algorithm is the visibility map, which crucially depends on the planarityof the polygon. Unfortunately, for a polygon in three dimensions, the visibility notionbecomes irrelevant. (In general position every vertex \sees" every other vertex, thus thevisibility-map is not useful any more.) Moreover, the triangulation problem ceases tobe decomposable in any simple way (as it is in the plane). A candidate triangle whosevertices are on the polygon does not necessarily split the problem into three independent(smaller) triangulation subproblems; valid solutions of the subproblems may intersectin 3-space, thus their union is not a valid solution of the original problem. The goalis therefore to compute a triangulation of a 3-dimensional polygon if one exists, or toreport that no such triangulation exists.We point out that in three dimensions, the term `triangulation' usually refers tothe tetrahedralization of a 3-dimensional polyhedron or a set of points. We are notaware of previous work on the triangulation of 3-dimensional polygons. However spe-cial cases of this problem arise in various contexts, in which the problem is to computean unknown (polyhedral) surface when only its (polygonal) boundary is known. Thesurface-reconstruction algorithm of Barequet and Sharir [3] computes (as a subprob-lem) optimal (minimum-area) triangulations of 3-dimensional biplanar polygons. Thisalgorithm has applications to medical imaging and to the reconstruction of topographicterrains. Several algorithms for repairing CAD objects [2, 5, 14] use 3-dimensional tri-angulation procedures for �lling cracks in polyhedral surfaces.A more general question is: if a 3-dimensional polygon is triangulable, how manytriangulations are there? If we neglect the possible intersections between triangles in3-space, then the number of triangulations of an n-gon identi�es with that of a planarconvex polygon: 1n�1�2n�4n�2 � [8, p. 76]. This is, in fact, the (n� 2)th Catalan number. Ingeneral, however, computing the number of valid (non-self-intersecting) triangulationsof a 3-dimensional polygon is a non-trivial problem. This leads to another interestingproblem which is to compute an optimal triangulation for some measure of optimality.This goal is naturally more ambitious than computing any valid triangulation or justdetermining triangulability. If we allow self-intersecting triangulations (in contrast withour de�nition), then computing the optimal triangulation can be done (in cubic time)by applying a simple dynamic-programming procedure (see [2, 3]).In this paper we address several problems related to 3-dimensional polygons. Speci�-cally, we prove that the triangulability of a polygon in 3-space isNP-Complete. We then3



prove a few necessary and su�cient conditions for the triangulability of a 3-dimensionalpolygon, and present polynomial-time algorithms for determining whether the su�cientconditions hold. We regard this work as an opening for this issue, with ample space formany more �ndings.The paper is organized as follows. In Section 2 we de�ne the triangulability of a3-dimensional polygon and prove the NP-Completeness of the decision problem. InSection 3 we discuss su�cient and necessary conditions for the 3-dimensional polygontriangulability. In Section 4 we present polynomial-time algorithms for testing the suf-�cient conditions. We terminate in Section 5 with some open problems.2 NP-Completeness of 3-Dimensional Polygon Tri-angulabilityWe address the following question:Problem 1 Given a 3-dimensional polygon, is it triangulable?In other words, does a given polygon have a non-self-intersecting triangulation?We �rst show that the problem of determining whether a three-dimensional poly-gon admits a triangulation is NP-Complete. (Tetrahedralization of three-dimensionalpolyhedra is also known to be NP-Complete [15].) The problem is obviously in NP:testing whether two 3-dimensional triangles (whose vertices have integer coordinates)intersect can be performed in time polynomial in the bit complexity of the coordinates,1and checking whether a given candidate solution (a triangulation of a polygon P ) doesnot intersect itself requires O(n2) such tests, where n is the complexity of P .We start with a somewhat simpler