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Abstract of the Dissertation 

An Analysis of the Hypertext Versioning Domain 

By 

Emmet James Whitehead, Jr. 

Doctor of Philosophy in Information and Computer Science 

University of California, Irvine, 2000 
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Hypertext captures the implicit and explicit relationships between intellectual works, storing them as 

data items within the computer, thus allowing them to be navigated, analyzed, and visualized. The 

evolution of information artifacts such as software development projects, large document collections, and 

collections of laws and regulations is characterized both by change to the works and their relationships, and 

the desire to record this change over time. Hypertext versioning is concerned with storing, retrieving, and 

navigating prior states of a hypertext, and with allowing groups of collaborating authors to develop new 

states over time.  

Several systems provide hypertext versioning services; this dissertation provides a domain model of 

these systems, comprised of domain terminology, a taxonomy, reference requirements, a data modeling 

model, and design spaces associated with the requirements. This work offers several significant 

contributions. It provides a systematic organization of the preponderance of information concerning 

hypertext versioning systems, including the first taxonomy of such systems, and a comprehensive 

collection of their requirements. A detailed model of containment is provided; its use highlights that 

containment is inherent in hypertext systems, and a full understanding of hypertext versioning system data 

models requires an understanding of their containment relationships. The containment model allows the 

similarities and differences in hypertext versioning systems to be examined in a consistent manner. 

 The design space for persistently recording revision histories employs a three-layer model that 

separates of the abstract notion of revision history, shared by all state-based approaches, from the high-

level overview of each versioning approach, which is in turn distinct from its specific concrete 
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representation. The design space for link versioning is shown to be an application of the three-layer model 

for versioning works. Building on the containment model, and the design spaces for versioning works and 

links, the structure design space concisely describes a range of techniques for recording the history of 

hypertext structures. Parameters of the structure design space include the abstractions contained within the 

structure container, the versioning design space choice for each versioned abstraction, the containment 

choice for each container/containee pair, and the location of any revision selection rules. 
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Chapter 1 

Introduction 

1.1 Hypertext, and Hypertext Versioning 

In the absence of hypertext, our data is tightly packaged. Documents, spreadsheets, presentations, 

source code, and databases, all exist wrapped up in their snug, independent files, each datum an island. 

Separating information content from its physical or logical container, it is clear that contents are anything 

but isolated. Immersed in a bramble of associations, the contents make explicit references via annotation, 

footnote and citation, and implicit references via similarity (or difference) in content, style, location, 

history, or goal. Standards, institutions, and community norms impact form and structure in almost 

invisible ways, as with academic citation style, and publication-specific length and formatting rules. 

Michael Foucault captures this distinction of unitary package and boundary-free content when he writes: 

The frontiers of a book are never clear-cut: beyond the title, the first lines, and the last 
full stop, beyond its internal configuration and its autonomous form, it is caught up in a 
system of references to other books, other texts, other sentences: it is a node within a 
network. … The book is not simply the object that one holds in one’s hands; and it cannot 
remain within the little parallelepiped that contains it: its unity is variable and relative. 
[71], p. 23 

The notion of a singular document relating to other documents is ancient. Religious texts across 

cultures have included and attracted annotations, texts providing discussion and commentary on holy 

scriptures. Roman jurists referenced other legal decisions and precedents precisely, though other Roman 

authors only rarely referenced the authors, and less frequently the titles, of works on which they based their 

texts. More typically they quoted passages from memory, often introducing a slight change to show this. 

Later, in the 12th century schools that evolved into universities, medieval scholars developed precise and 

standardized reference forms [82], p. 26-30. The modern footnote, distinct from annotation and citation, 
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can be traced back to at least 1696, and the publication of “Historical and Critical Dictionary” by Pierre 

Bayle, an ambitious volume that sought to document all errors and omissions in existing historical 

reference books [82], p. 192-197. By the middle of the 20th century, the practice of documents containing 

footnotes, as well as annotating and citing other documents, was common in most branches of academia. 

In 1945, Vannevar Bush made the critical leap that inter-document relationships could be mechanized, 

stored in an optical, electrical, and mechanical device named the Memex, thereby allowing a reader to 

quickly follow document associations, nimbly hopping from one document to the next near the speed of 

thought [25]. Though the proposed Memex machine employed microfilm, it was obvious to future 

researchers that the computer’s ability to flexibly manipulate text made it the ideal medium for document 

interlinking, creating texts that are more than just text: hypertexts. A computer can store large volumes of 

information compactly, provide searching over the information, and, when combined with a network, can 

import and export this information. When following a relationship, it can highlight the related text, often by 

amending the original document to underline regions that are part of relationships. Relationships in 

computer storage can themselves be analyzed, displayed separate to their documents, and link trails can be 

exchanged among interested users. The computer makes it easy to change documents and the network of 

relationships between them, simultaneously a blessing and a curse. 

Hypertext captures the implicit and explicit relationships between individual files, making them real 

data objects that can be acted upon by the computer. But, this act of capturing the relationships breaks 

down the packaging of information into individual files. Since files are dynamic, changing, a tension 

develops between two views: the one presented by current tools where users have the impression of acting 

on files in isolation, and the hypertext view of files participating in rich networks of relationships where 

each modification can cause changes that propagate into the network. 

Consider software engineering. A large software project consists of many thousands of files, 

comprising requirements and design documents, source code, test cases, build files, bug reports, memos, 

email, and Web pages. There are many relationships between these files, such as a source file that satisfies 

a requirement stated in another document, or a test case that examines whether the code does indeed meet 

that requirement. In fact, software project files have an enormous number of relationships between them, 

and hence the project is really more a complex information artifact than a mere collection of files [70].  
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Chimera [7] and DHM [84] are two examples of hypertext systems whose goal is to capture the 

relationships between software project files. Once these relationships are in the hypertext system, they 

allow for rapid navigation to related files, as well as visualization and analysis of the relationship network. 

The act of instantiating the relationships makes concrete the effect that changing a single software file can 

have on its network of relationships, since modifying a file can create new relationships, and can alter or 

destroy existing ones.  

Software engineering is a domain where best common practice involves maintaining previous states of 

the project. The discipline of software configuration management has developed to address the difficult 

issues of how best to record and compose these previous states, allow teams of developers to work on them 

without clobbering each other’s work, guide and audit the software development process, and produce 

statistics based on this historical data [39]. However, since software development projects are currently 

divided into files, configuration management systems typically provide their features for files. Once 

hypertext functionality is added to a software development project, there is an immediate tension between 

file-oriented configuration management, and network-oriented hypertext functionality. 

Think of a collection of project files whose previous states have been saved.  In the absence of 

hypertext, there are still relationships between these files, but they are not captured in a hypertext system. 

By picking and choosing individual revisions of each file, it is possible to create arbitrary compositions of 

file revisions, even though some compositions may have relationships that are inconsistent. However, once 

the relationships are made into an explicit hypertext, this is no longer the case. Since the relationships 

change over time, they too must have their previous states recorded. The hypertext links furthermore make 

it obvious when picking a single file revision causes a hypertext relationship to become inconsistent.  

In hypertext parlance, a node, or object, is a chunk of data that can be stored as a file, a database 

record, or even, as is the case with Web pages in embedded devices, a sequence of read-only memory. 

Dynamic objects can be arbitrary computational processes, a common occurrence on the Web. 

Relationships between objects are called hypertext links. Though the detailed specifics of links vary across 

systems, in general a hypertext link associates two or more objects, providing a means to navigate quickly 

between them. Links can be either to entire objects, or to a specific region, called an anchor, within an 

object. At their most abstract, anchors and links can both be arbitrary computational processes, one 



  4 

example being an automatic link between any word in a document, and its entry in a dictionary. This 

document concentrates its discussion primarily on non-dynamic objects, links, and anchors, reflecting both 

the fact that the preponderance of existing hypertext versioning systems do not provide versioning 

operations to handle such dynamism (an exception being [100]), and that the problem is inherently 

complex. 

A collection of objects, links, and anchors comprises a hypertext document, more concisely known as a 

hypertext. Hypertext versioning is concerned with storing, retrieving, and navigating prior states of a 

hypertext, and with allowing new states of the hypertext to be created by groups of collaborating authors. 

Hypertext versioning capability has a pervasive impact on a hypertext system. It affects the storage of 

objects, anchors, and links, the way people collaborate using the system, how navigation occurs, the 

naming of objects, and can reduce system performance. Hypertext versioning is an expensive proposition, 

since adding this functionality directly increases the complexity of a system for both implementers and 

users. Given its scope of impact and complexity cost, it is reasonable to ask whether the functionality is 

worth the trouble. What, exactly, can hypertext versioning be used for? High-value use cases include: 

• Software engineering. As mentioned above, capturing the evolution of development files, as well 

as the relationships between them provides significant advantages for software development. 

However, due to the prevalent use of versioning and configuration management in software 

development environments, in order to provide hypertext support, the hypertext structure must 

also be versioned. The fact that existing hypertext systems for software development do not 

version links is a significant factor preventing their wider use in this domain. 

• Document management. Documents too have a wide range of relationships between them, and 

can benefit from using hypertext to make them explicit so they can be analyzed, visualized, and 

navigated. Document management systems today provide the ability to store important document 

states, thus supporting collaboration and backtrack. Hence, just as for software engineering, 

hypertext support for document management requires versioning of structure in concert with the 

versioning of documents.  

• Legal.  Laws, regulations, and tax codes, are an important set of complex information artifacts, 

chock full of interrelationships. It is important to store and retrieve previous document revisions 
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because in legal systems that prevent ex-post-facto laws, the version of a law that affects a case is 

the one in effect at the time of an infraction. This is especially relevant for tax codes, which 

change frequently. Hypertext support can make it easy to navigate to related laws, precedents, 

regulations, and codes. In this domain as well, adding hypertext support requires hypertext 

versioning capability. 

• Archival: Since the Web is an important cultural artifact, the development of the Web should be 

recorded as it evolves. Right now, though the Internet Archive group is archiving the Web 

[32,105], only preliminary research has been performed on creating a “way back” machine that 

allows a user to dial in a specific time, and then be able to navigate around as if they were 

interacting with the Web as of that day [66]. Archiving fills legal needs too. Regulated firms, such 

as insurance or brokerages that advertise or sell their products via the Web, have an obligation to 

archive their web sites so they can recover previous states for use in lawsuits. 

• Auditing. During an audit, a team of auditors gathers and condenses information about a company 

to develop an independent opinion concerning the accuracy of its financial statements. Auditors 

create linkages between documents to create a network of content substantiation, in the process 

creating files called audit working papers [49]. Due to the collaborative nature of the task, the need 

to freeze a state of the company’s documents for analysis, along with the emergent understanding 

of the financial statements made by the company and the change this implies to inter-document 

linkages, the audit working papers, and the final audit report, hypertext versioning is necessary for 

the introduction of hypertext into financial audits. 

• Reference permanence. One solution to the common Web problem of dangling links (“404 Not 

Found”) is to ensure the linked-to information is always intact, by recording its prior states. In this 

way, link endpoints will always be present. 

In addition to its utility in these use cases, hypertext versioning research offers much to the long-term 

goals of building a better Web, and the convergence of collaborative repositories. 

At present, linking on the Web consists only of tags embedded in HTML. This is changing. The Xlink 

proposal [47] provides for linking between XML [24] documents, and Xlinks can be stored external to the 

documents they reference. The ability of open hypertext systems to link between arbitrary data types, 
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including legacy formats that support neither embedded HTML-style links, nor Xlinks, is another driver 

pushing the Web towards providing links that are stored separately from the data. Of course, these links 

will change over time, and will require version control. How best should this functionality be provided in 

the context of the Web? 

There is a growing convergence of functionality across multiple types of repositories that support the 

development of complex information artifacts, such as document management systems, configuration 

management systems, and Web content management systems. This convergence is most evident in the 

Web, with the proven track record of HTTP [68] and WebDAV [79] to map to a wide range of repositories, 

and with Delta-V [199] extending this to configuration management repositories as well.  These 

repositories today do not provide support for first-class linking, and it is an open question how they might 

provide the hypertext versioning combination of first class linking and version support in the future. Since 

there is no current research consensus on how best to provide this functionality, it is difficult to make a case 

for its standardization, since such standardization is probably premature.  

Today, hypertext technology has matured to the point where it is used widely to capture and express 

relationships in read-only information spaces. However, the benefits associated with adding hypertext 

capability to the collections of documents and artifacts in software engineering, document management, 

legal, and auditing highlight the utility of expanding hypertext use beyond read-only information spaces. 

Adding hypertext capability to these writeable information spaces necessitates engaging compatibility 

issues, such as interacting with legacy information stores and application programs. These issues have been 

a mainstay of the open hypertext literature, addressed in systems such as Chimera [7], and Sun’s Link 

Service [147]. However the interactions between hypertext, versioned data, and versioned containment 

structures, is much less understood. While there has been a slow but steady stream of research on hypertext 

versioning, the knowledge generated has been specific to the data model and system on which the research 

was performed, and is difficult to apply to different systems or problem areas. But, given the importance of 

versioning to domains such as software engineering and document management, the application of 

hypertext to complex information artifacts is limited by the absence of systematically organized knowledge 

concerning hypertext versioning.   
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Having identified the need for systematic hypertext versioning knowledge, how should this knowledge 

be organized? Since the goal of this knowledge organization task is the reuse of hypertext versioning 

concepts and techniques in multiple support environments for complex information artifacts, it is not too 

surprising that the answer should come from the Software Reuse community, in the form of domain 

analysis. Domain analysis provides a ready-made structure for organizing a large body of knowledge about 

a specific problem area, as well as a rich vein of articles and books providing tutorials, analysis, and 

examples of this technique. This dissertation performs an analysis of the domain of hypertext versioning, 

thereby building on the strong foundation of domain analysis. 

1.2 Domain Analysis 

Creating software out of reusable components, rather than modules tailor-made for a specific 

application, is a goal as old as Software Engineering itself [127]. Component-based software development 

yields many benefits, including decreased system development time and cost (although the initial 

development cost for reusable components is higher), reduced per-instance component cost due to the 

amortization of component development costs over multiple users, increased component robustness due to 

greater maintenance resources supported by multiple users of each component, and a wide range of 

general-purpose and domain specific components. Reusable components fall broadly into two categories, 

horizontal, and vertical. Horizontally reusable components are those that can be used across a wide range of 

application programs, with examples including data structures, common algorithms, and user interface 

toolkits. Vertically reusable components are tailored to a specific problem area, and can be reused in 

applications within that domain [102]. The Common Ada Missile Package (CAMP) ([26] as referenced in 

[156]) and the Avionics Domain Application Generation Environment (ADAGE) project [16] are two 

examples of vertical component reuse.  

Domain models are typically created during a process of domain analysis for the purpose of fostering 

vertical component reuse. One insight motivating the creation of domain models is that code alone is 

insufficient to generate reuse, since the analysis and modeling of the problem space is only partially 

reflected in the code itself. Furthermore, it is difficult to reconstruct those aspects of the problem space that 

are reflected in the code just by examining it [136]. Reuse is also hindered when individual components 
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have been constructed independently, without coordination, and cannot be used together due to 

architectural mismatch, such as differences in control assumptions, processing requirements, memory 

usage, etc.  Domain models increase opportunities for reuse because they allow components to be designed 

for a specific domain, to fit within a specific domain architecture. In domains that can be formally modeled, 

it is also possible to use program generation technology to automatically create domain components 

[136,16]. 

Domain analysis is fraught with specialized terminology, and some common terms are defined below: 

Domain. A coherent problem area [83].  

Model. An abstract representation of some process, phenomenon, or entity [131]. 

Domain model. A model of a domain, consisting of terminology used in the domain, a description 

and parameterization of the domain problem area, as well as a characterization of elements and 

relationships in the domain [184]. 

Reference requirements. A collection of goals concerning the functionality and behavior of 

applications in a domain.  

Domain terminology. Terms, and their definition, for significant concepts, abstractions and 

processes in the domain. 

In its original meaning, a domain is all of the lands controlled by a lord, that is, the realm of the lord 

[158]. When applied to ideas, domain is an analogy, where ideas are synonymous with land, and the ruler is 

the particular idea or abstraction. In this case, it is the idea that defines the portion of land under its rule, 

that is, the idea creates the space it rules. When applied to Software Engineering, a domain represents all of 

the possible aspects of a particular problem or task area. Following the domain-as-idea analogy, an abstract 

problem area defines a domain, creating a space of problem aspects, captured as a set of reference 

requirements. 

Automatic generation of components via program transformation motivated the original work on 

domain analysis and modeling. Jim Neighbors’ dissertation, “Software Construction Using Components,” 

[136] is generally credited with originating the concept of domain analysis, and domain modeling (for 

example, see [156], p. 48). However, in the related work chapter of his dissertation, Neighbors quotes 
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several motivating sources, including Julian Feldman, Tim Standish, and Peter Freeman at U.C. Irvine, and 

in this quote attributes to Bob Balzer the notion of creating a model of a problem domain: 

A model of the problem domain must be built and it must characterize the relevant 
relationships between entities in the problem and the action in that domain. [14], quoted 
in [136] 

However, Balzer himself does not take credit for the term, pointing instead to its use in Artificial 

Intelligence to discuss knowledge specific to a particular problem area—and perhaps amenable to capture 

in an expert system—as distinct from general knowledge. Even though the notion of a domain was in use 

within the Artificial Intelligence community, and the idea of domain modeling was “in the air” at U.C. 

Irvine and in the program transformation community in the 1970’s, Neighbors’ dissertation is clearly a 

watershed in terms of collecting the notion of domain modeling and analysis together into a coherent, 

organized manner. Furthermore, the idea of domain analysis continued to be active within Peter Freeman’s 

group at U.C. Irvine, showing up in the work of his students, such as Guillermo Arango in his 1988 

dissertation, “Domain Engineering for Software Reuse” [10] and the later work by Rubén Prieto-Díaz on 

multi-faceted domain analysis and modeling [155,156]. 

A domain should have a crisply defined boundary, thus ensuring that a well-defined domain can easily 

be differentiated from other domains. A crisply defined problem area is one that has a high degree of 

relatedness and similarity to aspects of the problem. Typically a domain has a common domain terminology 

associated with it, used to describe typical abstractions and processes that are associated with the domain. 

Once the problem aspects have been captured as reference requirements, they can be used to develop a 

class of similar application systems that meet potentially subsetted, parameterized, or modified reference 

requirements for the specific application. This class of similar systems that address a particular domain is 

very similar to the Parnas notion of program families [146], and the more recent notion of product lines 

[83]. 

Typically, some class of systems has been developed and fielded before there is recognition that the 

systems are similar, and the problem area they address constitutes a specific domain. In this case, it is 

possible perform a process called domain analysis on the existing systems to determine their requirements, 

data models, architectures, along with the interrelationships and similarities among these items [99,184].  
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The first output of domain analysis is a characterization of the domain itself, in the form of a domain 

taxonomy, a classification of applications and their software components within the domain, domain 

terminology, terms and their definitions for important concepts, abstractions, and processes in the domain, 

and reference requirements, a collection of goals concerning the functionality and behavior of applications 

in a domain. Requirements for a specific application are developed by parameterization, modification, and 

selection of the reference requirements. 

Domain analysis also creates a domain model, which represents the elements and their relationships in 

the domain. The domain model is an abstract representation of the domain, and is distinct from a reference 

architecture, which is a software architecture for a family of systems within the domain. While a domain 

model contains the primary abstractions employed in the domain, relationships between the abstractions 

(such as containment, inheritance, etc.), and the design space of tradeoffs that can be employed to satisfy 

the domain’s reference requirements, a reference architecture assigns the abstractions and functions to 

specific modules, defines interfaces for these modules, specifies interrelations among the modules, and 

resolves or parameterizes many of the design tradeoffs [131,184]. Though the reference architecture does 

not necessarily describe a concrete implementation, it still provides a framework in which reusable 

components can be developed for the domain, and, importantly, it can form the basis for automatic 

generation of components [16,17]. 

An important goal of systems work in Computer Science is the thorough exploration of a particular 

domain, with individual systems exploring specific aspects of the domain, ideally by making particular 

design choices that are different in some respect from existing systems. Once enough systems have been 

developed, a process of condensing the knowledge of the domain into a coherent domain model takes 

place. This process of distillation will suggest additional avenues of research, and may itself require 

multiple iterations before the domain model is considered complete. This work takes on more of the aspect 

of a survey, though considerable creativity is required to tease out a coherent domain model from 

individual instances of the domain. A good domain model includes multiple frameworks, each of which is a 

significant original intellectual activity.  

Domain model in hand, several other avenues open up. The definition of the domain can be relaxed, 

allowing other, similar systems into the domain. One example is relaxing hypertext versioning to include 
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configuration management, document management, and engineering database systems. This may take the 

form of combining multiple individual domain models from similar domains, or by expanding one existing 

model to encompass a neighboring domain.  

Domain analysis makes it possible to tease out, or abstract, aspects of the domain model that can apply 

across multiple domains, or across all domains. Domain-independent knowledge is very powerful, since it 

can be applied to many possible domains. Design patterns are one form that domain-independent 

knowledge can take [76]. There are others. Thus, one of the major benefits of domain analysis is the ability 

to take knowledge that is currently embedded in the domain, and make it portable, applicable across 

domains. 

1.3 Domain Analysis of Hypertext Versioning 

We have noted that the goal of this dissertation is to provide a domain analysis of hypertext versioning, 

and that domains ideally have a well defined boundary. How, then, is the domain of hypertext versioning 

defined?  

First and foremost, the hypertext versioning domain includes those systems that provide hypertext 

navigation of either versioned or unversioned links among versioned objects. By insisting on hypertext 

navigation features, systems that only provide some form of relationship, such as relational database 

systems, or software development environments, are excluded. Despite supporting hypertext navigation, the 

majority of systems in the domain emphasize characteristics of their data models (e.g. [141], [100]), to the 

extent that there is a significant lack of research on how best to visualize and create user interfaces for 

navigation through versioned hypertext structures. However, cleaving a distinction between hypertext links 

and general relationship features is fairly arbitrary and artificial, especially since we will later model links 

as a kind of container object, a view that emphasizes similarities between links and relationships. 

Restricting the domain to navigable hypertext links can be viewed as a way to limit the scope of this 

inquiry, while the similarity of links and relationships clearly point to a future expansion of this work to all 

object management systems employing relationships. 

In many respects, the domain of hypertext versioning is a post-hoc attempt to provide an organizing 

principle for the many systems deemed to be hypertext versioning by the research community. As a result, 
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though defining the domain as containing just systems that provide versioned or unversioned links among 

versioned objects encompasses most of the hypertext versioning research, there are some exceptions to this 

rule. Since an explicit design goal of Palimpsest [56] and VTML [194] is to provide a data structure 

supportive of collaborative work and reference permanence, they are included even though they provide no 

explicit link traversal capabilities. Another exception is the PIE system [80], which is included due to the 

significant influence its hypertext-like data model has had on several hypertext versioning systems, despite 

the fact it has no hypertext navigation, and makes no claim to be a hypertext system. These exceptions 

highlight that hypertext versioning is a domain at the crossroads of the hypertext, configuration 

management, document management, software development environments, and computer supported 

cooperative work research communities. 

The results of this domain analysis are intended to provide a systematic organization of the domain of 

hypertext versioning, affording reuse of hypertext versioning concepts in a wide range of collaborative 

systems, thereby removing a major impediment to the application of hypertext to the complex information 

artifacts generated in software development, document management, audits, legal proceedings, and 

academic annotation and cross-referencing. Thus, a primary goal is reuse of the products of the domain 

analysis, such as the concepts, terminology, taxonomy, requirements, data modeling mechanism, design 

spaces, etc., and not code reuse. Domain analysis provides a strong framework for examining an entire 

family of systems, and a useful set of outputs from this analysis. 

An idealized process for reusing the hypertext versioning domain model takes as its starting point an 

existing repository system, such as a hypertext, configuration management, or document management 

system, and augments it with hypertext versioning capability. The engineers of this system begin by 

evaluating the reference requirements (given in Chapter 7) one by one, selecting those requirements that 

satisfy the hypertext versioning needs of the system, rejecting those that are non-relevant. The selected 

requirements are next be evaluated to determine their interactions, and this analysis can cause requirements 

to be added, removed, or amended.  

After requirements are selected, a containment data model is created of the system (using the data 

modeling model described in Chapter 6) before hypertext versioning is added. Using this model as a 

baseline, the design space associated with each reference requirement (described in Chapter 8) is be 
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evaluated based on its technical characteristics, and its interactions with other design choices. Based on this 

analysis, a point in the design space would be chosen, and the containment data model updated with any 

new abstractions and containment relationships. Alternately, it might be found that the tradeoffs associated 

with meeting a requirement are too severe, and hence the requirement is dropped. Unfortunately, in some 

cases, there is insufficient knowledge about how to meet a given requirement, and only general guidance 

can be offered; such is the case, for example, with versioned hypertext visualization (Section 8.10), still an 

open research problem. Once all requirements have been satisfied, the system can be evaluated for 

emergent properties of the combination and interaction of multiple design spaces. This may lead to 

reevaluation of requirements, and design choices, and another iteration through the process. At the end of 

the idealized process, the system designer will have the set of desired requirements, the set of design 

choices selected, a containment data model of the system before and after hypertext versioning capability 

was added, and an understanding of the tradeoffs involved in the requirements and design choices he made.  

This analysis of the domain of hypertext versioning systems yields a characterization of the domain, 

and a domain model. The domain is characterized by: 

• Domain terminology: Terms, and their meaning, that are used to describe fundamental 

abstractions in hypertext versioning systems. These abstractions are the fundamental building 

blocks for the rest of the domain model: all other aspect of the domain model either list 

constraints, or describe relationships between these abstractions. The domain terminology is 

presented in Chapter 2. 

• Taxonomy of systems: Systems considered to belong to the hypertext versioning domain are 

analyzed for similarities. Based on this analysis, the domain is divided into five classes of systems, 

listed in Chapter 3. 

• Reference requirements: A complete set of requirements for the versioning aspects of hypertext 

versioning systems, based on an analysis of systems in the hypertext versioning domain. The 

reference requirements are presented in Chapter 7. 

The hypertext versioning domain model is composed of: 

• Data modeling model: A data model of the key entities and their relationships within hypertext 

versioning systems. An extended entity-relationship model [29], an important member of the class 
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of semantic data models [148,103], is used to represent the entities, and their relationships. An 

important, and frequently occurring relationship among entities is containment, and this 

relationship is described in depth in Chapter 4. Referential containment structures point to the data 

they contain, and do so using names or addresses provided by the system. An overview of address 

and name spaces in hypertext versioning systems is provided in Chapter 5. Containment model in 

hand, the data modeling model, and examples of systems represented using this model, are given 

in Chapter 6. 

• Design spaces associated with domain requirements: For each of the domain requirements 

given in Chapter 7, Chapter 8 describes the design choices available to satisfy the requirement. 

Though the design spaces are presented in the same order as the requirements, there are several 

important design spaces worthy of individual note: 

o Data versioning describes the design space of persistent storage for object revisions 

(Section 8.2). 

o Link and structure versioning describes the design space of persistently recording link 

revisions, and link structure revisions (Section 8.5). 

o Variant support describes how alternate forms of an object are persistently recorded 

(Section 8.6). 

o Collaboration support describes how cooperating workers can ensure that they do not 

overwrite each other’s work, both for individual objects, and for collections of objects 

(Section 8.7). 

The description of design spaces associated with each domain requirement takes this work beyond that 

of a survey of hypertext versioning systems. In a typical survey, the emphasis is on describing the behavior 

of existing systems. In contrast, the design spaces describe characteristics and constraints on systems that 

could be built in the domain, and hence has a constructive, rather than a descriptive emphasis.  

Several additional chapters round out this work. 

• Validation. Despite being based on existing hypertext versioning systems, to ensure that the 

domain model contains sufficient modeling power to describe existing hypertext versioning 

systems, Chapter 9 applies the domain model to the Chimera hypertext versioning proposal [200], 
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and the DeltaV protocol for Web versioning and configuration management [199]. In this way the 

domain analysis is validated. 

• Related work. Chapter 10 provides a description of related domain modeling efforts, as well as 

surveys in hypertext versioning, configuration management, and engineering databases. 

• Future work. The systematic exploration of the hypertext versioning domain has uncovered many 

areas within hypertext versioning that require additional research. Furthermore, the domain 

analysis itself can be expanded to other domains. These future directions are discussed in Chapter 

11. 

• Contributions and Conclusions. A summary of the original contributions made in this document 

are presented in Chapter 12. 
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Chapter 2 

Domain Terminology 

This chapter provides the name, definition, and origin for key abstractions in the hypertext versioning 

domain, divided into hypertext terms, and versioning terms. However, before definitions for hypertext and 

versioning terms can be given, some general terms need to be defined. 

2.1 General Terms 

Abstraction. An idea or concept having a crisply defined boundary. 

Entity. A signifier for an abstraction, used in modeling. 

Object. A single or aggregate data item that represents an entity or abstraction. 

Data Item. A single structured or unstructured conglomerate of data. 

Hypertext versioning systems are distinguished by their different models. Whether it be document 

models, version history models, or workspace models, hypertext versioning systems all embody a 

collection of models. But, what are these models built from? 

All models begin in the mind, as discrete thoughts. We use the term abstraction to represent thoughts 

that have been sufficiently refined as to have crisply defined boundaries. The notion of abstraction is 

ancient; what we call abstraction is nearly identical to the Platonic notion of Form [153]. Since abstractions 

exist only in the mind, but yet models need to exist outside the mind to be communicated and manipulated, 

there is a need to create signifiers, or handles, for abstractions.  We term these entities. Symbolic 

representations of entities appear, for example, in entity-relationship diagrams [29].  
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The representation of abstractions within the computer concerns their mapping into data items. 

Individual data items are groups of data such as an unstructured sequence of bytes, or some data structure, 

like a queue or a tree. An object is either a single data item, such as a Unix file, which is a sequence of 

bytes, or it can be an aggregation of data items. Objects can have a single main data item, representing the 

primary state of the object, along with a series of data items holding metadata.  Alternately, an object can 

be a collection of data items, with no distinction between primary, and metadata items. The data 

organization of an object represents a particular entity, or abstraction. 

2.2 Hypertext 

Hypertext. A set of intellectual works and their inter- and intra-work associations, represented as 

links, in combination with a user interface for viewing instances of these works and quickly 

navigating from instance to instance across links. 

Coined in the mid-1960’s by Ted Nelson, the term hypertext conjoins hyper and text. Hyper, used as a 

prefix, derives from the Greek hypér, originally meaning over, or above, but whose meaning typically 

implies excess or exaggeration. A synonymous prefix is super [158]. There is also the independent meaning 

of hyper used as a noun to mean, “a person who promotes or publicizes events, people, etc., esp. one who 

uses flamboyant or questionable methods; promoter; publicist” [158]. Text has the original meaning of 

words woven together [158], and so combined with hyper, hypertext implies both a super text, a text that, 

due to interlinking, is greater than the original texts, and a super weaving of words, creating new texts from 

old.  

Hypertext simultaneously means the concept of interlinking texts, an instance of this concept as a 

software system and collection of interlinked texts, a data model that supports text interlinkage, and the 

academic discipline whose concern is hypertext. The alternate term web, first used by Intermedia (e.g., as 

found in Figure 11 of [33]) and popularized by the World Wide Web, also represents an instance of a 

collection of interlinked texts. Within this dissertation, hypertext will be used with one of the first three 

meanings, concept, instance, and data model, though this document as a whole exists as a contribution to 

the academic discipline of hypertext. 
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Given the struggle Nelson encountered in disseminating the idea of hypertext, it is possible to view the 

word hypertext acting as a promoter and publicist, carrier of the linked text meme. Nelson writes: 

I coined the term “hypertext” over twenty years ago, and in the ensuing decades have 
given many speeches and written numerous articles preaching the hypertext revolution: 
telling people hypertext would be the wave of the future, the next stage of civilization, 
the next stage of literature and a clarifying force in education and the technical fields, as 
well as art and culture. [137], p. 0/2 

In fact, the flamboyant promotion of hypertext was such an integral part of the initial culture of the 

hypertext community that by 1987 Jeff Raskin’s paper at the Hypertext’87 conference is titled, “The Hype 

in Hypertext: A Critique” [159] where he claims Nelson, “writes with the messianic verve characteristic of 

visionaries,” and in 1989 Norm Meyrowitz’s Hypertext’89 conference keynote is titled, “Hypertext—Does 

It Reduce Cholesterol, Too?” [129]. Clearly the notion of the interlinked text as super text is inseparable 

from hypertext as hyped concept. 

It is a regular staple of hypertext papers to note that the term hypermedia also exists, and refers to 

interlinked non-textual objects, such as pictures, movies, etc. However, by defining hypertext in terms of 

interlinked objects that can be text, picture, movie, or any other type of content, the term hypertext 

encompasses the meaning of hypermedia. Given the choice of two equally expressive terms, the research 

community typically prefers hypertext to hypermedia, as do we. 

The opening definition in this section stresses that hypertext is more than just the capturing of 

associations within the computer to create a network of works.  Though central to hypertext, it is the 

combination of recording associations among works, along with a user interface that allows rapid 

navigation across the links that distinguishes hypertext from other research that represents relationships 

within the computer. 

Since we have defined hypertext in terms of intellectual works and links, these terms need definition 

too, provided in the sections below. 

2.2.1 Work 

Work. An artifact intended to create a communicative experience, such as a document, image, or 

song. 
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The notion of a work encompasses the range of things that can be linked together within a hypertext 

system. Since hypertext systems regularly link together various types of documents, such as texts, 

spreadsheets, CAD drawings, along with a variety of images, songs, etc., there is a need for a suitably 

broad term to encompass this diversity. Calling them all documents is unsatisfactory, since a song is clearly 

not a document. Describing them as objects is certainly broad enough, but is perhaps too broad, since such 

objects as rocks and plants have yet to be incorporated into any known hypertext system. The term node 

might appropriately be used in a hypertext context, tapping into the intuitive view of a hypertext as a 

mathematical graph. However, node seems unsatisfactory when applied to configuration management or 

document management systems, since it carries with it hypertext connotations that no longer apply. 

When defining the notions of revision and variant, it will be useful to distinguish between the mental 

ideas and concepts concerning a work, and the fixation of those ideas as symbols in some medium. 

Consider an introductory text on set theory. The author of such a text has, in his head, a concept of what is 

appropriate material for the book. Topics such as definitions of a set, mappings, functions, relationships, 

etc. are all clearly in scope, and similarly, long excerpts from Shakespeare are just as clearly out of scope 

for such a volume. The inclusion of some advanced set theoretical concepts will depend on the individual 

author, and their goals and intent for the work. As the author works on the book, he will think about the 

contents (all within his understanding of the scope of the book), forming the ideas in his head that he wants 

to communicate.  These ideas are internally translated into symbols such as words or set notation, and then 

fixed as symbols in some medium, such as a word processor file, or pen marks on a sheet of paper. This 

example leads to the following definitions: 

Abstract work concept. The guiding idea for an intellectual work, the distinguishing essence that 

creates the borders of the internal idea space of the work. 

Abstract work instance. A set of ideas and organizational frameworks, falling within the defining 

essence of a work concept, that together comprise the abstract content of an instance of the work 

concept. This instance is distinct from any particular fixation of the ideas into a set of symbols. 

Symbolic work instance. An arrangement of symbols created through a mental process of fixing 

into a symbolic notation the set of ideas that compose an abstract work instance. 
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The goal of the “work concept” term is to act as a signifier for the essence of an intellectual work, the 

ideas that give it distinct identity across all revisions and variants.  

