Filters
Main idea of filters

Represent n-element sets using only $O(n)$ bits

Better than hash tables, $O(n)$ words
Better than bitmaps, $O(N)$ bits where $N = \text{max element}$

What do we have to pay to get this savings?

Answers are approximate

If $x \in S$, filter will always say that $x \in S$
(cannot have “false negatives”)

But if $x \not\in S$, it might incorrectly say $x \in S$
(can have “false positives”)

False positive rate

Choose a random x that is not in your set S

What is the probability that your filter incorrectly says $x \in S$?

Called the “false positive rate”

We want it to be small, so we will use ε as notation

Typically known when we initialize filter structure, used to determine its structural parameters

Often (but not always) ok to assume constant, e.g. $\varepsilon = 0.1$
When are filters useful?

If processing non-members is easier and you expect many of them

Filter can be small enough to fit in cache ⇒ fast
Use slower exact set data structure to check matched elements
Few false positives ⇒ few unnecessary calls to exact structure
When are filters useful?

If memory is limited and some false positives are harmless

Example: Access control for private internet server

Use filter on firewall to only allow whitelisted clients through

Firewall needs only small memory for filter

Server can handle smaller volume of non-clients that get through
Comparison of filters: Bloom filter

[Bloom 1970]; ≈ 28k other publications

Widely implemented, practical

Storage: $1.44n \log_2 \frac{1}{\epsilon}$ bits
larger than optimal by the 1.44 factor

Membership testing: $O(\log 1/\epsilon)$ time

Can add but not remove elements
Comparison of filters: Cuckoo filter

[Fan et al. 2014]; \(\approx 1600 \) other publications

Implemented and practical,
better in practice than Bloom

Storage: \((1 + o(1))n \log_2 \frac{1}{\varepsilon} \) bits, optimal!

Membership testing: \(O(1) \) time
(with good locality of reference: works well with cache)

Can add and remove elements

Storage bound requires \(\varepsilon = o(1) \)
bigger sets need to have smaller false positive rates

(Some sources exaggerate this requirement by saying that
“in theory, Cuckoo filters do not work”)
Comparison of filters: Recent alternatives

Xor filters: [Graf and Lemire 2020]
Binary fuse filters: [Graf and Lemire 2022]
Fast, optimal storage for constant error rates, not dynamic

Quotient filters: [Pandey et al. 2017]
Morton filters: [Breslow and Jayasena 2020]
Vector quotient filters: [Pandey et al. 2021]
Similar design and performance to cuckoo filters
Quotient has least space; vector quotient is fastest
Bloom filters
Main idea of Bloom filters

Two parameters, \(N \) and \(k \), to be chosen later

Store a table \(B \) of \(N \) bits, initially all zero

Construct \(k \) hash functions \(h_1(x), \ldots h_k(x) \)

To add \(x \) to the set, set its bits to one:
\[
B[h_1(x)] = B[h_2(x)] = \cdots = B[h_k(x)] = 1
\]

To test membership, check that all bits are one:
\[
\text{for } i = 1, 2, \ldots k:\n\quad \text{if } B[h_i(x)] = 0:\n\quad \quad \text{return False}
\text{return True}
\]

\(B \) is just the bitmap representation of the set of hashes of elements!
Example of Bloom filter

Suppose \(N = 9 \) and \(k = 3 \) with hash functions mapping \(a \rightarrow 0, 3, 4; \ b \rightarrow 1, 5, 7; \ c \rightarrow 2, 3, 5; \ d \rightarrow 1, 4, 8; \ e \rightarrow 0, 3, 5 \)

Initially \(B = b_8 b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0 = 000 \ 000 \ 000 \)

Add \(a \), setting bits 0, 3, 4: \(B = 000 \ 011 \ 001 \)

Add \(b \), setting bits 1, 5, 7: \(B = 010 \ 111 \ 011 \)

Add \(c \), setting bits 2, 3, 5: \(B = 010 \ 111 \ 111 \)

Test membership for \(d \): \(b_1 = b_4 = 1, \ b_8 = 0 \) \(\Rightarrow \) return False

Test membership for \(e \): \(b_0 = b_3 = b_5 = 1 \) \(\Rightarrow \) return True

This is a false positive!
Bloom filter analysis

Let f be the fraction of bits that are one \Rightarrow
(by random hash assumption) false positive rate $\varepsilon = f^{k}$

Can’t use Chernoff bound (bits are not independent of each other)
but related Azuma–Hoeffding inequality $\Rightarrow f \approx E[f]$
Linearity of expectation $\Rightarrow E[f] = \text{Pr}[\text{any given bit is one}]$

\[
\text{Pr[bit is 1]} = 1 - \text{Pr[same bit is 0]}
= 1 - \text{Pr[all hashes of elements miss that bit]}
= 1 - \left(1 - \frac{1}{N}\right)^{kn}
= 1 - \left((1 - \frac{1}{N})^{N}\right)^{kn/N}
\approx 1 - \left(\frac{1}{e}\right)^{kn/N}
\]
Simplifying assumptions: Suppose we already know N

Let’s try plugging fractional values of k into the calculation (even though in the actual data structure it must be an integer)

What choice of k gives the best false positive rate ε?

