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Three related concepts of hierarchy:

1. Maximal family of sets, each two disjoint or subsets of each other
{}, {A}, {B}, {C}, {D}, {E}, {A,B}, {D,E}, {A,B,C}, {A,B,C,D,E}
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2. Family of nested 
curves such that each 
region between them 
has three boundaries

“pants decomposition”

3. Binary tree
having elements as its leaves
(evolutionary tree, phylogeny,

dendrogram)
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How to hierarchically cluster a data set?

Heuristic approach:
Build tree by sequence of locally plausible decisions
Agglomerative (bottom up): merge pairs of clusters
Divide and conquer (top down): split clusters into pairs

Statistical approach:
Carefully model Bayesian likelihoods of trees
Heuristic search (e.g. Metropolis) for high likelihood

Bioinformatic approach:
There is a correct evolutionary tree
Find methods that converge to it with enough data

Algorithmic approach:
Define simple quality metrics for trees
Find fast algorithms with guaranteed quality
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Quality measures:
Sum of sizes of clusters

For points in arbitrary metric spaces:

size = diameter (not studied here)
or
size = length of minimum spanning tree

For points in Euclidean or hyperbolic planes:

size = convex hull perimeter
(proportional to diameter for Euclidean points)
or
size = length of curve in pants decomposition
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Bisectable Trees

Define a tree to be i-bisectable if
it is formed by joining two (i-1)-bisectable trees by an edge

0-bisectable: single vertex
i-bisectable: has 2i vertices

Claim:
For the metric of distances in any unweighted graph G

there is a hierarchical clustering with
∑(cluster MST lengths) = i•2i

if and only if G has a bisectable spanning tree
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NP-Completeness Proof

The subgraph in
the upper left
can be covered
by disjoint paths
of length two
if and only if...

...the graph formed
by adding the 

vertices at the left
and bottom

has a bisectable
spanning tree

Conclusion:
Testing whether a metric space has a clustering

with small total spanning tree length is NP-complete
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Algorithm for Approximate Clustering
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1. Construct a
minimum spanning
tree of the metric

3. Remove an edge,
form two subtrees with
weight ≤ 2/3 the weight 
of the whole tree

2. Split vertices
by length-0 edges
so all degrees ≤ 3

4. Continue
splitting subtrees
recursively until 
remaining clusters 
are single points
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Digression: Some Coding Theory

“Prefix-free binary code”: binary tree with items as leaves
(in our application, items = MST edges, not points!)

Shannon: if items have probabilities pi, average path length ≥ ∑ pi log2 1/pi
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This tree has average path length 1 + ∑ pi (2 floor(log2(i+1))

Conclusion: 1⁄2 + ∑ pi floor(log2(i+1)) ≥ 1⁄2 ∑ pi log2 1/pi
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Quality Guarantees for our Approximation Algorithm

Lower Bound:

Best possible level-i clustering formed by removing 2i-1 largest edges from MST
Therefore, summing over all levels in the clustering, with W = ∑ wi,

weight of best hierarchy ≥ ∑ wi (1 + floor(log2(i+1))) ≥  1⁄2 ∑ wi (1 + log2(W/wi))

Upper Bound:

Each time we split a tree, weight of subtrees goes down by 2/3 factor
Each edge can only appear in log3/2(W/wi) subtrees before being split

Therefore, weight of our clustering ≤ ∑ wi (1 + log3/2(W/wi))

Conclusion:

Our algorithm has approximation ratio ≤ 2 log3/2 2 ≈ 3.42
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Two different Euclidean clustering problems

Pants Decomposition

Cluster boundaries can be
nonconvex curves,

must not cross each other

Minimum Sum of Convex Hulls

Cluster boundaries are the
convex hulls of each cluster,

may cross each other

For this point set, the optimal min-sum clustering has overlapping clusters

So the two problems can have different solutions

We provide a single approximation algorithm for both problems
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Quadtree:
Repeatedly subdivide square

into four qudrants
until each quadrant contains one point

Compressed Quadtree:
Keep only quadtree squares

that have points in ≥ 2 quadrants

Our clustering algorithm:
Form a cluster for each compressed quadtree square

(or pairs of sibling squares when parent has ≥ 3 children)
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Quadtree Clustering Analysis

Local feature size lfs(x) = distance from x to 2nd nearest input point

Total length of (compressed) quadtree ≈ integral 1/lfs

Proof idea: perimeter of unsubdivided square is O(integral 1/lfs)
charge subdivided squares with no unsubdivided children equally among children

charge subdivided squares with a subdivided child to that child

Total hull perimeter of any clustering ≥ const • integral 1/lfs

Proof idea: sum(cluster perimeter) ≈ sum(integral within cluster of 1/perimeter)
= integral (sum of 1/perimeter for containing clusters)

< integral (1/perimeter for smallest containing cluster) ≈ integral 1/lfs

Conclusion: quadtree is constant factor approximation to optimal

Based on an idea of Jim Ruppert for counting triangles in meshes using integral 1/lfs2
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Hyperbolic Geometry

Uniform space with
constant negative curvature

Infinitely many parallel lines
to a given line through any point

Small patches are
approximately Euclidean
but larger areas are not

Triangles have area ≤ π
but circle area ≈ exp(radius)

For any simple closed curve
area ≤ const • perimeter
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Key property:
If a point set has all points at least constant distance apart

Then convex hull perimeter ≈ minimum spanning tree length

Proof idea:
Show each of the following quantities is at most proportional to the next

MST length
for original points

Steiner tree of
maximal

∂-separated set

Steiner tree of
original points

MST of maximal
∂-separated set

Area of dilated
convex hull

Perimeter of
original convex hull
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Hyperbolic Approximation Algorithm

1. Find maximal
∂-separated subset,
group other points into 
clusters around them

2. Approximate clusters 
by Euclidean planes and 
apply quadtree method 
in each cluster

3. Use the MST-splitting
algorithm for general 
metric spaces to group 
unions of clusters
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Conclusions

Fast constant-factor approximations to several natural clustering problems

Still open:

Computational complexity of exact solution for geometric problems?

Better approximations?

Other objective functions?