The borders of a work concept are defined by concepts and test cases that guide the evaluation of work 

instances. A specific work instance is a revision or variant of a particular work concept if the ideas fixed 

within the work instance fall within the work concept’s topology of ideas. A work concept is entirely 

abstract, is subjective, and is rarely communicated, typically inferred by analysis of concrete instances of 

the work. Observers frequently have differing notions of the work concept. 

Consider the national anthem for the United States, the Star Spangled Banner.  This has been sung at 

uncountable events, with subtle, and not-so-subtle variations in each performance. Yet, despite these 

differences, there remains a core nugget of Star-Spangled-Banner-ness, an archetype of note relationships 

and lyrics that leads us to recognize each performance as an instance of the same song. This essence is hard 

to define. Any effort to define the essence of the Star Spangled Banner prior to Woodstock would likely 

have excluded Jimi Hendrix’s electric guitar version, even though it was clearly recognizable to the 

gathered audience. Trickier yet, would an audience have recognized the same performance if it had 

somehow been conveyed 50 years in the past, before the advent of the electric guitar? Furthermore, it’s not 

obvious that an audience comprised of a general cross-section of the American population would recognize 

Hendrix’s song as the Star Spangled Banner even today. Though the question is moot, it seems plausible 

that the Woodstock audience’s understanding of the Jimi Hendrix’s performance as a version of the Star 

Spangled Banner was predicated on their previous experience with electric guitar music. This prior 

experience opened mental pathways, created new understandings, and allowed them to recognize a version 

of the song played on an instrument unknown to Francis Scott Key, the original composer. Clearly the 

distinguishing essence of a work is subjective and malleable, capable of appropriation and reinterpretation 

by people other than the original author. 

A work concept is distinct from the ideas that populate a work instance, and comprise its content. The 

work concept contains only those ideas and thoughts necessary to define the extent of the work. Content 

ideas fill in the conceptual space carved out by the work concept’s guiding idea. The content ideas, like the 

work concept, are in the realm of the mental, and are distinct from any specific translation of the ideas into 

a set of symbols, such as a series of words, musical notation, or other graphical notation.  
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The author(s) of a particular work have some notion of abstract work concept for the work, and they 

use this to guide their development of the work. Other people who observe the work may, if they consider 

the issue, also develop their own understanding of the work concept.  Even if they haven’t considered it, 

they still have an implicit understanding of the work concept, based on their observation of the work.  A 

reader of a textbook on Software Engineering would immediately view the addition of a fictional short 

story as being inappropriate to the scope of the textbook, even though he had never engaged the issue of the 

textbook’s intellectual boundaries. Observers may agree with the understanding the authors have, but likely 

their understanding will diverge in some details. Unless the observer has put unusual energy into their 

consideration, the authors will have a more detailed model of the conceptual boundaries than any observer.  

One exception is creators of derivative works, who will likely have a sharp understanding of the work 

concept of the original, as well as of their additional modifications and contributions. 

Even for the authors, understanding of the work concept will change over time, as the work is 

developed and refined. Reflection on the work will lead to new ideas being introduced and existing ideas 

being modified, and at times this process of refinement may stretch the boundaries of the work concept. 

Introducing a mathematic notation for these concepts, we will use Cw to represent an abstract work 

concept, and Iw to represent an abstract work instance. Since these vary over time, t, and are relative to a 

particular person, p, they are described as: 

Cw(p, t) – Person p’s perception of the abstract work concept at time t. 

Iw,n(Cw(p, t), p, t) – One of n abstract work instances person p associates with Cw(p, t) at time t.  Each 

instance at a given time represents a variation in the ideas that comprise the content of the work. 

There are many symbolic notations, such as words and numbers, musical notations, engineering 

drawings, geographic maps, entity-relationship diagrams, control flow diagrams, programming language 

statements, etc. In all of these notations, the symbols represent specific ideas, abstractions, or concepts.  

That is, they are not the ideas themselves, but symbolic stand-ins for the ideas. Using the terminology of 

semiotics, they are signifiers, as distinct from the signified. Note that the symbolic work instance is media-

independent. Symbols in the symbolic work instance are abstract, and have not yet been realized in a 

specific persistent storage medium, such as words on paper or in a word processing file, or, notes on 

magnetic media or in musical notation.  
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A particular symbolic work instance is denoted: 

Sw,m(Iw,n(Cw(p, t),p,t),p,t) – One of m symbolic work instances into which person p has fixed the ideas 

from Iw,n(Cw(p, t), p, t) using symbolic notation, at time t. 

2.2.1.1 Computer Representation 

Unlike the abstract definition of a work in the previous section, this section describes the process of 

how the internal (within a person’s mind) symbolic representation of a work is translated into a specific 

computer representation, and vice-versa, how the computer manipulates information so a person can 

construct an internal set of symbols and ideas from it.  

Symbolic rendition. A computer-mediated representation of a data item, or representation of the 

output of a computational process, as symbols. 

As a computer-generated symbolic representation, the symbolic rendition is an important bridge 

between an individual’s symbolic work instances in the conceptual layer, and their concrete representation 

within a computer. The act of authoring involves the representation of the symbolic work instance as a 

symbolic rendition. The act of reading involves the creation, or refreshing of a symbolic work instance, and 

the subsequent creation or refreshing of ideas in the abstract work instance. 

A particular symbolic work instance, a collection of symbols in some person’s mind, can be 

represented by many possible renderings.  For example, a simple boxes and arrows diagram could be 

represented as a graphical display by a dedicated drawing program such as Visio, which would be slightly 

different from a representation of the same diagram using the drawing features integrated within a word 

processor, which would be different still from an ASCII art representation using simple characters in a text 

editor. 

When the symbolic representation is a rendition on a computer screen, it is often termed a view.  

However, the notion of a symbolic rendition spans multiple input and output devices, and encompasses 

such symbolic representations as the playing of a music file, and output in Braille notation, neither of which 

seem well-described by the term “view”. 

A symbolic rendition of a work is denoted as Rw. The operation of translating the symbols in a 

symbolic instance into a symbolic rendition is denoted by the function Ts, and hence: 
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Rw(t) = Ts(Sw,m(Iw,n(p,t),p,t)) 

The act of translating the symbolic work instance renders it into symbols that are capable of being 

interpreted by many people, and hence the symbolic rendering is not dependent on a particular person. 

However, the symbolic rendering does vary over time, as would be expected due to the varying of the 

symbolic work instance over time.  This represents the modification of a work over time, as it is authored 

or maintained. 

Renderer: a computational process that creates and mediates interactions with a symbolic 

rendering.  

For computer media, a computational process, called the renderer, is responsible for creating and 

maintaining a symbolic rendering. In the case where the rendering is to a visual display, the renderer is also 

known as a viewer. The renderer handles input from the user concerning navigation within, or 

modifications to the rendition.  

When it creates a rendering, the renderer acts upon either persistently stored data, a representation of 

the persistently stored data, or the output of a computational process. Most systems use the persistently 

stored data without modification. However, systems like the Web that place a client-server split between 

the renderer (Web browser) and the server, it is possible that the server may perform some processing on 

the data item, or output of a computational process, before it is transmitted to the renderer, a process known 

as representational state transfer [69].  

Renditions may be read-only, or modifiable. If they can be changed, modifications to the rendition 

result in modifications to the data item, or the (output of the) computational process.  

The process of creating a symbolic rendition is denoted as Tr. An object is denoted as D(t), and a 

computational process is Pc(t,i), for some set of input i, at time t. The raw output of a computational process 

is denoted Dc = Pc(t,i). The operation of creating a representation of the data for representational state 

transfer is Wt. Thus, the data acted upon by the renderer is either D(t), Dc, or Wt(D(t)), Wt(Dc). Regardless 

of source, the data acted upon by the renderer will be denoted as Drender, and hence: 

Drender(t) = D(t) | Dc | Wt(D(t)) |  Wt(Dc)   with “|” standing for “or” 

The symbolic rendition can now be described as: 
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Rw(t) = Tr(Drender(t)) 

Combining with the equation for creating a symbolic rendition from a symbolic work instance yields: 

Ts(Sw,m(Iw,n(Cw(p,t),p,t),p,t)) = Rw(t) = Tr(Drender(t)) 

This highlights the role of the symbolic rendition as a bridge between the personal, mental mapping of 

ideas into symbols, and the mechanical mapping of data into symbols as performed by a computer.  

Figure 1 below shows the model of a work.  The top of the figure, the conceptual level, shows those 

aspects of a work that are within the mind, as abstractions, ideas, and symbols. The bottom half of the 

figure, the computer representation level, shows the representation of the work within the computer. 
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Figure 1 – An intellectual work, at the conceptual level, within the mind, and the computer representation 
level. 

2.2.1.2 Alternate Terms 

There is a wide diversity of terms used to describe intellectual works within hypertext systems, as 

highlighted in Table 1. In this table, when there were multiple references for a system, or the system 

underwent several revisions during its development, it uses the earliest reference. Systems shown in the 

table are representative, and do not constitute an exhaustive list.  

These terms can be divided into several categories, as described below. 
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Some systems simply use the term document for linkable information, with Xanadu [137], Intermedia 

[205], and Microcosm [72] being examples. In the case of Intermedia, the use of document encompasses 

text, two and three-dimensional graphics displays, and timelines, and in Microcosm, it has a similarly broad 

range, spanning word processing documents, spreadsheets, CAD drawings, images, and many other content 

types. However, interactive graphical displays do not typically come to mind for the term document, which 

carries with it static connotations. This leads to a search for alternate terms that are more appropriate and 

encompassing. 

Other systems name the linkable information after their user interface metaphor. Both HyperCard [8] 

and NoteCards [189] use the term card, or notecard, consistent with their card-based user interfaces. KMS 

[3] uses the term frame to represent the information that fits onto a single screen, with the metaphor being 

that KMS acts as a “frame” around that information. The Virtual Notebook System (VNS), uses a notebook 

metaphor, with information subdivided into pages, and the Hyperties system uses an encyclopedia 

metaphor, organizing information into articles. 

Early on, hypertext researchers recognized that mathematical networks could model a set of linked 

documents [60], and hence hypertext systems such as Neptune [45], Sun’s Link Service [147], 

HyperProp/NCM [179], and CoVer [87] (to name just a few) employ the terminology of networks by 

calling their information items nodes. This is a useful abstraction for hypermedia systems, since the term 

node carries neutral connotations about the kind of information within the node, and hence it can equally 

model documents, images, movies, CAD drawings, or any other kind of content. Another term that has 

similarly broad connotations is object, employed, for example, by Aquanet [126], PROXHY [106], 

HyperForm [202], and Chimera [7]. For Aquanet, PROXHY, and HyperForm, the use of object 

accompanies object inheritance and/or message passing to objects within the system, while Chimera just 

uses the term abstractly to refer to any data item, without object-oriented programming semantics. 

Avoiding node and object, the Dexter model [94], and hence the DHM system [85], uses the term 

component. 
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System Date Term for intellectual work  Term for link endpoint 
NLS [60] 1968 file, statement (a file is a collection 

of statements) 
location or name of a statement 

Xanadu [137] 1981 document, span (a document is a 
collection of spans) 

span 

TEXTNET [191] 1986 
(1983) 

chunk (also toc, for table of 
contents node). Also uses node. 

none (link is to an entire chunk) 

Neptune [45] 1986 node (document is a set of nodes) character position, or span 
NoteCards [189] 1986 node, notecard link icon 
Hyperties [172] 1987 

(1983) 
article (uses encyclopedia 
metaphor) 

embedded menu 

KMS [3] 1987 frame (screen-sized) linked item, link source 
WE [177] 1987 (hypertext) document, node (a 

document is a collection of nodes) 
N/A (links go to/from entire 
nodes) 

HyperCard [8] 1988 card (each card is associated with a 
background) 

button 

Intermedia [205] 1988 document block (but also discusses 
anchoring) 

Sun’s Link 
Service [147] 

1989 node, linkable object link indicator (an icon, or glyph) 

Virtual Note-
book System 
(VNS) [170] 

1989 page link (the term link is used for 
both the link, and its endpoint, 
depicted by a small icon) 

HOT/eggs [157] 1990 node link endpoint, hotspot 
Microcosm [72] 1990 document selection 
Dexter model 
[94] 

1990 component, atomic component anchor 

World Wide 
Web [22] 

1990/2 resource anchor 

HyperProp/NCM 
[27] 

1991 node anchor 

ABC/Artifact-
Based 
Collaboration 
[176] 

1991 node, data object, artifact anchor, position in data 

Aquanet [126] 1991 basic object graphic element (describes layout 
of a relation, not linking within 
text) 

PROXHY [106] 1991 object, node (nodes contain objects) anchor 
HyperPro [141] 1992 node anchor is used in the paper, but 

HyperPro has no anchor support. 
CoVer [87] 1992 node link anchor 
Multicard [162] 1992 node anchor 
DHM [85] 1992 component anchor 
Hyperform [202] 1992 object N/A (framework could be used to 

create an anchor object) 
Chimera [7] 1994 object anchor 
Dolphin [92] 1994 node (contents are links, scribbles, 

text, images, and other nodes) 
none (“Links present themselves 
as arrows with a handle.” p. 7) 

HyperDisco 
[204] 

1996 node (composites can also be 
linked) 

anchor 

HyperStorM [15] 1996 node (AtomicNode, Composite-
Node, VirtualCompositeNode) 

none (basic link types are only 
node to node) 

Table 1 – Hypertext systems, and their term for linkable information, and link endpoint.  
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Outside the realm of hypertext systems, a variety of terms are used to describe the representation of 

intellectual works within the system. The Document Management Alliance 1.0 [50] specification uses the 

term document version object, which contains a rendition object, which in turn contains a content element 

object. The Portable Common Tool Environment (PCTE) [195] uses the term object. Within versioning and 

configuration management systems, SCCS [163] uses the term module, containing multiple revisions, while 

CVS uses the term file [20], Adele [61] uses object, and NUCM [192] uses artifact. In their configuration 

management systems survey, Conradi and Westfechtel use the term software object [35].  

The term “work” as used herein has been borrowed from copyright law [182]. Copyright law and 

hypertext research have both struggled with the same problem, that of finding a suitably broad term that 

encompasses the wide variety of artifacts that, when viewed, read, heard, or watched, communicate ideas.  

While hypertext researchers have struggled to abstract away from their early focus on text and documents, 

copyright law has long used the term “work” to signify a broad range of intellectual communicative 

artifacts, irrespective of medium. 

2.2.2 Anchor 

Anchor.  A handle for a specific set of symbols within a work instance. 

While systems such as TEXTNET [191], WE [177] and HyperStorM [15] only support links that 

connect an entire object to another whole object, most provide for attaching the link to a specific endpoint 

within the object contents. Anchors typically exist in relationship to a work. That is, an anchor acts as a 

handle for a specific subset of a work’s symbols, and is depicted as part of the work’s symbolic rendition. 

For example, in a text, anchors are rendered as either underlined or highlighted words, or as an icon 

embedded in the text. This pictorially represents that the anchor is acting as a proxy, or handle for the 

underlined or neighboring words (symbols). Defining an anchor as a handle for specific symbols of a work 

allows the anchor to exist independent of any particular symbolic rendition of the work, and hence the same 

anchor can exist across multiple renditions, and can be depicted in multiple ways within a given rendition. 

If an anchor’s representation within a computer no longer causes the correct words or objects to be 

highlighted, a situation that can occur when anchors are not stored with a work, the definition of the anchor 

has not changed. Instead the computer representation of the anchor is inconsistent with its conceptual 
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definition. If the anchors are defined as a region, they have only an implicit association with the symbols 

represented in that region, since the region explicitly identifies a space, not a set of symbols. The anchor as 

region definition does not explicitly imply that a change in the symbolic representation of a work must 

result in a change to the anchor’s region. This connection is implicit, hidden in the assumption that the 

region encloses meaningful symbols.  

The same abstractions used to describe a work at both the conceptual and the concrete level, apply as 

well to anchors. Though conceptually not nearly as large as an intellectual work, anchors do have an 

associated abstract concept that provides a defining abstraction giving the abstract boundaries of the 

anchor. Similar to the term “abstract work concept”, the defining abstraction for an anchor is known as an 

“abstract anchor concept”. The author of an anchor associates a set of ideas with them, thereby providing 

the abstract intellectual content of the anchor, known as the “abstract anchor instance.” The ideas in the 

abstract anchor instance are fixed into symbols in the “symbolic anchor instance.” The computer then 

represents the conceptual anchor as a symbolic annotation to a work rendition. 

Expressing an anchor using mathematic notation, an anchor’s abstract work concept is denoted Ca(p,t), 

and abstract anchor instances are Ia,n(Ca(p,t),p,t). Since the anchor is associated with the symbols of a work, 

the symbolic anchor instance is denoted as: 

Sa,m(Ia,n(Ca(p,t),p,t), Sw,m(Iw,n(p,t),p,t))) 

That is, the symbolic anchor representation depends on the ideas defining the anchor, Ia,n, and a 

specific symbolic work instance Sw,m, for a given person, p, at time t. Anchors are almost always rendered 

along with the work, and so a work rendition in the presence of anchors is: 

Rw(t) = Ts(Sw,m(Iw,n(p,t),p,t)) + Ts(Sa,m(Ia,n(Ca(p,t),p,t), Sw,m(Iw,n(p,t),p,t)))) 

Or, more simply, the symbolic rendition of the work is the symbolic union of the transformation of the 

symbolic work instance, Ts(Sw,m) , and the symbolic anchor instance, Ts(Sa,m). This is a different, but 

equivalent notion to the Chimera concept of an anchor being defined on a view [7]. 

A first class anchor within a hypertext system is represented as an object, Da(t), or a computational 

process, Pc,a(t). After potentially experiencing representational state transfer, the anchor information arrives 

at the renderer as Drender,a(t). The rendering of the work representation is denoted: 

Rw(t) = Tr(Drender(t)) + Tr(Drender,a(t)) 
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Figure 2 – The conceptual model of an anchor, and its computer representation. 

If the anchor information is imbedded within Drender(t), then the rendering of the work also renders the 

anchors: 

Rw(t) = Tr(Drender(t)) 

2.2.2.1 History of the Anchor 

Early hypertext systems used a variety of terms to describe a link endpoint. Some systems use the term 

for the address or location of the endpoint, such as location or statement name in NLS [60], and character 

position in Neptune [45]. Others emphasize the user interface element that was used to activate a link 

traversal, as with link icon in NoteCards [189], embedded menu in Hyperties [172], button in HyperCard 

[8], link indicator in Sun’s Link Service [147], and selection in Microcosm [72].  

Coined by Norm Meyrowitz [130] in the mid to late 1980’s, and initially used by the Intermedia group, 

the term anchor came to represent both the endpoint reference as well as the user interface representation of 

a link endpoint. The motivation for developing the term anchor was similar to that for node and object: 

generality of the abstract concept of a link endpoint across multiple content types. In the case of Intermedia, 

the term block was initially used, as in a block of text. However, once images were introduced, it was 

reasonable to consider non-square, and hence non-block-like link endpoints, and thus this led to a desire for 
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a more abstract term. One coined, the term anchor spread first to other researchers in contact with the 

Intermedia group. At the initial Dexter workshop, the need for anchors was strongly debated, with the 

Dexter group in the end agreeing for its need and adopting the term [114]. From the Dexter participants, the 

term spread to the wider hypertext community at the Hypertext’89 conference, with Norm Meyrowitz using 

the term in his keynote address [129], and with Frank Halasz using the term in two separate sessions on 

NoteCards, and the Dexter model [140]. As is visible in Table 1, by 1991 the term anchor was almost 

universally adopted by the hypertext community. 

2.2.3 Link 

Link. An association among a set of work instances, a set of anchors, or their combination.  

In set theory, a binary relation is a statement R(x, y) that is either true, or not true for each ordered pair 

of elements in a given set A. A representing graph, of a relation in A is a graph, G, consisting of all ordered 

pairs (x, y) from A for which R(x, y) is true [151]. If the set A is taken to consist of all of the linkable work 

instances within a hypertext system, then an individual, static, hypertext link can be viewed as a member of 

the representing graph for the link’s relation. Since each member of G is an ordered pair, that is, two 

members from A, it is possible to view each single ordered pair as an ordered set. For systems that allow 

links to be bi-directionally navigated, this set does not need to be ordered.  

But, set of what? It would be easy to say that hypertext links are a set of work instances, but this would 

imply that links could not directly connect to an exact set of symbols within a work, such as a specific word 

or part of an image. However, many hypertext systems do provide links to within-work destinations. If x is 

an object, and p is a set of symbols within a work instance, the anchor provides an (x, p) pair, thus allowing 

a subset of a work instance’s symbols to be specified. The anchor allows a link to be defined as a possibly 

ordered set of anchors. The link is unordered when it is bi-directional, or contains just a single anchor.  

However, links were initially taken to be members of the representation graph, G, for relation, R(x, y), 

among work instances, not anchors. The switch to using anchors requires a similar switch to define the 

relation, Ra(a1, a2), as being over a set of anchors, Aa. Each link is an ordered pair that is a member of the 

representing graph for the anchor relation. 



  31 

For systems, like Chimera, that support n-ary links, these definitions can be extended to cover non-

binary links. An n-ary link is still a possibly ordered set of anchors, but now the set is not limited to just 

two members. A link of n anchors is a point that satisfies a relation of n elements. 

The significance of defining a link as a set is that it allows static links to be represented within a 

computer using a container. In particular, any of the container implementations given in Section 4.2 could 

be used to represent a link. It also simplifies analysis of hypertext systems considerably. Whereas links and 

containers are usually considered separately, now there are just containers, which can model composite 

objects, collections of objects, and links. Any versioning mechanism that applies to containers equally 

applies to composites, collections, and links. Furthermore, it elevates containment relationships between 

system entities to a primary concern within hypertext systems, since it is these relationships that dominate 

their data models. 

The notation developed for describing a work also extends to a description of links: 

• The abstract link concept, Cl (p,t), depends on the person perceiving the abstraction, and the time 

this perception was held. It provides a defining abstraction giving the abstract boundaries of the 

link, typically the link’s association, and rules for evaluating whether work instances or anchors 

have that association. 

• The abstract link instances, Il,n(Cl (p,t),p,t), depend on the abstract link concept, as well as a person 

and time. For a link, it includes ideas concerning the work instances and anchors that have been 

found to have a particular association, along with the ideas that fill in the content of the link, such 

as annotation links. 

• The symbolic link instance, Sl,m(Il,n(Cl (p,t),p,t),p,t), depends on a specific abstract link instance, 

for a specific person and time. It is the fixation of the link’s content as symbols. 

A symbolic link rendition, Rl(t), is a symbolic representation focusing on just representing the links. 

This is the link, or network view of hypertexts available in many systems. Links are also represented as part 

of a work’s symbolic rendition, Rw(t), such as by an icon the represents link between work instances.  If the 

link is between anchors, then typically it is the anchors, and not the link that is represented within the 

work’s symbolic rendition. A transformation function, Ts, transforms the symbolic link instance at the 
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conceptual level (within the mind) into a rendition in the concrete level (within the computer). Thus it is 

possible to write: 

Rl(t) = Sl,m(Il,n(Cl(p,t),p,t),p,t) 

and 

Rw(t) = Ts(Sw,m(Iw,n(Cw(p,t),p,t),p,t)) + Ts(Sl,m(Il,n(Cl(p,t),p,t),p,t)) 

where the “+” operator indicates a symbolic combination, or union, of the symbolic renditions of the 

work and the link. 

A static link is one where the work instances or anchors are explicitly known and represented within 

the computer. When a link is a first class abstraction in a hypertext system, the persistent representation of 

the information used to create the link rendition is an object, Dl(t). A dynamic link is one where only the 

relation is known, but the explicit work instances or anchors are known only by performing a 

computational process, Pc,l(t). A dynamic link is modeled as a computational process that can produce, for 

given a1, the set of all ordered pairs (a1, a2), denoted Dc,l , that satisfy the link’s relation Ra(a1, a2). 

Repeating this process for all a can generate the entire representing graph for the relation. 

A computational process called a renderer, Tr creates and mediates interactions with link and work 

renditions. If the link information is being retrieved over a network connection, it can possibly be modified 

before transmission, and hence this operation of creating a representation of the object for representational 

state transfer is denoted Wt. Thus, the data acted upon by the renderer when creating a link rendition is 

either Dl(t), Dc,l, or Wt(Dl(t)), Wt(Dc,l). Regardless of source, the link data acted upon by the renderer will be 

denoted as Drender,l , and hence: 

Drender,l(t) = Dl (t)  |  Dc,l  | Wt(Dl(t))  |  Wt(Dc,l)   with “|” standing for “or” 

A link rendition can now be described as: 

Rl (t) = Tr,l(Drender,l(t)) 

A rendition that symbolically represents both link and work information can be described as: 

Rw(t) = Tr(Drender(t)) + Tr(Drender,l(t)) 

That is, it is the combined rendition of the work data representation and the link data representation.  
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Figure 3 – The conceptual model of a link, and its representation within a computer. The link can either be 
rendered into a link only rendition, Rl(t), or it can be integrated into the rendition of the work, Rw(t). 

2.2.3.1 History of the Link 

In his 1945 essay, “As We May Think,” Vannevar Bush described the Memex, a machine that would 

allow its user to capture arbitrary associations between documents stored within the system, though in all 

examples used in the paper, associated documents always share a related subject [25]. Bush used several 

wordings for these associations, describing them as “tying two items together,” “two items to be joined,” 

and “binding items together into a new book.”  Joining items together forms a “trail,” or “associative trail,” 

and items can be “linked into the main trail,” and thus a trail can be viewed as a collection of associations 

(emphasis added, all quotes from p. 107-108 of [25]). In Bush’s article, the items being associated are not 

in question: they are all documents. However, the terminology of association was clearly in flux, as any of 

the terms association, tie, joint, binding, or link could equally be used, though only association was ever 

used in its noun form, all others being used as verbs. 

The early pioneers of hypertext were all directly influenced by Bush’s vision, but reinterpreted it to 

employ digital computers instead of microfilm to represent the documents and their associations. Indeed, 

Engelbart directly acknowledges Bush in a 1962 letter to him seeking permission to quote from “As We 

May Think” for an early report for the NLS project [59], and a 1972 paper by Nelson titled, “As We Will 
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Think,” is a detailed retrospective on Memex, as interpreted by the Xanadu system [138].  Early on, there 

was agreement that the computer representation of an association is called a link, with NLS using the term 

in 1968 [60], and Xanadu in 1972 (and probably earlier) [138], and from these beginnings there has been 

broad acceptance and use of the term link. The alternative terms tie, joint, and binding were never adopted, 

though the term “association” is still used today. The notion of a guided trail has also survived to the 

present, and continues to be an active area of research (e.g., the work on Walden’s Paths in [171]). 

Grønbæk and Trigg describe four classes of link styles in hypertext systems [86], p. 70-73: 

• Links as addresses: The address of the link destination is embedded within the work. Examples 

include NLS, HyperCard [8], and the World Wide Web. 

• Links as associations: Links are first-class objects that express an association between works. 

Link traversal is two-way, and can be initiated from either endpoint. Examples include Intermedia 

[205], Chimera [7], SEPIA [181], and many others. 

• Links as structural elements: Links are used to represent hierarchical, or other organization of 

materials. When used to represent hierarchical containment structure, this use of links is one of 

several possible representations of containment relationships. The fileboxes in NoteCards [189] 

are an example of this use of links. 

• Links for rhetorical representation: Links represent the structure of an argument. gIBIS [34], 

Aquanet [126], and the Author’s Argumentation Assistant [169] all use links to represent 

argumentation structure. 

To these link styles can be added: 

• Links as semantic network: Link types are used to represent semantic relationships between 

works, and may not be intended for link navigation. MacWeb [135] is one system that exemplifies 

this style. 

Across all these styles of link types, the link expresses the existence of a relationship between the 

linked works. Even when the link is simply an address, the link was created on purpose, to express that the 

works are connected in some way. Papers have described possible kinds of link relationships [191], and 

taxonomies of link relationships [48]. 
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2.3 Version 

Unversioned object. An object that has only one state, the current state, and modifications overwrite 

it. 

Revision. A snapshot of an instant in the evolution of a work or entity. 

Versioning. The act of recording the evolution of a work or entity, using revisions to represent 

explicit states in the evolution. 

The typical user of today’s computers works with files that are not under revision control. For 

example, unless some additional version control facility is employed, all files in the Unix, Windows, and 

MacOS operating systems are unversioned. More precisely, an unversioned object is an object that has only 

one state, the current state, and modifications overwrite it.  

People use “version” to mean many things. A version can represent a modification to the content of an 

item, as in “the version from last Tuesday,” and these modifications can include those made by the original 

author(s), or even by different authorities. For example, [122] mentions that, “a hypertext edition of The 

Waste Land, for instance, would enable comparison of T. S. Eliot’s original draft, Pound’s corrected copy, 

and the final published version” (p. 303). Version is also used to represent a mechanical change to an item 

without changing its meaning, as in the “PDF version of the document.” In the context of source code 

development, version can also mean a change made to accommodate a different platform, operating 

environment, or feature, as in “the MacOS version” or the “debug version” of a source code file. Version 

can also mean a natural language translation, as in “the German version of the document.” Finally, there is 

the notion of a version that captures intellectual precursors, even though the derived work is different 

enough to have a separate identity and history, as in the Jimi Hendrix version of the Star Spangled Banner, 

or the King James Version of the Bible. 

Providing computer support for these different uses of the term version implies different features. For 

example, recording different versions of a data item involves different operations from mechanically 

deriving a different version of an existing item. In order to separate these different features, the 

configuration management literature has developed the distinct terms revision and variant for these two 

senses of “version” [35]. 
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While conceptually a revision is a snapshot in the evolution of a work or entity, Figure 1 shows that an 

instance of a work at a given time, t, has at least one symbolic work rendition, Rw(t), created by rendering 

the data stream Drender(t), which is one of D(t), Dc, Wt(D(t)), or Wt(Dc). Thus, a revision persistently stores 

either the object D(t) or the process description, Pc(t), that creates Dc, since these are the base items which 

are used to create the symbolic work rendition that is being captured as a revision. If a revision control 

system is not in use, revisions can be maintained by storing each snapshot of D(t) or Pc(t)  in a separate 

unversioned object. This is a common practice for people collaborating on documents via email, where 

successive revisions of the document are stored in separate unversioned files. Even though these documents 

are not managed by a revision control system, the document’s authors still view them as distinct, separate 

revisions. When a computer takes over the management of revisions, it provides advantages such as 

automatically recording the predecessors and successors of each revision, providing identifiers (e.g., “1.1”, 

“Beta1”) for each revision, and enforcing policies such as prohibiting the modification of older revisions. 

Revision histories are represented using a graph structure, where the nodes of the graph are revisions, 

and the arcs are predecessor and successor relationships. In the simplest case, known as a linear version 

history, the graph is a straight line, where no revision has more than one predecessor. When a revision may 

have more than one successor, but only one predecessor, then revisions form a tree version history. This is 

used when different branches of the tree represent variants. If it is possible to merge branches together, 

thereby allowing revisions to have more than a single predecessor, then the revisions form a directed 

acyclic graph (DAG). This occurs when branches are used to represent different developments by 

collaborators working simultaneously (in parallel), and the contributions of each collaborator are merged 

together. 

2.3.1 State-based and Change-based Versioning 

The kinds of works and entities that are versioned in hypertext versioning systems include anchors, 

links, documents, composites, and contexts. The evolution of these items can be viewed in two ways, as 

either a set of instances, or as a set of changes between instances. These are known as state-based and 

change-based versioning respectively [35]. RCS [185] and SCCS [163] are classic examples of state-based 

systems, while PIE [80] and EPOS [119] exemplify the change-based orientation. Since most state-based 
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systems employ concrete representations that persistently store the difference between successive states, 

called a delta, it is worth asking what is the fundamental difference between state-based and change-based 

systems. An essential difference is whether the states, or the changes are named, and hence first-class 

objects in the system. In state-based systems, the states are named with revision identifiers and the deltas 

are unnamed, while in change-based systems it is the changes that have identifiers, and intermediate states 

between revisions are anonymous. Figure 4 highlights the difference between state-oriented and change-

oriented versioning. In Figure 4a, all of the states are explicitly named revisions, while the changes have no 

separate identity. In Figure 4b, all changes are explicitly named, and several unused intermediate states are 

anonymous. The first state of Figure 4b is the initial, or baseline state, to which all changes are applied. 

Revision v1 is constructed by applying change c1 to the baseline, and revision v3 is constructed by 

applying changes c2, c3, and c5 in order to the baseline. As Figure 4 highlights, the type of graph structure 

formed by the predecessor and successor relationships is orthogonal to whether the system is state-based or 

change-based. 

As a further nuance for state-based versioning, the Palimpsest [56] and VTML [194] delta formats are 

designed to record the changes between revisions in a state-based system, yet maintain a fine-grain history 

of the changes between states, recording down to the byte level exactly who made each change. Durand 

describes the set of operations that record these modifications as being change complete [56]. This is in 

contrast to the more typical deltas employed by, for example [104,78,46], which do not record the exact set 

of steps performed to go from one revision to the next, using a set of operations that have the property of 

being version complete [56].  As an example of the difference between the two styles, when two revisions 

from parallel branches are merged using VTML, the system explicitly records, with the MERGE tag, which 

individual changes belong in the merged revision, capturing exactly the changes, and their cause – a merge 

operation. In contrast, traditional deltas only record insertions and deletions of whole lines, do not record 

semantic information, like merging, and make it difficult to reconstruct who made a particular change. 
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Figure 4 – A revision history shown with state and change orientation. 

2.3.2 Variant 

Variant. A snapshot of an instant in the evolution of a work or entity, whose differences from 

other snapshots can be precisely specified, or parameterized, in a form other than a delta. 

Rendition. A mechanically derivable variant. 

Alternate version. A variant that is sufficiently different from other instances of a work or entity 

that causes it to have a new abstract work (or entity) concept, hence a change in identity. 

A variant is a computer-maintained record of a work that, while falling within the definition of 

commonality of an abstract work concept, differs from other instances of the same work in well-understood 

ways. This is similar to Tichy’s definition of variants as objects that are indistinguishable under a given 

abstraction [186].  

There is an inherent tension in the notion of variance. An abstraction is bound together by crisply 

defined conceptual boundaries that capture the essence of sameness among instances of the abstraction. 

But, by its nature, a variant expresses difference among these similar instances. So long as the differences 

are small, and stay within the conceptual boundaries, variants are not troublesome. But, once the variances 

test the conceptual boundaries of the abstraction, it becomes harder to tell whether a specific instance is a 

variant of one abstraction, or another. As an appeal to intuition, ponder the kinds of chairs one encounters 

in the furniture sections of art museums, whose forms often test the boundaries of the essence of what is 

considered a chair. Are they variants upon a chair, or are they just abstract sculptures? The placement of 

these chairs in a museum begs the question.  
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Consider a module of computer source code. As this source code is written, the author may decide to 

save the current contents of the module at a particular point in time, thus creating a revision of the module. 

The author may also modify the module so it will use the capabilities of a different operating system. Since 

the module behaves the same, despite the change in operating system, the new module still meets the 

abstract criteria for what belongs inside the module, and hence it is a variant of the module. Since the 

change was made to accommodate a specific operating system, this information specifies how it differs 

from other revisions and variants.  

This introduces the notion of parameterization of variants, and variation along a specific axis of 

variability. An axis of variability represents a set of related differences that differ by the value of a single 

parameter. As shown in this example, the operating system often forms an axis of variability, with specific 

operating systems forming points along this axis. When a variant can be mechanically derived, it is termed 

a rendition. For example, PDF and HTML variants can be mechanically generated from most word 

processing documents, and thus are considered renditions of the original document. In this case, they are 

variants along the document format axis of variability. 

