This page includes geometric problems defined on regular pentagons,
involving pentagonal angles,
or based on the golden ratio (the ratio of diagonal to
side length in a regular pentagon).
A
Brunnian link. Cutting any one of five links allows the remaining
four to be disconnected from each other, so this is in some sense a
generalization of the Borromean rings. However since each pair of links
crosses four times, it can't be drawn with circles.
The golden ratio in an equilateral triangle.
If one inscribes a circle in an ideal hyperbolic triangle,
its points of tangency form an equilateral triangle
with side length 4 ln phi!
One can then place horocycles centered on the ideal triangle's vertices
and tangent to each side of the inner equilateral triangle.
From the Cabri geometry site. (In French.)
How many
points can one find in three-dimensional space so that all triangles
are equilateral or isosceles?
One eight-point solution is formed by placing three points
on the axis of a regular pentagon.
This problem seems related to the fact that
any planar point set forms O(n7/3)
isosceles triangles; in three dimensions, Theta(n3) are possible
(by generalizing the pentagon solution above). From Stan Wagon's
PotW archive.
Number patterns,
curves, and topology, J. Britton.
Includes sections on the golden ratio, conics, Moiré patterns,
Reuleaux triangles, spirograph curves, fractals, and flexagons.
Parallel pentagons.
Thomas Feng defines these as pentagons in which each diagonal
is parallel to its opposite side, and asks for a clean construction
of a parallel pentagon through three given points.
(He is aware of the obvious reduction via affine transformation to the
construction of regular pentagons, but finds that non-elegant.)
Penrose tilings.
This five-fold-symmetric tiling by rhombs or kites and darts
is probably the most well known aperiodic tiling.
Perplexing
pentagons, Doris Schattschneider, from the Discovering Geometry
Newsletter.
A brief introduction to the problem of tiling the plane by pentagons.
Russian math olympiad problem on lattice
points.
Proof that, for any five lattice points in convex position,
another lattice point is on or inside
the inner pentagon of the five-point star they form.
Wonders of Ancient Greek Mathematics, T. Reluga.
This term paper for a course on Greek science includes sections
on the three classical problems, the Pythagorean theorem, the golden
ratio, and the Archimedean spiral.