Chapter 1: The Challenges of Networked Games

Magda El Zarki

Dept. of CS

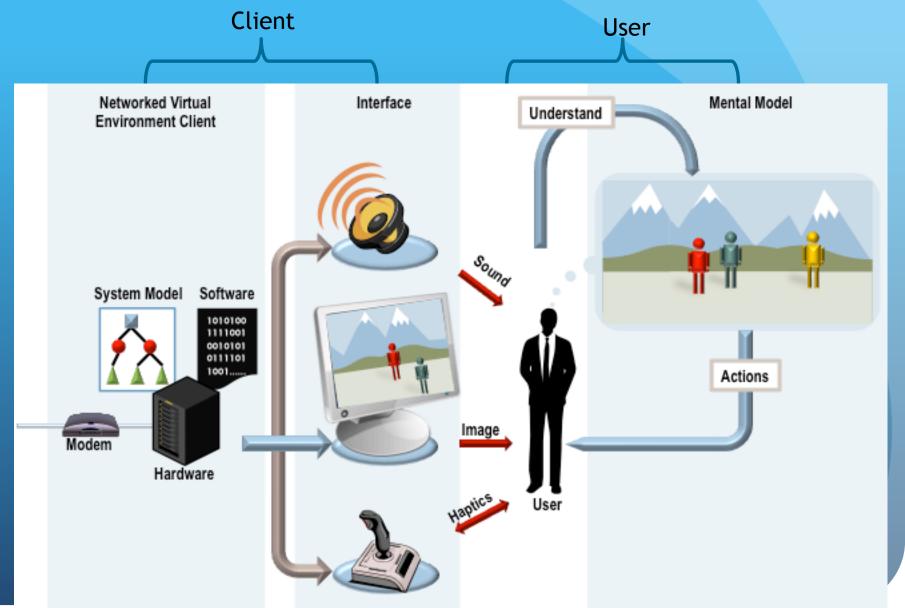
UC Irvine

elzarki@uci.edu

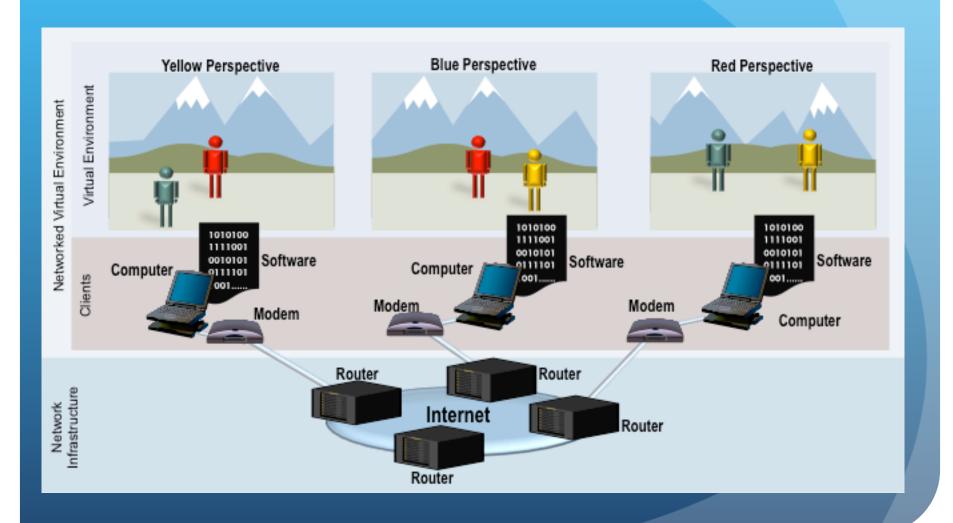
http://www.ics.uci.edu/~magda

Networked Virtual Environments (NVE)/Networked Games (NG)

- There are many genres of games
 - FPS
 - RPG
 - Simulations
 - Sports
 - RTS
- Each genre has different system requirements


Common Themes in Games

- 3D virtual environment
- Real-time changes
- Collaboration with other users
 - Representation of users in the world (typically as avatars)
 - Text communication
 - Voice
- Virtual environment might mirror a real place but typically is a fantasy place


Common Themes

- One client is usually responsible for generating the view for one user
- A set of clients creates the illusion of a shared space
- "Illusion" because
 - Virtual environments can involve detailed models
 - Information about changes in models takes time to travel across communication links

Virtual Environment: Client and User

Networked Virtual Environment

Consistency and Plausibility

- Local plausibility is the appearance of consistency of only local actions
- Shared plausibility is the appearance of properties being the same as observed by users
 - Objects that are in the background need not be consistent

Definition of MultiPlayer Online Game (MPOG)

- By definition an online/network game must involve a network a digital connection - that connects two or more computers
- Multiplayer games are not necessarily networked games. Many early multiplayer games were hosted on one computer with players taking turns to make moves on a shared or split screen

And.....