Interestingly, the definition of variant encompasses the notion of revision too, since, like a variant, 

each revision is also snapshot of an instance of a work or entity. Revisions can be viewed as variants that 

have two axes of variability, the revision’s creation time, and, when the revision history includes branches, 

the revision’s branch. In general, the interactions between revisions and variants of the same work can be 

quite complex, as demonstrated by the following quote from the Sixth Edition of Darwin’s The Origin of 

Species [40]: 

As copies of the present work will be sent abroad, it may be of use if I specify the state of 
the foreign editions. The third French and second German editions were from the third 
English, with some few of the additions given in the fourth edition. A new fourth French 
edition has been translated by Colonel Moulinié; of which the first half is from the fifth 
English, and the latter half from the present edition. A third German edition, under the 
superintendence of Professor Victor Carus, was from the fourth English edition; a fifth is 
now preparing by the same author from the present volume. The second American edition 
was from the English second, with a few of the additions given in the third; and a third 
American edition has been printed from the fifth English edition. The Italian is from the 
third, the Dutch and three Russian editions from the second English edition, and the 
Swedish from the fifth English edition. 

It is useful to distinguish between variants resulting from human modification that does not change the 

object’s identity (e.g., a change to accommodate another operating system) and modification that does 
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change identity (e.g., King James Version of the Bible), however there are no established terms to capture 

this distinction. In part, this may be due to most systems being operated by a single institution, such as a 

development organization operating a configuration management system, and hence the kind of cross-

organization change of ownership that typically accompanies changes in identity cannot be captured. 

Literary Machines [137] uses the term versioning by descent when the document owner creates a variant, 

and the term versioning by inclusion when another user creates a variant with distinct identity. However, 

these terms are limiting, since branches of a version tree are used not just for representing variants, but also 

for capturing distinct revisions that are used to isolate the work of simultaneous collaborators. The term 

“versioning by inclusion” isn’t precisely right either, since it is reasonable to discuss creating a variant by 

performing a copy operation, and hence the word “inclusion” ties the term to a particular implementation 

strategy. We prefer to use the term variant for non-identity changing alternates, and alternate version for 

externally derived variants that do change the object’s identity (e.g., the Jimi Hendrix Star Spangled Banner 

is an alternate version of the American national anthem.) 

Variation among compound, or aggregate, objects is also possible [123]. In Software Engineering, it is 

possible for variants of a software system to have different parts lists for each system variant. Alternate 

structures for the same set of objects are also possible [179], for example, different relationships among the 

parts of a software system.  

Revisions, variants, and unversioned objects are all persistently stored instances of data (D) or 

processes (Pc) that provide input to a renderer that creates a symbolic rendition. The distinguishing factor 

between these items is their associated metadata, and whether they are kept, or overwritten, when 

modifications are persistently stored. Though a revision and a variant are distinguished by the kind of 

metadata associated with them, in practice they are not so distinct. Variants frequently record predecessor 

and successor information, and revisions can record information concerning points on axes of variation. 

The mechanisms used to record revisions and variants are often the same, differing mostly in the metadata 

they automatically store.  As a result, we view revisions and variants as being, from a data modeling 

viewpoint, nearly identical. However, the kinds of operations performed on revisions, and on variants, do 

differ. 
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Revisions and variants are both denoted with a V, and in cases where they need to be distinguished, a 

revision is denoted Vrev, and a variant is Vvar. Revisions of specific abstractions are denoted with a subscript, 

such as Vl  for links, and Va for anchors. The process of persistently recording a revision or variant from a 

data item or computational process is denoted P. Individual revisions and variants are denoted by 

subscripts, as in Vn ,Vrev,n , or Vvar, n. Hence, the act of persistently recording a specific data item or 

computational process as a version or variant is expressed as: 

Vn = P(D(t)) or 

Vn = P(Pc(t)) for given t.  

The notation Pc(t) represents the process itself, not its output, at time t. Link revisions and variants are 

represented as: 

Vl,n = P(Dl(t)) or 

Vl,n = P(Pc, l(t)) 

Similarly, anchor revisions and variants are represented as: 

Va,n = P(Da(t)) or 

Va,n = P(Pc,a(t)) 

2.3.3 Versioned Object 

Versioned object. An object that signifies a specific abstract work concept independent of any 

particular person, or instant in time. The versioned object contains revisions and variants 

associated with the abstract work concept. 

As a signifier, the versioned object is a handle for an abstract work (or entity) concept. The versioned 

object does not represent the ideas that define the essence of the abstract work object, but is instead a 

handle for these ideas. Even though an abstract work concept varies across people and time, the association 

of a versioned object to that abstract work concept does not change. This is one reason why a versioned 

object is a handle: a handle does not need to represent the personal and time-varying differences in the 

abstract work concept, and hence is free to act as a neutral signifier for all authors and users of the work. 

Since the distinguishing essence of an abstract work concept can encompass many possible revisions 

and variants, the versioned object has a containment relationship with revision and variant objects, meaning 
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that symbolic representations of these objects evoke ideas within the observer that fall within the 

conceptual boundaries of the abstract work concept. Hence the versioned object has a dual role, as signifier 

for an abstract work concept, and as a container for revisions and variants. 

A versioned object is denoted as V-O. Since many possible abstractions can be versioned, the subscript 

on V-O indicating what versioned abstraction the versioned object represents, with V-Ow denoting a 

versioned work, V-Ol a versioned link, and V-Oa a versioned anchor. 

Since a versioned object is a container, it can be modeled as a set of revisions or variants. The 

versioned object for a work is denoted: 

V-Ow= { Vi | i = 1 .. r, r is the number of revisions of V-Ow } 

Similar notation represents versioned objects for links and anchors: 

V-Ol = { Vl,i | i = 1 .. r, r is the number of revisions of V-Ol } 

V-Oa = { Va,i | i = 1 .. r, r is the number of revisions of V-Oa } 

A complete model of a work under version control is shown in Figure 5, which is Figure 1 updated 

with the addition of revisions/variants, and a versioned object. 
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Figure 5 – An intellectual work, with revisions and variants recorded, and contained within a versioned 
object. 
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Chapter 3 

Taxonomy of Hypertext Versioning Systems 

3.1 Introduction 

This chapter provides a taxonomy of hypertext versioning systems, part of the characterization of the 

hypertext versioning domain. There are two broad categories in this taxonomy, divided into systems that 

address a particular problem or goal, as is the case with versioning for reference permanence, Web 

versioning, and versioning for open hypertext systems, and systems that have a particular data model, as 

with systems that have versioned data and unversioned structure, and composite-based systems. Due to this 

division into goal directed and data model oriented bins, the categories are not entirely orthogonal, and 

some systems fit into multiple categories. 

3.2 Versioning for Reference Permanence 

Ted Nelson, describing the Xanadu system in Literary Machines [137], was the first to fully embrace 

the problems inherent in changing documents and links, recognizing that change, like a cancer, slowly eats 

away at the consistency of relationship structures. If an entire document is deleted, links to it dangle. When 

a document is moved, links break unless repaired. The same problems recur inside documents when they’re 

edited, where a linked-to region may be deleted, moved, rearranged, or otherwise modified, with links 

playing catch-up to maintain the consistency of the original relationship.  

“But if you are going to have links you really need historical backtrack and alternative 
versions. Why? Because if you make some links to another author’s document on 
Monday and its author goes on making changes, perhaps on Wednesday you’d like to 
follow those links into the present version. They’d better still be attached to the right 
parts, even though the parts may have moved.” [137, p. 2/25] 
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The Xanadu solution is to remember everything, prohibiting moves and deletes, while storing every 

change made to every document. In this scheme, links never dangle because linked documents are always 

present in their original form. While maintaining alternate document versions, and the intercomparison of 

alternates and versions is also important, it is maintaining the stability of references that most drives the 

design of Xanadu’s version support. It is this goal that forces every change to be stored, and leads to move 

and delete being forbidden operations. This goal also introduces a decidedly hypertext issue into the realm 

of versioning, making it a valid topic of study in the hypertext community. Several researchers followed 

Nelson in the exploration of this topic, notably Vitali, Maoili, and Sola in the Rhythm system [124], Davis 

in his dissertation on link consistency in open hypertext systems [41], by Simonson, Berleant et alli in 

version augmenting URIs to achieve reference permanence on the Web [173], and by Durand in Palimpsest 

[56], and Vitali and Durand in VTML [194] (though Palimpsest and VTML were also strongly motivated 

by the goal of supporting collaborative authoring). 

3.3 Versioned Data, Unversioned Structure 

The hypertext systems KMS [4], DIF [78], Hyperform [202], and the Online Design Journal proposal 

[112], added version support, but only for objects. Versioning of links, and hence structure, is not 

supported, consistent with their (implicit) view that links are invariant, and hence do not require 

independent change tracking. Similarly, these systems have no configuration management support. Unlike 

Xanadu, where the emphasis was on persistently storing very fine-grain changes to preserve link 

consistency, these systems version content at the object level, and do not track fine grain changes. Thus, 

they persistently store important states of the objects, without recording the sequence of changes between 

steps. This makes it more difficult to preserve link integrity in general, and impossible in cases where a 

linked region has been extensively altered. Despite their similarities in version control support, these 

systems differ significantly in emphasis, with KMS focused on creating a full environment for hypertext 

authoring and browsing, DIF interested in hypertext support for software development environments, and 

Hyperform concerned primarily with separation of concerns in a hyperbase architecture. It is due to these 

diverse other interests that these systems do not explore hypertext versioning issues in depth. 
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3.4 Composite-based Systems 

In the Neptune system [45,46], Norman Delisle and Mayer Schwartz grappled with hypertext 

versioning, but with a different motivation. Instead of preserving link consistency, or merely versioning 

individual objects, for them the key problem is collaborative teams writing hypertext documents. In order 

to collect related objects and links together, to provide isolated work areas for each collaborator, and to 

support selection of consistent groups of individual object and link versions, Neptune employs a key 

abstraction called a composite. (In fact, Neptune calls this abstraction a context, but we prefer the Dexter 

term, composite. Both can be used interchangeably.) A composite (context) is just a container object, and 

within a composite logically related items can be grouped, such as the sections of a paper, and links 

between those sections. When each collaborator works within a separate copy of the composite, it provides 

the appearance that each collaborator is working on their own individual paper. The drawback of this work 

isolation is that to create the final, complete paper, each individual’s contributions must later be merged. 

Versioning is a key support technology for this, since it allows each collaborator’s changes to be tracked, 

and merges to be recorded, while requiring that each composite select a consistent set of versions and links 

within which a collaborator works.  

Composites collect together into one abstraction three concerns that are typically separated: collections 

or compound documents, typically used for collecting together related objects and links; workspaces, used 

to provide work isolation in many configuration management systems; and configurations, which provide 

the selection of consistent sets of objects and containment relationships. However, composites do address a 

uniquely hypertext problem, that of how to consistently version links between a consistent set of objects, 

and how to support evolution of this link structure, in conjunction with the evolution of the objects. The 

CoVer [87,89,88], VerSE [91], and HyperPro [141] systems, along with versioning support for the Nested 

Context Model [27] in HyperProp [179,178], and Melly’s versioning support for Microcosm [128] all share 

Neptune’s goal of exploring how to support hypertext structure versioning, and team document authoring, 

using composites.  



  47 

3.4.1 PIE, a Change-Oriented Composite-Based System 

Two landmark events for establishing the legitimacy of hypertext versioning as a research topic are 

Frank Halasz’s 1988 Communications of the ACM article, “Reflections on Notecards, Seven Issues for the 

Next Generation of Hypermedia Systems,” [96] (based on a presentation at Hypertext’87) and his 

Hypertext ‘91 conference keynote, “Seven Issues, Revisited,” [97], since both identify versioning as one of 

seven critical issues for future hypertext systems. Version control was subsequently noted as an important 

issue for hypertext databases in the 1992 NSF Workshop on Hyperbase Systems [117], and the 

Hypertext’93 Workshop on Hyperbase Systems [115], cementing its importance within the community. 

The Halasz issues and the two workshops both legitimized and motivated hypertext versioning, making it 

easier to publish papers solely on this topic.  

In addition to identifying versioning as a key issue, Halasz also singled out a configuration 

management system, PIE [80], asserting that, “the goal is to adopt and improve on the versioning 

mechanism that appeared in the PIE system” [97]. Though not originally designed as a hypertext system, 

PIE does allow arbitrary relationships to be defined between objects, and provides some support for 

navigating across these relationships, thus giving it a hypertext-like quality. PIE is the first change-oriented 

configuration management system [35], and Halasz extolled PIE’s emphasis on logical changes that could 

span multiple objects and relationships, as opposed to versioning operations tailored to individual file 

operations (state-based). PIE stores a set of logical changes in a container object it calls a layer, which, 

because it can contain both objects and links, can also be viewed as a composite. But, because PIE only 

keeps changes in its composites, rather than a consistent state of the hypertext under development, and 

since these changes can be arbitrarily composed to create new hypertexts, PIE differs from Neptune [46], 

HyperPro [141], and HyperProp [178]. However, all these systems share the use of composites to contain 

the hyperdocument and its changes. 

PIE directly influenced the work of Prevelakis [154], who set out to reimplement PIE specifically for 

hypertext application, independent of its original Smalltalk environment. Unfortunately, this work was 

never completed. PIE’s change orientation also influenced Anja Haake’s work on melding change-oriented 

and state-based versioning styles within CoVer [87], which has both composites that capture the entire state 
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of the hypertext under development, as well as composites that capture only the changes between these 

states.  

At the end of his 1991 keynote, Halasz reflected on the lack of versioning research since 1987, and 

noted that, “whether, in fact, versioning is important or not is still, I think, an important issue.” Ironically, 

at that time most work on the topic was just beginning. 

3.5 Web Versioning 

The Web’s lack of standard features for either browsing or authoring versioned content has led several 

researchers to investigate versioning for the Web. Hypertext links on the Web are embedded within HTML 

resources, and hence hypertext structure is not separate from data. As a result, it is not possible to version 

structure separate from data, leading to a focus just on versioning data (though Lo [120] does provide a 

proposal for separating unversioned links from embedded anchors in versioned SGML content). 

Initial work concentrated only on browsing Web resources augmented with a version history. 

Typically, these systems append a version identifier to a URL, and augment a Web server to parse the 

version identifier, and retrieve the resource from a version store, such as an RCS [185] repository. 

Pettengill and Arango [150] adopt this approach to maintain different versions of materials in a digital 

library, as do Simonson and Berleant et alli [173], but to achieve reference permanence for all uses, not just 

digital libraries. Another common architecture for adding versioning services to the Web is the “form fill-

in” style, exemplified by BSCW [19], WWRC [161], and V-Web [180]. These systems share the approach 

of using HTML pages to create a user interface for a revision control system, and work within the existing 

Web infrastructure to add versioning services. The limitations of this approach have led some to employ a 

“Java helper app.” approach, wherein a Java application is downloaded into the browser and acts as an 

intermediary between the remote versioned repository and the user’s local environment. Examples of this 

type of system are WWCM [104], MKS WebIntegrity [134], and WebRC [75]. Characteristic of all these 

approaches is their sole focus on versioning content, with no support for configuration management, or for 

versioning structure. Delta-V [199], a current working group within the Internet Engineering Task Force, is 

developing an application-layer network protocol for versioning and configuration management of Web 

content, but will not address full structure versioning since structure is embedded within HTML links. 
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Delta-V extends the WebDAV (Web-based Distributed Authoring and Versioning) protocol [201], itself an 

extension of HTTP [68]. 

The Web-based versioning and CM systems just described assume that the Web server is responsible 

for maintaining the predecessor and successor relationships between revisions. Research at NTT 

Laboratories resulted in a proposal [143] that shifts the relationship management to the client. In this 

approach, the HTTP LINK method (now deprecated) is used to create predecessor and successor 

relationships between resources in a version history, similar to [77]. This has the advantage that version 

histories can span multiple servers without requiring cooperation between these servers, but has the 

drawback that clients must be well behaved, as a single misbehaving client can corrupt a version history. A 

related approach is the non-Web-based NUCM [192] system, a client-server CM system in which a NUCM 

client interacts with a remote NUCM repository server. This interaction occurs using primitive operations 

(similar to those provided by HTTP [68] and WebDAV [68]) upon which are implemented higher-level 

CM styles. This is similar to the NTT Laboratories work in that the client is responsible for maintaining the 

consistency of the relationships in the remote repository. 

3.6 Versioning for Open Hypertext 

Several systems have been concerned with how to provide hypertext versioning support in an open 

hypermedia environment. The hypermedia version control framework developed by Hicks et al. [100] 

provides the HURL data model, along with a conceptual architecture that, together, are used by an open 

hyperbase to provide structure and data versioning services. Unique among the systems surveyed, this 

model supports computed anchors and links, and permits structure to be versioned independently from data. 

The data model and conceptual architecture were instantiated in the HB3 hyperbase management system 

[116], also described in [100]. Hyperform [202] similarly provides versioning services in a hyperbase, but 

with fewer services. The proposal for adding versioning to the Chimera system [200] shares the goal of 

providing structure versioning for open hypertext, but does so for an open linkbase system, where the data 

is controlled by an external repository. As a result, a focus of this work is how to associate and synchronize 

the versioned structure with the externally versioned data. Melly’s work on versioning in Microcosm [128] 

also addresses hypertext versioning for an open linkbase system, but does so by creating context-like 
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structures called applications that contain references to an active set of documents and links, using the 

context to avoid the document and linkbase synchronization issues in [200]. 
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Chapter 4 

Containment 

4.1 Introduction 

In our daily lives, we use containers all the time. Students use backpacks or bags to carry their books, 

and travelers use suitcases to carry their clothes. When shopping, we place our purchases into a basket or 

cart, and then carry home the goods in a shopping bag. If we drove to the store, these bags are placed in the 

trunk of our car, making nested containers: goods in bag in trunk in car. In all of these examples, the item is 

physically contained within the container, and can only belong to one container at a time. 

A library is also a container, a building, which holds numerous books, maps, microfilms, videotapes, 

and other materials. However, a library’s collection consists of more than just the materials physically 

present, since at any one time, many of these items have been checked out, and are in the possession of a 

single library patron. The library’s catalog contains the complete list of a its collection, and refers to each 

of the items in its collection using a call number, such as those based on the U.S. Library of Congress 

notation [28]. This call number can be used to locate the item on a shelf, or in a special collection, and can 

be used by a librarian to determine which patron has checked out the book. 

Unlike physical items, objects in a computer have the quality of easy duplication at low to trivial cost, 

and this means that computer containment is not zero-sum: the same object can belong to multiple 

containers. Consider a group of three pieces of (quite physical) fruit, an apple, an orange, and a banana. It is 

possible to give each piece of fruit a reference number, such as fruit1, fruit2, and fruit3, and then create two 

collections of the same fruit, each containing the three fruit by writing the reference numbers on a sheet of 

paper. This system works well until someone actually wants to use one of the pieces of fruit. Even the non-
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destructive act of examining, say, the apple, requires replacing the reference number (fruit1) with the apple, 

thus denying access to the apple by the other collection, even though it holds a reference to fruit1. 

Computers don’t have this problem. Since objects can be quickly and cheaply duplicated, when one 

collection wants to read an object, they’re given an in-memory copy. Then, if another collection also wants 

to read the same object, it too is given a copy. Of course, modification and destruction of a computer object 

still makes it unavailable to all collections, just like they do for physical objects. But, the ease of object 

duplication afforded by computers dramatically increases the utility of containing objects using references, 

and holding the same object in multiple containers. 

Computer containers fill many roles, providing organization of large collections of objects into smaller 

units, a form of modularization (exemplified in the hypertext versioning literature by [178,46,141,100]), 

and information hiding via encapsulation [91,178]. Containers can also be used to model compound 

documents, for example, the combination of some text and image objects to model a document containing 

figures; Dexter composites exemplify this use [95]. Hypertext links are a form of container, as described in 

Section 2.2.3. Just as with physical containers, computer containers are used to transport items, examples 

including ZIP files, Internet Protocol (IP) packets, and the MIME multipart/related packaging of documents 

in electronic mail [118]. 

This chapter describes the various forms of computer containment that appear in hypertext, document 

management, and configuration management systems. It begins with an examination of basic static 

containment, where the intent is to model a pure set, with no constraints on the number, or type of objects 

that can be included, and included objects are explicitly listed. The common terms of inclusion and 

reference containment are next defined using the basic static containment framework. Augmenting the 

capabilities of basic static containment, some advanced containment functionality is outlined, such as 

allowing the type of included objects to be constrained, and the internal structure to be specified. Dynamic 

containment, which allows included objects to be determined by a computational process, is described at 

the end of the section.  
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4.2 Basic Static Containment 

In its basic form, a container models a set where each element is an entity (an abstraction). The 

container is an entity that holds the set. The containment relationship set is a mathematical relation among 

container and containee entities: 

{[c, e] | c ∈  Containers, e ∈  Containees} 

where each pair of entities [c, e] is a containment relationship between one element of the set of 

containers, c, and one element of the set of containees, e. The predicate contains(c, e) is true when e is a 

member of c, or contains(c, e) = c ∈  Containers ^ e ∈  Containees. The containment set, Cset, is the set of 

entities actually held within a given container, c: 

{[e1, e2, …, en] | en ∈  Containees ^ contains(c, en)} 

There are two main aspects to the containment design space: 

• Abstract properties of the container: Qualities of the container that are mathematic set 

properties, rather than properties of a specific computer representation, these being: 

o Containment: For a given entity, the number of containers that can hold it. Choices are: 

(a) single containment, an entity belongs to just one containment set, or (b) multiple 

containment, an entity belongs to multiple containment sets, 

o Membership: For a given container, the number of times can it contain a given entity.  

Choices are: (a) single membership, an entity can belong to a containment set only once, 

or (b) multiple membership, an entity can belong to a containment set multiple times, in 

which case the containment set is a bag, or multiset, 

o Ordering: The persistent ordering of a container. Choices are: (a) ordered, the entities 

within the containment set have a fixed successive arrangement, or (b) unordered, the 

entities have no prescribed arrangement; 

• Containment type: How containment relationships are represented.   

Broadly, there are two ways to represent that a container contains a particular entity. The container can 

physically include the contained item, or it can use an identifier as a reference to its members. The former 

case is known as inclusion containment; the latter, referential. Whenever two entities have a relationship 

between them, this relationship can be represented using references, following the permutations of 
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identifier storage. The identifier can be stored on the container, on the containee, or on both. Additionally, 

identifier storage can be delegated to a separate entity, a first-class relationship. However, since the 

relationship is itself a container, the same permutations of identifier storage apply between the container 

and one endpoint of the relationship, and between the containee and the other endpoint. Typically the 

relationship holds identifiers for both the container and containee.  

One consequence of using containment relationships of any kind is the possibility of containment 

relationship cycles. Containment cycles occur when a container contains itself, either directly or indirectly, 

via one of its contained containers. Systems vary on whether they allow containment cycles. On the one 

hand, it is typically inefficient to detect cycles when they are created, thus leading to systems permitting 

cycles. On the other hand, cycles add complexity to operations on containment graphs, since the cycles 

must be detected to avoid infinite processing. This leads to the desire to prevent the creation of cycles. 

The primary containment types are detailed below. 

• Inclusion: Members are physically included within the container, as shown in Figure 6(b) below. 

Inclusion containment is frequently called aggregation [23,164], since the container aggregates, or 

combines together, the contained entities. For this reason, it is also described as representing a part-of 

relationship, since the contained entity is a part of the container. 

An unusual type of physical inclusion occurs when the container encapsulates the type definition 

of contained entities, in addition to containing its state. In this case it is not possible even to copy such 

a contained entity, since the type definition is not externally visible. By comparison, physically 

included entities can typically be copied to another container, since the container does not hold their 

type definition. One example of type definition encapsulation occurs in structured program editors, 

where definitions of loop constructs and conditionals depend on the program block that contains them 

[86], p. 86. 

The following containment types are used for referential containment: 

• Containment relationship on container: The container provides storage for the identifier of the 

containee, and thus owns the containment relationship. Containees do not know which collections 

contain them, or even if they are contained at all. This provides the main advantage for this approach: a 
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container can add any entity as a member without modifying it, independent of whether it is writeable 

or read-only. This is shown in Figure 6(c) below. 

In object organizations where properties are present (data plus properties, or all properties), it is 

possible for the containment relationships to be stored within one or more properties. When an object 

has multiple properties, each holding a set of containment relationships, a single object can represent 

many containers. The DeltaV protocol [199] is an example of this, where each history resource has 

both a property containing a list of revisions, and a property containing a list of working resources. 

• Containment relationship on containee: The containee owns and provides storage for the identifier, 

and owns the containment relationship. The container does not know what entities it contains, or if it 

contains any objects at all. This is useful when users have access to contained items, but not to 

collections. Despite not knowing its members, the container can still be used to hold metadata about 

the collection. This is shown in Figure 6(d) below. 

• Containment relationship on container and containee: Both the container and its containees own 

and provide storage for containment relationships (the contained entities have the inverse containment 

relationship). That is, for each containee, there is a containment relationship on the container, as well 

as one on the containee, often called a backpointer. In this case, the container knows what entities it 

contains, and the containees know what containers contain them. This is shown in Figure 6(e) below. 

• First class containment relationship: An entity that is neither the container, nor the containee, 

records the containment relationship. With no further information, the container does not know what 

entities it contains, and the containees do not know what containers contain them. This is shown in 

Figure 6(f) below. However, if pointers on both the container and the containee are added to refer to 

the containment relationship object, then it is possible for the container to know its contents, and vice-

versa.  A significant advantage of this approach is that it permits the storage of metadata on the 

containment relationship, such as who added a containee, and when. This metadata is not handled well 

when the containment relationship is part of the container or containee, since there is no entity to 

which the metadata can be attached. The Document Management Alliance (DMA) 1.0 specification 

[50] uses first class containment relationships for this reason. 
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• Hybrid: Combinations of these basic containment types are also possible. For example, the DMA 1.0 

specification [50] combines its first class containment relationships with a relationship on containees 

that points back to its parent container, as shown in Figure 6(g). Note that DMA only uses this 

backpointer when the containee belongs to just a single container (what the DMA 1.0 specification 

calls direct containment). This additional relationship allows for more efficient navigation from 

containee to parent container. 
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Figure 6 – The five primary types of containment, plus one hybrid containment type. 
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Highlighting the descriptive range of this containment model, Table 2 below details the containment 

type employed by the container object (composite, context, etc.) within selected hypertext versioning 

systems, along with the Dexter hypertext model [95], and the DMA 1.0 standard [50]. The containment 

characteristics for links, which are also a type of container, are not shown in this table. 

System & 
Object 

Single/Multiple 
Containment 

Single/Multiple 
Membership 

Ordered / 
Unordered 

Containment 
Type 

Cycles 
Permitted 

Neptune 
[46] 
context 

Single Single Unordered Container holds 
relationship 

No 

Dexter [95] 
composite 

Multiple Single Unordered Container holds 
relationship 

No 

HyperProp 
(Nested 
Context 
Model) [179] 
composite 

Multiple Multiple Ordered Container holds 
relationship 

No 

HyperPro 
[141] 
composite 

Multiple Multiple Ordered Container holds 
relationship 

No 

CoVer [87] 
composite 

Multiple Multiple Partially 
ordered 

Container holds 
relationship 

Yes 

DMA 1.0 
[50] 
container 
 

Both Single Optional Hybrid. First-
class 
containment 
relationship, 
with additional 
backpointer on 
object pointing 
to container. 

Yes 

Hypermedia 
Version 
Control 
Framework 
[100] 
composite 

Multiple Single Unordered Container holds 
relationship 

Yes 

Table 2 – Static containment characteristics for composite-based hypertext versioning systems, the Dexter 
[95] reference architecture, and the DMA 1.0 standard [50]. 

4.2.1 Independence of Mathematic Set Properties 

Together, the mathematic set properties, the containment type, and whether cycles are permitted, 

define the axes of the design space for static containment. One concern is the independence of these axes. 

Does a design choice on one axis restrict or imply choices on another? The mathematic set properties are 

completely independent of each other. Whether an object can belong to only a single container, or to 

multiple containers does not affect whether that object can appear once, or more than once in a single 
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container. Similarly, the existence, or lack of an ordering on a collection does not affect the set’s 

containment or membership properties. However, there are some interactions between the containment 

type, and the set properties, as shown in Table 3. Containment by inclusion does preclude having an object 

participate in more than one container, and makes containment cycles impossible. Additionally, inclusion 

containment makes it more difficult to have the same object appear multiple times in the same container. 

However, containment via containment relationship does not introduce any additional dependencies 

between design axes. 

 

 Object 
can only 
belong to 
one 
container 

Object 
can 
belong to 
multiple 
containers 

Object 
can 
appear 
only 
once per 
container 

Object 
can 
appear 
multiple 
times per 
container 

Ordered 
container 

Unordered 
container 

Inclusion Yes No Yes Possible 
by 
duplicating 
object 
within the 
container 

Yes Yes 

Container 
holds 
containment 
relationship 

Yes Yes Yes Yes Yes Yes 

Object holds 
containment 
relationship 

Yes Yes Yes Yes Possible 
by having 
object 
record its 
order 
within 
each 
collection 

Yes 

Containment 
relationship 
on container 
and object 

Yes Yes Yes Yes Yes Yes 

Independent 
containment 
relationship 
object 

Yes Yes Yes Yes Yes Yes 

Table 3 – Interactions between containment type, and mathematic set properties of containers. A “yes” 
entry indicates that the containment type is capable of representing the set property. 

4.2.2 Deletion Semantics 

Since containment involves two objects, the container and the containee, deletion of either of these 

objects affects the containment. There are three deletion operations of interest: delete a container object, 
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delete(container), delete a contained object, delete(object), and delete an object from a specific container, 

delete(container, object). Table 4 below enumerates how the semantics of these delete operations vary with 

containment type.  

 delete(container) delete(object) delete(container, 
object) 

Inclusion Causes deletion of 
contained objects too. 

Causes removal of object 
from container.  

Causes removal of 
object from container 

Container 
holds 
containment 
relationship 

Container is deleted, along 
with all containment 
relationships, and either: 
a) all contained objects are 
left untouched, or, 
b) all contained objects are 
deleted as well, causing 
recursive deletion of 
member containers (same 
semantics as inclusion 
containment) 

Object is deleted, and 
either: 
a) all containment 
relationships in all 
containers that refer to the 
object are deleted, or, 
b) no relationship cleanup 
is performed, causing 
containment relationships 
that contain the object to 
dangle. 

Removes containment 
relationship and then 
either: 
a) leave object 
untouched, or, 
b) delete contained 
object  (same delete 
semantics as inclusion 
containment), or, 
c) delete object only if it 
is no longer being 
contained by any 
collection (i.e., delete 
with garbage collection). 

Object holds 
containment 
relationship 

Container is deleted, and 
either: 
a) remove all containment 
relationships in all objects 
that refer to the container, 
or, 
b) no relationship cleanup 
is performed, causing 
containment relationships 
that contain the container 
to dangle. 

The object, and all its 
containment relationships 
are deleted. 

Either: 
a) only the containment 
relationship referring to 
the specified container is 
removed, or,  
b) the object and all its 
containment 
relationships are deleted. 

Containment 
relationship 
on container 
and object 

Container is deleted, and 
either: 
a) all containment 
relationships in all objects 
that refer to the container 
are deleted, or, 
b) no relationship cleanup 
is performed, causing 
containment relationships 
that contain the container 
to dangle (same as for 
when the object holds the 
containment relationship). 

Object is deleted, and 
either: 
a) all containment 
relationships in all 
containers that refer to the 
object are deleted, or, 
b) no relationship cleanup 
is performed, causing 
containment relationships 
that contain the object to 
dangle (same as for when 
the container holds the 
containment relationship). 

Either: 
a) remove both the 
containment relationship 
on the container and on 
the object, and leave the 
object untouched, or, 
b) remove both 
containment 
relationships, and 
remove the object only if 
it is no longer contained 
by any container 
(garbage collection), or, 
c) remove the 
containment relationship 
on the specified 
container, then perform 
a delete(object). 
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Independent 
containment 
relationship 
object  

Container is deleted, and 
either: 
a) all containment 
relationships that refer to 
the container are deleted, 
or, 
b) no relationship cleanup 
is performed, causing 
containment relationships 
that contain the container 
to have one invalid 
endpoint. 

Object is deleted, and 
either: 
a) all containment 
relationships that refer to 
the object are deleted, or, 
b) no relationship cleanup 
is performed, causing 
containment relationships 
that contain the object to 
have one invalid endpoint. 

Either: 
a) remove the 
containment relationship 
between the object and 
the container, leaving 
the container and object 
untouched, or, 
b) remove the 
containment 
relationship, and remove 
the object only if it is no 
longer referenced by any 
containment relationship 
(garbage collection), or, 
c) remove the 
containment relationship 
and perform a 
delete(object). 

Table 4 – Variations in delete semantics for different containment types. 

4.3 Relationship Abstraction Layers 

At its most abstract, a container has an undifferentiated contains relationship between itself and its 

containees. This contains relationship is refined by specifying the abstract containment set properties of 

containment, membership, and ordering, along with the containment type. There are many permutations of 

the abstract containment set properties and containment types, and hence there are many possible ways to 

refine a contains relationship into specific container characteristics. 

Similarly, there are many possible computer data structures that can be used to represent a specific 

container as concrete data items [2]. Examples include arrays, linked lists, hashed lists, comma-separated 

text strings, and various types of trees, to name just a few. These data structures all support the operations 

of creating a set (or bag—all the following operations apply to bags too), inserting a member in a set, 

listing the members of a set, deleting a member from a set, and deleting a set. Ordered sets add position 

information to the insert operation, and additionally add an operation to order some members of the set. 

Other set operations are also possible, such as union, intersection, difference, etc., but are less frequently 

used by containers.  

A container’s concrete representation can be viewed as an abstraction layer that implements a specific 

containment relationship that has had its containment, membership, ordering, and containment type 

precisely specified. This specified containment relationship is also in an abstraction layer that refines a 
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more abstract model of containment in which there is just an undifferentiated contains relationship between 

containers and their contained entities. 

The abstraction layer holding the undifferentiated contains relationship is termed the abstract 

relationship layer, since it provides an abstract depiction of the contains relationship, providing only the 

type of the relationships, and omitting all other details concerning its specific properties. Entities in this 

layer are abstraction signifiers, indicating that they have distinct intellectual identity as abstractions, 

irrespective of whether their eventual concrete representation has independent identity. The abstract 

relationship layer is shown at the top of Figure 7. 

Precisely specifying the characteristics of the relationships in the abstract relationship layer results in a 

more detailed depiction in the explicit relationship layer. Containment relationships at this layer have fully 

specified their containment, membership, and ordering properties. Containers at this layer describe whether 

they are using inclusion or referential containment, and, if referential, the details of where identifiers are 

kept. Similar to the abstract relationship layer, entities in the explicit relationship layer are abstraction 

signifiers. No refinement of entities occurs between the abstract and explicit relationship layers. However, 

since containment relationships are differentiated between inclusion and referential containment, entities 

indicate whether they have an associated identifier. The explicit relationship layer is shown in the middle of 

Figure 7, which depicts two possible ways to refine the contains relationship in the abstract relationship 

layer into explicitly defined containment relationships. If an entity has an associated identifier, an asterisk 

represents this. 