proof of a related hardness result. De�ne thegeneralized three-dimensional triangulation problem to be one of, given a collection ofthree-dimensional polygons, determine whether one can simultaneously triangulate allpolygons in the collection with a collection of triangulations that do not intersect them-selves or each other. Our proof that generalized triangulation is hard is via a reductionfrom 3-SAT. As is usual in this sort of proof, we construct gadgets corresponding to3-SAT variables, clauses, and connections between them, in such a way that puttingtogether the gadgets corresponding to the objects in a 3-SAT instance results in a col-lection of polygons, with the collection having a triangulation if and only if the 3-SATinstance is satis�able.We construct most of our gadgets using a quadrilateral in which opposite edgesare skew. Any quadrilateral has exactly two triangulations. By stacking several suchquadrilaterals in a row, we construct gadgets resembling wires (Figure 3(a)). At each1This can be done by expressing the intersection in terms of low degree polynomials|signs of 4� 4determinants. These polynomials can be evaluated exactly by using four times as much precision in theintermediate results as the inputs coordinates. 4



(a) Stacked skew quadrilaterals form a wire, (b) Gadget for replicating a signalwith the presense of a signal indicated from one wire to two.by a concavity at the end of the wire.(c) Hexagon formed by vertices of an (d) Knotted connections force eachoctahedron, triangulated in three ways. polygon to be triangulatedAttaching wires to the back of each long independently.diagonal forms a 3-SAT clause.Figure 3: Components of the NP-Completeness proof
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end of a wire, the quadrilateral can have either a convex projecting triangulation ora concave inward triangulation; we think of a wire as carrying a signal (representingthe truth of a variable or its negation) when the triangulation is concave. As shownin the �gure, a signal can \fade out" when two adjacent quadrilaterals have oppositetriangulations, but the reverse transition is not possible: a signal cannot be created fromthe absence of one without an intersection between triangles in adjacent quadrilaterals.For each variable in the 3-SAT formula, we then create a \truth-setting" gadget sim-ply consisting of one of these wires (indeed, it could just be a single skew quadrilateral).One end of the wire will correspond to the variable itself, while the other will correspondto the negation. Any such gadget can have at most one signal, either at the end cor-responding to the variable (corresponding to assignments in which the variable is true)or at the other end (corresponding to assignments in which the variable is false). It isalso possible to have no signal at either end, but this will turn out not to be a problemin our construction (we can show that it is still possible to turn a triangulation into asatisfying assignment in this case; the assignment can be thought of as having a \don'tcare" state in which either truth value leads to satisfaction).We will need to create multiple signals for each variable, to be sent to each of theclause gadgets in which the variable is involved. To do this, we use a second type ofgadget, a \splitter" (see Figure 3(b)). A wire carrying a signal is fed into one end ofthis gadget (the left side of the �gure), and two wires carrying the same signal comeout the other end (the right side of the �gure). This splitter has the same property asthe wires, that a signal can fade or be propagated but it is not possible to create a newsignal from the absence of one.To complete the construction, we need a clause gadget, that takes three incomingwires and is triangulable if and only if a signal is present on at least one wire. Unlike theother gadgets, it is not possible to build clauses out of quadrilaterals; for if a generalizedtriangulation instance consisted solely of quadrilaterals it could be translated to a formof 2-SAT and solved in polynomial time. Instead we use a hexagon formed from thevertices of a regular octahedron. Figure 3(c, top-left) shows such an octahedron, witha front face and three other faces