Turns out to be: k that makes fraction of ones be $f = 1/2$

(Can prove by calculus, but intuitive reason: because then the Bloom filter has the highest possible information content)

\[
f = \frac{1}{2} \quad \Rightarrow \quad 1 - \left(\frac{1}{e}\right)^{kn/N} = \frac{1}{2} \quad \Rightarrow \quad N = \frac{kn}{\log 2}
\]

With $f = 1/2$, $\varepsilon = 1/2^k$ giving $k = \log_2 \frac{1}{\varepsilon}$ and $N = \frac{n \log_2 1/\varepsilon}{\log 2}$
Bloom filter summary

For sets of size n, with desired false positive rate ε:

Choose number of hash functions $k \approx \log_2 \frac{1}{\varepsilon}$

Choose bit array size $N \approx \frac{n \log_2 \frac{1}{\varepsilon}}{\log 2} \approx 1.44n \log_2 \frac{1}{\varepsilon}$

Store bitmap set of hashes of elements

Additions and membership tests take time $O(k)$, which is $O(1)$ for $\varepsilon = \text{constant}$

Can’t remove any element because we don’t know which of its bits are shared with other elements and which are used only by it
Cuckoo filters
Main idea

Use a hash function f to compute a short “fingerprint” $f(x)$ for each element x

Store fingerprints, not key-value pairs, in a cuckoo hash table (each fingerprint can go in one of two possible home cells)

Saves space because fingerprints use fewer bits than full elements
Basic operations

Test if x is in set:
Check whether either of the two cells for x contains $f(x)$

False positive:
Some other element collides with x in both location and fingerprint

Insert x:
(Allowing > 1 fingerprint/cell to get load factor near one)
Add fingerprint $f(x)$ to home cell for x
If fingerprints overflow, insert recursively to second home cells

Delete x:
Remove fingerprint from one of its two homes
Difficulties

When we move a fingerprint $f(x)$ to its other cell, we don’t know which element x generated it
\Rightarrow compute new cell using only current cell and $f(x)$

Fingerprints in any one cell can only go to a small number of other cells (as many as the number of different fingerprints)
\Rightarrow the two cells for x cannot be chosen independently

Cuckoo hashing analysis depends on independence of pairs of cells
\Rightarrow we need to prove that this works (all fingerprints can be inserted) all over again, without using independence
How to find the two homes for a fingerprint

Original version:

Choose three hash functions h_1, h_2, and f

Map each element x to fingerprint $f(x)$
with two homes $h_1(x)$ and $(h_1(x) \text{xor } h_2(f(x)))$

When we see fingerprint f in cell with index i
its other home cell has index $(i \text{xor } h_2(f))$

We don’t need to know the x that generated it!

Works well in practice (up to same load factor as cuckoo hash)

No mathematical proof that it works!
How to find the two homes for a fingerprint

Simplified version [Eppstein 2016]:

Choose two hash functions h_1 and f

Map x to fingerprint $f(x)$ with homes $h_1(x)$ and $(h_1(x) \text{xor } f(x))$

Effectively partitions big cuckoo hash table into many smaller ones, within which pairs of home cells are chosen independently

Can reuse random-graph analysis from cuckoo hashing!
How much space do we need?

Assume k bits per fingerprint, then

$$\Pr[\text{false positive}] \leq (\# \text{ elements that could collide}) \times \Pr[\text{collision}]$$

$$= n \times \Pr[\text{same } h_1(x)] \times \Pr[\text{same } f(x)]$$

$$= n \times O \left(\frac{1}{n} \right) \times \frac{1}{\# \text{ fingerprints}}$$

$$= O \left(\frac{1}{2^k} \right).$$

Invert this: false positive rate ε needs $k = \log_2 \frac{1}{\varepsilon} + O(1)$

Insertion analysis needs k to be nonconstant ($\varepsilon = o(1)$)

⇒ can replace $+O(1)$ in formula for k by $\times(1 + o(1))$

Cuckoo load factor near one ⇒ multiply space by $(1 + o(1))$

So for false positive rate $\varepsilon = o(1)$, need $(1 + o(1))n \log_2 \frac{1}{\varepsilon}$ bits
Summary
Summary

- Set operations and their implementation in Python and Java
- How to combine sets using single-element operations
- Exact representations of sets using hash tables
- Exact representations of sets using bitmaps
- Filters: approximate representations of sets
- False positives versus false negatives
- Bloom filters and cuckoo filters
- Nonexistence of good data structures for disjointness