As noted above, there are many possible ways to map the entities and relationships of the explicit 

relationship layer into concrete data items within a computer. In the concrete representation layer, abstract 

entities and relationships have been reified into specific data structures and chunks of state. Repositories 

such as databases and filesystems can be used to realize the concrete representation. These systems 

themselves are complex, and often have several layers of abstraction within their implementation. 

However, this containment model does not model these additional implementation abstraction layers. 

Figure 7 shows one possible concrete representation, out of the universe of possible representations, for 

each of the examples in the explicit relationship layer. The inclusion containment example is reified as a 

file that internally has a linked list of data chunks, which are each a sequence of bytes. The referential 
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containment example is represented using a container data item that holds within it a linked list of 

identifiers to contained data items. The internal structure of contained data items is unconstrained. Both the 

container and containee data items have identifiers. 

 

container 

contained entity 

contains 

Abstract Relationship Layer 

Explicit Relationship Layer 

Example #1: Inclusion Example #2: Referential 

container 

contained entity 

contains – single 
containment, single 
membership, unordered, 
inclusion, delete removes 
all members 

container 

contained entity 

contains – multiple containment, 
single membership, ordered, 
containment relationship on 
container, delete removes only  
container 

Concrete Representation Layer 

A file with a linked list of content chunks 

1 

N 

M 

N 

container 

A container data item represents its 
members using a linked list of identifiers 
of contained data items. 

id2 id3 

id3 id2 id1 

Data 
item 

Data 
item 

Data 
item 

id1 

* 

*
* Has identifier * Has identifier 
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id0 

 

Figure 7 – A container at three different layers of abstraction. An abstract containment relation (abstract 
relationship layer) is refined into one example each of inclusion and referential containment. The explicit 
relationship layer fully details the containment relation, specifying containment, membership, ordering, and 
containment type. For the inclusion and referential examples, the concrete representation layer shows an 
example reification of the containers as persistent data items. 
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4.4 Common Definitions of Inclusion and Reference Containment 

Having enumerated the mathematic set properties, the containment types, and the delete semantics, it is 

possible to relate the commonly used terms inclusion containment (or containment by-value) and reference 

containment to this model. Since the exact meaning of inclusion containment varies with use, this text uses 

the most common hypertext definition, as given in [96,86], of a “part/whole relationship in which 

characteristics of and operations on the whole will affect the parts as well,” [96], p.844. There are several 

points in the containment design space that can satisfy this definition. Certainly physical inclusion, or 

aggregation, where the contained object is stored as part of the container, meets the definition. However, 

any kind of referential containment can also satisfy this definition so long as the object is contained in only 

one container, and deletion of the container implies deletion of all contained objects. Note that this is true 

even when the object holds the containment relationship, assuming it is possible to determine all the objects 

belonging to a container, for example by using a search facility across all system objects looking for 

containment relationship values that identify the container. As a result, the common definition of inclusion 

containment does not constrain the containment type at all, instead limiting each object to one container, 

with deletion of a container implying deletion of all members. 

In contrast, there is reference containment, defined as “a much looser relationship, in which the 

participating entities allude to each other but remain essentially independent” [96], p. 844, or the more 

precise “allow for the same component to be a member of several {containers},” [86], p. 85. These 

definitions preclude using physical inclusion, but otherwise are compatible with all containment types that 

employ containment relationships. Objects can be a member of one, or more than one container. The 

biggest difference between reference containment and inclusion containment is in deletion semantics, since 

reference containment requires that deletion of a container must not result in deletion of its members. Table 

5 below summarizes the differences between the common definitions of inclusion containment and 

reference containment. 
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Inclusion Containment Reference Containment 

• All containment types 
• Objects can belong to just one 

container 
• Deletion of container causes 

deletion of contained objects 
• Cycles not permitted 

• All containment types except 
physical inclusion 

• Objects can belong to one, or many 
containers 

• Deletion of container does not result 
in deletion of contained objects 

• Cycles are possible, though may not 
be permitted 

Does not constrain: 

• Whether an object can appear once, or many times in the container 
• Whether a collection is ordered, or unordered 

Table 5 – Characteristics of inclusion and reference containment, according to 
common definitions of these terms as generally used in hypertext systems. Note that 
in this document, inclusion containment strictly means physical inclusion (the 
definition given in Section 4.2), and does not use the definition in this table. 

4.5 Links, Containment Relationships, and Containers 

The existence of first-class relationships as a type of referential containment begs the question of the 

differences and similarities between hypertext links and containment relationships.  From a data modeling 

perspective, links and containment relationships are very similar: containment relationships on containers 

or objects are a kind of unidirectional embedded link, and first-class containment relationships are a kind of 

bi-directional link. In both these cases, the link is to an entire object, not to an anchor point within the 

object, and so this highlights one difference between links and containment relationships: containment 

relationships are constrained to have entire objects as their endpoints. Still, some hypertext systems use 

hypertext links to implement containment relationships, exploiting their inherent similarity. 

However, though containment relationships are very similar to hypertext links, there is a big difference 

between the semantics associated with a container object, and a generic (non-container) object type. While 

generic objects can be made to act somewhat like container objects by linking them to other generic objects 

(perhaps even by using a special containment link type), the system does not know that the user intends and 

expects a particular generic object to behave like a container object. Inclusion deletion semantics are one 

example [96]. Using just links between generic objects, a hypertext system will not be able to provide by-

value delete semantics. Instead of the desired outcome, where the collection and all of its members are 

removed in one operation, the system will do the only thing it knows how to do, deleting just the one 

generic object, and perhaps performing link cleanup.  
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Similarly, operations that require understanding about containment, such as those that operate on 

compound documents, will behave unexpectedly when interacting against a container implemented with 

generic objects. For example, Halasz, in his critique of NoteCards, notes that while it is possible to use link 

structures to hierarchically organize documents into sections, NoteCards’ lack of knowledge about 

containment reduces its ability to operate on documents as a whole. While a utility program can reconstruct 

a hierarchically organized document into a single card holding the entire document contents, subsequent 

modifications to the document card do not automatically cause the appropriate sub-section card to be 

updated, and vice-versa. If NoteCards understood that the specific object was being used as a compound 

document, it would be able to provide better support for this scenario [96]. 

So, in summary, while containment relationships and hypertext links are very similar, containers are 

distinct from other non-container objects due to their container-specific knowledge and behavior. 

4.6 Dynamic Containment 

For all containment types except for inclusion, a container can be viewed as a mapping from the set of 

all objects to the set of all containers. For single containment, this mapping is M:1, where M is the number 

of objects, while for multiple containment, this mapping is M:N, where N is the number of collections. 

With static containment, the set of members is explicitly listed. For dynamic containment, the mapping 

from objects to collections is generated by a function. 

Queries are by far the most common functions used to dynamically create containers. DHM [84], the 

Hypermedia Version Control Framework [100], and CoVer [88] are all examples of systems that support 

the population of containers from query results. There are two ways dynamic containment can be 

employed: 

• Query results specify the endpoint of one containment relationship: In this approach, each 

containment relationship can have a query associated with it, and this query typically is designed 

to return a single result, the endpoint. Thus the query determines a single element of the container. 

This approach is frequently employed to pick out a single revision from all the revisions of an 

object by scoping the query to just a single versioned object, and by selecting a query predicate 

that returns just a single revision. When scoped to a single revision history, the query predicate is 
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termed a revision selection rule. The Hypermedia Version Control Framework supports arbitrary 

queries for endpoint selection. 

• Query results specify the membership of a collection: Here the results of a query comprise the 

entire contents of the collection. In DHM, one system that supports this kind of containment, these 

containers are called virtual composites. 

4.7 Advanced Containment Semantics 

Some containers offer additional capabilities that extend the containment design space. These are: 

• Type of contained objects: Especially in systems that support a wide variety of object types, 

containers may limit, or explicitly state the type of objects that can be contained. For example, in 

the Hypermedia Version Control Framework [100], the association set is a container that can only 

contain associations, and in Aquanet [126], schema relations are containers that may restrict the 

type of contained objects. This issue is noted as the “Type” aspect of composite design in [86], p. 

84. 

• Number of contained objects: Containers may have a fixed size, or an upper bound on their size. 

For example, Aquanet schema relations can have a fixed number of contained items, such as when 

modeling an argument relation (see Figure 2 of [126]), which has two slots for statements, and one 

slot for rationale.  

• Typing of the container: the previous two capabilities, specifying the number and type of 

contained objects, can be viewed as two kinds of constraints that would be given in the definition 

of a specific container type. Aquanet schemas essentially define new container types with each 

new relation, and DHM [84] provides several container subclasses, such as the 

GuidedTourComposite and TableTopComposite. Specific container types can express a wide 

range of structures, as noted in [86], p. 84-85. Compound documents can also be expressed using a 

container type that provides viewing and editing semantics for the contained objects that allows 

the container to behave like a single document, instead of a set of independent objects. 
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Chapter 5 

Address and Name Spaces 

All hypertext, document management, and configuration management systems employ names, 

addresses, or both, to identify objects within the system. These identifiers are required for referential 

containment, since they are used by the endpoint specification(s) within a containment relationship. A 

name is a human-understandable identifier for an object that may also be machine readable, while an 

address is solely a machine-readable identifier for an object that is not human-understandable, except by 

experts in the system. For example, within the Xanadu system [137], addresses called “tumblers” are used, 

and the Document Management Alliance 1.0 [50] specification employs addresses called Object Instance 

Identifiers (OIIDs), to identify persistent objects. The http URLs employed on the Web can serve as both 

names and addresses – the URL http://www.{company name}.com/ is commonly understood to be the 

name of a firm’s Web page, yet there are many URLs that are not meaningful to a human, or actually have 

addresses embedded within them, and thus have the qualities of an address. 

Starting with basic physical memory, be it disk, RAM, ROM, or other physical device, every chunk of 

memory has an address. Disks are divided into cylinders, tracks, and sectors, while RAM and ROM have 

memory addresses for each byte or word. Each abstraction layer built on top of these basic physical 

memories uses new sets of identifiers, with meaning specific to the abstraction. For example, the Unix 

inode is the basic identifier of a file, which in turn can be converted into a series of blocks, and each block 

in turn can be translated into a physical address on a disk. The resolver is the function that converts the 

identifiers at one level of abstraction into identifiers for the next abstraction layer down. A redirector 

function is sometimes available as well, performing a mapping of identifiers at the same level of 

abstraction. A redirected identifier still must be applied as input to the resolver function to access the 
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identified object. The symbolic link functionality in Unix is an example of namespace redirection. Even 

after dereferencing a symbolic link into another filename, it still must be resolved into an inode before the 

actual file contents can be accessed. 

The set of all possible addresses or names in a particular addressing or naming scheme is called either 

the address space or the name space for that scheme. Often the set of possible names is infinite. 

The complete definition of a scheme for naming or addressing consists of: 

• Syntax: the basic syntax of the names, or addresses. The quality of human readability is 

determined by syntax. 

• Semantics: the meaning, if any, of subparts of the name or address. Names and addresses with no 

internally encoded semantics are termed opaque. Name or address semantics encompass 

uniqueness properties, as well as interactions with containment hierarchies, such as the interaction 

of filenames with directory structures. 

• Resolver: the resolver function for the names, or addresses, specifying which names or addresses 

form the output of the resolver, the process used to resolve the name or address, and the system 

entity (architectural component) or entities that are engaged in the operation of the function. 

• Assigner: when an object is created, what system entity, or entities, assigns the new name of the 

object. Note that not all name or address spaces have assigner functions – for example, a memory 

location in a chip is a physical property of the device itself, not something that is assigned to it by 

a system element. However, in some cases it is meaningful to describe which system entity assigns 

names of addresses. In the case of the mapping of URLs to Web resources, the origin Web server 

is responsible for name assignment. 

• Redirector: if a redirector function is present, the semantics of the redirector function, specifying 

which names or addresses it operates on. 

Hierarchical containment structures are frequently reflected in object names. As exemplified by a 

filename, the prevalent way names reflect containment is for the name of the parent containers to be 

concatenated together, each name separated by an character, often “/” or “\”. Finally, to the name of its 

parent container, the individual file appends its own name. In this case, the semantics of names are 

completely intertwined with the semantics of containment. For example, if a file can be contained by 
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multiple directories, then the file can have many names, yet if only single containment is allowed, then a 

file has just a single name. 

Versioning too often affects names, by giving each revision of an object a version identifier, such as 

1.2.1, which is appended to the name of the versioned object, as in “main.c, 1.2.1”. In essence, this creates 

a dual naming system, with one set of names used to identify specific versioned objects, and the second set 

identifying specific revisions of those objects. Since many versioning systems represent revisions as being 

contained by their versioned object, this is another example of containment affecting naming. Vitali and 

Durand provide a detailed description of three revision addressing schemes, outline numbering, reverse 

outline numbering, and L-shaped numbering, in [194]. 

One challenge emerges when hierarchical containment names and versioning containment names are 

combined. It is tempting to just add the revision identifier to the end of the name determined by the 

hierarchical containment structure. However, if containers are versioned as well, then associated with each 

container in the containment hierarchy are really two containers: one holding the objects currently 

contained by that revision of the container, and another holding all revisions of the container (the versioned 

object for the container). At each level in the containment hierarchy, it is now necessary to identify an 

element from each of these containers, yet most hierarchical naming schemes assume that each level in the 

containment hierarchy is associated with just a single name, located between separator characters (e.g., 

“/{name}/”) The challenge is how to shoehorn in the additional versioning information. Two approaches 

are to add the version identifier in at each level (e.g., “/{name},{version id}/”), or to have some external 

specification of each revision for each level. 

5.1 Centralized Assignment and Resolution 

A common simple addressing scheme is to assign each system object an address that is unique to that 

instance of the system. The system is responsible for assigning addresses when objects are created, and 

provides functions for resolving those addresses into objects by means of converting each address into 

internal system identifiers that can be used to retrieve the object. The address space is totally centralized, as 

names are assigned and resolved by the system.  
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The Chimera 1 system [7] is an example of a centrally assigned and resolved address space. All 

Chimera objects are assigned a long integer address when they are created, and this address uniquely 

identifies the object in the instantiation of the Chimera system in which it was created. All objects (e.g., 

anchors, links, views, etc.) share the same address space. While this addressing system is well suited for 

Chimera 1, it does not provide any support for distribution of objects across multiple instances of the 

Chimera system, or any support for interchange of hypertexts. 

The Dexter [95] reference model also assigns each system object an address, but one that is unique 

across all instances of Dexter-compliant systems. Dexter addresses are called UIDs, for unique identifiers, 

and UIDs are assigned by an instance of the Dexter system when objects are created. Dexter also provides 

support for component specifications, which indirectly identify a specific object, such as with a simple 

search specification. In Dexter terminology, the function that converts a component specification into a 

UID is a resolver function, while the function that converts a UID into a specific object instance is called an 

accessor function. 

Neptune [46], in its object management layer, the Hypertext Abstract Machine (HAM) [45], also 

provides unique identifiers for all system objects. The HAM is responsible for assigning and resolving 

these identifiers. Neptune requires each system object to be contained within one, and only one, container, 

known as a context. When a new context is derived from an old one, all objects in the old context are 

copied into the new one, in order to maintain single containment. This makes it possible to include the 

context identifier in each object’s address. So, Neptune object identifiers are an identifier pair consisting of 

an invariant identifier that is the same for all instances of the object, and a context identifier that acts as an 

instance identifier, since each object can belong to only one context. The benefit of this approach is that it 

permits the retrieval of all revisions of an object without needing a separate object to record the revision 

history. However, it does require integrating the time of last modification with the revision histories of the 

containing contexts to recreate the revision history of an individual object. 

5.2 Decentralized Assignment and Resolution 

Decentralized addressing and naming schemes provide identifiers for large pools of documents that are 

controlled by many different organizations. These decentralized identifier spaces allow the assigner and 
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resolver functions to be replicated throughout the system, with each organization capable of controlling and 

delegating these functions. Hauzeur also notes that decentralized identifier resolution may involve routing 

services [98]. 

The Xanadu system [137], with its tumblers, provides an example of a sophisticated decentralized 

address space. Xanadu does not have any facility for naming objects. At their top level, tumblers are a 

series of fields, beginning with a “1.”, and separated by “.0.” as follows:  

1.{node}.0.{user}.0.{document}.0.{element} 

Each field is itself a sequence of dot-separated numbers with no fixed size, which allows each field to 

address an unbounded number of items. The node field contains the identifier for a specific Xanadu server 

(node), while the user field contains account, and potentially sub-account identification. The document 

field identifies the document, and potentially the version, and subdocument parts as well. Finally, the 

element field allows the specification of within-document parts.  

A specific Xanadu system node assigns tumbler addresses when the canonical instance of an object is 

created. Resolution of a Xanadu tumbler is a two-step process. First, the node address is resolved into the 

address of the home node for the object, then that Xanadu node is contacted to resolve the remainder of the 

address. This two-step resolution is a key contributor to scalability, since it allows each server to control its 

own address space independent of other nodes, and each server can be under the control of a different 

organization. It promotes robustness as well, since the outage of a single node does not imply other node 

contents are inaccessible. 

Uniform Resource Locators (URLs) [22] share many of the same properties as Xanadu tumblers, 

though with an important scalability tweak. URLs take the form: 

{scheme}://{domain}{user}/{path} 

Here the scheme identifies a specific form of URL, usually associated with a specific network 

protocol, the domain is the name or IP address of a specific server, the user is user authentication 

information, and the path is a server-specific identifier of a network resource. Like tumblers, many 

organizations can each delegate and assign portions of the URL namespace under servers they control. 

Resolution of a URL is a two-step process. In the first step, the domain name is resolved into an Internet 

Protocol (IP) address using the Domain Naming System (DNS) [133]. IP address in hand, the client then 
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uses the scheme to determine which network protocol to employ when connecting to the server. If present 

(and it almost never is), the user information is employed to authenticate the client to the server.  Then, the 

client passes the path portion of the URL to the server for resolution into a resource. Like Xanadu tumblers, 

URLs are scalable, since each server, and hence organization, controls its namespace independent of other 

organizations, and robust, since the resources are distributed across a large number of servers. Unlike 

tumblers, URLs can name objects accessible via multiple network protocols, and URLs employ DNS host 

names, providing an extra level of naming indirection, permitting the IP address of a server machine to 

change without altering its objects’ URLs. 

The Document Management Alliance 1.0 employs addresses called object instance identifiers (OIIDs). 

OIIDs are actually a form of URL, though their resolution semantics are somewhat different from http and 

ftp scheme URLs. An OIID has the form: 

dma://[{dma pop}]/{system id}/{docspace id}/{object id}[;guid={object guid}] 

The beginning string “dma” identifies this as a dma scheme URL, and the dma pop field identifies a 

DMA point of presence, where a client could connect to a DMA server over the Internet. However, since 

no network protocol for accessing DMA repositories currently exists, since all access occurs via the DMA 

Common Object Model (COM) interfaces, and the dma pop field is always ignored. Thus, the standard 

DNS lookup step in URL resolution does not apply to OIIDs. 

The system id field is a globally unique identifier (GUID) that identifies the system that originally 

assigned the OIID to an object. The docspace id is another globally unique identifier, this time representing 

a cluster of interconnected systems that are all capable of resolving the OIID. Thus, OIID resolution can be 

performed by submitting the object id and guid fields to either the docspace, or to the system that originally 

assigned the OIID. Thus, OIIDs also support scalability, since OIIDs can be assigned by any DMA system, 

independent of all other DMA systems, and robustness, since a single system, or docspace becoming 

unavailable does not imply that objects on other systems are unavailable. 
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Chapter 6 

Modeling System Data Models 

An essential aspect of a domain model is a description of the relationships between entities in the 

domain. In the hypertext versioning domain, the fundamental domain entities are works, anchors, links, and 

various container objects. Relationships between the entities, and the details of which entities belong to 

which types of container, all vary from system to system, and very few generalizations can be made across 

the domain. Yet, the specifics of these relationships have a significant effect on the way hypertext 

versioning systems model typical versioning use scenarios, and on the design spaces for meeting domain 

requirements. Thus, developing a model of the entities and their relationships is a necessary step both for 

understanding the behavior of a specific system in the domain, and for understanding new systems 

developed within the domain. 

Containment is by far the most common relationship occurring in hypertext versioning systems. 

Containers are used to model such abstractions as links, versioned objects, workspaces, and user-defined 

collections. Thus, determining which entities are containers, and modeling the containment relationships 

between these containers and other entities, is a primary activity in representing the data model of a 

hypertext versioning system. Storage relationships, denoting which architectural elements provide storage 

for elements in the data model, are also important, since they convey information about the control choices 

in the system. For example, storage relationships in the Chimera system [7] show that Chimera provides 

storage for anchors, links, and views, but does not provide storage for, and hence does not control, the 

linked objects. 

In summary, the purpose of modeling system data models is: 
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• Concisely describe the data model of an instance of a system in the hypertext versioning domain 

using containment, inheritance, and storage relationships between architectural elements and data 

model elements. 

• Allow the data model to expose control choices in the system, making them explicit. This is 

usually represented by storage relationships. 

• Build understanding of the system, so it can then be modified to add hypertext versioning 

capability. If you don’t know what you have, how can you reliably change it? 

• Support analysis of system properties, since many system qualities depend on containment 

relationship patterns. 

• Support comparison of systems that have been modeled, allowing similarities and differences to 

more readily be examined. This also permits new, or contemplated, systems to be compared with 

existing ones. 

The focus of the system data models is on static, not behavioral, aspects of the entities and their 

relationships. In part this is due to the focus of this domain model on versioning static objects and links. 

However, the primary reason is to abstract away the behavioral aspects to focus on the containment and 

storage relationships that have such a significant effect on the versioning behavior of the systems. 

Introducing methods and their parameters into the model acts, in this case, only to obscure the key 

containment and storage relationships. As a result, an extended entity-relationship model [29], an important 

member of the class of semantic data models [148,103], is the modeling method used herein for 

representing the data models of hypertext versioning systems. Entity-relationship modeling was chosen 

over alternatives such as object-oriented modeling [23] due to its emphasis on static relationships, and the 

fact that it does not involve modeling behavioral aspects of systems entities, such as methods and their 

parameters. Semantic data modeling using an enhanced entity-relationship model was successfully 

employed in the development of the HB1/SP1 system [168]. 

The essential elements of entity-relationship data models are entities, and relationships [148,103]. 

Entities signify domain abstractions, such as works, anchors, links, and container types. Typed 

relationships exist between the entities, and this type is either predefined, such as the “is-a” (inheritance) 

relationship, or is defined by a specific model. The containment and storage relationships used in hypertext 
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versioning domain models are examples of these. Graphical representations of entity-relationship data 

models can be made using the intuitive notion that entities correspond to nodes in a graph, while the 

relationships correspond to arcs. This is the same intuition that underlies viewing a hypertext as a graph, 

with works as nodes, and links as relationships.  

Typically, domain models provide a normative description of domain entities and their relationships. 

For example, [188] provides a domain model of the theater-ticketing domain that includes relationships 

such as a theater contains sections, which contain rows, which contain seats, and a performance is 

composed of a date, time, name, and location. The hypertext versioning domain is much more general than 

this, because the basic abstractions, work, anchor, and link, can represent a wide variety of concrete 

representations of objects and their relationships. As a result, hypertext versioning systems tend to have a 

small number of entities in them, since the basic abstractions have such broad modeling capacity. However, 

although there are a limited number of relationship types between works, anchors, links, and various 

container types, the actual permutations of these relationships and entities are many, and not amenable to 

generalization. As a result, no normative description of domain entities and their relationships is possible in 

the hypertext versioning domain.  

Two factors may contribute to this. First is the preponderance of research systems characterizing the 

domain. Since these systems were explicitly designed to explore different aspects of the hypertext 

versioning, it should not come as a surprise that there is no uniform model encompassing all these systems. 

Second the definition of the domain may itself be too broad. By narrowing the realm of domain modeling, 

perhaps to one of the categories listed in the domain taxonomy given in Chapter 3, it might be possible to 

further constrain the allowable relationship patterns.  However, even in the narrow category of composite-

based systems, there is variation in the kind of containment relationship used, and whether recursive 

containment is permitted for composites. As a result, the variability appears to be inherent to the domain 

itself, whether considered narrowly or broadly. 
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6.1 Modeling Primitives 

6.1.1 Entities 

A typical entity-relationship (E-R) model uses entities to model data items. In the traditional use of 

entity-relationship modeling for databases, entities contain a series of attributes, and these attributes are 

basic data types, such as integers, floating points numbers, and strings. For example, an address entity 

would be represented as containing street, city, and zip code string attributes. When modeling hypertext 

versioning systems, entities represent abstractions such as works, anchors, and links. While the concrete 

representation of anchors and links is similar in granularity to typical entities used in database modeling, 

the concrete representation of works is much larger, and can be organized according to one of many 

different internal formats, such as a word processing, spreadsheet, bitmap image, etc. format. As noted in 

Sections 2.1 and 8.1, objects, which represent works, anchors, and links, typically take one of three 

organizations, all data, data plus properties, and all properties. The data plus properties and all properties 

organizations are examples of data aggregation, where the object is composed of one or more properties, 

and, in the case of the data plus properties organization, a data item representing the contents. Departing 

from typical E-R diagramming convention, this aggregation of data items is not modeled by having the 

properties and contents be modeled as attributes. Instead, properties and contents are modeled as entities, 

and an inclusion containment relationship binds them to their parent entity. 

Entities are also used to model high-level architectural elements, such as a server, or a file system. 

These high-level architectural elements are used when modeling storage relationships, and this use of 

entities to represent architectural elements is a departure from the typical database modeling use of E-R 

diagrams. Placing architectural elements and domain abstractions in the same diagram combines together 

two concerns that are usually separated. Architecture diagrams typically only contain architectural 

elements, and do not address data modeling issues, and similarly data models typically only contain data 

items, and do not address architectural issues. By combining them for hypertext versioning systems, storage 

control choices are highlighted. Making these control choices more visible is an advantage for system 

architects and designers, since these control choices can have a significant effect on the design of a 

hypertext versioning system. 
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Entity-relationship models have entities composed of attributes. This has two drawbacks. One is that it 

privileges the entity, at the expense of the attribute, rather than treating abstractions uniformly. Second, it 

creates a special category for the aggregation relationship between entities and attributes, rather than 

treating it as just one point in a larger design space of containment. Hence, when creating data models for 

hypertext versioning systems, data aggregation will be represented using inclusion containment 

relationships with the characteristics of single containment, single membership, no ordering, and with 

deletion semantics that cause a delete of the container to remove all contents as well (see Chapter 4 for 

definition of these characteristics). 

In the graphical representations of data models, a rectangle will be used to represent an entity. 

6.1.2 Relationships 

There are three relationship types used when creating data models of hypertext versioning systems, 

containment, inheritance, and storage. In graphical representations, an arrow-tipped line represents a 

relationship. Relationships are directional, and exist in both directions. So, for example, a container entity 

“contains” other entities, which are “contained by” the container. 

The containment relationship is used to represent sets of entities. When used in the data model of a 

specific system, it must be parameterized, to fully define the semantics of the containment relationship. 

Following the definitions in Chapter 4, the parameters, and their allowable values are: 

• Containment: single or multiple 

• Membership: single or multiple 

• Ordering: ordered, or unordered 

• Containment type: inclusion, containment relationship on container, containment relationship on 

object, containment relationship on both object and container, independent relationship object. 

• Container deletion semantics: deletes container and contents, deletes just the container without 

affecting contents. 

• Use of a revision selection rule: whether this containment relationship selects an object from the 

membership of a versioned object, using a revision selection rule. This containment type is 

depicted graphically by having the containment arc pass through the versioned object. 
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Containment relationships have cardinality, depicted as numbers or the letters M and N (depicting 

more than one, or many) on the relationship, expressing the number of entity instances that can exist at 

each end of the relationship. Note that the number at the container end of the containment relationship must 

agree with whether it is single containment or multiple containment. Since single containment indicates the 

entity can only be contained by a single collection, it must be represented by a “1”, while multiple 

containment is represented by M or N, reflecting that the object can belong to multiple containers. 

The inheritance, or “is-a”, relationship is used to avoid duplication of similar entities in the data model. 

Entities inherit all of the relationships of their parent, thus avoiding the need to duplicate all of these 

relationships on each child. Following the graphical convention given in [103], inheritance relationships are 

graphically represented using a thick double line. 

The storage relationship represents that a specific architectural element provides physical storage for 

an entity. Storage relationships are only used when the storage of entities is split among multiple 

architectural elements. When only a single architectural element stores all entities in the system’s data 

model, storage relationships are omitted for clarity. 

6.2 Data Modeling Examples 

As an example of using the this data modeling technique, the data models of the Dexter hypertext 

reference model [94], Intermedia [205], and NoteCards [190] are given below in Figure 8-Figure 10.  
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Figure 8 – Data model of the Dexter hypertext reference model [94]. 
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Figure 9 – Data model of the Intermedia system [205]. 
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Figure 10 – Data model of the NoteCards system [190]. 
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6.3 Relation of Versioning Scenarios to Data Model 

The following sections present a common collaborative work scenario that is modeled using the 

concepts and abstractions of Neptune [46], HyperPro [141], CoVer [87,88], and HyperProp [179]. By 

integrating multiple data model aspects to represent two authors working in parallel on a small hypertext 

web, the scenario permits an examination of how data model differences end up affecting the type, number, 

and composition of system entities over the course of the scenario. The relationships that most affect the 

behavior of systems throughout the scenario are those of containment. To highlight the interactions 

between a system’s containment relationships and its representation of the scenario, a data model for each 

system is provided, showing its containment relationships. This is immediately followed by the system’s 

representation of the common scenario. 

Figure 11 provides an overview of the scenario, a small hypertext consisting of four documents, 

connected by five links. Two different authors, “author 1” and “author 2” simultaneously work on the 

hypertext for a period of time, and then combine their work once they’re finished. The scenario involves 

cases where the same document (D) was modified by both authors, where one author deletes a link (γ) and 

the other doesn’t, where one author creates a link (η) the other doesn’t, and where both authors create the 

same relationship, but as separate links (ζ and θ). For each system, the scenario demonstrates parallel work, 

changes to hypertext objects, and changes to the hypertext link structure. Where supported, the scenario 

also shows merging of the authors’ parallel work sessions. 

Neptune’s data model is shown in Figure 12. The most significant difference between Neptune and 

other composite-based systems is its use of referential containment with single containment, and container 

deletion semantics that cause a collection, along with all of its members, to be deleted. That is, Neptune 

provides a type of by-value containment. Due to the use of single containment, objects and links can only 

belong to a single context, and hence when a new context is created, or a new revision is made for an 

existing context, all objects and links within the context are duplicated. Thus, it should come as no surprise 

that Neptune uses more objects than any other system to represent the scenario. Though Neptune’s type of 

by-value containment has the disadvantage of significant duplication of objects and links, it has the 

advantage of eliminating the need for revision selection rules on links and containment relationships. Since 
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every object and link is contained within a specific context, there is no need to select a specific revision 

from the pool of objects within a versioned object. 

While Neptune’s object duplication appears on the surface to make per-item revision history recording 

difficult, in fact Neptune can record complex version histories. Neptune records a linear version history for 

each object, and each line of development in the scenario has its own linear history. For example, object A 

has a main context history, an author 1 history, and an author 2 history. These separate histories are 

reflected in the version numbering system in the scenario – in the main context, revisions are labeled “M,1” 

and “M,2”, reflecting that these are revisions in the main context history, while in the author 1 context, 

revisions are labeled “A1,1”, “A1,2” to show that these are revisions in the author 1 context. Neptune also 

records the derivation relationship, so it is possible to follow a revision history from one linear history to 

another, for example, from the author 1 history back to the main context history (this capability is shown in 

Figure 7 of [46]).  

A quick comparison of HyperPro’s handling of the scenario in Figure 16 with that of CoVer in Figure 

18 and HyperProp/NCM in Figure 20 immediately highlights a difference in containment. HyperPro 

contains the entire versioned object (and hence all of its revisions) within contexts, unlike CoVer and 

HyperProp/NCM who employ containment augmented with revision selection rules to select a single 

revision from within a versioned object. But, since HyperPro contains its objects by reference, this 

containment strategy does not lead to a proliferation of objects. The same versioned items, and their 

revisions, simply belong to multiple containers. In HyperPro, one endpoint of its GenericVersionLink is a 

versioned object, thus raising the question of which revision is actually displayed after a link traversal. 

Without providing additional information, there is no rationale for choosing one revision over another. This 

dilemma is solved by the revision selection rule associated with each context. The revision selection rule 

causes the GenericVersionLink endpoint ending at the versioned object to select only one of the revisions.  

By anchoring a link on a specific revision, and using the context’s revision selection rule to pick the 

endpoint, HyperPro is able to avoid versioning links. As links are object-to-object, it is not a problem if 

there is a new revision of the endpoint object, since the revision selection rule can be modified to pick a 

new revision without changing the link. Similarly, since the start of a link is associated with a specific 

object revision, and since links have no anchor points within an object, once this starting revision has been 
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selected, the link is impervious to further object modifications. By implication, if HyperPro links were 

associated with specific anchor endpoints within an object, this scheme would not work, as the link 

endpoint location would change from revision to revision at the target object. Unfortunately, when there is 

a new object revision, all links starting at that object must be duplicated, and, unlike Neptune, there is no 

revision tracking across these duplicated links. Thus, while the numbering convention in Figure 16 

indicates that α, αα, and ααα (shown in the topmost context at time t5) are all revisions of the same link, 

HyperPro does not record this fact, and cannot display a revision history of this link. They are three 

separate links to HyperPro. However, despite not versioning links, HyperPro can version structure, since 

links are contained within contexts, and contexts themselves are versioned.  

HyperPro’s use of containers shows another drawback. In HyperPro, the first collaborator works on the 

main branch of the project context, while new collaborators derive revision contexts from the main branch. 

However, when there is a separate work container for each author, a feature supported by Neptune, CoVer, 

and NCM, it provides a better separation of work areas than is the case with HyperPro. When there is a 

separate composite for each collaborator, it is clear where each author’s work takes place. Furthermore, by 

having a separate branch for the state of the system prior to collaboration, it is clear which state of the 

system new collaborators should use as their starting point. 

HyperPro’s object inheritance diagram in Figure 15 is provided as a contrast to the containment 

diagram in Figure 14. The object inheritance diagram does provide useful information about the HyperPro 

data model, such as which abstractions are considered to be specializations of other types. This is useful for 

noting which types are container types and subtypes. However, the object inheritance diagram has very 

limited explanatory power for describing how the system models the collaboration scenario. This is directly 

due to the absence of containment relationship information. In contrast, the HyperPro containment diagram 

does provide most of the information needed to model the scenario. It shows containers and their contained 

items, the type and cardinality of the containment relationship, and which items are versioned. It also 

highlights that every entity has as its state a set of attributes, a fact not evident in the inheritance hierarchy. 

However, both diagram types still do not capture the entire behavior of HyperPro’s data model. For 

example, even though links are shown to be contained by the HyperPro VersionGroup, this does not imply 

they are versioned, even though the VersionGroup’s containment of objects does imply that objects are 
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versioned. In this case, the links are used within the VersionGroup to represent predecessor/successor 

relationships, highlighting the need to augment both diagram types with addition explanation of actual use, 

and constraints. 

In summary, the containment diagram has the following benefits: 

• Exposes which objects are, and are not versioned, through the presence of versioned object 

containers.  

• Exposes characteristics of links such as their arity (one to one, many to one), and whether they 

make use of revision selection rules. 

• When versioned objects contain links, the diagrams show either that the links are versioned, or the 

links are used to represent predecessor/successor relationships. 

• Increases the visibility of containment cardinality. 

• Highlights the container-like nature of links, by modeling links like other containers. 