visible. The hexagon we wish to use in that �gure isthe silhouette of the octahedron. This hexagon has fourteen triangulations: one withthe front face, one with the other internal triangle, and twelve others each using one ofthe three main diagonals of the hexagon (none of which contain an internal triangle).In the �gure we show four triangulations: the one using the front face, and one for eachmain diagonal.To eliminate the possibility of using an internal triangle in a triangulation, we add toour collection of polygons two small triangles intersecting those faces but not interferingwith any other possible face of a triangulation. Finally we attach three wires to thegadget, corresponding to the variables in the clause. Each wire is attached by placingit at the back of the gadget shown in Figure 3(c), near one of the three main diagonals,at the end of the diagonal nearest the back face of the octahedron. As can be seenin the �gure, the two triangulations using the other two main diagonals use faces wellseparated from this connection point. If the wire is appropriately placed, it will avoid6



the third triangulation as well when there is a signal on the wire, but when there is nosignal the last quadrilateral of the wire will be triangulated with a triangle that linksaround the corresponding main diagonal of the hexagon, preventing the use of that maindiagonal in any triangulation. Thus this clause gadget will have a triangulation if andonly if there is a signal on at least one of the three incoming wires.This completes the description of the gadgets involved in our NP-Completenessconstruction for generalized triangulation. To complete the construction, we need onlyhook the gadgets together. We place them roughly in a common plane, and makethem well separated in that plane. The connections necessary between them can beapproximated by polygonal chains with O(1) links, leaving and returning to the planeby two long edges. Each such connection can then be �lled out by a wire with O(1)quadrilaterals. In this way the total number of vertices needed in the construction islinear in the complexity of the input 3-SAT formula, and explicit integer coordinates foreach vertex can easily be constructed in polynomial time.Theorem 1 The construction outlined above is a polynomial reduction from 3-SATto generalized triangulation, and therefore shows that generalized triangulation is NP-Complete.Proof: As discussed above, the reduction is polynomial time. It remains to show thatsatisfying 3-SAT assignments correspond to non-self-intersecting triangulations and viceversa. From any satisfying assignment to the 3-SAT formula, form a triangulation bysetting each quadrilateral to represent a signal on wires corresponding to true variables(or to the negations of false variables) and the absence of a signal on all other wires.Then each clause gadget will have at least one incoming signal, so as discussed aboveit can be triangulated. Conversely suppose one has a triangulation of the collection ofpolygons. Each clause gadget must use one main diagonal in its triangulation, and musttherefore have an incoming signal; because signals cannot be created except at truth-setting gadgets, the assignment coming from the state of each truth-setting gadget mustbe a satisfying assignment. 2We now describe how to modify this construction to prove NP-Completeness of ouroriginal problem, triangulation of a single three-dimensional polygon. The idea is simple:we start with the generalized triangulation problem constructed above, and connect theindividual polygons of that problem by narrow \ribbons" to form a single simple polygon(Figure 3(d)). (To connect each ribbon, we split one vertex of the polygon into twovertices very near to each other). For the generalized polygon problem constructed bythe reduction above, it is easy to place ribbons in a way that does not interfere with anyexisting triangulation of the generalized problem (although it is not clear how to do thisin general).However in order to prove NP-Completeness we also need a translation in the otherdirection, from constructed triangulations to satisfying assignments; therefore we mustbe careful that in the process of adding ribbons we do not allow extra triangulations notcoming from the original generalized triangulation problem. We do this by making three7