- Not all networked games are multiplayer. A user could be playing a game that is on a remote server without engaging any other players
- Strictly speaking it is a software system that allows multiple users to interact with each other in real-time from different locations, usually remote, and preferably with immersive graphics

Large, distributed, real-time, interactive system

MPOG by Definition MUST

Have a Network and Involve Multiple players

Characteristics of MPOGs

- A shared sense of space
- A shared sense of presence
- A shared sense of time
- Communication channels
- Ability to manipulate the environment

Why NVEs are not Standard Network Applications

- Unlike video/audio streaming, or web browsing, in an NVE or NG client, networking is NOT the main activity: rendering probably is
- Some information changes very quickly and smoothly
 - E.G. player positions
- Can incorporate other web-enabled media
 - Audio/video
- Often require bulk download of assets

Components of MPOG Systems

- Graphics Engines and Displays, Physical Engine
 - Real time rendering, collision detection, opaqueness
- Control and Communication Devices
 - Input devices for game control mouse, keyboard, joy stick, etc.
 - Input devices for communication keyboard, microphone, camera, etc
- Processing Systems
 - System Architecture Client Server, P2P, Hybrid, Mobile
 - Realtime distributed system shared dynamic space
- Data Network
 - Wireless vs Wireline
 - Last mile

Challenges of MPOG Design & Development

- Data Network
- Heterogeneity
- Distributed Interaction
- Real-time system design and resource management
- Failure Management
- Scalability System Architecture

Data Network - Bandwidth

- More users means more information that needs to be communicated
- Higher end/complex devices means more information that needs to be communicated
- The network is a limited resource that is shared by many
- Have to work within the constraints of the communication system
- Control over the network resource is limited invariably non existent unless the service is on a paid VPN (Battleping (battleping.com), WTFast (www.wtfast.com), Pingzapper (pingzapper.com)), which can give some quality of service guarantees

Heterogeneity

- Network heterogeneity -
 - Not all users are connected to the network via the same access link
 - Some users may be more distant from the server than others require more hops to send the data
 - To maintain fairness drop to the lowest common denominator (LCD), but that could impact playability for better connected users
- Graphics and processing heterogeneity -
 - Users have very different systems that can compute, display and generate different types of visual data
 - Choosing what to display and what to omit is not an easy task as it could create an unfair advantage - e.g., not displaying foliage could make some players position visible in a shooting game that normally would not be

Distributed Interaction

- A networked game must support accurate collision detection, agreement, and resolution among participants
- Dynamic state Accurate collision detection is difficult because at any given point in time, no user has accurate information about the other users' current positions
- Network delay means that all received information is out-of-date. Messages are delayed, incur different delays, arrive out of order, lost
- Conflicts one user might conclude, based on stale information, that a collision occurred, while, in fact, the other user actually moved to avoid the collision during the network delay period.
- **Distributed acoustic** information is also impacted as position could impact the sound effects at a user's device

Real-Time System Design and Resource Management

- The system needs to be **responsive** react to a user's input local plausability
- The system needs to process messages carrying position and action information from other users to maintain a "pseudo" consistent view shared plausability
- Physics modeling and collision detection must be performed in real-time to provide a realistic environment for game play.

Failure Management

- Network failures users are disconnected from the other players
- Host/Server failures lost state and service for a multitude of players
- Host/Server closure current players are OK, but new incoming players maybe prevented from joining the system
- Part failures some aspect of the system is malfunctioning and may not stop play but could affect the quality of play, e.g., the audio server

Scalability

- Two forms of scalability:
 - Number of end hosts connected simultaneously to the system
 - Number of game entities that are part of the game environment that can change over time
- Both forms, when they go up in number, will require lots more processing power and network resources to communicate game state for consistent game views

Intricacy of a MPOG System

- Very complex designer/developer does not have control over all aspects of the system, e.g., the data network, the end user devices, etc.
- Engineering tradeoffs balance the system and make the game "playable" at all levels for a very heterogeneous environment.
- Many components other than the direct gaming components databases, security, redundancy, accounting,.....