After viewing the complete scenario, CoVer’s task view emerges as a valuable simplified view of the 

ongoing work, especially since CoVer provides a specialized user interface focused only on the task view.  

By acting as a container that holds all other versioned object types (i.e., the various “mobs”), the task also 

acts to simplify the containment relationships by not overloading the containment of the organizational 

container type, the composite. This allows a separation to be maintained between the organizational 

containment provided by composites, and the workspace containment provided by tasks. 
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Figure 11 – Overview of the collaborative work scenario.  
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Figure 12 – Data model of Neptune/Hypertext Abstract Machine (HAM) [45,46] 
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Figure 13 – Common collaborative work scenario, as represented by Neptune/HAM. 
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Figure 14 – Data model of the HyperPro system [141]. To improve clarity, the full inheritance hierarchy is 
not depicted on this figure. The RSR is a revision selection rule that selects the revision endpoint of a 
GenericVersionLink. The existence of separate VersionContexts for objects and contexts represents the 
constraint that all revisions in a VersionContext must be of the same type. 
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Figure 15 – Object inheritance diagram for the HyperPro system. From Figure 1 of [141]. 
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Figure 16 – Common collaborative work scenario, as represented by HyperPro.  
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Chapter 7 

Domain Reference Requirements 

Systems in the hypertext versioning domain range from the Palimpsest [56] and VTML [194] focus on 

document format, to systems like DIF [78], HyperWeb [67], Hyperform [202], KMS [4], and Delta-V [199] 

that version only works, to context-oriented systems like Neptune [46], CoVer [87], HyperPro [141], and 

the HURL framework [100] that version both works and link structure. These differences in capabilities 

embody differences in the system’s underlying goals. Based on an exhaustive examination of the hypertext 

versioning literature, this chapter provides an organized list of the explicit and implicit goals of the 

hypertext versioning domain. Each section below describes a different goal, or related collection of goals, 

along with any interactions it may have with the other goals. Each section ends with a brief discussion of 

how its goal interacts with the other goals. Altogether, the goals form the domain reference requirements. 

Typically, no one system will satisfy all of these requirements. Instead, an individual system will pick and 

chose from this set of domain reference requirements. 

7.1 Data Versioning 

7.1.1 The history of objects must be persistently stored. 

This is a standard facility of all hypertext versioning systems, and differentiates systems that contain 

versioning features from those that do not. In essence, this requirement introduces time into the system, 

adding an extra dimension to objects, composites, and user interfaces. This requirement is explicitly noted 

in [179,154,41,46,96,125,137], and for the Web in [21,199]. The literature lists many reasons for wanting 

to record the history of an object, including: 
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• Exploration: allowing for the exploration of the history of evolution of a particular 

hyperdocument [41] (Section 10.1). 

• Comparison: comparing two or more revisions to see what has changed between them [137], p. 

2/25. 

• Backtracking: making it possible to see any version of a hyperdocument back to its beginning 

[46], p. 170. The motivation for backtracking is to maintain previous revisions in case mistakes or 

wrong decisions need to be undone, to reconsider old choices, or otherwise look at former states 

[137], p. 2/13. [125] notes that auditability is important for some industries, that is, being able to 

recover, for legal purposes, prior states of a hyperdocument. 

• Safety: assuring the safety of recent work against various kinds of accident [137], p. 2/13. 

• Rationale capture: since the reason for making a particular change soon fades from memory, 

versioning systems should allow a brief comment to be associated with each change to capture this 

rationale. Over time, these comments create a group memory for the object [199], p. 197. 

• Reuse: by preserving a specific revision of a hyperdocument, the entire document, or parts of it, 

may be reused by others [87], p. 44. 

• Exploratory development: since authors can depend on the ability to revert to a known, “safe” 

state of the system, versioning supports exploratory changes, where the final impact is initially 

unknown [179], §3.1, [141], p. 37. 

[179], quoting [96], writes, “Maintenance of Document History – ‘A good versioning mechanism will 

allow users to maintain and manipulate a history of changes to their network.’” However, it is clear that this 

combines together the notion of versioning an object and versioning structure. [154] also lists these two 

requirements together, stating that it is a requirement to “support multiple versions of objects and multiple 

configurations (i.e., different link arrangements)” (p. 90), though his equating of the term “configuration” 

with link arrangements differs from current practice in the software configuration management community. 

However, [101] notes that configurations are the SCM analog to hypertext structure, since a configuration 

represents the structure of a software system. Perhaps the terms configuration and structure are not so far 

apart after all. 
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Interactions with other goals. Several other requirements depend on the ability to record the revision 

history of works, and other objects. Goals concerning revision mutability (Section 7.1.2), co-existence of 

versioned and unversioned objects (Section 7.1.3), versioning of all content types (Section 7.1.4), giving 

human readable names to revisions (Section 7.1.5), change aggregation support (Section 7.3), linking to a 

specific revision (Section 7.4.3), navigation in, and visualization of, versioned spaces (Sections 7.7 and 

7.9), as well as namespace interactions due to versioning (Section 7.14), all are predicated on works being 

versioned. Recording the revision history of works adds complexity to a system. 

7.1.2 Mutability of primary state and metadata for object revisions must be supported. 

At its core, this requirement is concerned with just how much the past can be changed. In systems with 

immutable revisions, all revisions start out as a mutable object, and then become immutable once a checkin 

operation is performed. Thus, the issue of mutability concerns the ability to modify objects that the user 

has, at some point, declared to no longer be capable of changing. As opposed to the true past, which can 

never be changed, the past in versioning systems is stored persistently by the computer on some writeable 

medium, and can be modified. The literature notes several reasons for wanting to change stored revisions: 

• Linking: If anchors are stored within an object, and linking to/from frozen objects is allowed, then 

some mechanism for temporarily making an object mutable is required to support linking. [141], 

p. 35. 

• Modifying system-specific metadata: Since system-specific information, such as access control 

lists, are often stored as metadata, it is useful to be able to modify this metadata after its state has 

been frozen. However, some metadata specifically depends on the object’s value (e.g., an attribute 

listing the size of the object), and should only be modified if the value is too. It might also be 

attractive to add new attributes to an object. [141], p. 35, [199], p. 196. 

• Making a small change: If there is a minor, non-semantic change to a human-readable document, 

such as a spelling error, it may be reasonable to allow the error to be fixed rather than creating a 

new revision. [199], p. 193. 

• Preserving logical revision names: In some cases it is important to maintain the logical name of 

a revision, especially in cases where some external authority controls revision names. For 
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example, the Internet Engineering Task Force assigns revision identifiers to working drafts. If a 

spelling error is found in one of these drafts, it is preferable to fix the document without creating a 

new revision, since that would imply a new official revision had been made. [199], p. 193. 

The literature is far from unanimous on this capability. Though [141] and [199] agree that some object 

metadata must remain mutable, while other metadata is frozen with the object contents, they differ on 

whether the object contents can be immutable. [141] states, “it might be too simplistic to have versions of 

objects be completely immutable. While it is obvious that the contents of a version (i.e., a frozen object) 

should be immutable, it is less clear how links and attributes should be treated.” (p. 35). However, [199] 

has requirements stating both that, “some properties on revisions may be changed without creating a new 

revision” (p. 196), and that, “revisions may be mutable or immutable.” (p. 192). 

Interactions with other goals. Mutable revisions allow the past to be altered, and this disturbs several 

other capabilities. Mutable revisions make it difficult to reliably version composites, or other forms of 

structure (Section 7.4.2), since work revisions contained by a composite revision may change, thus altering 

the meaning of the composite. Similarly, the endpoint of a link might change, thus altering the meaning of 

the link, thus affecting structure and link versioning (Sections 7.4.1 and 7.4.2), as well as the ability to 

create stable references (Section 7.2). The ability to change revisions increases the value of tracing the use 

of parts of compound documents (Section 7.10). If a compound document includes a mutable revision as a 

sub-part, then it is possible the document could change if the revision is changed. 

7.1.3 Versioned and non-versioned objects can coexist 

In a hypertext, it is possible that a user may desire to version some, but not all of the objects. In this 

case, versioned and non-versioned objects coexist in the same hypertext or container [87], p 44. Allowing 

this increases system complexity, since containers—either composites, or directories in a hierarchically 

organized namespace—now have to handle the issue of whether a versioned container should record the 

membership of an unversioned object when its state is frozen. If it does record the membership, it is 

possible that, in the future, the unversioned objects will be deleted, and the prior container state will now 

contain dangling membership relationships. If, on the other hand, the unversioned objects are not recorded 

as part of the container’s state when it is frozen, containers are now complicated with two kinds of 
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membership, versioned and unversioned. Furthermore, when a versioned container is reverted to a prior 

state, the system is faced with the choice of either removing all unversioned objects from the container, or 

preserving the unversioned items and only reverting the versioned objects, making it so that the exact prior 

state of a container can never be recovered. Due to these complexities, hypertext versioning systems that 

version containers adopt an all or nothing approach, requiring that all of a versioned container’s items be 

versioned. 

Interactions with other goals. As noted above, allowing containers to hold versioned and unversioned 

objects increases the complexity of versioning these container types, affecting structure versioning (Section 

7.4.2) and link versioning (Section 7.4.1). Additionally, coexistence of versioned and unversioned objects 

in collections affects the interactions of versioning with collection-sensitive namespaces, such as filesystem 

paths (Section 7.14), and would presumably impact some visualizations of the space of versioned and 

unversioned objects (Section 7.9), and user’s interactions with that space (Section 7.11). 

7.1.4 All content types must be versionable 

Since hypertext systems allow for browsing, editing, and linking between all types of works, including 

text, images, movies, sound, etc., a hypertext versioning service must be capable of versioning these 

disparate information types [199], p 191. Furthermore, since many document and image types undergo 

constant evolution (e.g., the many versions of the Word document type, and HTML), remaining 

independent of content type ensures the versioning facilities can accommodate this evolution. In contrast, 

supporting only text versioning, or tailoring versioning facilities too tightly to one, or a small set of content 

types, increases the brittleness, and reduces the applicability of versioning facilities. 

Interactions with other goals. Providing versioning services for a wide range of content types 

effectively limits the available options for versioning, variant support, concurrency control, and merging 

(Sections 7.1.1, 7.5, and 7.6). Versioning and variant support requires that the system either has knowledge 

of all content types used, or delegates version and variant management to each individual application, or 

uses approaches that do not require knowledge of the object’s structure. Typically the latter is chosen. 

Concurrency control and merging have the same choice: either build-in knowledge of all content types to 
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take advantage of techniques that allow collaborators to simultaneously work on subsections of the object, 

or choose techniques, such as locking, that require no such knowledge. 

7.1.5 A mechanism must exist for giving a human readable name to a single revision. 

Frequently, a specific revision of a versioned object has significance beyond just being an intermediate 

state of an evolving object. A revision may have been released to a customer, or submitted for external 

review. For these revisions, it is useful to assign a human readable name to that revision, such as “customer 

release” or “external review” [199], p. 198, [125], p. 21. These human readable names are often called 

labels in configuration management systems, and can be used in revision selection rules. 

Interactions with other goals. Once human readable names are available, it increases the value of 

searching (Section 7.8), since now revision selection rules can be created that select the revision matching a 

name. The ability to set a human readable name on a revision depends on at least some piece of metadata 

still being writeable (Section 7.1.2). Human readable names are often displayed as part of visualizations of 

revision history trees (Section 7.9). 

7.1.6 Revisions and versioned objects can be removed. 

Over time, revision histories of frequently modified objects can grow large, and older revisions in the 

history are no longer relevant, or accessed. In this case, it is desirable to be able to delete older revisions, so 

that their storage can be reused [5]. Alternately, an organization’s record keeping policy might dictate that 

documents are destroyed after a specific period of time. Since it involves destruction of the past, and can 

lead to the inability to reconstruct prior states of versioned containers that hold the deleted object, this is 

generally a high privilege operation. As revision identifiers are typically unique across a revision history, 

the revision identifier of a deleted revision cannot be reused.  

Interactions with other goals. Similar to allowing the primary state of a revision to be modified, 

deletion of revisions and versioned objects modifies the past, with pervasive effect on other features. 

Deletion negatively affects the ability to reliably reconstruct prior revisions of composites, and other 

versioned structure containers (Section 7.4.2). Change aggregation, since it involves containment of 

revisions, is affected if a revision is removed (Section 7.3). If the endpoint of a link is deleted, it leaves the 
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link dangling, and prevents reference stability (Section 7.2), as well as linking to the deleted revision 

(Section 7.4.3). If revisions are marked as deleted, but their data is not expunged from the system, it may be 

possible for revisions to be returned in the results of a query (Section 7.8). Use tracing facilities could be 

used to determine whether there are any usages of a revision slated for deletion (Section 7.10).  Deletion 

has a significant negative impact on the consistency of structures (Section 7.15). 

7.2 Stability of References 

A major goal for hypertext versioning is to preserve prior object states to ensure that links never 

dangle, a goal explicitly noted in [137], p. 2/25, [194]. The underlying assumption is the linked object state 

will always be available, since it is persistently stored, and hence the link endpoints will, likewise, always 

be present. Both [137] and [194] assume that the owner of the information is responsible for storing, and 

incurring the costs of maintaining prior states. However, there are many valid reasons for the owner of a 

document to permanently remove it, and all its prior states. For example, in corporate settings, mergers and 

acquisitions can make a company name obsolete, product lines can be modified or terminated, in both cases 

making it desirable for the owner to remove all documents that reference the old company or product 

names. As a result, reference stability can only be achieved by incorporating third party versioned 

document stores, where the third party has no compunction about keeping around older information. That 

is, the implication of a third party caching old company or product names is different from the owner 

preserving this state.  For the third party, no endorsement of the older states is implied, but for the owner of 

the information, the mere fact of making older information available increases its perceived value. 

Interactions with other goals. Ensuring the stability of references requires that the contents of revisions 

are immutable (Section 7.1.2), so that link endpoints (and other references) retain their meaning. Updating 

references depends on the ability to retrieve later revisions of a work (Section 7.1.1). If the reference is to a 

part of a compound document, use tracing of that part is valuable when updating references (Section 7.10). 

7.3 Change Aggregation Support 

It must be possible to group a set of changes that together constitute a coordinated, logical change, a 

goal noted in [87], p. 45, [154], p. 91, [179], §3.1, and [199], p. 197. In state-based versioning systems, the 
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set of revisions that together comprise a logical change is called an activity [199], a task [87], or a version 

set [179]. In change-based versioning systems, sets of changes are, appropriately enough, called change 

sets, while PIE [80] calls them layers. There are several reasons for aggregating changes: 

• Labeling a set of changes: The ability to give a name to a set of changes [199], p. 197. 

• Tracing changes to revisions: Since a logical change can span multiple versioned objects, long 

after a change was made it can be difficult to reconstruct which revisions implement a change. By 

recording which revisions comprise a change, it is possible to trace a change to its revisions, and 

vice-versa [179], §3.1. 

• Combining version sets: In change-based systems, changes are recorded so each logical change 

can be managed as a single entity. Changes can then be combined to create new states of the 

hyperdocument [154], p. 91.  

Interactions with other goals. The ability to label a set of changes might involve the same facility used 

to record human readable names on individual revisions (Section 7.1.2). It is possible that the use tracing 

mechanism (Section 7.10) could also be employed for associating a problem description with a logical 

change. Change aggregation depends on changes being persistently recorded (Section 7.1.1). 

7.4 Link and Structure Versioning 

It may seem strange to separate versioning of links from versioning of structure. After all, one might 

expect that structure versioning would be an emergent property of versioning a set of links. Because 

HyperPro [141] has demonstrated that it is possible to version structure without versioning links by placing 

the unversioned links inside a versioned composite, and since Hicks [100] goes to great lengths to separate 

structure versioning from object versioning, we intentionally separate the goal of versioning links from the 

goal of versioning structure. 

The reasons for versioning links and structure are the same as for versioning objects. That is, links and 

structure are versioned to support revision history exploration, backtracking, safety, rationale capture, 

reuse, and exploratory development. 
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7.4.1 It must be possible to version links. 

Since links have state, such as their endpoints, or additional metadata, it is possible for the value of a 

link to change over time, and hence it is desirable to record important points of its evolution. In particular, 

when a an object representing a work is frozen, it is desirable to permanently record link endpoints so that 

when it is reverted to this state at some point in the future, the links will be available in their original form 

[46], p. 170. 

Interactions with other goals. In order to independently version links, the links must not be inclusively 

contained within the works they link, and hence subject to object versioning (Section 7.1.1). The existence 

of versioned links can increase the complexity of visualizations and user interfaces (Sections 7.9 and 7.11), 

and interactions of tools with the hypertext system (Section 7.12). 

7.4.2 It must be possible to version structure. 

Several hypertext systems, including Microcosm [43], Chimera [6] and the Hypermedia Version 

Control Framework [100], allow multiple sets of links, or structures, to be applied to the same set of works. 

Due to the ability to apply multiple structures the same set of works, and the separation of versioning 

responsibility between work and link versioning in link server architectures, it is desirable to version 

structure independent of versioning works. The versioning proposal presented in [200] shows links 

versioned separately from data. Meeting this goal is very challenging, as Hicks notes when he states, “The 

requirement to version structure is one of the main challenges which hypertext brings to the version control 

area.” [101], p. 13. 

When works and links are inextricably combined into composites, as is the case in Neptune [46], 

HyperPro [141], HyperProp/NCM [178], CoVer [87], and VerSE [91], it is still desirable to version 

structure, although it is no longer possible to separate versioning of structure from versioning of works.  

Interactions with other goals. Structure versioning that includes works in the structure, such as 

versioning of composites, depends on works being versioned (Section 7.1.1), and their contents immutable 

(Section 7.1.2). When structures contain their objects using revision selection rules, it adds a dependency 

on searching (Section 7.8), possibly in conjunction with the use of human readable names (Section 7.1.5). 

Structure versioning ideally accommodates variants, if present (Section 7.5). Structure versioning affects 
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visualizations of the versioned space (Section 7.9), both adding complexity due to the presence of structure 

revisions, and reducing it due to the modularization of the hypertext (e.g., composites can hold a subset of a 

hypertext, and hence can be individually visualized). Similarly, tool interactions (Section 7.12) can be more 

complex due to multiple structure versions, and alleviated through careful defaulting of revision identifiers 

when a particular structure revision is in use, as was employed in the addition of structure versioning to 

Neptune/HAM [46]. Structure versioning increases the difficulty of reverting just a single work revision 

contained within a structure (Section 7.15). 

7.4.3 It must be possible to link to a specific revision. 

Linking to specific object revisions makes it possible to construct works that always link to a specific 

revision.  For example, if one document is describing the evolution of another, within the text that describes 

each revision there should be a link to that revision. Linking to a specific revision is a standard facility of 

hypertext versioning systems, and hence is not typically mentioned, although it is explicitly noted as a goal 

in [199], p. 196. 

Interactions with other goals.  The ability to link to specific revision of an object depends, of course, 

on the objects being versioned (Section 7.1.1). Additionally the user interface must make it possible to 

create a revision-specific link (Section 7.11). This could be an issue if the user interface restricts link 

creation to only those revisions visible in a composite revision, since creating a link to an arbitrary revision 

would require the inclusion of that revision in the composite. Creating a link to a specific revision also 

depends on each revision having a distinct identifier, which is then used either by an anchor, or a link 

(Section 7.14). 

7.5 Variant Support 

There are many types of object variants, including alternate revisions that were developed during 

parallel collaborative work, translations into different human languages, and renditions of the content as 

different content types (e.g., PDF and Postscript) [137,179]. Structural variants are also possible, 

representing alternate structures for the same set of content [179]. A hypertext system should handle these 
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different kinds of variants, by providing a data model and operations that can represent and manipulate 

variants. 

Hypertext versioning systems also support literary use, representing multiple variants of the same work 

over a period of time. Machan writes, “hypertext enables editors to assemble in one edition all the versions 

of a given literary work and readers to access these versions, or parts thereof, in any number of ways.” 

[122], p. 303. Ideally, the facilities used to represent other kinds of variants will have the expressive power 

to model alternate versions of complex documents, such as the Canterbury Tales discussed by Machan. 

Hypertext systems should also be capable of allowing authors to create new alternate versions, not just 

represent existing ones, even when this involves a change in ownership, authorial control, or media [137], 

p. 2/39. If an object does get developed into an alternate version, or is reused in a different context, it 

should be possible to trace this use, either from the new context to the original, or vice-versa [87], p. 45. 

Interactions with other goals. Frequently, the approach chosen for representing variants affects or 

extends that used for object versioning (Section 7.1.1). Additionally, it is unusual for a system to provide 

variant support and not also provide version support. Revision history branches have a dual use, 

representing variants, and also for concurrency control (Section 7.6), with each collaborator’s changes kept 

on a separate branch. Traceability features can be used to detect other variants of a work (Section 7.10). 

Variants affect user interfaces and visualizations as well (Sections 7.11 and 7.9). 

7.6 Collaboration Support 

Versioning makes it possible for two or more people to work on the same document or link 

simultaneously, by storing each person’s work in a separate revision. As a result, versioning systems should 

support collaborative work by providing independent work partitions that allow concurrent authoring of the 

same information [179], while preventing one author from interfering in the work of other collaborators 

[46], p. 174-175. The ability to work in isolated areas implies a need to merge together several changes 

once parallel work has ceased [90,154], p. 91. 

[90] notes two additional goals specifically related to merging hypertext networks: 

• It should be possible to select a merge procedure, based on the hypertext data model and group 

work situation. 
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• Interactive merge tools will be required, since, in general, it will not be possible to automatically 

resolve merge conflicts. These tools should provide the ability to specify merge results 

interactively. 

In addition to isolating changes, versioning supports collaboration by acting as an awareness 

mechanism. For example, [89] notes that in the absence of versioning, “… co-authors rejoining work e.g. 

after holidays found it difficult to find out what happened in the meantime.” (p. 408). Comparing revisions 

provides awareness of a collaborator’s modifications. Examining an item’s history shows who has worked 

on it, and hence who can answer questions about it, while stored comments provide awareness of change 

rationale. 

Interactions with other goals. Revision history branches are sometimes used as a concurrency control 

technique, but can also be used to represent variants (Section 7.5). Composite based hypertext versioning 

systems use the composite both for versioning structure (Section 7.4.2), and as a workspace, isolating each 

collaborator’s changes. In software configuration management systems, workspaces are often made 

available via the filesystem, and hence have namespace interactions (Section 7.14). The range of available 

concurrency control techniques, and the number of content types that must be understood by a merge 

facility, both depend on whether all content types must be versionable (Section 7.1.4). Concurrency control 

techniques that allow multiple collaborators to work on object sub-parts simultaneously (i.e., the 

operational transformation, sub-object replication, or sub-object locking schemes discussed in Section 

8.7.1) substantially increase the effort required to integrate existing tools with the hypertext system 

(Section 7.12).  

7.7 Navigation in the Versioned Space 

A hypertext versioning system should provide the ability to perform hypertext navigation both within a 

consistent time slice (i.e., across multiple works at the same time), as well as forward and backward in time 

[137], p. 2/26. It must be easy for people to access different revisions of a work [180]. Readers should 

know when they are interacting with a work that is under version control [180]. Since link traversals across 

time are possible, a hypertext versioning system should provide information to the user so he knows what 

time each visible object represents, and what time lies at the destination of a link traversal. It should also be 
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possible to select between navigation in a consistent time slice, and navigation always to the present 

revision. Generalizing, it would be desirable to have the user select the version selection criteria used in 

link traversals. For example, navigation based on non-time based criteria should also be possible, such as 

queries on attribute values [87], p. 45. 

Interactions with other goals. The capabilities described above depend on the existence of work 

revisions (Section 7.1.1), and also structure versioning (Section 7.4.2). In an open hypertext architecture, 

providing the destination revision of a link before it is traversed requires tools to retrieve this information, 

and then present it in their user interface (Sections 7.12 and 7.11). Navigation using version selection 

criteria involves the use of searching facilities (Section 7.8). 

7.8 Searching 

In addition to hypertext link navigation, searching is a useful mechanism for accessing desired objects. 

CoVer notes this goal, stating, “similar to accessing objects by posing a query, that author wants to access 

versions of hypertext objects on the basis of their attribute values,” [87], p. 45. Query capabilities increase 

the value of metadata, since it provides a way to select objects based on this metadata, rather than just using 

the metadata for storage.  

Additionally, as noted in Section 4.6 on dynamic containment, queries are also useful as a means of 

identifying individual containment relation endpoints (CoVer [87] and the Hypermedia Version Control 

Framework [100] are two examples), and for populating the entire contents of a container (DHM [84] has 

this capability). Revision selection, where a specific revision is selected from a versioned object, can also 

be viewed as a restricted form of query.  

Interactions with other goals. A search facility often accompanies the ability to set human readable 

names on revisions (Section 7.1.5). Revision selection rules are frequently employed in structure versioning 

(Section 7.4.2). Revision selection rules can also be employed when a single location in a namespace needs 

to map to one revision in a revision history (Section 7.14). Exposing the full capabilities of a query facility 

through a user interface can increase the perceived complexity of a system (Section 7.11). 
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7.9 Visualizing the Versioned Space 

Nelson captured one facet of this goal when he wrote, “while the user of a customary editing or word 

processing system may scroll through an individual document, the user of {Xanadu} may scroll in time as 

well as space, watching the changes in a given passage as the system enacts its successive modifications.” 

[137], p. 2/18.  Unfortunately, this goal of dynamic, animated difference visualization has not been 

implemented by any hypertext versioning system to date. A more achievable goal is to visually display the 

differences between two textual revisions, a capability provided by Neptune [46], CoVer [87], HtmlDiff 

[51] and TopBlend [30] for HTML Web pages, and strongly advocated for by Xanadu [137], p. 2/20. Since 

hyperdocuments often contain non-textual elements, such as graphics, video, etc., techniques for 

visualizing differences between multiple revisions should also be provided [90]. Similarly, comparing the 

differences between two variants or alternate versions should also be possible.  

A hypertext versioning system should also provide visualizations of a single object’s revision history, 

and of an entire versioned hypertext. Durand and Kahn, in their description of the MAPA visualization 

system for unversioned Web sites, describe several goals that apply to visualizations assisting navigation in 

versioned hypertexts. These include, “show where I am,” “show where I have been,” “show where I can go 

from here,” and, “show how I got here” [55]. Many configuration management systems have created 

graphical visualizations of versioned items, and within the hypertext versioning literature, CoVer [87] and 

VerSE [91] provide such a visualization.  Unfortunately, they reverse convention by having arrows 

pointing to predecessors, rather than successors, and hence the arrows in their diagrams point opposite the 

flow of time, making it easy to mistake the youngest revision for the oldest. Furthermore, the visualization 

of a versioned item should display incoming and outgoing links, along with their revision selection criteria. 

The task view in CoVer is a significant innovation, since it provides a visualization of just composite 

evolution, abstracting away their contents. As Figure 18 (on page 93) highlights, showing both the 

composite and its contents results in space intensive, busy displays. Providing a visualization of only a 

composite as it evolves should be a goal of composite based hypertext versioning systems. 

Though not intended as a visualization paper, the figures in Perry, Siy, and Votta’s paper on parallel 

changes in the 5ESS system show several examples of revision history visualizations that would be useful 

for managers of a software development process [149]. In particular, their graph of deltas per month for 
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each software release (Figure 1), the large-grain visualization of lines changes from revision to revision 

(Figure 6), and the chart of change requests per file (Figure 12) all seem very useful, and could potentially 

extend from code files into the realm of documents. 

Merging together hypertext networks raises more needs for visualization.  When merging hypertext 

networks, it is necessary to merge the hypertext structure in addition to the more pedestrian problem of 

merging objects. In order to merge hypertext structure, a hypertext versioning system must provide a 

visualization of the difference between the two networks being merged, such as the Graph-Unification-

Merger and Graph-Comparison-Merger proposals in [90].  

Interactions with other goals. Visualizations are often employed in graphical user interfaces, and hence 

affect how a user interacts with a system (Section 7.11). As noted above, merge support adds additional 

visualization requirements (Section 7.6). Visualizations can also provide information used when navigating 

through an versioned space (Section 7.7). Abstractions introduced while satisfying any of the requirements 

often end up requiring changes to existing visualizations, and the introduction of new visualizations. 

7.10 Traceability  

Versioning supports reuse of work parts in other works. A hypertext versioning system should provide 

the ability to trace the reuse of material from an original source to derivative works, and vice-versa, even 

when it spans work boundaries [87], p. 45. This addresses the problem of losing the object identity, 

identified in [89], which occurs when an object is copied into a new composite. 

[87] identifies a different kind of traceability goal – the ability to trace a change request described in a 

work annotation to the modification that fulfills the request, thereby using annotations as a change request 

management (bug tracking) system. Instead of entering the change request into a separate system, the work 

(code) is annotated directly where the change needs to be made, providing the advantage that the change 

request is presented along with its context. 

Interactions with other goals. Reuse of work parts is affected by the mutability of work revisions 

(Section 7.1.3). Searching facilities can be employed as a traceability mechanism (Section 7.8). Use tracing 

can be used to provide awareness among collaborators (Section 7.6). 
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7.11 Goals for User Interaction 

Most authors can cognitively handle the concept of multiple revisions of individual documents. 

However, since hypertext is a new phenomenon, people who create hypertexts do not have years of 

authoring experience to draw upon when mentally visualizing a hypertext network as it changes over time. 

Furthermore, due to the presence of links, hypertexts are more complex than individual documents, and 

having multiple states of the hypertext over time piles on more. As a result, many sources have stressed the 

importance of reducing the user-visible complexity of hypertext versioning systems [87,141,154,200]. 

Østerbye is the most strident on this point, identifying naming of new works and links (echoing Conklin 

[33]), and version selection as two significant sources of cognitive overhead, addressed in HyperPro by the 

use of contexts [141]. Another source of complexity occurs when authors have to decide explicitly for 

every update whether it should result in a new revision [87]. 

Interactions with other goals. Judicious use of visualizations can help alleviate the user-perceived 

complexity of hypertext versioning systems (Section 7.9). In open hypermedia systems, tools integrated 

with the system are responsible for much of the user interface, and hence tool integrations directly affect 

the user’s interactions with hypertext versioning facilities (Section 7.12). Overall, the fewer features a 

hypertext versioning system provides, the lower the user perceived complexity. 

7.12 Goals for Tool Interaction 

For VerSE [91], the Hypermedia Version Control Framework [100], the Delta-V protocol [199], 

Hyperform [202], and the Chimera versioning proposal [200], a major goal is to provide a versioning-aware 

functionality layer that can be employed by multiple tools. However, these tools must either be coded from 

scratch to use the version-aware hypertext infrastructure, or existing third-party applications must be 

integrated, a well-known issue for open hypermedia systems [44,198]. The Achilles heel of infrastructure 

development is that, in order to be relevant, the infrastructure must be used. This certainly applies to 

version-aware hypermedia infrastructures, which are useless unless applications employ their functionality. 

To address this concern, the goals for tool interaction espoused by these systems address how to make the 

infrastructure as attractive as possible so a tool integrator will mate their tool with the system.  
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Since application integration is often time-consuming, it creates a non-trivial barrier preventing 

integration. Not surprisingly, reducing the infrastructure’s demands on third-party applications [200], and 

aiming to maximize the cost/benefit ratio of integrations [91] p. 226, are two goals explicitly named in the 

literature. Furthermore, since versioning unaware systems frequently extended with versioning capabilities, 

it is a goal to ensure that pre-existing tool integrations must still work once versioning services are added, 

so as not to destroy the investment in the existing tool integrations [100,199]. The version-aware 

infrastructure must maintain downward compatibility, and hence versioning aware and unaware 

applications must be able to interoperate. 

However, reducing the barrier to entry for integrations doesn’t address the issue of whether the 

infrastructure services are useful for a particular application. A common goal is that the versioning services 

should be applicable to as wide a range of tools, application domains, and versioning styles as possible 

[100,91]. That is, ideally it should be impossible to reject a versioning-aware infrastructure due to lack of 

functionality, or a mismatch in applicability. Hicks, in [100], identifies three specific qualities to meet this 

goal: 

• Flexibility: “to support a variety of different development methodologies, version control services 

should be flexible, unconstrained by any specific development paradigm.” [100], p. 129. 

• Extensibility: since the complete range of third-party applications is unknown in advance, the 

version-aware infrastructure should be able to accommodate new types of applications. 

• Scalability: since applications will vary in their use of versioning services, the infrastructure 

should be capable of handling both heavy, and light usages. 

Several practical goals emerge once the Internet is the communications layer used to access the 

versioning infrastructure. Authentication is a concern, so that the versioning services can trust the accessing 

application, and vice-versa. Since it is desirable to remotely collaborate with individuals who should have 

access to a particular hyperdocument, but who should not have login privileges on a remote system, these 

should be decoupled [161]. That is, there is a need to give external collaborators write access, without 

giving them all the privileges of local users. Since, on the Internet, documents are being sent across a public 

network, if the contents of these documents must be kept private, some mechanism for encrypting their 

transmission must be used [199]. Furthermore, the Internet raises the problem that people from multiple 
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countries, speaking a multitude of natural languages will be interacting with the versioning infrastructure. 

In this case, human-readable fields, such as attribute values, version labels, etc., will require 

internationalization [199]. Finally, since versioning requires the use of time, it is necessary to ensure that 

the clocks on interacting tools are synchronized [54]. 

Interactions with other goals. Typically, every new feature added to a hypertext versioning system 

increases the size of the system’s programmatic interface (API), and increases the scope of application 

integrations. Thus, requirements that typically lead to the introduction of new abstractions, such as revision 

history support (Sections 7.1.1 and 7.4.1), change aggregation support (Section 7.3), structure versioning 

(Section 7.4.2), and workspaces (Section 7.6), usually increase the complexity of tool interactions. 

Authentication of the users of a system supports collaboration by reliably identifying individuals (Section 

7.6). 

7.13 Goals for Interactions with an External Repository 

Most hypertext versioning systems provide versioning services within the system. The system itself 

contains the code used to store work revisions, retrieve older revisions, store version histories, etc. 

However, this duplicates the functionality available in existing versioning and configuration management 

systems. Furthermore, there are some use environments, such as existing software development projects, 

where all documents are under the control of an existing configuration management system.  In these 

situations, it is unlikely that the benefits offered by hypertext will overcome the cost of switching to a new 

repository, especially when, as is the case with current hypertext versioning systems, they do not offer the 

same functionality. In this case, in order to provide hypertext versioning functionality, the existing 

versioned repository must be used [38], p. 27. This scenario motivates the first goal in [200], which states 

that “objects stored external to the hypertext system and hypertext structures stored internal to the hypertext 

system must be capable of independent development.” (p. 46).  This raises the problem of synchronizing 

the versioned works in the external repository with the versioned structure within the link server. 

Interactions with other goals. When an external repository assumes responsibility for versioning 

works, it has a broad effect on how other requirements are met. Responsibility for meeting some 

requirements ends up split between the hypertext system and the external repository; such is the case for 
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revision mutability (Section 7.1.2), co-existence of versioned and unversioned objects (Section 7.1.3), 

human readable names (Section 7.1.5), linking to a specific revision (Section 7.4.3), collaboration support 

(Section 7.6), searching (Section 7.8), and visualization of the versioned space (Section 7.9). Other 

requirements shift to being the primary responsibility of the external repository, including versioning of 

works (Section 7.1.1), versioning for all content types (Section 7.1.4), reference stability (Section 7.2), 

change aggregation (Section 7.3), and variant support (Section 7.5). Since applications can continue to use 

existing repositories, support for this requirement reduces data integration effort (Section 7.12). 