small non-collinear knots near the start of each ribbon (not shown in Figure 3(d)). Anydiagonal connecting a vertex of the polygon at the end of the ribbon to another part ofthe input would pass around (\outside") at least one of these knots, and therefore forma knot with the ribbon boundary, perhaps compounded with other knotting elsewhere.Since a compound of knots is always itself knotted [1, pp. 9 and 104]2 and knots cannotbe triangulated (see Section 3.1), such a diagonal cannot be part of any triangulation ofthe input, so any triangulation of the input must triangulate each polygon independently,in roughly the same shape as a triangulation of the original generalized triangulationproblem. Thus we have the following result:Theorem 2 Three-dimensional triangulation is NP-Complete.3 Triangulability in Special CasesSince triangulability of a 3-dimensional polygon is NP-Complete, we now focus ourattention on some special cases. In this section we present some necessary conditionsfor triangulability, and some su�cient conditions for triangulability.3.1 Knotted PolygonsIt is fairly easy to prove that:Theorem 3 A knotted 3-dimensional polygon does not have a non-self-intersecting tri-angulation.Proof: Assume to the contrary that a knotted 3-dimensional polygon has a non-self-intersecting triangulation. The triangulation is thus outerplanar. Every outerplanartriangulation has an ear (a triangle connected to the rest by a single edge) and canbe reduced to a single triangle by removing ears one at a time. Consequently, this earremoval process provides a recipe for untangling the triangulation's boundary, contra-dicting the fact that it is knotted. 2In fact, the last claim is a special (piecewise-linear) case of a more general theoremthat states that a closed curve is unknotted if and only if it has a spanning disk (see,e.g., [17, Lemma 1]):Theorem 4 A non-self-intersecting simply-connected surface (2D manifold topologicallyequivalent to a disk) cannot have a knotted boundary.2See also [13, p. 80, corollary 11]), where Livingstone attributes this result to Schubert [16].8



P2 P3 P4 P5P1 P1P2 P3 P4P5(a) (b)P1P2 P3 P4P5 P1P3 P2P4P5(c) (d)Figure 4: Triangulations of 3-dimensional pentagons3.2 Unknotted PolygonsA known result in knot theory states that all k-gons with k � 5 are unknotted (see,e.g., [1, x1.6]). We prove a slightly stronger claim:Theorem 5 Every 3-dimensional triangle, quadrilateral, or pentagon, is triangulable.Proof: A triangle in 3-space is the triangulation of itself.Every 3-dimensional quadrilateral has two triangulations formed by its two diagonals,with the single exception where the four vertices lie in the same plane and de�ne aconcave quadrilateral. In this case only the triangulation formed by the diagonal thatfully lies inside the quadrilateral (within the containing plane) is valid.Refer now to a 3-dimensional pentagon (P1; P2; P3; P4; P5). Assume �rst that P4 andP5 are on the same side of the plane Q de�ned by the vertices P1, P2, and P3 (e.g.,as shown in Figure 4(a)). In this case we initialize the triangulation by the triangleT1 = (P1; P2; P3). The remaining quadrilateral (P1; P3; P4; P5) lies on the same side ofQ, so its triangulation cannot intersect with T1.Assume now that P4 and P5 are separated by Q, but the edge P4P5 does not intersectwith T1. Here we have three subcases. In the �rst subcase (shown in Figure 4(b)) theedge P4P5 is not on the same side of the segment P1P3 (which is not an edge of the9
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Figure 5: A non-triangulable 3-dimensional biplanar hexagonpolygon) as P2 (where the side is determined according to whether the intersectionpoint of P4P5 with the plane that contains T1 is on the same side of P1P3 as P2). Thismeans that there is a plane that contains P1 and P3, and separates between P2 to P4 andP5. Hence the triangulation of (P1; P3; P4; P5) does not intersect with T1. In the othersubcases the edge P4P5 is on the same side of the segment P1P3 as P2 but still does notintersect with T1. So P4P5 is either (second subcase) not on the same side of P2P3 asP1 (that