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Main idea



What is a mesh?

Input: a 2d or 3d region in which we want to simulate airflow,
heat, strain, or other physical properties

Mesh: subdivision into simple shapes such as triangles: “elements”



Finite element analysis

Once we have a mesh, solve a big system of linear equations:

Variables: air velocity and density within each triangle

Boundary conditions: constant velocity and density far from wing

Equations: Relate flows and densities between neighboring
triangles (e.g. total air in must equal total air out)

Solution: Steady state flow



How does the mesh affect this analysis?

Number of triangles ⇒ size of system of equations

Fewer triangles: faster

Size of elements compared to size of features of input shape and
solution flow ⇒ accuracy of simulation

Smaller triangles: more accurate

Shape of elements ⇒ “stiffness” of system of equations
⇒ speed and accuracy of iterative numerical methods

Less-sharp triangles: easier to solve

Precise relation of shape to stiffness not well understood



What shapes should we aim for?

Possibility 1: Avoid sharp (near-zero) angles

Possibility 2: Sharp ok, but avoid wide (near-π) angles

Possibility 3: Whether a shape is good or bad depends on the
solution values near it, and not on the shape itself



Lower bounds on numbers of triangles



Simple shapes may require many triangles

If we forbid sharp angles (< ε for some ε > 0)
then 1× x rectangle requires Ω(x) triangles

even though n = 4 = O(1)

Corollary: Number of triangles cannot be a function only of n

and we cannot get a time bound depending only on n

[Bern et al. 1990]



Local feature size

Radius of smallest circle that intersects two non-touching polygon
edges



Area vs local feature size

Claim: In a triangle mesh with no sharp angles (all angles > ε),
each point in a triangle of area A has local feature size Ω(

√
A)

Ideas of proof:

I No sharp angles ⇒ all sides of triangle have length Ω(
√
A)

I If any point of the triangle is near two disjoint features ⇒
a point on a side triangle side is near the same two features

I For the adjacent triangle on that side to avoid extending past
those features, it would need a sharp angle



Lower bound on number of triangles

For a domain (polygon) D, In a triangle mesh of D with no sharp
angles, let N be the number of triangles in the mesh, and let a(p)
be the area of the triangle containing any point p.

Then the integral of the constant function 1/area over a single
triangle is one, and combining with the inequality of area versus
local feature size gives:

N =

∫
D

1

a(p)
dx dy = Ω

(∫
D

1

lfs(p)2
dx dy

)
.

Corollary: If we can find a triangulation where every triangle has
diameter at least proportional to the local feature size, it will
automatically use an optimal number O(N) of triangles

[Ruppert 1993]



Quadtree-based meshing



Balanced quadtree

Construct a quadtree normally (recursively split overfull squares)

Then, while any square has neighboring squares < 1
2 its size, split it

If a square of side length s is split, it must be within distance 2s of
a smaller square of the original quadtree



Triangulating a balanced quadtree

Add a vertex at the center of each square

Connect it to the vertices on the boundary of the square

All triangles are isosceles right triangles, angles 45◦ and 90◦



Quadtree-based meshing

I Surround whole polygon in
a bounding square

I Recursively subdivide
squares crossed by
non-touching edges

I More subdivision + messy
case analysis for squares
crossed by boundary

I Balance

I Triangulate empty squares



Quadtree mesh analysis

Mary Poppins:
“practically perfect in every way”

All angles bounded away from 0 and 180◦

(except for sharp angles of input polygon)

All triangles have diameter proportional to
local feature size ⇒ O(N) triangles, within

a constant factor of optimal

Construction takes time linear in mesh size

[Bern et al. 1990]



Theoretically perfect, but practically?

Constant factor in O(N) bound on number of triangles is large

Using a quadtree causes many triangle edges to be aligned with
coordinate axes or diagonal, alignment may lead to unwanted bias

in simulations performed with these meshes



Incremental Delaunay meshing



Constrained Delaunay triangulation

Like Delaunay triangulation,
but forced to include all edges
of input polygon

Dual of Voronoi diagam for
distance along curves inside
polygon

Empty circle property of
triangles: stuff separated from
the triangle by a polygon edge
doesn’t count
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Incremental Delaunay meshing

Start with constrained
Delaunay

While some triangle ∆ has a
too-sharp angle:

I Find center c of circle
through vertices of ∆

I If c is visible to ∆, add c
to input

I Otherwise, add the
midpoint of the boundary
edge that blocks visibility



Incremental Delaunay analysis

Same theoretical guarantees as quadtrees on avoiding sharp angles
and using optimal number of triangles

Variations of this method have been proven to generate meshes
with minimum angle ≥ 26.5◦

In practice, angles greater than 30◦ are often possible

Avoids the practical issues of quadtree meshing

[Chew 1993; Ruppert 1993; Shewchuk 2014]



Mesh smoothing



The main idea

Even for meshing algorithms that guarantee shape and number of
triangles is good, we can often do better

Move interior vertices of the mesh one at a time to better positions

No quality guarantees but if we start with a good mesh and are
careful to only make improvements, it will stay good



Lloyd’s algorithm

Repeatedly replace each point
with the centroid of its Voronoi
cell

(But don’t repeat too often to
preserve density gradients)

No guarantee on quality but
typically converges to
near-equilateral-triangle mesh

[Lloyd 1982; Du and Gunzburger

2002] Left: before; right: after
Figure from Du et al.



Optimization-based mesh smoothing

For each point (one at a time):

Find star-shaped polygon
formed by its neighboring
triangles

Choose new position in kernel
of polygon, optimizing quality
of its triangles

For many natural quality
criteria, the problem of finding
the optimal new position is
LP-type

[Amenta et al. 1999]



Non-obtuse triangulation



Right angles are special

Non-obtuse ⇒ No vertex can be interior to the semicircle on the
opposite side ⇒ Diameter circle of each edge is empty ⇒ Delaunay

Numerical properties of system of equation (“M-matrix”)



Right angles are special in another way

We can get meshes with only O(n) triangles and all angles ≤ 90◦

We already saw that if we want all angles ≥ ε,
# triangles depends on geometry not just on n

But if we try to get all angles ≤ 90◦− ε, we also get all angles ≥ 2ε

⇒ complexity cannot be linear



Main idea

If it’s a non-obtuse triangulation, it will be a Delaunay triangulation

Therefore, there will be lots of empty circles

Add the circles first, then build the triangulation around them



Packing circles into a polygon

Protect vertices Split regions with > 4 sides



Non-obtuse triangulation

Add radii from centers to points of tangency

Messy case analysis: All ≤ 4-sided regions can be triangulated

Result: non-obtuse triangulation, O(n) triangles [Bern et al. 1995]
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