7.14 Namespace Interactions 

Hypertext versioning systems differ in whether the objects being versioned are named, in addition to 

having some form of object identifier. For example, in the Chimera versioning proposal [200] works (called 

objects in Chimera) are files, and hence have filenames, while in the Delta-V protocol [199], Simonson and 

Berleant et alli [173], and Pettengill and Arango [150], works are named with URLs. In the context of the 

Web, the Delta-V protocol has identified several goals for adding versioning information to the URL 

namespace: 

• Each work revision has its own URL. This ensures that hypertext links can be made to every 

work revision. 

• Relative URLs should not be disrupted. If all of the revisions of an object are placed within a 

subcollection, for example, if all the revisions of “index.html” are placed within a collection with 

the same name, and hence the first revision would be “index.html/1”, then relative URLs within 

this resource will no longer refer to the correct destination. 

• Requests on the URL for a versioned object should return a default revision. If there is a 

URL for a versioned object, then requests on that resource should be redirected to a specific 

revision. 

Additionally, Sommerville et al. identify the goal that placing a Web page under version control should 

not affect future accesses to the page’s original URL [180]. 
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Interactions with other goals. Each revision having a separate identifier is a prerequisite for allowing 

links to a specific revision (Section 7.4.3). Since revision selection rules are often used to make a versioned 

object return a default revision, this implies searching support (Section 7.8). 

7.15 Maintaining Consistent Structures 

One goal that is not present in any of the surveyed systems is the ability to revert to a prior revision of 

just a single work within a hypertext, having all the links adjust to maintain consistency. The ability to pick 

a specific individual revision of a work independent of the other revisions in a container is a common 

feature of software configuration management systems. Hypertext versioning systems require that reverting 

to a previous revision of a work involves reversion to a previous composite revision containing the desired 

work revision. This is undoubtedly simpler, since it provides a reasonable answer to how best to revert the 

links that begin or end at a single reverted work. But, the prevalence of this operation in configuration 

management systems suggests that hypertext versioning support for software development will need to 

support it too. 

Interactions with other goals. If an external repository holds work revisions, it increases the likelihood 

that a single work object will be reverted (Section 7.13). Consistency is often maintained within the context 

of a composite, or other structure container that is being versioned (Section 7.4.2). 
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Chapter 8 

Design Spaces and Tradeoffs Associated with Domain 

Requirements 

To satisfy a particular domain requirement, it is necessary to either introduce new elements into a 

system’s data model, add new constraints to the existing system, or both.  Usually there are many possible 

choices for satisfying a particular requirement, creating a design space, where it is necessary to choose a 

point in this space after evaluating the tradeoffs. For each domain requirement, this chapter describes the 

particular data model additions, constraints, and design spaces that can be used to satisfy it. Two sections in 

this chapter do not correspond to any domain requirement. Section 8.1 describes the design space for object 

organization, which is foundational since most other design spaces involve interactions with objects. Since 

Section 2.1 defines an object as the representation of abstraction, the need to choose an object organization 

is driven by the needs of representation, not to satisfy a particular requirement. Section 8.2.2 on versioning 

of dynamic work content and dynamic links was added to provide some discussion of its difficulties. 

Versioning in the face of dynamism has not been addressed by existing hypertext versioning systems, and 

hence there are no domain requirements in this area. However, the remaining sections correlate closely to 

the domain requirements described in Chapter 7. 

8.1 Object Organization 

The objects used to represent major abstractions in hypertext, document management, and 

configuration management systems, fall into one of three broad organizations: all data, data plus properties, 

or all properties. Unix files are an example of the all data type, since a Unix file only consists of a sequence 



  117 

of bytes, and has no associated metadata. If metadata is added to an all data object, there is a main chunk of 

data, which is the primary piece of state, and multiple properties, typically attribute-value pairs, that are 

secondary to the main state. The object model in Dexter [95], Neptune [45], and WebDAV [201] are 

examples of the data plus properties organization. In the all properties organization, there is no privileged 

piece of state – all state is a property, including the state that would be considered the main chunk of data in 

the other two organizations. Aquanet [126], CoVer [87], Neptune/HAM [46], and HyperPro [141] are 

examples of the all properties organization. 

Once an abstraction’s explicit representation has been decided, the next concern is which elements of 

its organization have identifiers. Invariably there is an identifier for the object as a whole, however, there 

are frequently identifiers for each property too. Typically these identifiers are subsidiary to the main 

identifier for the abstraction, such as “the author property on work #595”. However, it is possible for 

metadata to have identifiers that directly refer to a specific instance of a property and which are 

independent of the main abstraction identifier. It is also possible to have multiple identifier spaces within 

the set of properties, such as in the Dexter model, where some properties store metadata, and others store 

anchor information. 

8.2 Data Versioning 

8.2.1 Persistent Storage of Revision Histories 

Objects are used to represent such abstractions as works, anchors, links, containers, workspaces, etc., 

within the computer. This section presents the revision history design space, describing several different 

techniques for recording the revision history of objects. The revision history design space is foundational, 

since it describes the basic techniques for recording the evolution over time of works, anchors, links, 

containers, and workspaces. These approaches create an archive of past revisions, and add the dimension of 

time where there was previously only the current time. The design space of structure versioning (Section 

8.5.2) directly builds on this design space, since it depends on exactly how works, anchors, and links are 

versioned. 

There are several approaches for recording the revision history of an object. 



  118 

State-based approaches: 

• Versioned objects: In this approach, each revision is a separate object that is referentially 

contained within a versioned object, a container that holds all revisions of the object. Links or 

relationships record the predecessors and successors of revision objects. The containment 

relationship between the revision objects and the versioned object must be a reference type (as 

discussed in Section 4.2), typically a containment relationship on the container object. An 

advantage of this approach is the ability to record metadata both on the versioned object and on 

the individual revisions.  

There is also a range of choices for how to represent the predecessor/successor relationships. 

Since each revision can be viewed as having a set of predecessors, and a set of successors, the 

containment design space is applicable. Since the versioned object approach requires each revision 

to be a separate object, an individual revision cannot use inclusion containment for its 

predecessors and successors. However, all of the referential containment types could be employed. 

It is possible for each revision to store the predecessor/successor relationships on the revision, an 

example of the “container holds containment relation” type from Section 4.2. It is also possible for 

revisions to hold only the predecessor relationships, wherein the predecessor relationships on child 

revisions do double duty as the successor relationships for its parent. First class relationship 

objects, or hypertext links, can also be used (see Figure 21b), and have the advantage that the 

revision objects do not need to store predecessor/successor information, and could potentially 

participate in multiple version histories. First class relationship objects must themselves be 

contained within the versioned object, and any reference containment type can be used for this. Of 

course, if inclusion containment is used, the relationship loses its first-class status since it is no 

longer an independent object. 

When revisions are contained using multiple containment, the revisions can belong to 

containers other than the versioned object, such as user-created containers (e.g., folders or 

directories), workspaces, and configurations. When the container contents themselves are 

versioned, multiple containment allows revisions to be reused across revisions of these versioned 

containers, thus resulting in fewer objects than would occur if this reuse wasn’t possible, and the 
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revisions needed to be copied to belong to each container revision. Referential containment of 

revisions, in conjunction with a decentralized name or address space, permits version histories that 

span organizational or machine boundaries by having the versioned object contain revisions that 

are on multiple machines, potentially machines owned by different organizations. This has the 

drawback of either needing some mechanism for maintaining the integrity of the references, or 

accepting that there could be references that are not up-to-date (e.g., if a revision is deleted).  

Systems that contain revisions inside versioned objects using reference containment include 

HyperPro [141], CoVer [88], HyperProp [178], and the Hypermedia Version Control Framework 

[100].  

• Within-object versioning: In this scheme, the versioned object uses inclusion containment to 

hold revisions, and hence all revisions are within the versioned object. Thus, within-object 

versioning differs from the versioned object approach in the type of containment used, within-

object versioning employing inclusion, and versioned object using referential types. Within-object 

versioning is shown in Figure 21d. Examples include the “,v” files of RCS [185] and the “.s” files 

of SCCS [163], the versioning capability of some word processors (e.g., Microsoft Word), along 

with Palimpsest [56], VTML [194,18], EH [74], P-Edit [111], MVPE [166], Historian [1], VE 

[11], Timewarp [57], and Delta [37]. While these systems all share the quality of inclusively 

containing all revisions, their concrete representations vary significantly. 

The advantage of this technique is that all revisions are stored within a single object, and it is 

possible to guarantee the stability of references within these objects, since the current location of 

an endpoint can always be computed. When changes are recorded down to the keystroke level, 

within-object versioning can support remote collaborative authoring where all collaborators 

simultaneously work on the document, since all operations by all collaborators are recorded. 

Recording all revisions can be a drawback, since a publicly accessible document might not want to 

publicly show all of its prior revisions. 

Within-object versioning has the drawback that revisions cannot participate in other 

containment structures, unless a replica of a specific revision is made and then placed into the 
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container. Alternately, it is possible to use multiple containment to hold the entire versioned 

object, and its included revisions, within multiple containers. 

Two significant design choices for within-object revision are the size of the minimum length 

content chunk, and the range of attributes that can be set on each chunk. Chunk size varies, with 

the largest minimum chunk size being a programming language function [1], but with other 

choices being a single line, as with the C preprocessor, a programming language token [37], all the 

way on down to a single character [56,194]. Settable attributes always include the person who 

made a change and the time when the change was made. Other common attributes include the 

revision number of the change, and a rationale/comment field. Most systems limit settable 

attributes to those that are predefined by the system, however some provide the ability to set 

arbitrary attributes, and retrieve them using predicates. Arbitrarily settable attributes allow within-

object versioning systems to also handle within-object variant representation tasks, discussed 

further in Section 8.6.1. 

• Predecessor/successor relationships only: Each revision is stored in a separate object, but no 

container object represents a particular versioned object (see Figure 21e). Typically a repository, 

or super-container holds all revisions of all objects, as well as all relationships between them, in a 

large pool of objects. The advantage of this approach is that it can support versioning without 

using container objects. In conjunction with a decentralized name or addressing scheme, it can 

also model revision histories that span organizational and machine boundaries, since it avoids the 

issue of which machine hosts the collection representing a versioned object. However, when 

revision histories span organizational boundaries, referential integrity is a potential problem, as 

communication and coordination between the machines storing the individual revisions cannot be 

guaranteed. Disadvantages of the approach include inefficient revision selection, hence inefficient 

creation of arbitrary configurations, and inefficient setting of metadata that must be unique across 

the version history of an object, such as labels. Examples of this approach include Xanadu [137], 

and the NTT Labs. versioning proposal [143]. 

State-based approaches for recording a revision history are summarized in two figures below. Figure 

21 shows how the state-based approaches are used to represent a two-object revision history, and provides 
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instances of each of the objects used to represent the example revision history. Figure 22 also shows the 

revision history design space, but does so using entity-relationship diagrams [29] showing a revision 

history at three layers of abstraction, using an approach similar to that used for containers in Figure 7. In 

the abstract relationship layer, a revision history is modeled as a revision with a predecessor relationship, 

reflecting that a specific instance of a revision history is a set of revisions connected by predecessor 

relationships. The explicit relationship layer shows the versioned object, within-object, and 

predecessor/successor relationships approaches, highlighting that these three approaches all represent the 

abstract revision history in the layer above. At the concrete representation level, for each of the approaches 

in the explicit relationship level, one or more examples of concretely representing the revision history are 

shown. Representations shown in the concrete representation level are capable of, at minimum, 

representing the objects and relationships shown in explicit relationship level. They may be capable of 

more than this. VTML and Palimpsest, for example, are capable of also representing fine-grain changes, 

and could form the concrete representation for a change-based approach as well. 

The advantage of the three-layer model for revision histories is its separation of the abstract notion of 

revision history, shared by all state-based approaches, from the high-level overview of each versioning 

approach (versioned object, within-object versioning, predecessor/successor), which is in turn distinct from 

its specific concrete representation.  It allows the characteristics of each versioning approach to be 

considered independent of the idiosyncrasies of its specific concrete representation, and firmly places delta 

storage concerns in the concrete representation, where it has no impact on higher-level modeling of the 

revision history. It also highlights similarities between approaches that otherwise seem quite different, 

placing systems such as RCS and VTML in the same category of within-object versioning systems, since 

they share modeling similarities at the explicit relationship layer, but have significant differences in their 

concrete representations. 

Change-based approaches: 

• Layers: A composite object is created that holds a subset of system objects. Typically the set of 

changes represents a logical change, or variant, of the system with respect to some checkpoint.  

This approach differs from versioned objects in that these composites may contain one revision of 

several different objects, while a versioned object contains many revisions of the same object. 
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Combining layers creates system revisions, with rules used to evaluate which layer is chosen in 

the case of conflicting changes. If the composite contains its objects by-value, each object can 

only belong to one layer. This had the advantage of making it easier for people to understand how 

a particular change ended up being selected, since each object only appears in one composite.  By-

reference containment is also possible, and has the advantage that a single change can be stored in 

multiple layers, making it easier to create system variants using part of, but not all of another 

change. An example of this approach is the PIE system [80]. 
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b) A versioned object, V-O, 
referentially contains two revisions 
and a first-class successor relationship. 

V-O 

r1 r2 succ. 
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a) A linear revision history 
containing two revisions, r1, and r2. 
Revision r2 is the successor of 
revision r1. 
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c) A versioned object, V-O, 
referentially contains two revisions. 
Revision r1 referentially contains its 
successor revision r2. 
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r1 r2 

d) A versioned object, V-O, 
inclusively contains revisions r1 and 
r2, and the successor relationship. 

r1 r2 succ. 

e) Revisions r1 and r2 are independent 
objects, connected by a first-class link 
that represents the successor 
relationship. 

V-O V-O 

 

 

Figure 21 – State-based design choices for representing a linear version history. 
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Figure 22 – The state-based versioning design space. In (a), the abstract relationship layer depicts a 
revision history as a series of revisions with predecessor relationships.  In the explicit relationship layer, 
three possible design choices are shown: (b) the versioned object approach, (c) within-object versioning, 
and (d) predecessor/successor relationships only. In the concrete representation layer (e-g), a non-
exhaustive set of examples is given of possible representations of the objects and relationships in the 
explicit relationship level.  
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 Approach Advantages Disadvantages Figure Examples 
versioned 
object 

Can record 
metadata on 
versioned object 
and revisions. 
Revisions can 
participate in 
multiple containers, 
such as 
workspaces, 
configurations, etc. 
Reduces object 
duplication when 
versioning parent 
containers  

Requires multiple 
objects to represent 
a version history. 

Figure 
21b,  
Figure 
21c, 
Figure 
22b 

HyperPro [141], 
CoVer [88], 
HyperProp 
[178], 
Hypermedia 
Version Control 
Framework 
[100] 

within-
object 

All revisions stored 
within a single 
object. Reference 
stability within 
revisions can be 
guaranteed. Can 
efficiently track 
fine-grain changes. 

Revisions cannot 
participate in 
multiple containers, 
unless replicas are 
used. All prior 
revisions are 
accessible, limiting 
confidentiality. 

Figure 
21d, 
Figure 
22c 

RCS [185], 
Palimpsest [56], 
VTML [194], P-
Edit [111] 

State-
based 

predecessor/ 
successor 
links only 

Revision history 
can be represented 
without using a 
container. Can 
model version 
histories that span 
organizational and 
machine 
boundaries. 

Inefficient revision 
selection, inefficient 
creation of 
configurations. 
Inefficient setting of 
metadata, such as 
labels, that must be 
unique across all 
revisions. 
Referential integrity 
of version history 
can be a problem.  

Figure 
21e, 
Figure 
22d 

Xanadu [137], 
NTT Labs. 
versioning 
proposal [143] 

Change-
based 

layers Revisions are 
represented as the 
combination of a 
set of logical 
changes. Good 
support for 
representing 
variants. 

Inconsistency can 
arise between 
mutually 
incompatible 
changes. Difficult to 
map into 
hierarchical name 
systems (like 
filesystems). 

 PIE [80] 

Table 6 – Design options for recording the history of objects, including representative, but not exhaustive 
examples of each. 
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8.2.2 Versioning Dynamic Content and Dynamic Links 

Hypertext systems frequently have dynamic content where the symbolic representation of work is the 

output of a computational process, as well as dynamic links, where the endpoints of the link are computed. 

For example, on the Web, dynamic content can be the result of Java [81] or JavaScript [63] programs 

executed within the Web browser, or the result of a computation executed on the server. Server-side 

dynamism often involves displaying the results of a database query, as exemplified by search engine, 

airline ticket reservation, and stock quote sites. Microcosm [43], with its link filter architecture, is an 

example of dynamic links: link traversals pass through a series of filters, with each filter determining 

whether it contributes endpoints for the link. 

Versioning dynamic content, and dynamic links is hard.  Dynamism involves running a program, with 

its explicit and implicit dependencies on its environment. Operating system version, memory requirements, 

processor requirements, network connectivity, other programs, such as databases, that must also be 

available in the environment — all are possible external dependencies of dynamic content and links. Many 

of these factors are outside the control of the hypertext versioning system. Hardware version and operating 

system version can be checked by a version control system, but if they are incompatible, a version control 

system can do little more than flag the incompatibility for an operator to handle. While it is not unheard of 

for a site to place every single file under version control, this still does not address the entire problem, since 

the controlled files have dependencies on the hardware and network environment, and these are outside the 

scope of control of a version control system.  

Most approaches to versioning dynamic content reduce dynamic content to some form of static state, 

such as a description of the process in the form of a program, or executable image. A snapshot can be taken 

of this static state, and versioned, possibly along with those aspects of the environment that affect its 

execution, and that are capable of being versioned, such as environment configuration files. One goal of 

this approach to dynamic content versioning is to be able to revert, at some future time, to a stored state of 

the dynamic process, and then be able to re-execute that process.  

The Web, with its client/server split, suggests some additional ways of versioning dynamic Web pages. 

If the goal of versioning is to archive the content, instead of the process that generated the content, 

representative snapshots of the Web pages as visible at the browser could be versioned. Thus, instead of 
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versioning the process that generates a graph of a stock’s value during the day, take a snapshot of that page 

at specific instants during a day. For a stock quote, it might be adequate to take a snapshot when the stock 

market opens, at mid-morning, noon, mid-afternoon, and at market’s close. Or, for versioning a search 

engine’s pages, the top thousand queries could be executed once a week, and their results stored. Periodic 

intelligent traversal of many sites, from auctions to news feed sites, could allow their contents to be 

versioned. 

Java and JavaScript, since they run on virtual machines within the Web browser, provide the ability to 

version both the operating environment, the browser’s configuration, and also the “hardware,” the virtual 

machine and the browser executable itself. The use of a virtual machine places the “hardware” under the 

control of the version control system. Since JavaScript is a standard, and there is a relatively small number 

of platforms (Web browsers) on which it runs, there is a greater chance that, if a JavaScript program and 

Web browser were placed under version control now, several years from now it will still be possible to run 

that program. Nevertheless, the ability to version the virtual machine still does not address external 

dependencies such as network connectivity, and services that are under the control of another organization, 

such as a database, or news feed. 

8.2.3 Revision Mutability, and Immutability 

This requirement adds modification constraints to the data model used for representing the history of 

objects. As discussed in Section 8.1, an object can have one of three organizations: all data, data plus 

properties, and all properties.  For the following discussion, the term primary state describes the data item 

that represents the work within an object, distinguished from the object’s metadata, which is all other non-

work object state. The three choices for the mutability of objects are: primary state and metadata are 

immutable, primary state is immutable while metadata is mutable, and both primary state and metadata are 

mutable (i.e., the entire object is mutable).  The case where the primary state is mutable while metadata is 

immutable is considered to be a degenerate case, since metadata contains assertions about the work, and 

hence if the primary state can be modified, the assertions must be capable of change so they can be kept 

correct. 



  128 

• Immutable primary state and metadata: This adds the constraint that, once the primary state is 

no longer being actively worked on (e.g., once it has been checked-in), neither it, or its metadata 

can be modified. This has the advantage of faithfully recording all aspects of an object at the time 

it was frozen, providing the best capture of the past state. It has the disadvantage that if access 

control is stored as metadata, the access permissions cannot be changed once the object is frozen.  

Since this is undesirable, it implies that access control directives must be separated from the 

object. 

• Immutable primary state, mutable metadata: This adds a constraint that some, or all metadata 

can be modified on each revision. Mutable metadata may affect access control, if access 

permissions are stored on each revision. This has the advantage of allowing access permissions to 

be flexibly modified at a later date, while still keeping access permissions stored with the object 

they affect. Anchoring and linking may also be affected, if anchors and links are represented as 

metadata. This has the advantage of allowing new links and anchors to be created to frozen items, 

allowing annotations, and new relationships to be explored. 

• Mutable primary state and metadata: In this case, the primary state and the metadata can be 

modified on all revisions, even if they have been checked-in. This adds the constraint that reliable 

configurations cannot be created if the primary state has been modified. Since a configuration is a 

collection of individual revisions, if one of these revisions is modified at a later date, then it is not 

possible to recreate a specific configuration. 

8.2.4 Coexistence of Versioned and Unversioned Objects 

By “coexist,” this goal implies that the objects coexist within the same container, and typically this 

issue only applies to containers employed by the end user to group their objects. This goal adds a constraint 

(or lack of a constraint) on what items a container can contain. The set of all possible constraints includes: 

• Versioned objects only: Only versioned objects can be contained. This constraint prevents the 

containment of unversioned objects. 
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• Revision from a versioned object only: Only a specific revision from a versioned object may be 

contained. This is accomplished by adding a revision selection rule to the containment 

relationship. This constraint prevents the containment of unversioned objects. 

• Unversioned objects only: Containers can only contain objects that are not under version control 

(i.e., that are not versioned objects, or that are not revisions of a versioned object). 

To meet the goal of allowing both versioned and non-versioned objects to coexist, none of the above 

constraints can hold. 

This goal only applies to state-based versioning, where each revision is a separate object. For within-

object versioning, this does not apply, since the container does not have to distinguish between unversioned 

documents, and within-object versioned documents: both appear to just be objects for the purpose of 

containment. 

Allowing containment of both versioned and unversioned documents increases system complexity, 

since containers (either composites, or directories in a hierarchically organized namespace) now have to 

handle the issue of whether a versioned container should record the membership of an unversioned item 

when its state is frozen. If it does record the membership, it is possible that, in the future, the unversioned 

items will be deleted, and the prior container state will now contain dangling membership links. If, on the 

other hand, the unversioned items are not recorded as part of the container’s state when it is frozen, 

containers are now complicated with two kinds of membership, versioned and unversioned. Furthermore, 

when a versioned container is reverted to a prior state, the system is faced with the choice of either 

removing all unversioned items from the container, or preserving the unversioned items and only reverting 

the versioned items, making it so that the exact prior state of a container can never be recovered. Due to 

these complexities, hypertext versioning systems that version containers adopt an all or nothing approach, 

requiring that all of a versioned container’s items be versioned. 

8.2.5 Versioning of all Content Types 

The goal of versioning all content types discourages versioning approaches that are dependent on 

knowledge of the internal organization of a document. For example, while within-object versioning is 

certainly possible for all document types, to date it has primarily been applied to text.  Hence, if support for 
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a wide range of document types is needed, either the within-object versioning technique will not be usable, 

or it must be adapted for all the needed document types. Fine-grain change tracking, such as that provided 

by Palimpsest [56] and VTML [194], requires modifications to programs that operate on a specific data 

type, and hence supporting within-object versioning implies changing these programs. If there is access to 

source code for the applications, this is a possible, but major, engineering task. Of course, if there is no 

source code access, adding within-object versioning is impossible. Alternately, it is possible to post-process 

an object after it is stored to determine what has changed, however, this too requires that post-processors 

have knowledge of the internal structure of the object.  

Similarly, this goal limits the kind of concurrency control mechanisms that can be used. Synchronous 

collaborative authoring applications such as Grove  [58] and Prep [139] willingly forgo content type 

independence to provide fine-grain merging down to the keystroke level. The approach in Grove and Prep 

of sending fine-grain update notifications requires a constant network connection to be held open between 

collaborating applications. This requires such systems to be fully network connected throughout 

collaborative authoring sessions, and easily reconnect accidentally disconnected authors. The semantics of 

the update messages depend on the type of document being edited.  For example, a spreadsheet requires 

knowledge of cells and formulas, and a bitmap image editor requires knowledge of colors, brushes, masks, 

etc. While it is possible to extend this concurrency control technique to many document types, it too would 

be a significant engineering task both to define the correct event notifications, and to add the network 

support into applications to receive and process these notifications. 

Duplex [144] and Alliance [165] also exploit special knowledge about the internal hierarchical 

structure of their documents to provide concurrency control on document subtrees. When considering using 

this technique for all document types, two problems arise. First, not all documents are hierarchically 

organized. For example, bitmap images are not meaningfully decomposable into trees for the purpose of 

concurrency control. While the technique could be extended to make use of any reasonable modular 

decomposition of the document, this would not get around the second problem, that of requiring application 

programs to be modified to support a standard concurrency control mechanism for each document type. 

While it is certainly feasible to do this, it would require significant engineering effort to accomplish. 
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Two concurrency control mechanisms that work well across multiple document types are whole-

document locking, and parallel development. These techniques have the advantage that it is possible to 

create a helper application that manages the concurrency control (taking out a lock, or checking out a 

document), thus allowing all applications to interact with all document types without needing explicit 

knowledge of the concurrency control scheme. 

8.2.6 Revision Naming 

The standard way of providing revisions with human readable names is to associate a name called a 

label, with a specific revision. This is accomplished either by adding a revsision, label pair as metadata on 

the versioned object, or by putting the label as metadata on a specific revision.  

Labels are frequently used in revision selection rules, as part of a predicate that identifies a specific 

revision of a versioned object. For example, the rule “label = ‘Beta2’” would select any revision that has a 

“Beta2” label on it. Often it is desirable to ensure that a maximum of a single revision is returned for a 

given revision selection rule. To ensure this, a label value must be unique across all revisions of a versioned 

object. However, this seemingly innocuous requirement ends up discouraging distributed revision histories, 

due to the difficulty of checking for uniqueness across a distributed revision history tree. Consider a 

revision history tree that spans three locations. Adding a label to a revision at one location requires a check 

for uniqueness at the other two locations, thus increasing the time it takes to perform the operation, and 

raising the possibility that the other locations might not be accessible, thus preventing the operation from 

taking place.  

Evaluating revision selection rules also becomes more difficult for distributed revision histories, since 

the predicate needs to be evaluated at multiple sites. Like adding a label, evaluating revision selection rules 

on distributed revision histories is slower, due to the need to evaluate at multiple sites, and is susceptible to 

interruptions when accessing sites. The reduction in speed has significant impact on configuration 

management, since configurations are defined using a series of revision selection rules, and hence their 

efficient evaluation is key for efficient creation of configurations. Since configurations can comprise 

hundreds, or thousands of objects, every slowdown in rule evaluation is magnified many times. 
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8.2.7 Removing revisions and versioned objects 

The primary design choice affecting deletion of revisions and versioned objects concerns whether the 

semantics of delete are destroy or mark as deleted. When an object is destroyed, the resolver function no 

longer maps its identifier to its persistent storage, and, sometimes, the area in persistent storage that had 

held the object’s contents is overwritten with zeros, ones, or random contents, to prevent any non-trivial 

reconstruction of the destroyed object’s state. In constrast, the mark as deleted approach simply sets the 

“deleted” flag on the object, and does not affect mappings of identifiers to the object. Hybrid approaches 

are possible. For example, it is possible to mark revisions as deleted, and then destroy these marked 

revisions by reaping them after a fixed time period. 

The destroy approach has the advantage that it frees the storage space used by the object. Thus, long 

revision histories can be compacted by removing old, unused revisions, and older documents can be 

removed, and no longer need to be archived. Destruction carries a heavy consistency penalty. If the 

destroyed object participated in any hypertext links or containment relationships, these are left dangling, 

and must be repaired. If the link or container is an immutable revision, destruction of a contained object 

results in irrevocable inconsistency. Destruction of revisions can be complex when within-object versioning 

is used, since it involves recalculation of the internal state of the object.  For example, destruction of a 

revision in an RCS [185] “,v” file requires recalculation of the reverse deltas inside the file. 

The mark as deleted approach avoids the inconsistency problems of destruction. Objects marked as 

deleted are not shown in most user interfaces and visualizations, and hence appear to the user to be deleted. 

However, they can be shown when a composite (or other versioned container) is reverted to a previous 

revision that contains the deleted object. The deleted revision can also be made visible if a link traversal 

ends at that revision. Though it has the advantage of avoiding the inconsistency problems of destruction, 

the mark as deleted approach also avoids the advantages of destruction. All the storage space is still used, 

and deleted objects are still archived. 

8.3 Stability of References 

There are two main problems that can occur with references such as links [42]. If the endpoint of a 

reference no longer resolves to an object, then the reference is considered to be dangling; such a hypertext 
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link is called a dangling link. When the anchor of a hypertext link does not correctly identify the correct 

content within the referenced object (for example, if the object has been changed, unbeknownst to the 

hypertext system) it yields the content reference problem. 

Dangling links occur when the target of a reference or link has been deleted (made inaccessible from 

the target location in the namespace) or moved (made accessible from another location in the namespace), 

and the reference or link has not been modified to account for the change.  

Versioning is one of several solutions to the content reference problem; others are covered in [42]. The 

essence of the versioning approach is to ensure the linked-to revision is always available in the form it had 

when the link was created. Assuming the revision is permanently stored by the system (i.e., isn’t deleted), 

the referenced endpoints will always be available. This approach carries with it some historical assumptions 

about naming and link traversal semantics.  

First is that each revision has a name, address, or retrieval specification that is usable as a link 

endpoint. For example, if revisions are stored in RCS “,v” files, each revision does not have an individual 

name in the filesystem, only the versioned object (the “,v” file) does. Thus, in this hypothetical case, if 

filenames are used as link endpoints, it is not possible to link to a specific revision, since each revision does 

not have a separate name. A situation similar to this is encountered with Web-based versioning systems 

[161,150,173,134] that store all revisions of an object in a single file. Since URLs for filesystem-based 

Web servers are typically mapped directly into filenames, this raises the problem of creating a mechanism 

for accessing individual revisions.  Typically this is accomplished by appending a revision selection rule 

(e.g., a revision identifier, or a date) or a revision retrieval operation (e.g., a checkout) to the end of the 

URL. 

To guarantee freedom from content reference problems, the versioning approach assumes that links to 

objects will always return the originally linked revision, since it is only for this revision that the system can 

guarantee the link is correct. But, linking to a specific revision is only one of several possible link traversal 

semantics: it is also desirable to link to the most recent revision, or to be given a choice of revision 

destination. Since future revisions have also been stored, it is possible that the link endpoint could be 

located in revisions subsequent to the one originally linked, thus supporting other link traversal semantics. 
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Within-object versioning systems such as Palimpsest [56] and VTML [194] note this as a benefit. However, 

no full-featured hypertext versioning system exploits this capability. 

A drawback to the use of versioning to solve the content reference problem is that versioning alone 

cannot prevent dangling links. One solution to avoid this drawback is to prohibit delete and move 

operations, as is done in Xanadu [137]. However, there are many valid reasons for the owner of a document 

to permanently remove it, and all its prior states. For example, in corporate settings, mergers and 

acquisitions can make a company name obsolete, product lines can be modified or terminated, in both cases 

making it desirable for the owner to remove all documents that reference the old company or product 

names.  

If the original owner of an object decides to delete or move it, yet the benefits of versioning for 

addressing the content reference problem need to be retained, it is necessary to incorporate third party 

versioned document stores, where the third party has no compunction about keeping around information the 

owner has deleted or moved. For example, the implication of a third party caching old company or product 

names is different from the owner preserving this state. The owner has safely removed the obsolete 

information, while the third-party store has achieved their goal of archiving the older information. For the 

third party, no endorsement of the older states is implied, but for the owner of the information, the mere 

fact of making older information available increases its perceived value. The use of third-party version 

repositories seems especially useful for the Web, with its average document lifespan of approximately 50 

days [152]. Even if the original owner of the material has no motivation for saving older revisions, a third 

party archive service would. 

8.4 Change Aggregation Support 

For change-based systems, the ability to provide change aggregation support is inherent, since an 

abstraction representing a set of changes is necessary just to record previous object revisions. Thus, change-

based systems automatically meet this requirement. State-based systems, on the other hand, do not 

automatically provide support for aggregating changes across multiple objects, and hence the purpose of 

this requirement is to ensure that they do. 
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There are three main approaches to meeting this requirement: adding a new container that references 

the revisions involved in a change, adding a new non-container object that references the revisions involved 

in a change, employ an existing container to refer to revisions involved in a change, or use labels on 

revisions to denote that the revisions together represent a change. Using a software development example, 

fixing a specific problem report might involve modifying several software modules. In the container 

approaches, the container refers to the revisions that were created in the process of repairing the reported 

problem. Using labels, a specific label value (perhaps the problem report identifier) would be placed on 

each modified revision. 

• New Container: A new container object is introduced into the system, with each container 

instance representing a logical change. The container points by-reference to the revisions modified 

in the course of creating the logical change. The container also contains, either as metadata, or by-

reference to another document, a description of the logical change. The change aggregation 

containers are separate from other containers used for grouping objects, such as collections, or 

composite objects. 

Change aggregation containers typically do not belong in a hierarchy of changes, and hence 

have a flat namespace, one that is separate from the namespace used for grouping objects that are 

being authored. It is possible to keep the change aggregation and grouping namespaces completely 

separate, though typically the change aggregation containers are mapped into an unused portion of 

the namespace. It is also possible to have change aggregation containers participate in the same 

namespace as other objects being authored. Taking Web-based systems as an example, change 

aggregation containers could be named using a non-http URL scheme, or can be placed in an 

unused part of the http URL space, or can be interspersed with authorable resources in their 

portion of the http URL space. 

• New non-container object: A new non-container object is introduced into the system that 

contains either as its content, or as metadata, a list of references to the revisions comprising a 

logical change. The non-container object can thus be seen to be acting like a container, holding 

pointers to the revisions by-reference, though not supporting all container semantics. The 

advantage of this approach is its simplicity. By not using a container object to group changes, all 
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of the semantics of operations on containers do not need to be supported. This can be an advantage 

when container semantics are complex. For example, if containers support the ability to order their 

members, this facility will not be used when recording changes. However, this is its disadvantage 

as well, since it leads to the need to add capabilities for adding and listing revisions. Like change 

aggregation containers, change aggregation objects can belong either in a separate namespace 

from authored objects, or can be placed in an unused part of the authored resource namespace, or 

can be interspersed with authored objects.  

• Reuse Workspace Container: Composite-based hypertext versioning systems often use 

containers to represent workspaces, examples being Neptune [46], HyperPro [141], CoVer [88], 

VerSE [91], and HyperProp [178].  Each workspace contains the objects being worked on by an 

individual, or a group. In this case, a specific revision of a workspace container can be restricted to 

represent a logical change, and hence the workspace container can do double-duty as both a 

workspace and a change aggregator. The advantage to this approach is that it removes the need for 

a separate container just to hold changes, thus simplifying the system. It also eliminates the need 

for a mechanism to assign revisions to a change aggregation container. The disadvantage is that it 

requires all changes to a workspace, from when it was checked out to when it was checked in, to 

correspond to a single logical change. This policy might be too restrictive for use cases where the 

visibility of revisions is affected by the check in. For example, it might be desirable to make 

several interrelated changes before checking in a workspace if the checkin operation causes 

workspace contents to be visible to other collaborators. The other disadvantage of tying change 

aggregation to workspace revisions is a single logical change might span multiple revisions of a 

single object. This can occur if an object is checked-in, and errors are subsequently found, thus 

necessitating another revision to satisfy the conditions of the logical change. Finally, it can be 

difficult to identify exactly which revisions in a workspace were changed when an entire 

workspace revision represents a logical change. 