is, \below" it), or (third subcase) not on the same side of P1P2 as P3 (that is,\above" it). In the second subcase we have the same triangulation as of the �rst subcase,and in the third subcase we have the triangulation ((P1; P4; P5); (P1; P4; P3); (P1; P3; P2)).In the remaining case P4 and P5 are separated by Q, but the edge P4P5 intersectswith T1 (see Figure 4(c)). For this to happen, P3 and P4 have to be on the same side ofthe plane de�ned by P5, P1, and P2, and P1 and P5 have to be on the same side of theplane de�ned by P2, P3, and P4. Thus we apply the same argument as in the �rst case,and obtain the valid triangulation ((P1; P2; P5); (P2; P4; P5); (P2; P3; P4)).It is also easy to handle cases where the vertices are not in general position. In caseall the �ve vertices lie in one plane, we have to triangulate a simple pentagon in theplane. In case only four of the vertices lie in the same plane, and the �fth vertex P5(with no loss of generality) lies outside that plane (see Figure 4(d)), we construct, again,the triangulation ((P1; P2; P5); (P2; P4; P5); (P2; P3; P4)). (Note that we could not startwith the triangle (P1; P4; P5), since the remaining quadrilateral (P1; P2; P3; P4) might be,as in this example, a non-simple planar polygon.) 2It is not true that every simple (unknotted) 3-dimensional polygon is triangulable.Consider the 3-dimensional hexagon shown in Figure 5. The six vertices of the hexagonare P1 = (0; 1:73; 0), P2 = (1;�0:2; 3), P3 = (2; 1:73; 0), P4 = (0; 1:73; 3), P5 =(1; 0:1; 0), and P6 = (2; 1:63; 3). It is easy to verify that this hexagon is not a knot.According to the formula given in Section 1, every hexagon has exactly 14 triangulations,which are listed in Table 1. Each triangulation of the hexagon contains at least onepair of intersecting triangles. Thus we have the following:10



TriangulationT1 T2 T3 T4 Intersecting Triangles1 (P6; P1; P5) (P5; P1; P2) (P5; P2; P4) (P4; P2; P3) (T1; T4)2 (P6; P1; P5) (P5; P1; P2) (P5; P2; P3) (P5; P3; P4) (T1; T4)3 (P6; P1; P5) (P5; P1; P4) (P4; P1; P3) (P3; P1; P2) (T1; T4), (T2; T4)4 (P6; P1; P5) (P5; P1; P3) (P3; P1; P2) (P5; P3; P4) (T1; T3), (T1; T4), (T3; T4)5 (P6; P1; P5) (P5; P1; P4) (P4; P1; P2) (P4; P2; P3) (T1; T4)6 (P4; P5; P6) (P4; P6; P1) (P4; P1; P3) (P3; P1; P2) (T1; T4)7 (P4; P5; P6) (P4; P6; P1) (P4; P1; P2) (P4; P2; P3) (T1; T4), (T2; T4)8 (P4; P5; P3) (P3; P5; P6) (P3; P6; P1) (P3; P1; P2) (T1; T3), (T1; T4), (T2; T4)9 (P4; P5; P6) (P4; P6; P3) (P3; P6; P1) (P3; P1; P2) (T1; T4)10 (P6; P1; P2) (P6; P2; P3) (P6; P3; P5) (P5; P3; P4) (T1; T4)11 (P6; P1; P2) (P6; P2; P3) (P6; P3; P4) (P6; P4; P5) (T1; T4)12 (P6; P1; P2) (P6; P2; P5) (P5; P2; P3) (P5; P3; P4) (T1; T4)13 (P6; P1; P2) (P6; P2; P5) (P5; P2; P4) (P4; P2; P3) (T1; T3), (T1; T4), (T2; T4)14 (P6; P1; P2) (P6; P2; P4) (P6; P4; P5) (P4; P2; P3) (T1; T3), (T1; T4), (T3; T4)Table 1: The 14 triangulations of a hexagonTheorem 6 There exist unknotted 3-dimensional n-gons (for n � 6) which are nottriangulable.Thus unknottedness is a necessary but not su�cient condition for triangulability.Furthermore, e�ciently determining knottedness is itself a di�cult open question. Thequestion whether a 3-dimensional polygon is knotted is decidable [10], but it is not evenknown to be in NP [17].A biplanar polygon is a 3-dimensional polygon whose vertices lie in two parallelplanes. The number of edges that connect (\jump") between the two planes is notlimited. Computing a triangulation of biplanar polygons appears, for example, in in-terpolation problems (see, e.g., [3]3). Unfortunately, biplanarity (even of an unknottedpolygon) is not a su�cient condition for triangulability. The hexagon shown in Figure 5is an unknotted biplanar polygon which is not triangulable.It is easy to verify that we may still triangulate every unknotted 3-dimensional poly-gon if we allow the addition of Steiner points in space. Snoeyink [17] shows that thenumber of such Steiner points may be in the worst case exponential in the complexityof the original polygon.43.3 Su�cient Conditions for TriangulabilityIn this section we discuss a few su�cient conditions for triangulability. The commonaspect of all the presented conditions is the simplicity of some projection of the polygon.Unfortunately, it is fairly easy to show that none of them is a necessary condition.3Note that the 3-dimensional polygons of [3], so-called clefts, always have simple orthogonal projec-tions, hence they are triangulable.4Snoeyink refers to unknotted polygons as \trivial knots".11



