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Fáry’s theorem

Graphs that can be drawn with non-crossing curved edges can also
be drawn with non-crossing straight edges

[Wagner 1936; Fáry 1948; Stein 1951]

...but not necessarily with the same vertex positions!

The set of points in R2 is universal for straight drawings:
it can be used to form the vertex set of any planar graph



Smaller universal sets than the whole plane?

Every set of n points is universal for topological drawings
(edges drawn as arbitrary curves) of n-vertex graphs

Simply deform the plane to
move the vertices where you
want them, moving the edges
along with them
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Universal grids for straight line drawings

O(n)× O(n) square grids are universal
[de Fraysseix et al. 1988; Schnyder 1990]

Some graphs require Ω(n2) area when drawn in grids



Big gap for universal sets for straight line drawings

Best upper bound on universal point sets for straight-line drawing:

n2/4− O(n)

Based on permutation patterns [Bannister et al. 2013]

This 15-element permutation
contains all 6-element

213-avoiding permutations

Exponential stretching produces
an 18-point universal set for

9-vertex straight line drawings

Best lower bound: 1.098n − o(n) [Chrobak and Karloff 1989]



Two paths to perfection

Perfect universal set: exactly n points

Don’t exist for straight drawings, n ≥ 15 [Cardinal et al. 2012]

so have to relax either “straight” or “planar”.

Every n-point set in general position is universal for

I paths (connect in coordinate order)

I trees

I outerplanar graphs [Gritzmann et al. 1991]

What about drawing all planar graphs but relaxing straightness?



Arc diagrams

Vertices placed on a line; edges drawn on one or more semicircles

Initially used for drawing nonplanar graphs with few crossings
[Saaty 1964; Nicholson 1968]

Later named and popularized in information visualization
[Wattenberg 2002]

Visualization of internet chat connections, Martin Dittus, 2006, http://datavis.dekstop.de/irc arcs/



Monotone topological 2-page book embeddings

Every planar graph has a planar arc diagram with each edge drawn
as a two-semicircle “S” curve [Giordano et al. 2007; Bekos et al. 2013]

I Add edges to make the
graph maximal

I Find canonical order (each
vertex above earlier ones,
neighbors form contiguous
path on upper boundary)

I Add each vertex to the
right of its penultimate
neighbor

(Useful property: ≤ n − 1 inflections between consecutive vertices)



Perfect universal sets from monotone embeddings

Every n points on a line are universal for drawings in which edges
are smooth curves formed from two circular arcs

Every set of n points is universal for polyline drawings with two
bends per edge (mimic semicircles with steep zigzags)

Every smooth convex curve contains n points that are universal for
polyline drawings with one bend per edge [Everett et al. 2010]



Drawings with no bends and no inflections

What if we require each edge to be a single circular arc?

Lombardi drawing of a
46-vertex non-Hamiltonian
graph with cyclic edge
connectivity five
[Grinberg 1968; Eppstein 2013]

Arc diagrams don’t always exist and are NP-complete to find

Much recent interest in Lombardi drawings (evenly spaced edges at
each vertex) [Duncan et al. 2012; Eppstein 2013] and smooth
orthogonal layouts (axis-aligned arcs) [Bekos et al. 2013]



Our result

For every n, there exists a perfect universal point set
for drawings with circular-arc edges

Construction:
Choose n points on the parabola y = −x2

at x-coordinates 2n, 22n, 23n, . . . 2n
2



How to draw a graph on this universal set
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36 I Draw monotone topological
book embedding

I Number vertices and inflection
points from left to right,
rounding vertex numbers up
to multiples of n

I Map point i to point on
parabola with x = 2i

I Draw each edge as an arc
through its three points



Why is the resulting drawing planar?

Key properties, proved with some algebra:

Arc through any three points on parabola crosses it once from
below to above ⇒ edges pass above/below vertices correctly
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For six points x0 ≤ x1 < x2 < x3 < x4 ≤ x5, spaced exponentially,
arcs x0x3x4 and x1x2x5 are disjoint ⇒ edges do not cross



Conclusions

Perfect universal sets for circular-arc drawings

Purely a theoretical result—drawings are not usable

I Vertex placement requires exponential area

I Edges have very small angular resolution

In contrast, arc diagrams (with one arc per edge) are very usable
and practical but can only handle a subset of planar graphs

Maybe some way of combining the advantages of both?
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