 Further complicating this design space is the issue of how to populate change aggregation objects or 

containers. A simple approach is to have the user manually add revisions to the change aggregator, perhaps 

using a change-tracking tool. However, this is a tedious operation, susceptible to errors. Change 
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aggregators can automatically have revisions added to them if they are identified during a checkin 

operation, thus allowing the checkin command to add the revision to the change aggregator in addition to 

its normal behavior. It is also possible to indirect the identification of the change aggregator. For example, 

if the change aggregator is associated with a workspace, then a checkout could identify a workspace, and 

hence identify the change aggregator that will refer to the changes about to be made. This, then, makes the 

change aggregator approaches seem similar to the container reuse approach. However, they are different, 

since the changes are captured due to individual revisions being worked on, instead of the entire workspace 

being captured as a change. 

8.5 Link and Structure Versioning 

8.5.1 Link versioning. 

The representation of links typically takes one of two forms: either the link is an independent object, or 

the link is contained within an object representing a work. Using the notation from Section 2.2.1.1, 

independent links are those where D(t) and Dl (t), as well as Pc(t) and Pc,l(t), are separate, independent 

objects, while dependent links are those where D(t) inclusively contains Dl(t), and Pc(t) inclusively contains 

Pc,l (t). Independent links have the entire object versioning design space available for representing the 

revision history of a link. When the link is contained within the object representing a work, it has greater 

constraints on how it can be versioned; typically link versioning is a side effect of work versioning. 

• Independent links: As an independent system object, a link’s history can be recorded using any 

of the techniques for recording the revision history of objects, as described in Section 8.2.1. That 

is, the versioned object, within-object versioning, and predecessor/successor relationship 

approaches (shown in Figure 21 and Figure 22) could potentially be used. 

For links, the versioned object approach is typically used, wherein a container object 

referentially contains all revisions of the link. The versioned object approach has the advantage 

that it permits the creation of composites containing a consistent set of documents and links, such 

as the most recent revision as of a specific time, or a specific snapshot in the development of the 

composite. By-reference containment also allows the creation of containers that model a link 
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structure by containing a single revision of multiple links, in this way capturing a link structure 

[100]. 

Within-object versioning has the advantage of only needing one object to record all revisions 

of a single link. It has the drawback of making composite creation more difficult, since either the 

entire versioned object would need to be contained, or the individual revisions would need to be 

copied out of the versioned object and placed into the container. As noted in Section 8.2.1, an 

important design choice for within-object versioning is the size of the minimum length content 

chunk.  This is less important for link versioning. Fine-grain change tracking, as provided by 

VTML [194] and Palimpsest [56], typically does not provide much value for links, since they have 

minimal content beyond the link endpoints, and hence do not justify the added complexity of such 

change tracking. However, if a link has significant chunks of metadata, such as an annotation, 

fine-grain change tracking of these textual metadata items could be valuable. 

Using only predecessor and successor relationships to capture the revision history of links is 

also possible. This would eliminate the need for a container object representing all revisions of the 

link, and would permit link revisions to more easily span control boundaries. It has the drawback 

that it is difficult to efficiently evaluate revision selection rules. No existing hypertext system 

versions its links in this way. 

• Links a dependent part of works: In some hypertext systems, links are contained within, and 

hence dependent upon, the objects representing linked works. Links can be embedded within that 

portion of the work object representing the content of the work, as is the case with HTML links on 

the Web. Alternately, links can be contained as metadata about the work object content, as is the 

case with the source link in WebDAV [79]. 

When links are contained within a work object’s content (that is, contained within that part of 

D(t) or Pc(t) that represents the content of the work), their history is the same as the content, and 

hence when the work object content has a new revision made, so too do the links in the content. 

The versioning of links is completely subsidiary to the versioning of the content. When links are 

contained as metadata (contained within the portion of D(t) or Pc(t) that represents metadata about 

the work), there are two choices. First, if the metadata is versioned along with the rest of the 
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object, then link versioning is again subsidiary to versioning of the object. However, it is 

conceivable that metadata could be versioned separately from the main object, with each item of 

metadata possessing its own revision history. This has the advantage that metadata items, like 

links, can conceptually be part of the object, but still have independent version histories.  The 

drawback is that this makes the object substantially more complex, since each item of metadata 

can contain multiple revisions. No existing hypertext system provides metadata versioning 

services. 

The design choices for versioning links are captured in Table 7 below. 
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 Approach Advantages Disadvantages Examples 
Versioned 
object  
 

Permits creation of 
composites of 
documents and links. 
Permits creation of 
composites of 
multiple links to 
represent structure. 
Permits efficient 
evaluation of revision 
selection criteria. 

Need many data 
items to represent 
revision history. 

CoVer [88], 
VerSE [91], 
Hypermedia 
Version 
Control 
Framework 
[100]  

Within-object 
versioning 

One object records all 
link revisions. Useful 
if link has large 
metadata chunks, 
such as annotation 
text. 

Cannot create 
composites 
containing link 
without replication. 
Fine-grain tracking of 
changes (such as 
annotation text) adds 
complexity. 

None. 

Independent 
links 

Predecessor and 
successor 
relationships 

No container object 
needed to represent 
link revisions. Can 
represent link 
revision histories that 
span control 
boundaries. 

Inefficient setting of 
metadata, such as 
labels, that must be 
unique across all 
revisions. Expensive 
to evaluate revision 
selection criteria. 
Maintaining integrity 
of revision history 
may be difficult. 

None. 

Embedded 
within object 

Simplicity: when a 
revision is made of 
the object, a revision 
is also made of the 
link. When object is 
deleted, all links are 
automatically deleted 
too. 

Cannot independently 
version links. Cannot 
version structure 
separate from linked 
objects. 

Web-based: 
BSCW [19], 
WWRC [161], 
WWCM [104], 
MKS Web 
Integrity [134], 
WebRC [75], 
also [150], 
[173] 

As subsidiary 
metadata  

Simplicity: when a 
revision is made of 
the object, a revision 
is also made of the 
link. When object is 
deleted, all links are 
automatically deleted 
too. 

Cannot independently 
version links. Cannot 
version structure 
separate from linked 
objects. 

Xanadu [137] 

Dependent 
links 

As 
independently 
versioned 
metadata 

Links can be 
versioned separate 
from object contents. 
When object is 
deleted, all links are 
automatically deleted 
too. 

Adds significant 
complexity to the 
object, since each 
item of metadata is 
independently 
versioned. 

None. 

Table 7 – Design options for recording link history. 
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8.5.2 Structure versioning. 

A link structure is a set of links, and the term structure is used in an evocative sense, to describe the 

graph created by this link set. Abstractly, structure versioning is the act of maintaining the revision history 

of a link set. Since a set is represented within the computer by a container, the essence of structure 

versioning is placing a set of links into a container, termed the structure container, and then versioning the 

structure container. This premise underlies the structure versioning design space. The existence of the 

structure container means the containment design space (Section 4.2) will be brought to bear, and the need 

to version the structure container brings in the versioning design space (Section 8.2.1) as well. The 

structure versioning design space thus depends on the existence of these other two design spaces for the 

terms used to describe its own design choices.  

Two criteria determine whether a particular structure versioning design choice is complete. The 

symbolic rendition criterion asserts that there must be sufficient information to create a symbolic rendition 

of each work, including rendition of anchors or link endpoints. So, if the structure container does not 

include works, then the links, anchors, collections, and revision selection rules held by the structure 

container must possess enough information to connect links to the works. If works are part of the structure 

container, then among the works, links, anchors, and revision selection rules, there must be enough 

information to connect a specific link revision to a specific work and/or anchor revision.  

The link traversal criterion asserts there must be sufficient information to perform a link traversal from 

an anchor. If anchors are not part of the data model, then there must be sufficient information to traverse a 

link from the symbolic depiction of a link endpoint (e.g., some symbol that represents the endpoint of a link 

that connects entire works). 

The primary elements of the structure design space are:  

What does the structure container hold?  

While the structure container must, at minimum, contain links, it is by no means limited to them. The 

structure container may also hold works, anchors, and other container objects. If the structure container 

only contains links, it is capable only of representing a link structure. If the structure container also holds 

works and anchors, it can represent not only the link structure, but also a consistent slice through a 
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hypertext, holding not just the links, but also the linked works, along with the anchor points within those 

works. 

If the goal is just to version structure, then the structure container need only contain sufficient 

information to satisfy both completeness criteria. So, if a link endpoint specifies an anchor revision, and an 

anchor revision specifies a work revision, then the structure container need only contain links, since it is 

possible, given a link revision, to determine the information needed to create a symbolic rendition, and to 

perform a link traversal. If, however, a link endpoint only specifies a versioned object, either the structure 

container or the containment relationship between the link and its containees (works or anchors) must hold 

a revision selection rule (discussed further below) to satisfy the completeness criteria. 

Since a link in conjunction with a revision selection rule contains sufficient information to satisfy the 

completeness criteria, these criteria alone do not provide any motivation for adding works, anchors, or 

other container objects (e.g., collections, composites) into the structure container. However, most 

composite-based hypertext versioning systems do include works and links within composites, which act as 

structure containers. Here the motivation is to make the composite do dual duty, as both the structure 

container and as a workspace (discussed in Section 8.7.2). Workspaces provide the benefit of maintaining 

an internally consistent subset of the entire object space. 

This point in the structure versioning design space is fully specified by giving a complete list of the 

entities contained by the structure container. 

Versioning design space choice for structure container and its containees.  

For the structure container, and all of its containees, one of the choices of the versioning design 

space—versioned object, within-object versioning, predecessor and successor relationships—must be made 

(Section 8.2.1 provides a complete description of the versioning design space, and Section 8.5.1 describes 

the link versioning design space). While it is mandatory for the structure container to be versioned in order 

to provide structure versioning, versioning for containees is optional. For example, both HyperPro [141] 

and HyperProp [178,179] do not version links individually, and version structure by placing the links inside 

containers that are versioned, and therefore each revision of the container records a specific revision of the 

link structure. 
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Though the versioning design space described in Section 8.2.1 includes an option for change-based 

versioning, to date no hypertext versioning systems have explored the use of change-orientation for 

structure versioning. If change-orientation we employed, it seems likely that the structure container and its 

versioned containees would all need to employ the same change-oriented versioning technique. Certainly 

the use of change-orientation for structure versioning remains an avenue for future research. 

This point in the structure versioning design space is fully specified by listing, for the structure 

container and each of its contained entities, the choice of versioning mechanism employed to record the 

revision history of the entity. If the entity is not versioned at all, that is noted instead. 

Containment design space choice for all container/containee pairs. 

For each container/containee pair involved in structure versioning, their containment relationship needs 

to be specified by choosing a point in the containment design space, described in Section 4.2. This applies 

not just to every object contained by the structure container, but also to the endpoints of links (since links 

are modeled as containers), and to the containment relationship between anchors and their work objects. 

Furthermore, for each container/containee pair, if the containee is versioned using either the versioned 

object or within-object approach, it is necessary to determine whether the versioned object, or an individual 

revision, is contained.  

Of the many choices inherent in each containment relationship, whether the containment type is 

inclusion or referential has the greatest impact on structure versioning, since inclusion containment implies 

that versioning of the contained item is dependent on versioning of the container. Referential containment 

leaves the containee free to have a revision history that is independent of the revision history of its 

container. 

If the structure container only allows single containment of its objects, this leads to significant object 

duplication during the evolution of the structure, since every revision of the structure container constitutes a 

separate container, and singly contained objects can only belong to one. As a result, new structure container 

revisions that employ single containment must replicate all contained objects when a new revision, or 

working copy is made. 

When the structure container holds the link and a single revision of its endpoint objects (anchor, work, 

or both), and the revision selection rule is located on the structure collection, an additional dynamic 
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containment choice becomes available. Typically, a link referentially contains its endpoints, selecting a 

specific revision of endpoint objects using the revision selection rule. The structure container also evaluates 

the revision selection rule to select an individual revision of each endpoint object. Thus, the revision 

selection step is duplicated by the link and the structure collection. To avoid this duplication, the link could 

employ indirect referential containment, where the link endpoint is the revision selected by the structure 

container. That is, the link endpoint is a binding point that is filled-in by the revision selection rule 

evaluation of the structure collection. Figure 23 below shows an example of indirect referential 

containment. In Figure 23a, a containment diagram shows the containment relationships among objects. 

Each structure collection revision contains a work revision by evaluating a revision selection rule across a 

work’s versioned object. The link uses indirect referential containment to select the same revision. Figure 

23b shows an example instance of this containment structure, where link l  is contained by structure 

container C. The link’s endpoints are the revisions selected by the revision selection rule on C. 

 

1 2 3 
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1 2 
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l Revision 
selection: 
latest revision, 
time ≤ t1 

t1 

C,1 A,3 

B,2 

structure collection 
revision        (RSR) 

versioned object for 
works 

work revision 

link 

Referential containment 

Indirect referential containment 

M 

N 
1 
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M 2 

a) b) 

Referential containment, selection using RSR 

 

Figure 23 – Indirect referential containment.  

Location and scope of revision selection rule. 

Dynamic containment using a revision selection rule (defined in Section 4.6) is often used in structure 

versioning, providing several benefits. Revision selection rules may be located either in the structure 

container, or on a specific containment relationship. When located on the structure container, the scope of 
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the rule is all containment relationships where the containee is a versioned object (i.e., the container used in 

either the versioned object or within-object versioning approaches). When located on a single containment 

relationship, its scope is that relationship. The advantage of having the revision selection rule on the 

structure container is evaluation efficiency, and ease of maintenance. The advantage of having revision 

selection rules on each containment arc is flexibility, with each containment arc permitting a separate 

revision selection rule. 

Revision selection rules bring several benefits. They allow more expressive selection of revisions than 

just explicit selection by revision identifier, permitting selection such as “most recent revision,” or “most 

recent as of a specific time,” or, in combination with a human-readable label (such as described in Section 

8.2.6), “the revision with label Beta_Release_2”.  

Revision selection rules also allow a single unversioned link to refer to different revisions over time. 

This trick is accomplished by having the link endpoint be a versioned object, and then using the revision 

selection rule to select a specific revision. Since the rule is stored separate from the link, the rule, and hence 

the selected revision, can change without modifying the link. If the holder of the revision selection rule is 

versioned, the link then has the appearance of being versioned, since the selected revisions change over 

time with the revision selection rule.  

Figure 24 highlights the link proliferation that can occur when links are unversioned, and revision 

selection rules are not used. A structure container, C, referentially contains two versioned objects, A and B. 

In this example, it is desirable to keep the link always pointing to the most recent revision of an object. In 

addition, old states of the link need to be preserved. Since the links are not versioned, and may only point to 

a specific object revision (i.e., they do not use revision selection rules to choose the revision they link), the 

only way to satisfy the criteria is by creating a new link. Thus, in revision 1 of C, link l  is between the 

latest revisions of A and B, while in revision 2 of C, link m is added to link the new latest revisions of A and 

B, with l  remaining unchanged to preserve the previous link endpoints. 

In contrast, Figure 25 shows the use of revision selection rules with an unversioned link. In the figure, 

the structure container, C, referentially contains two versioned objects, A and B. By using the versioned 

object as the link endpoint, and then letting the revision selection rule choose the specific revision, the need 
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to duplicate link l  to point to newly created revisions is eliminated. Including time in the revision selection 

rules allows prior link endpoints to be recovered when reverting to a prior container revision. 

Finally, revision selection rules on the structure container provide a single modification point for 

changing its contained revisions, a useful trait when performing time-based revision selection or label-

based revision selection. Label-based revision selection has the additional benefit of creating internally 

consistent hypertext structures, assuming the hypertext was consistent when the labels were applied. 

This point in the structure versioning design space is complete when, for each container/containee pair, 

including the structure container and its containees, as well as links as their contained endpoints, where the 

ultimate containee is a revision, a decision is made whether a revision selection rule on the structure 

collection, on the particular containment relationship, determines the revision endpoint of the containment 

arc. Alternately, if no revision selection rule is employed, meaning a specific revision is explicitly selected, 

this is noted as well. 
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Figure 24 -- Link proliferation in the absence of revision selection rules.  
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Figure 25 – A revision selection rule on the container chooses the revision for each link endpoint; link 
endpoints are versioned objects.  
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The following sections provide examples that highlight use of the structure versioning design space. 

8.5.2.1 Versioned Structure with Unversioned Links 

In this example, the following choices were made within the structure versioning design space: 

• Abstractions present: structure collection, works, links. No anchors are present, links join whole 

works. 

• Structure container contains: links (Dl(t) or Pc,l(t) ), work versioned objects (V-Ow) 

• Versioning design space choices: 

o Structure containers are versioned, using versioned object approach 

o Links are unversioned 

o Works are versioned, using versioned object approach 

• Containment design choices: 

o Structure container ! link, work versioned object: referential, multiple containment, 

single membership, unordered, containment relationship on structure container 

o Link ! work versioned object: referential, multiple containment, single membership, 

ordered, containment relationship on link (container) 

• Revision selection rule: stored on collection, affects all link endpoints, provides selection of 

specific work revision from work versioned object (Vn from V-Ow) 

A containment diagram showing these design choices is given below in Figure 26. An instance of this 

containment structure is shown in Figure 25 above. As discussed in the previous selection, this approach 

achieves structure versioning using unversioned links. Essentially, this approach stores separate revisions 

of links without explicitly recording their predecessor and successor relationships. Instead, the predecessor 

and successor relationships for the links are implicitly recorded by the structure container’s revision 

history, since the unversioned links are contained by the structure container. As a result, each revision of 

the structure container records a specific revision of the link structure. This approach has the drawback that 

it is not possible to efficiently evaluate revision selection rules across the revisions of a specific link. This 

approach is used by both HyperPro [141] and HyperProp [178,179], because they focus on recording the 

history of link structure, not individual links. 
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The symbolic rendition completion criteria is met, since each revision of the structure container holds a 

versioned object for each work, a revision selection rule that selects the revision to display, and all links. 

Thus, for each work, all information is present that is needed to create a symbolic rendition. The link 

traversal criteria is also met, since the link endpoints, work versioned objects, are also present in each 

revision of the structure collection, and the revision selection rule chooses the specific work revision for 

each endpoint. 

Variants of this unversioned link approach are possible, but have not been explored in the existing 

literature. For works, it is possible that within-object versioning could be used, since the structure container 

holds the versioned object, and its permits efficient evaluation of revision selection rules. Use of the 

predecessor and successor relationships approach for versioning works is not compatible, since links 

require efficient evaluation of revision selection rules. 

There is really only one place where the revision selection rule can be stored, and that is the structure 

container. The link cannot store the rule, since that would entail creating a new link for every revision of 

the structure container in order to preserve its selected revision at the time the container was frozen. If the 

work versioned objects store the rule, it is impossible to freeze the rule when a new structure container 

revision is made, since a new revision of the structure container does not imply a new revision of its 

contained versioned objects, since they are unversioned. 
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Figure 26 – Containment diagram showing versioned structure using unversioned links, and a revision 
selection rule on each structure collection revision. 

8.5.2.2 Versioned Structure with Unversioned Links Employing Indirect Referential Containment 

In this example, the following choices were made within the structure versioning design space: 

• Abstractions present: structure collection, works, links. No anchors are present, links join whole 

works. 

• Structure container contains: links (Dl(t) or Pc,l(t) ), work revisions (Vn by revision selection on   

V-Ow) 

• Versioning design space choices: 

o Structure containers are versioned, using versioned object approach 

o Links are unversioned 

o Works are versioned, using versioned object approach 

• Containment design choices: 

o Structure container ! link: referential, multiple containment, single membership, 

unordered, containment relationship on structure container 
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o Structure container ! work revision: dynamic, referential, multiple containment, single 

membership, unordered, containment relationship on structure container, dynamic 

containment via revision selection rule over work versioned object. 

o Link ! work revision: indirect referential containment, selects containee of a structure 

container ! work revision containment arc 

• Revision selection rule: stored on structure container ! work revision containment relationship, 

provides selection of specific work revision from work versioned object (Vn from V-Ow) 

Figure 27 shows a containment diagram for these structure versioning design choices. In contrast to the 

previous example, here the structure collection contains work revisions, instead of the work versioned 

object. The link’s containment is also different, employing indirect referential containment instead of 

containing the work versioned object. While this configuration has never been implemented in a hypertext 

versioning system, it would be expected to have the benefit of flexible revision selection, since each 

containment arc between structure container and work revision can have a separate selection rule. The 

inefficiency of evaluating a selection rule for each containment arc is mitigated somewhat by the link’s 

reuse of the selection for its endpoints. 

Figure 28 shows an example of this structure versioning approach. A structure container, C, 

referentially contains one revision from work versioned objects A and B. Revision selection rules on the 

individual containment relationships choose which revision is selected. The endpoints of link l  are the 

same revisions, due to the link’s use of indirect referential containment. Since the revision selection rules 

are part of the containment relationship, which is part of the state of the container, they are versioned along 

with the container. Hence the revisions selected by the link can change over time, without leading to link 

proliferation. 
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Figure 27 – Containment diagram showing versioned structure using unversioned links that employ 
indirect referential containment for their endpoints.  
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Figure 28 – Two revisions of structure container C, each containing an unversioned link, l, and two 
contained work revisions, one each from versioned object A and B, selected by the revision selection rule 
on the containment arc. The endpoints of the link are the same revisions, since the link uses indirect 
referential containment. 

8.5.2.3 Versioned Structure with Versioned Links 

In this example, the following choices were made within the structure versioning design space: 

• Abstractions present: structure collection, works, links. No anchors are present, links join whole 

works. 

• Structure container contains: link revisions (Vl,n), work revisions (Vn) 

• Versioning design space choices: 

o Structure containers, links, and works are versioned, using versioned object approach 

• Containment design choices: 

o Structure container ! link revision, work revision: dynamic, referential, multiple 

containment, single membership, unordered, containment relationship on structure 

container, dynamic containment via revision selection rule over link and work versioned 

objects. 

o Link ! work revision: dynamic, referential, multiple containment, single membership, 

ordered, containment relationship on link (container), dynamic containment via revision 

selection rule over work versioned object. 
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• Revision selection rule: stored on containment arc between structure container and its containees, 

providing selection of link revisions from link versioned objects (Vl,n from V-Ol ) and selection of 

specific work revisions from work versioned objects (Vn from V-Ow). 

Figure 29 shows the containment diagram for these structure versioning design choices. The 

distinguishing element of this example is its use of versioned links, and the use of revision selection rules 

on all containment arcs of the structure collection revisions, and link revisions. An example instance of this 

structure versioning approach is shown in Figure 30. In essence, this is the structure versioning approach 

used by CoVer [87,88], and VerSE [91]. 

While the placement of revision selection rules on containment arcs yields excellent revision selection 

flexibility, it also has two drawbacks. First, evaluation of individual revision selection rules is less efficient 

than evaluation of one rule for all containment arcs. Second, it increases the work that must be performed 

to ensure the structure container holds a consistent hypertext. In Figure 30, consider if RSR3 were changed 

to be “latest, time ≤ t2” and hence l ,2 selected A,3 instead of A,2. A link traversal across l ,2 starting from 

its other endpoint, B,2, would result in the display of A,3 even though the structure container current holds 

A,2. A user would perceive this as inconsistent. 
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Figure 29 – Containment diagram showing versioned structure using versioned links. Structure containers 
and links use containment where the revision selection rule is on the containment arc. 
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Figure 30 – An example of structure versioning using versioned links. The structure container, C, contains 
one revision from versioned objects A and B, and one link revision from versioned link l. Each containment 
arc has its own revision selection rule. 
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8.5.3 Linking to a Specific Revision 

To allow linking to a specific revision of an object, somehow the link endpoint must identify an 

explicit revision. This can be accomplished by ensuring the object identifiers within a link endpoint are 

capable of identifying a specific revision. Alternately, the containment relationship between a link and its 

endpoint objects can be governed by a revision selection rule, as was shown in the previous section. 

When the endpoint identifiers explicitly identify a revision, there are two ways to accomplish this goal. 

In the first, the identifier itself has the capability of identifying a specific revision. For example, object 

references in CoVer [88] are (object identifier, version identifier) pairs. Neptune [46] is similar, dividing its 

identifiers into (global identifier, instance identifier) pairs, with the instance identifier providing the ability 

to reference a specific revision. 

However, in some cases a legacy identifier space exists that is versioning unaware, and cannot be 

changed to add version identifiers. Such is the case with URLs on the World Wide Web. In this case, to 

ensure a link can be made to every revision, each one needs to be given one of the versioning unaware 

identifiers. This is the solution adopted by the DeltaV protocol, where “repository” URLs are created for 

each revision. While the exact details will vary across server implementations, the repository URLs will 

either be found in a separate part of the URL namespace from where the authorable resources are located, 

or will be additional parameters added to the authorable URL. For example, if a Web resource is available 

at URL http://www.server.org/documents/report.html, then its revisions may either be given URLs such as 

http://www.server.org/repository/obj5432.r1 and http://www.server.org/repository/obj5432.r2 representing 

that the revisions are in a repository controlled part of the namespace, or they can have URLs such as 

http://www.server.org/documents/report.html;rev=1 and 

http://www.server.org/documents/report.html;rev=2 where the revision identification information is added 

as a parameter at the end of the URL. Some existing Web versioning schemes use the parameter add-on 

method [46,173,150], and, since they do not need to handle versioning of collections, they avoid this 

scheme’s drawback: identifying the revision of parent collection versions. This is difficult because the 

parameter at the end of the URL only modifies the leaf nodes, not parent collections. 



  156 

8.6 Variant Support 

As discussed in Section 2.3.2, variants express differences among a class of objects that are similar 

with respect to a given abstraction. Due to this difference in the face of similarity, it often occurs that 

variants share content. For any data object, there are two important classes of variants, those that share 

content, and those that do not. In software development, it is common for variants of a module to share 

significant portions of code, while natural language translations of a document typically share negligible 

content. For variants that share content, the major challenge for representing variants is how to express the 

separateness of each variant, while holding onto the common content. Stated more concisely by Mahler, the 

goal is, “keeping things together and telling them apart” [123]. 

The multiple maintenance problem highlights the importance of tracking commonality across variants 

[123]. When each variant is kept in an individual object, it is easy to tell the variants apart. But, if a 

subsequent change needs to be applied to multiple variants, the same change needs to be applied to multiple 

objects. This is tedious and, when performed manually, error-prone work. However, if the common parts of 

the variants are tracked, then making the same change across all instances involves only one modification.  

Techniques for representing variants can be divided into those that represent variation for individual 

objects and for compound objects, discussed in turn below. 

8.6.1 Individual Object Variation 

There are two approaches for representing individual object variants, variant segregation and within-

object variants [123]. In variant segregation, a separate instance of the object is created for each variant. 

This approach requires no knowledge of the internal structure of the variant objects, and hence a single 

mechanism can apply to any kind of content. Each variant is also completely isolated from other variants, 

and a change to one variant does not affect others. But, this same advantage is also a drawback, since 

variant segregation is susceptible to the multiple maintenance problem. In fact the multiple maintenance 

problem is an inevitable consequence of treating the internal object structure as a black box, since it implies 

that meaningful change tracking, and hence within-object commonality tracking, is impossible. Another 

drawback is the combinatorial expansion of variants with each additional axis of variability, with its 
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concomitant increase in storage use. Due to its drawbacks, variant segregation is best used either when 

variants have negligible common content, or when the internal object structure is unknown.  

One way to represent segregated variants is to represent an abstract object with a collection of variants. 

The revisions of each variant are then represented using either a versioned object, or within-object 

versioning, techniques described in Section 8.2.1. This provides good isolation of variants, and flexibility in 

how the revisions are represented, but has the drawback of requiring more objects, and more storage space. 

The CoVer system [87,88] places all object revisions and variants within a mob, a multi-state object. Each 

revision or variant of the object has a series of attribute-value pairs defined on it. Users in CoVer work 

within container objects called tasks, and objects are contained using referential containment where each 

containment relationship has an associated query that selects objects from the mob based on their attribute 

values. When used for revision selection, this query typically returns just a single object, but when arbitrary 

attribute queries are made, multiple objects can be returned, and these variant objects are all included in the 

task. 

Another approach is to use links with a type of “is-variant-of” to reflect that one object is a variant of 

another. This can be viewed as using links instead of a container object to represent the collection of 

variants. Like the container approach, using links has good isolation and revision representation flexibility, 

but requires many objects and has poor storage. A commonly used scheme is to represent each variant as a 

branch of a revision history graph. Storage is very compact, since commonality across revisions and 

variants can be exploited in delta storage compression. However, since parallel development is also 

typically represented using branches of a revision history graph, it can be difficult to distinguish between a 

permanent variant and a pre-merge parallel development branch. Of course, all techniques that store each 

variant in a separate object are susceptible to the multiple maintenance problem. 

Within-object variation represents all object variants within a single source object. Within the object, 

content chunks are tagged as belonging to a specific variant, with common content having no variant-

specific tags. This is known as the fragments-and-attributes organization [123]. Using the tag values, it is 

possible for a program to extract a specific variant from the multi-variant object. This scheme avoids all of 

the drawbacks of variant segregation. The multiple maintenance problem is avoided, since common content 

can be edited in one place, and only one compact object is needed to represent the variants, since the 
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combinatorial expansion is represented internally within the object. However, there are some drawbacks to 

within-object variants. One common example of within-object variation is C language preprocessor 

instructions. However, once there are more than a few C preprocessor instructions in a source code file, 

editing the source code with a preprocessor-unaware text editor can be confusing due to the obfuscation 

introduced by the preprocessor instructions. As the amount of variance increases, the source file can 

become incomprehensible, and unmaintainable. Another drawback is the difficulty of tracking changes to a 

specific variant. When the variant object has its revisions tracked using either the versioned objects or 

predecessor/successor relationships only approaches (described in Section 8.2.1) a change to a single 

variant is recorded as a change to the entire object, thus losing which specific variant was altered [123]. 

Finally, within-object variants requires not just knowledge, but design control over the internal structure of 

the contents, and hence would be challenging to use with preexisting content formats.  

In the fragments-and-attributes organization of within-object variants, the use of arbitrary attributes 

provides the greatest flexibility for identifying the variant to which a content chunk belongs, since each axis 

of variability can be associated with an individual attribute. The P-Edit [111] and MVPE [166] systems 

support setting and retrieving of arbitrary attributes, and the C preprocessor can be viewed as supporting 

arbitrary attributes as well, since the number of possible symbol values in unconstrained. Delta [37] 

provides a more limited capability of setting a version string that associates a description of a volume 

within variant space with a content chunk. This approach is susceptible to long string lengths as the number 

of axes of variability increases, and it also depends on standard string values for representing points in 

variant space. 

Revisions can be viewed as variants along the time and branch axes of variability. Thus, it is not 

surprising to see symmetry between variant segregation and representing a revision as a separate object, 

and between within-object variants and within-object versions. Variant segregation represents a variant as 

an individual object, just as the versioned object and predecessor/successor relationships only approaches 

do for revisions. Both with-object variants and versions exploit control over the internal structure of the 

object to represent either multiple variants, or multiple revisions within one object. Broadly, within-object 

variant and versioning share the same approach, dividing the content into attributed sections that are 

reconstituted using some extraction process. Within-object versioning systems tend to limit the settable 
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attributes to just those necessary for recording revisions, while within-object variant systems leave the 

possible range of attributes unconstrained. Thus, within-object versioning systems can be viewed as a 

subset of within-object variant systems with attributes limited to those necessary for recording revisions, 

such as person making the change, time of change, and revision identifier. 

8.6.2 Compound Object Variation 

Compound objects, those that contain other objects using some form of referential containment, 

provide additional challenges to manage their variation. In software development, one compound object of 

interest is an entire software system, or subsystem, while for document management a book is another 

example. Compound object variation encompasses not only collecting together individual object variants, 

but also the changing structure of the compound object from variant to variant. The objects and links 

contained within a compound object can change across variants. 

Within the hypertext versioning literature, compound object variation has not been addressed. While 

the CoVer [87,88] and Hypermedia Version Control Framework [100] have sufficient expressive power to 

model compound object variation, the literature on these systems does not describe any effort to do so, 

coming closest in the parallel development of tasks in CoVer. As a result, compound object variation for 

hypertext networks remains an open area of research. 

Software configuration management systems have explored this area more thoroughly, using the 

following approaches. 

• Containers. Individual variants for each object in a compound object are selected, and contained 

referentially within a container. This container then represents a distinct variant of the entire 

compound object. This approach was used by the Gandalf project [132], where a collection 

gathered all of the variants of a specific software project. This collection, known as a variant, was 

then subject to version control. This approach is described as “inverted” since variant selection is 

performed first, before revision control takes place. The composite-based hypertext versioning 

systems CoVer and the Hypermedia Version Control Framework, since they support complex 

queries on containment relationships, could potentially use this approach to handle compound 

object variation without any further modification to the system. 
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• Change-based. Change-oriented systems like PIE [80] and EPOS [119] provide good support for 

compound object variation. These systems employ first-class logical change objects that span 

multiple objects. In the case of PIE, these change objects are called layers, which are gathered 

together into contexts. Typically, layers are used to represent changes to the compound object, 

while a context represents an entire variant, although the distinction here is slippery, and a layer 

can be used to represent a variant as well.  In EPOS, changes are attributed with the space of 

variance they represent, and changes can be combined using predicates over these attributes. 

• System model. In software development, where the compound objects represent software 

systems, a single object, called a system model, can be made that describes the composition of the 

entire system. In this case, different system variants can be represented using different system 

model objects [123]. 

All of these techniques could potentially be applied in the domain of hypertext versioning systems, and 

exploration of each in this context remains an area for future research.  

8.7 Collaboration Support 

Almost all hypertext versioning systems, as well as document management, and configuration 

management systems, are designed to support group collaborative work. Collaboration can be loosely 

grouped into asynchronous and synchronous collaboration. Asynchronous collaboration typically involves 

collaborators working at different times, though it may occur at the same time, group calendars being an 

example.  In contrast, synchronous collaboration involves collaborators working closely together in a 

tightly coupled, same-time session, exemplified by chat, and WYSIWIS (what you see is what I see) 

editors. Edwards additionally distinguishes autonomous collaboration, in which collaborators initially work 

independently on a shared artifact, but then come together for a period of more intense, tightly coupled 

work to integrate work done by individual collaborators. This type of work frequently occurs in multi-

author paper writing without computer collaborative authoring tool support [57]. SEPIA seems well suited 

to support autonomous collaboration, since it supports smooth transitions from loosely coupled to tightly 

coupled collaboration [93]. 
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For hypertext versioning systems, there are issues of collaboration-in-the-small, that is collaboration 

issues affecting just a single object, and collaboration-in-the-large, collaboration issues that span multiple 

objects. In the sections below, concurrency control techniques are discussed for handling collaboration-in-

the-small, with larger scale collaboration is addressed with sections on workspaces, and merging of 

hypertext networks.  

At its most general, collaboration support goes beyond the data management issues discussed in this 

section, and encompasses many user interface concerns. Conveying awareness of the state and activities of 

a collaborative group is a significant help in giving individuals the information they need to determine their 

next action. Awareness ensures that actions are relevant to the group’s activity, and can be evaluated with 

respect to group goals and progress [53]. But, since little user interface work has been reported for 

hypertext versioning systems (notable exceptions being CoVer [87] and VerSE [91]), no clear design 

recommendations can be made here. This is certainly a topic for future research. 