3.3.1 Simple Orthogonal ProjectionTheorem 7 If the orthogonal projection of a 3-dimensional polygon P onto some planeQ is simple, then P is triangulable.Proof: Denote the projection of P onto Q by P 0. As noted above, every simple planarpolygon has a triangulation. Triangulate P 0 within Q, and lift the triangulation backto the original vertices of P . Each 3-dimensional triangle is fully contained in a prismperpendicular to Q and bounded by the triangle itself and by the corresponding trianglewithinQ. No two such prisms intersect; neighboring prisms share a face that correspondsto an edge of the triangulation. Hence, the triangulation of P 0 within Q induces a non-self-intersecting triangulation of P in 3-space. 2In Section 4 we present an algorithm for computing a plane (if one exists) on whichthe projection of a given 3-dimensional polygon is simple.3.3.2 Simple Perspective and Spherical ProjectionsPerspective and spherical projections have the same triangulability property as orthog-onal projections. It is easy to prove the following:Theorem 8 If the perspective projection of a 3-dimensional polygon P from some pointo onto some plane Q is simple, then P is triangulable.Proof: Identical to that of Theorem 7. 2Let S be a sphere in 3-space centered at o. Assume that a 3-dimensional polygon Pis fully contained in S and does not pass through o. Each point p on P de�nes a ray ~rpthat starts at o and passes through p. A spherical projection of P onto S maps everypoint p 2 P to the intersection point of ~rp with S.We now show that:Theorem 9 If the spherical projection of a 3-dimensional polygon P outward from apoint o onto some sphere S (centered at o) is simple, then P is triangulable.Proof: Let P 0 be the spherical projection of P from o onto S. The edges of P 0 onS are arcs portions of great circles on S. Perform a central projection G [18, pp. 16-18] of P 0 from o onto a plane tangent to S at any point not in P 0.5 In such mappingevery orthodrom (the shortest path between two points) on S is mapped to a straightsegment in the plane. De�ne P 00 = G(P 0). We compute a triangulation T 00 of the planarpolygon P 00 and map the triangulation back to S: T 0 = G�1(T 00). Every edge of T 00 is5In geographic terms this projection is called a gnomonic mapping. In fact, it maps only half of thesphere into a plane, so we need to consider two planes when we triangulate the polygon.12



mapped back to an arc (portion of a great circle) on S. No two such arcs intersect, forif they did, the corresponding edges of the planar triangulation T 00 would also intersect.This triangulation of P 0 is a partition of one of the two portions of S bounded andseparated by P 0 into spherical triangles. The combinatorial structure of T 0 is identicalto the planar case: each such triangle is bounded by three arcs; every arc is shared byexactly two triangles, except for arcs that belong to P 0, which bound only one triangle;and no two such triangles intersect in their interiors. This triangulation of P 0 inducesa \tetrahedralization" of a portion of S. Each \tetrahedron" Tt0 is de�ned by o and bythe three vertices of a triangle t0 2 T 0 on S, forming a shape with three planar faces andone spherical face. It is easy to verify that these \tetrahedra" do not intersect in theirinteriors and share faces which contain the edges of P . Moreover, for every trianglet0 2 T 0 the triangle G�1(t0) is fully contained by Tt0. Otherwise the interiors of the\tetrahedra" would not be pairwise disjoint. Thus we can lift back the triangulation T 0on S to 3-space and obtain a triangulation T = G�1(T 0) of the original 3-dimensionalpolygon P . 24 Computing Simple Projections of a 3-DimensionalPolygon4.1 Computing a Simple Orthogonal ProjectionIn this section we describe an algorithm for determining whether there exists a simpleorthogonal projection of a 3-dimensional polygon. Since this is a su�cient condition (asshown in Section 3.3.1), a positive answer implies the triangulability of the polygon.Problem 2 Given a 3-dimensional polygon P , report a plane Q (if one exists) on whichthe projection of P is simple. (Alternatively, report all the planes with this property.)4.1.1 Overview of the AlgorithmThe main idea of the proposed algorithm is to exclude all the invalid directions ofprojections of P . An invalid direction is one that causes the projection of two edges of Pto intersect. Thus each pair of edges of P determines a set of invalid directions. Each suchset is a 4-sided region on the sphere of directions. First we construct the arrangement ofthese regions on the sphere; then we look for a depth-0 point in the arrangement. A pointon the sphere not contained in any of the 4-sided regions corresponds to a projection inwhich the image of P is simple.4.1.2 Computing the Elements of the ArrangementFirst we compute all the \forbidden zones" on the sphere of directions. Denote theprojection along a direction ` onto a plane orthogonal to ` by P`. The projected polygon13



P`(P ) is non-simple if the projections of any two edges e1; e2 2 P intersect. Therefore,all the invalid directions ` along which P`(e1) and P`(e2) intersect are de�ned by linespassing through points of e1 and e2. We represent such direction ` by its intersection withthe sphere of directions. In this representation, all the invalid directions that correspondto each pair of edges e1; e2 2 P de�ne a simply connected 4-sided region on the sphere.Each vertex of this quadrilateral is the direction that connects between endpoints of e1and e2. The `edges' of the quadrilaterals are arcs: portions of great circles on the sphereof directions. To illustrate this, simply �x a point of the line ` to be an endpoint of e1,and move another point of ` continuously from one endpoint of e2 to its other endpoint.Thus for computing the invalid directions determined by e1 and e2, we need only computethe four vertices of the quadrilateral. (Note that if one endpoint of e1 is collinear withe2, then the quadrilateral may degenerate into a triangle: a quadrilateral with side oflength 0. Similarly, two parallel segments generate a degenerate \quadrilateral" that isonly a \segment" on the sphere of directions.)We repeat this procedure for all the �n2� pairs of edges of P and get �(n2) forbiddenzones on the sphere of directions. (Actually each pair of edges de�nes two such quadri-laterals, but for our purpose we may consider only half of the sphere of directions.) Inthis representation, the question whether there exists a direction along which the pro-jection of P is simple amounts to determining whether there is a point of depth 0 in thearrangement of the �n2� quadrilaterals on the sphere of directions.4.1.3 Constructing and Investigating the ArrangementIn order to simplify the arrangement, we regard the sphere of directions as a plane. Thereis an obvious problem with the poles, which is easily resolved by checking whether thepoles are contained in any of the quadrilaterals. If not, then we have found a validdirection and may abort the algorithm. If yes, the poles are invalid directions. Wethus ignore some small neighborhood of each pole which is fully contained in somequadrilateral. The size of such neighborhood can be computed, with no additional cost,during the pole-quadrilateral containment tests. Now we split the sphere along somelongitude, and obtain the desired planar domain. (Splitting along a longitude mayrequire the split of some, possibly all, the quadrilaterals, each into two parts. By doingthat we may create pentagons which are further split into triangles.)Finally we investigate the arrangement of the �n2� quadrilaterals, aiming to �ndwhether there exists a point in the plane (clipped to the rectangular image of the sphere)of depth 0, that is, a point which is not covered by any quadrilateral. By splittingall the quadrilaterals and the target rectangle into two triangles each, we obtain thetriangles-cover-triangle problem which belongs to the collection of so-called 3SUM-Hardproblems [11]. Constructing the entire arrangement can be done, for example, by usingtopological sweeping [9]. The output of the algorithm may be an indication whethersuch point exists, or a description of the region (or regions) of depth 0.14



4.1.4 Complexity AnalysisWe measure the complexity of the algorithm as a function of n, the number of edges ofthe 3-dimensional polygon P .Computing the forbidden 4-sided regions on the sphere of directions requires �(n2)time, since each pair of edges contributes a quadrilateral. Testing the poles for beingcontained in these quadrilaterals and mapping the sphere into a plane also require �(n2)time.The main time-consuming step is constructing and investigating the arrangementof the quadrilaterals. Each pair of the �(n2) quadrilaterals intersects in at most fourpoints. Hence we may have O(n4) intersection points. A standard plane-sweep proce-dure requires O(n4 log n) time. However, constructing the whole arrangement of �(n2)quadrilaterals can be done in O(n4) time by using topological sweeping [9].To conclude, the whole algorithm runs in O(n4) time in the worst case.6 The spacecomplexity of the algorithm is �(n2).4.1.5 RemarksFirst, we note that the bottleneck of our algorithm is the topological sweeping of thearrangement. We were not able to exploit the fact that the quadrilaterals are notindependent. Considering this fact may speed up the sweeping step. As indicatedin [11], �nding a faster algorithm for the covering problem will speed up a lot of other3SUM-Hard problems.Second, the existence of a simple orthogonal projection of P implies only its trian-gulability. Triangulating the projected polygon and then lifting the triangulation backto 3-space does not guarantee the minimality in any sense (e.g., surface area) of thistriangulation.Finally, this is only a su�cient but not a necessary condition. In other words, theabsence of such projection does not rule out the triangulability of P .4.2 Computing Simple Perspective and Spherical ProjectionsIn this section we propose an algorithm for determining whether there exists a simpleperspective (resp., spherical) projection on a plane (resp., sphere) of a 3-dimensionalpolygon. The idea of this algorithm is almost identical to that of the algorithm describedin Section 4.1, so we provide only a sketch of the algorithm.We use again the idea of \forbidden zones" that correspond to illegal projections.Both types of projections are performed from a single point (source). Each pair of6Recently, Bose et al. [6] presented the same algorithm and pointed out that its time complexity isactually O(n2 logn + k), where k is the number of intersections between the quadrilaterals, which isO(n4) in the worst case. 15



Figure 6: Two prisms containing forbidden sources of perspective and spherical projec-tionsedges de�nes two such forbidden zones, delimited by the edges and by in�nite portionsof rays shot from the endpoints of one edge towards the endpoints of the other edge(see Figure 6). Thus each forbidden zone contains all the points that cannot serve asthe source of projection. These are simple 3-dimensional (in�nite) prisms with (low)constant complexity, and the goal is to determine whether their union covers the whole3-space.For this purpose we use a simple plane-sweep algorithm. We have two types of events:1. �(n2) vertices of the prisms; and 2. O(n6) intersection vertices of the prisms. Standardsweeping technique handles each event in O(log n) time, so the covering question can beanswered in O(n6 log n) time. Any point that does not belong to the union of the prismscan serve as the source of a perspective projection (if it is outside the convex hull of thepolygon) or as the source of a spherical projection (if it is inside the convex hull of thepolygon).5 ConclusionIn this paper we show that the triangulability of a 3-dimensional polygon is an NP-Complete problem. We also establish some necessary conditions and some su�cientconditions for a polygon to be triangulable, and provide algorithms for testing the suf-�cient conditions.Many interesting problems related to the triangulability of 3-dimensional polygonsremain open, including:1. What is the complexity of �nding the triangulation that optimizes some objectivefunction?2. Is the decision problem of the triangulability of a biplanar polygon easier than thegeneral problem? 16
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