8.7.1 Concurrency Control 

Concurrency control is one major aspect of collaboration support. When multiple people are working 

on the same object or link at the same time, concurrency control mechanisms act to ensure that each 

contributor’s changes are not inadvertently lost. Concurrency control techniques can be evaluated using the 

following qualities: availability, transparency, consistency, responsiveness, and genericity. Availability 

concerns the ability to access an object for editing, and concurrency control schemes that limit access 

reduce availability. Transparency is an indication of the user visibility of the concurrency control 

mechanism. If a user is unaware a concurrency control mechanism is operating, it is considered to be 

wholly transparent. Consistency concerns the degree to which all collaborators share the same view of the 

object, with identical views being the most consistent. Responsiveness is the degree to which concurrency 

control affects the interactivity of the system’s user interface [52]. Lastly, genericity is an indication of 

whether the technique is specific to only one, or certain kinds of objects, or whether it can be applied across 

all object types equally. 

Existing concurrency control techniques provide various tradeoffs among these characteristics. Whole 

object exclusive locking (e.g., as used in WebDAV [201]) is a technique common to version control, and 
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exhibits extremes of many characteristics. Once an object is exclusively locked, only the owner of the lock 

can write to the object, thus providing no availability for other collaborators. Locking is relatively non-

transparent, since collaborators need knowledge about who currently controls the lock. However, locking 

provides a high degree of consistency, since only one collaborator has write access at any one time. 

Locking typically occurs before the object is displayed for editing, and hence is very responsive, and 

locking is also very generic, since it requires no knowledge of the object’s internals, and hence can be 

applied equally to all kinds of objects.  

Most concurrency control techniques provide greater availability than exclusive locking, and can 

support multiple collaborators working on the same object at the same time. During collaboration, each 

person works on his individual copy of the object. Until one collaborator’s changes have propagated to all 

others working on the same object, these changes create a variant of the object. Concurrency control thus 

can be viewed as a mechanism for managing variants, where the axis of variability is the collaborator, the 

person making the changes. Unlike the variants discussed in Section 8.6, there is an expectation that 

collaborator variants will eventually be reconciled to produce a view of the object that combines the 

modifications of one or more collaborators.  

A differentiator among concurrency control techniques is the typical length of time between the editing 

action that creates a variant, and the reconciliation of that change with all other collaborators, a time period 

Dourish terms the period of synchronization [52]. Roughly, techniques can be divided into “short”, 

“medium” and “long” synchronization periods. On the short side are operational transformation algorithms, 

such as dOPT (used in GROVE) [58], that emit event messages to all other active collaborators very soon 

(typically less than a second) after an individual operation is performed. In this case, each operation creates 

an ephemeral variant that exists for a very short time before all other collaborators have a similar view of 

the object. Other concurrency control techniques maintain temporary variants that last a short time, on the 

order of minutes to hours, though sometimes as long as days. Duplex [144] and Alliance [165] both 

decompose an object into sub-parts, and then replicate those parts to each collaborator. Changes to parts 

may stay in a local replica for some time before they are communicated to other collaborators. Finally, 

techniques such as using branches in a version graph to represent parallel work explicitly represent each 

collaborator’s work in a distinct persistent object that exists in perpetuity, creating a permanent variant. 
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Adopting the period of synchronization as the primary means of organizing concurrency control 

mechanisms (per-collaborator variant mechanisms) yields the following taxonomy: 

No variants. Whole-object exclusive locking ensures that only one person has access to the object, and 

hence prevents per-collaborator variants [203]. Feiler notes that locking is the typical concurrency control 

technique for version control systems employing the checkout/checkin model [65], examples including the 

locking in SCCS [163] and RCS [185]. For a linear version history, locking typically implies that only one 

person may work on the graph at a time, though if revisions are mutable, it is meaningful to permit per-

revision locking.  

Ephemeral variants. As discussed above, operational transformation algorithms, such as dOPT, 

adOPTed [160], and GOT [183], are a concurrency control technique that uses ephemeral variants. 

Operational transformation distributes state replicas to all collaborators, and then sends real-time update 

messages from a changed replica to all others, thus making this technique suitable for synchronous 

authoring. Operational transformation algorithms provide high availability, since all collaborators can work 

simultaneously. They are reasonably transparent, although collaborators working in the same section will 

notice the contents changing due to edits by other collaborators. The algorithms have also been designed 

for a high degree of consistency. Their drawback is a lack of genericity, as the update events are dependent 

on content type.  Most operational transform algorithms have been designed for synchronous text editing, 

and need extensions to handle other content, such as spreadsheets [145]. 

Temporary variants. Sub-object replication algorithms produce temporary variants. This can be viewed 

as a form of within-object variation, but at a very coarse grain size. Whereas most within-object variant 

schemes record variability in text objects at either a character or line level, sub-object replication divides an 

object into a small number of chunks, with each chunk containing a significant percentage of the object’s 

state. Once divided, the chunks are replicated to each user’s work site, increasing responsiveness.  

Two choices present themselves for managing access to chunks, exclusive access, or unmoderated 

access. Alliance is an example of exclusive access, with each chunk having a writeable master copy at one 

collaborator site, with only read-only chunk replicas at other sites [165]. When a collaborator wants to 

work on a chunk, they petition to make that chunk the master at their site, which is successful if no one else 

is currently working on it.  
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MESSIE is another system that creates temporary variants with exclusive access [167]. Documents in 

MESSIE are subdivided into chunks, each chunk stored in a separate file. A master copy of each chunk is 

located at a central point. All access to document chunks in MESSIE is performed via email, which the 

MESSIE system scans for commands to checkout and checkin document chunks. Document chunks are 

locked while they are checked out, though read-only copies can be retrieved. Locks automatically time out 

after 48 hours. 

As another example, Duplex can provide both exclusive access and unmoderated access [144]. In 

unmoderated access, overwrite conflicts can potentially occur, however, the expectation is that these 

conflicts will be discussed using the bulletin board feature which allows messages to be associated with the 

object being edited. A journal is also maintained for each object, recording modification operations to it 

during its lifetime, and this can help collaborators reconcile their local updates with the central object. 

Duplex also provides the unusual capability of having the access type vary from chunk to chunk within a 

subdivided object. 

Sub-object replication with exclusive access provides moderate availability. When collaboration tasks 

have been divided well, and authors do not need write access to other sections, availability is high. But, 

when collaborators need frequent access to all parts of the document, the fact that other collaborators may 

have a chunk locked reduces availability. Transparency is medium, since collaborators need to know when 

a chunk is in use. Consistency is high, since only one person may modify a chunk at a time. 

Responsiveness is good when network connections are up, but if a network connection goes down, users 

will be subjected to network timeouts, and a loss of availability. Genericity is fairly low, since the 

technique depends on knowledge of the internal structure of the object to perform the decomposition, and 

the object must be capable of decomposition. When sub-object replication is used with unmoderated 

access, availability is increased, since any section can be worked on at any time, but at the expense of 

consistency, which is reduced due to the possibility of overwrite conflicts. 

Sub-object locking is another concurrency control technique that produces temporary variants, each 

variant held in the memory of the authoring tool until changes have been written to the partially locked 

master copy [203]. Its characteristics are similar to those of sub-object replication with exclusive access, 

providing moderate availability, medium transparency, high consistency, and low genericity. Sub-object 
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locking can be viewed as being similar to sub-object replication with exclusive access, except that 

replication is handled by the individual applications when they copy the centrally stored object into 

memory, instead of the object store performing the replication service. 

Permanent variants. Concurrency control mechanisms that employ permanent variants can be divided 

into those that employ variant segregation, placing each variant in a separate object, and those that employ 

within-object variation, storing all variants within the object itself. 

Permanent variants using variant segregation. Just as branches of a version history are used to 

represent other kinds of variants, so too are they used to represent collaborator-specific variation. In the 

branching scheme, when multiple people are working on a versioned object, a checkout creates a new 

branch for each collaborator, and does not lock the version history. Each branch thus represents the changes 

made by a specific person, and the act of simultaneous work has traditionally been called parallel 

development. Since changes are stored as revisions, the variants are persistently recorded. Once 

collaborators have finished working in isolation, they combine their changes together using a merge tool to 

create a new revision. Many state-based version control systems employ this approach, Continuus being 

one example [36]. Composite-based hypertext versioning systems frequently use this technique for 

representing the changes made to an object that is held within a workspace container. The workspace 

contains multiple objects, and is associated with a specific collaborator. For each object a person has 

modified, the workspace contains a revision from the branch holding his current work. HyperPro [141], 

HyperProp [178], CoVer [89], and VerSE [91] all use this approach, and the facilities of the Hypermedia 

Version Control Framework [100] can be used to implement this scheme, as well as whole-object exclusive 

locking. 

The concurrency control provided by CVS can be viewed as a type of branching scheme [20]. CVS 

stores the per-user variants within each user’s working area, as opposed to the branching schemes above 

where the variants are stored within the version history. CVS can operate in either local mode, where the 

variants are located in a user-specific portion of a shared filesystem, or in remote mode, where the variants 

are retrieved from a central repository and stored on the user’s local filesystem. Upon checkin, changes in 

the user’s local workspace are merged with the current revision in the CVS repository. 
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Using branches to represent collaborator-specific variation provides high availability and consistency, 

with low transparency, since collaborators must explicitly check out an object, thereby gaining exclusive 

access to it. Responsiveness is high, since there are no other accesses that would diminish it. Genericity is 

also high, since no knowledge of internal object structure is needed to create a whole-object variant.  

Permanent variants using within-object variation. Variant representation techniques that store all 

variants of an object within the object itself can represent the per-collaborator variants that emerge during 

simultaneous work. As described in Section 8.6.1, within-object variants employ a fragments-and-attributes 

organization, subdividing the object into fine-grain units, each of which has associated attributes that 

identify points along axes of variation. Often, these systems have a predefined axis of variation that is the 

person who made the change. VTML [194] and Palimpsest [56] are two data formats that can represent 

fine-grain changes and associate them with an individual person, although they are not very flexible for 

representing other types of variants. 

The fragments-and-attributes technique provides excellent availability, since all collaborators can have 

access to the object at the same time, and their modifications are stored when they are made. Transparency 

is high during editing, since there is never a time when the object cannot be edited, but is low when 

merging together the work of several collaborators, since each collaborator’s changes must be made visible 

during this operation. Consistency is high, since all changes by all collaborators are stored within the 

object, and hence are never lost. Responsiveness is high, since changes can efficiently be added to the 

object. Genericity is low, since the internal structure of the object must be modified to accommodate 

storage of within-object variants. 
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Period of 
synchronization 

Mechanism Advantages & 
Disadvantages 

Example Systems 

No variants Whole object exclusive 
locking 

Availability: none 
Transparency: low 
Consistency: high 
Responsiveness: high 
Genericity: high 

SCCS [163], RCS [185], 
WebDAV [79], 
HyperWave [107], 
DistEdit [109] 

Ephemeral Operational 
Transformation 

Availability: high 
Transparency: medium 
Consistency: high 
Responsiveness: high 
Genericity: low 

dOPT/GROVE [58], 
adOPTed [160], 
GOT/REDUCE [183], 
shared sc [145] 

Sub-object replication 
(exclusive access to 
chunks) 

Availability: moderate 
Transparency: medium 
Consistency: high 
Responsiveness: medium 
Genericity: low 

Alliance [165], Duplex 
[144], MESSIE [167] 

Sub-object replication 
(unmoderated access to 
chunks) 

Availability: high 
Transparency: medium 
Consistency: medium 
Responsiveness: medium 
Genericity: low 

Duplex [144] 

Temporary 

Sub-object locking Availability: high 
Transparency: medium 
Consistency: high 
Responsiveness: medium 
Genericity: low 

Discussed in [203] 

Variant Segregation 
Branch of version history 

Availability: high 
Transparency: low 
Consistency: high 
Responsiveness: high 
Genericity: high 

HyperPro [141], 
HyperProp [178], 
CoVer [89], VerSE [91], 
Continuus [36], CVS 
[20], DeltaV [199] 

Permanent 

Within-object variation 
Fragments-and-attributes 

Availability: high 
Transparency: high 
(editing), low (merging) 
Consistency: high 
Responsiveness: high 
Genericity: low 

VTML [194], 
Palimpsest [56] 

Table 8 – Concurrency control techniques organized by how long they maintain variants created by 
individual authors. 

8.7.2 Workspaces 

Workspaces provide three main benefits: a view of a shared hypertext network (or of a collection of 

objects) that is specific to a particular person, work isolation from other collaborators, and the ability to 

work in parallel on objects in the workspace. These are identified as sharing, isolation, and collaboration 

by Estublier [61].  

In essence, a workspace is a container object that holds the objects comprising a hypertext network. 

One workspace is assigned to each collaborator, and frequently one or more additional workspaces act as a 
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shared space where completed objects are kept. Examples of these per collaborator workspaces, and a 

shared workspace are both shown in the scenarios in Section 6.3. Object sharing is accomplished by using 

referential containment to multiply contain objects from the pool of objects managed by the repository, the 

approach adopted by CoVer [87], HyperPro [141], and HyperProp [179], or by making one copy of each 

object per workspace, the approach used by Neptune [46]. Isolation is achieved by ensuring that 

modifications to the shared objects are only visible to the person making the change, until he decides to 

share these changes with other collaborators. To ensure work isolation in the case of workspaces using 

multiple containment, work isolation requires that an object be replaced with a copy if it is to be modified. 

Work isolation is achieved automatically when sharing is achieved with object copies. 

Composite-based hypertext versioning systems all use addresses to identify their objects, and hence 

avoid namespace issues when achieving work isolation. When a hierarchical namespace is used to identify 

objects, such as pathnames in a filesystem, work isolation additionally requires that each workspace be 

mapped to a different location in the namespace. Typically this is accomplished by re-rooting the 

namespace tree rooted at the workspace’s top collection. For example, if the object tree originally begins at 

“/home/projectX/…” then one potential namespace mapping of the workspace for each collaborator would 

be “/home/{collaborator}/workspaces/projectX/…” 

Achieving collaboration within workspaces involves application of the concurrency control design 

space, given in Section 8.7.1. While workspaces can be used with any concurrency control mechanism, 

they make the most sense when used with permanent variant schemes. Temporary and ephemeral variant 

mechanisms, such as operational transformations, and sub-document replication, do not require or 

encourage work isolation among collaborators. Instead, they make it possible to have multiple people work 

together on the same object. Thus, when concurrency control produces only temporary and ephemeral 

variants, all workspaces would tend to share the same objects. This eliminates the need for using 

workspaces to ensure work isolation. But, container/workspaces are also used to represent a sub-section of 

a larger hypertext structure, as well as a consistent time slice through that sub-part, thus highlighting the 

utility of containers even if they are not used for work isolation. 

Using a branch of the version history to handle concurrency control is the mechanism employed by 

most composite-based hypertext versioning systems. Since these systems provide versioning services for a 
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wide range of object types, this limits them to concurrency control with high genericity. Only whole-

resource exclusive locking and version history branching satisfy this constraint. Since locking does not 

represent any per-collaborator variation, only branching satisfies the needs of composite-based hypertext 

versioning systems. To date, no composite-based hypertext versioning systems have used ephemeral or 

temporary variants (with the possible exception of CoVer [87], which, since it is based on SEPIA [93], 

might provide both loose and tight collaboration during cooperative editing). Despite the loss of genericity, 

it would be worthwhile to explore the use of temporary and ephemeral variants in composite-based 

hypertext versioning systems, since this would a better separation of concerns, separating work isolation 

from partitioning the hypertext and providing a consistent time-slice. 

8.7.3 Merging Hypertext Networks 

When containers are used in conjunction with a concurrency control scheme that employs permanent 

variants, individual collaborators work in isolation until they need to produce a single, coherent view of 

their work, typically for external consumption. In composite-based hypertext versioning systems, 

collaborators work in isolation on containers that hold hypertext networks until they need to produce a 

coherent merged hypertext network. The scenarios in Section 6.3 show an example of the merging of 

hypertext networks taking place between time t5 and t6. 

Despite the importance of this activity, very little research has been performed in this area, making it 

difficult to give general design guidance. Exceptions to this rule are the preliminary work by Haake, Haake, 

and Hicks [90] that directly addresses the issue of merging hypertext networks, and the discussion by 

Delisle and Schwartz on the semantics of context merging in the Neptune system [46].  Merge support is 

required both for the contents of individual objects, and for the entire structure. Merge support for text 

objects is a staple feature of configuration management systems, and merge support for non-textual objects 

has also been explored, but not to the same depth, one example being Timewarp [57]. 

Project merge support in configuration management tools can be used as a starting point for 

investigation of hypertext network merges. The Project Revision Control System (PRCS) provides a merge 

tool that handles both within-file content differences as well as whole-file differences, such as a file added, 

deleted, or renamed in project revisions [121]. Adele provides similar merge support, centered on 
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workspaces [61]. The merge algorithms employed by these tools can be used as a starting point for 

handling merging of objects and links. However, since links contain multiple objects, once objects have 

been merged, an additional consistency maintenance step must be performed to ensure that operations on 

individual objects and links do not cause dangling, or otherwise broken links. 

In their exploratory work on hypertext network merging, Haake, Haake, and Hicks consider three 

different merge tools for the CoVer system, called the list-merger, the graph-unification-merger, and the 

graph comparison merger [90]. CoVer uses an all-attributes organization for data, and every object and 

composite contains a set of attributes that hold its state, including the “content” attribute. For composites, 

the content attribute holds a list of the objects, links, and other composites it contains. The columnated lists 

inherent to Smalltalk systems (other examples in the hypertext world include PIE [80] and Neptune) inspire 

the layout of the list-merger, which contains columns for selecting the object to be merged, the attribute to 

examine, one column for the attribute value in each of the predecessor revisions, and one last column for 

the final, merged value of the attribute. Above the columnar list is a graphical depiction of the version 

history for the object. Structure merging is possible using the list-merger by performing a merge on the 

content attribute of a composite. However, this does not provide a good visualization of the two structures 

being merged, or of the merged structure, and this motivates the next two merge tools. 

The graph-unification-merger provides a graphical display of the union of two hypertext networks 

being merged. If multiple revisions for the same object occur due to the union operation, they are displayed 

in one of two ways. In the first visualization, alternate revisions are piled on top of each other, slightly 

offset, like playing cards. The second visualization uses a single screen object with tabs on its bottom, one 

tab for each alternate revision. Either by selecting one of the piled revisions, or one of the tabs, just one of 

the alternates is selected to participate in the final merged network.  

The graph-comparison-merger also has two alternate visualizations. In the first, there are three 

windows, one each for the two revisions being merged, and the third showing the merged network. The 

second visualization uses overlays, with varying gray scales representing the initial versions and the 

merged version. 

Unfortunately, these merge tools were not implemented, and no use experience was ever collected. 

Given the importance of the merge activity for supporting collaborative work in composite-based hypertext 
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systems, it is important that future research be performed to flesh out the design parameters for hypertext 

network merging. 

8.8 Navigation in the Versioned Space 

Due to the emphasis of the hypertext versioning literature on data modeling issues, there has been very 

little research that focuses on the user experience while performing hypertext navigation in a space of 

versioned works, anchors, and links. As a consequence, there is a minimal experience base that can be used 

to provide design guidance for meeting the requirement for versioned hypertext navigation. 

A starting point for consideration of this issue is recognition that there are two notions of time at play 

within a versioned hypertext, that of wall clock time, time that is read from a clock, and revision time, the 

sequence of revisions of an artifact. Consider a linear revision history of 3 revisions. When visually 

depicted, this revision history will typically use the same amount of screen space to show the revisions 

whether they were made over a span of 5 minutes, or 5 months. By contrast, a depiction that emphasized 

wall time would space the revisions proportional to elapsed time, and hence revisions 5 minutes apart 

would be shown much closer than revisions 5 months apart. This difference in depiction highlights that the 

increments of revision time are saved discrete states, not the minutes and hours of wall time. 

Navigation in both times can be supported. The work by Feise on a prototype Web “way-back” 

machine focuses on wall time navigation [66].  The user of a way-back machine enters a date and time, 

such as “July 25, 1998, 11AM”, and then navigates through the Web as it was at that moment. Ideally, the 

user interface constantly displays the current navigation time, so someone returning to a browser after a 

time away will not confuse historical content as current. In contrast, the V-Web system provides a way to 

perform revision time navigation of versioned Web pages [180]. V-Web adds to the top of a Web page a 

frame containing a textual depiction of the page’s revision history, with links off to each revision. 

Navigation in revision time is more typically supported. Composite-based hypertext versioning 

systems use one revision of a composite as the navigation context. Once this context has been set, all 

navigation uses the revisions of the works, anchors, and links within the context. While this provides a 

consistent navigation experience, it does not handle links whose destination is outside the composite. 

Furthermore, it seems reasonable that for each visible symbolic rendition, the user interface should display 
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its point in revision time (i.e., its containing composite’s revision). CoVer [87] and VerSE [91] are the only 

hypertext versioning systems that provide screen shots of their systems, and unfortunately they are unclear 

as to what additional navigation support they provide for versioned hypertexts. It is possible this support 

may not be necessary in practice. Software configuration management systems often make revisions 

available via standard file system interfaces, which, since they do not provide any revision identification 

information for either individual revisions or configuration revisions, make it impossible to provide 

revision time information in the user interfaces of tools, especially editors. Yet, despite the lack of this 

information, people are still able to get their work done. Still, the common technique of embedding a 

system-maintained revision identifier in a comment at the top of a text file suggests that even in software 

configuration management systems, awareness of the current revision time is necessary. 

Though the lack of prior work in this area is a problem for implementers, it is an open field for further 

research. 

8.9 Searching 

The brute-force way to provide search capability across a versioned hypertext repository is to develop 

a search mechanism from scratch, using techniques from the database, or information retrieval community 

(this appears to be the approach used in Neptune/HAM [45]). However, since this is a time-consuming 

approach, systems builders often use a database as an infrastructure component on which they build 

hypertext object management capabilities. This is the approach adopted by CoVer [87], and the 

Hypermedia Version Control Framework [100], among others.  

Web search engines highlight another approach, which is to delegate the search capabilities to an 

external repository. In this scheme, information about works are gathered and replicated in an external 

repository, which is tailored specifically for high-speed searches. This is a valuable approach when the 

works to be searched are spread across multiple distributed repositories that do not communicate with one 

another, and hence are incapable of supporting cross-repository searches. Furthermore, when works are 

distributed, the search must be distributed as well, incurring a performance penalty relative to a centralized 

search. 
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The Document Management Alliance (DMA) 1.0 specification provides another searching architecture 

[50]. In the DMA approach, a middleware layer coordinates a search across multiple document 

management repositories. DMA provides a mechanism for denoting equivalence of metadata items across 

servers, so a query can be processed even when the underlying metadata schemas differ. 

8.10 Visualizing the Versioned Space 

Containers within hypertext versioning systems are the main focus of visualizations. Today, most 

commercial configuration management systems visualize revision histories, and configurations, both 

container objects. However, there are no published surveys of this user interface work, and hence there is 

not much guidance that can be provided for their construction. There are instances of graphical revision 

history trees, with boxes representing revisions, and lines representing predecessor/successor relationships, 

and there are also examples of textual printouts of the same information. For graphical revision history 

trees, graph layout to achieve an aesthetically pleasing display is an engineering challenge. Koike and Chu 

present a 3-D visualization of revision histories and projects in [110], and provide evidence suggesting that 

their visualization allows faster initiation of checkin and checkout operations over the command line. To 

date, there are no published evaluations of  revision history visualizations, and hence no data for basing a 

decision on which kind of interface is better for various tasks and user experience levels. 

Hypertext versioning introduces the new concerns of how to visualize containers that hold both work 

and link revisions, such as composites, and how to visualize versioned links, and collections of links 

(structure containers). Much work has been performed on visualizing unversioned hypertexts; Durand and 

Kahn provide a taxonomy of unversioned hypertext visualization techniques divided into “graph-based 

structures, such as webs, hierarchies, and acyclic graphs; and spatial structures such as neighborhoods and 

abstract metrics” [55], p. 68.  In the hypertext versioning literature, only CoVer [87] and VerSE [91] have 

screen shots of composite visualizations. CoVer and VerSE make use of a number of specific browsers, 

such as the “mob browser” (for revision histories), the composite browser, and the task browser. The 

revision history can be specialized to show the subset of the revision history that appears in a specific 

composite, using a “compound derivation” relationship to represent multiple revisions and 

predecessor/successor relationships (see Figure 2 in [87]). CoVer highlights the utility of multiple views 
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over the same information space. In all of the CoVer and VerSE visualizations, works are represented as 

blocks, and links are lines between the blocks. While the blocks can grow and shrink depending on the 

number of objects on-screen, it is unclear how well their visualizations scale to large numbers of works and 

links. 

Most visualizations of versioned information concentrate on depicting works and 

predecessor/successor relationships. However, other depictions can be quite useful. The WebGuide system 

provides a visualization of the changes in the neighborhood of a Web page using colors and shapes (oval 

vs. rectangle) to represent types of changes in Web pages, and dashes vs. solid lines to represent changed 

and unchanged links (Figure 6 of [51]). SeeSoft visualizes multiple versioned text files by condensing the 

text into a narrow column, and then color-coding the contents according to age, red for newest, blue for 

oldest, with a rainbow scale in-between [13]. 

Despite the scarcity of existing work on visualizing versioned hypertexts, any usable hypertext 

versioning system needs one or more ways of depicting the versioned space. Research on ways of 

visualizing versioned hypertexts, as well as on understanding the tradeoffs between visualization 

techniques, would be a significant help to future systems builders. 

8.11 Traceability 

When works are represented as compound documents, comprised of multiple objects, it is possible for 

a single object to be used in multiple composites. An object could be reused in multiple revisions of the 

same work, or it could appear in a completely different work. In essence, tracing the use of an object across 

multiple compound documents requires answering the question for a given object, “which compound 

documents contain me?” There are several ways to generate an answer. 

If compound documents contain their objects referentially, and all compound documents are within the 

scope of a search facility, a conceptually simple solution to the traceability problem is to perform a search 

across all composites for those that contain a given object. Alternately, if it is possible to store a pointer 

back to a containing compound document every time an object is used, and remove the backpointer when 

the container is destroyed, then use tracing is just an enumeration of the backpointer list. Unfortunately, 

when objects are distributed across multiple trust domains, as is the case on the Web, many of the 
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preconditions for these techniques no longer apply. Distributed objects are probably not all within the scope 

of a search facility, and it is likely that backpointers cannot reliably be stored, and backpointer maintenance 

cannot always be performed, due to the possibility of network outages, or lack of access rights. 

Solutions to the distributed traceability problem will likely always be approximations. Searching for 

compound documents that use an object can still be performed using a technique similar to those employed 

by Web search-engines, where a large centralized search facility continually polls all reachable content to 

construct a model of the current state of the hypertext. However, this technique usually does not reach all 

readable content, and the central model is never current [113]. Still, a query of such a service could provide 

useful answers to the traceability question, even if they are not complete. 

When compound documents are under version control, it raises the possibility that, once a single 

revision of a compound document is found to use an object, other revisions do too. The revision history of a 

compound document can be searched to find which revisions use a particular object. The revision history 

information can be used to supplement the other techniques described in this section. 

Alternately, it might be possible to construct a compound document renderer that, every time it 

accesses an object, also transmits the identifier of the compound document. It would then be possible for 

the owner of the document to trace usage, though this would not help other parties. 

8.12 User Interaction 

The perceived complexity of a hypertext versioning system is dependent on its user interface, and its 

visualization of the versioned hypertext structure, and the operations used to manipulate it. To date, there 

has been little published research on the user interface of hypertext versioning systems, with Neptune [45], 

CoVer [87], and VerSE [91] providing the only examples of published articles containing screen shots. 

Since perceived user complexity is such an important issue for the adoption of hypertext versioning 

systems, additional research that focuses on just the user interface aspects would be very valuable.  

User interface research could address an open question: is hypertext versioning technology simple 

enough that it could one day be used in mass market software systems, achieving ubiquity similar to that of 

word processors today? Or is it the case that hypertext versioning will only be of interest to a highly skilled 

user base that is willing to invest significant time in learning the concepts and operation of the technology, 
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because their problems are too big, or the pain of not versioning is too high, or there is some compelling 

regulatory or business driver. At present, there is insufficient data to settle the question, since no system 

that supports versioning of structure and works has ever been used outside of a laboratory setting. Some 

parallels can be drawn with configuration management systems, which address similar problems, and are in 

wide use today. Configuration management systems provide work isolation, merging, problem tracking, 

and the ability to revert to prior revisions, as do the composite-based hypertext versioning systems, so in 

many respects the systems are of equal complexity. While configuration management systems do not 

explicitly version link structures, and thus are less complex, they do provide the ability to construct 

arbitrary configurations, a distinct increase in complexity over hypertext versioning systems that do not 

have this feature. This argues that there is a niche for hypertext versioning at least among highly skilled 

users. 

But, what about less skilled use, such as in the home, or casual office use? The recurring pattern of 

document processing tools providing only linear versioning implies a tradeoff between data model 

complexity and breadth of users. Schedule demands can also apply pressure to simplify even skilled use of 

configuration management technology [196]. This implies a need for hypertext versioning systems to 

provide functionality layers, with a simple layer providing a minimal set of high value operations, and one 

or more layers giving more complete, and hence complex functionality. Such a layered strategy is used by 

the DeltaV protocol [199]. 

De-emphasizing user naming of items carries with it some additional tradeoffs. When the system is 

primarily responsible for naming, the entire issue of item naming tends to be minimized. Yet, as the Web 

has ably demonstrated, object identifiers, such as the URLs commonly found in all manner of advertising, 

are not internal to a system. Item names have an important role in creating namespaces that are shared by 

other users of the system. As hypertext systems become more distributed, naming issues become more 

important, and, likewise, the ability of the system to completely hide naming issues from the user is 

reduced. Instead of trying to completely remove user control over naming, a better goal is to assist with 

naming, suggesting names that authors can change at will. 

Difficult naming issues are raised when versioning data or structure. The first issue is which items 

should have distinct names. Certainly each revision should be individually referenceable, but typically it is 
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the versioned item which is named, and each revision has a name that combines the versioned item name 

with a revision identifier, as in “report,v5”. Containment adds only difficulty. When containers are named 

and versioned, one mechanism for naming their contents is to list the container’s name and revision, 

followed by the contained item, as in “folder,v2/report,v5”. Unfortunately, URLs cannot handle this. URLs 

are syntactically incapable of associating revision identifiers with interior path segments, thus highlighting 

the need to design versioning support into names from the beginning, instead of retrofitting them later.  

With nested containment, names with explicitly listed revision identifiers quickly become 

cumbersome, and brittle in the face of change. More durable names will contain version selection criteria, 

as in “folder/report;(selection rule=‘latest as of Nov. 5, 1996’)”. This immediately implies that names are 

no longer unique, as multiple revision selection rules can identify the same item. Furthermore, it is a very 

slippery slope from simple revision selection rules to full query language support, and the attendant 

challenge of encoding that query into a human-readable name. 

8.13 Tool Interaction 

Introducing a separation of concerns between the repository and the user interface provides the benefit 

of freeing each half to focus on optimizing its capabilities. It also requires the creation of a programmatic 

interface between the user interface and repository layer, thus opening the possibility of multiple 

applications using the same repository. This is the essence of the open hypermedia approach, creating an 

open, standard interface to the hypertext functionality layer of a system. When the repository layer provides 

storage for just the anchors and links comprising the hypertext structure, it is termed a link server 

architecture. If general object storage is added, it becomes an open hyperbase [142]. Since hypertext 

versioning systems provide versioning services for objects, they have tended to adopt the open hyperbase 

approach; this is the case for CoVer [87], VerSE [91], Neptune [46], and the Hypermedia Version Control 

Framework [100]. This section primarily addresses the issues of tool interaction with an open hyperbase 

system, while the following section (§8.14) addresses the specific issues that arise in link server systems 

when object storage is separated from anchor and link storage. 

Following the framework described in the NIST/ECMA reference model for integration in software 

engineering environments [64], there are five primary axes of integration: 
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Data integration: sharing information from multiple, heterogeneous repositories and sources. 

Control integration: access to the facilities of an application without modifying its executable image, 

such that the capabilities of multiple applications can be flexibly combined. 

Presentation integration: providing consistent appearance and interaction styles across applications. 

Process integration: controlling applications based on an explicit description of a work process, and 

the ability to coordinate multiple processes across applications. 

Framework integration: the degree to which applications make use of common facilities, such as 

authentication, security, etc. that exist within a specific integration framework. 

The first three, data, control, and presentation integration, are the primary axes that impact application 

integration within hypertext versioning systems. A complete integration with a hypertext system is defined 

as a user interface for manipulating anchors and links, and an unbroken bi-directional path for 

communication between the application and the open hypermedia system [198]. 

Data integration is typically achieved by the open hyperbase creating an externally visible application 

program interface (API) usable by multiple applications. Creating multiple program language bindings to 

the interface increases the number of possible applications that can use the API, since it shifts the burden of 

creating a new language binding away from the tool integrator. When the API transmits commands and 

responses across a network, it permits the applications and repository to exist on separate machines, 

increasing scalability. If clients are limited in the external communication mechanisms they support,  

support for multiple network protocols can increase the pool of potentially integrable applications. 

There are three primary architectures used in data and control integration [198,44]. A custom 

integration is one where the application’s source code has been modified, or code has been written using 

the application’s built-in customization language. This approach provides a large degree of control over the 

application, and hence the possibility of a very fine-grain integration. The wrapper approach places a 

mediator between the application and the hypertext system. The wrapper acts as a communications 

translator, converting between the interfaces and communications media supported by the hypertext system 

and the application. The launch-only approach integrates applications that are non-communicative, 

possessing neither a customization language, nor any external interface. Upon link traversal, the application 

is launched with the object representing the link endpoint. 
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Presentation integration is an area where application integration can run into difficulty. Applications 

typically exert significant control over their user interface, permitting some modification of key bindings 

and menu items, but no significant changes to the appearance or interaction styles. This is usually wise, 

since it enforces a degree of uniformity over the user experience, making it possible to provide manuals and 

telephone support. But, it runs counter to the desire of environment builders to create a uniform user 

interface and interaction style for cross-tool capabilities like creating links, and common versioning 

facilities such as check-out, check-in, etc. Application integrations must provide a visual depiction of link 

endpoints, yet application capabilities vary for accomplishing this task, leading to inconsistent depiction of 

link endpoints across applications. In an example of integrations with the Chimera system, a text editor is 

capable of underlining link endpoints, while a word processor cannot [198].  

Versioning adds some additional burdens for application integration, since versioning requires the 

display of more information to orient the user in the time dimension. Ideally tools should provide answers 

to questions such as, what version is the user working on, what version will the user be traversing to, and 

what version will the user be creating a link to? The creator of a hypertext versioning system can provide 

user interface guidelines describing the information that should be provided, so applications can effectively 

orient the user. In order to minimize the integration burden for applications, this orientation information 

should be kept minimal. 

Visualization of the versioned hypertext is another new user interface requirement for open hyperbase 

environments. It is beneficial to create specialized tools for visualizing revision histories and versioned 

composites and link structures, since this maintains a separation of concerns between visualization tools 

and other applications. It is also pragmatic: the integration facilities of most tools are insufficient for 

creating sophisticated visualizations. Content merge tools are a particularly thorny problem, since merging 

of content requires an understanding of the internal organization of the objects being merged. Usually the 

application has this knowledge, with the hyperbase treating the object as opaque data, and hence this would 

imply the application should provide a merge tool specialized for its objects. But, in practice, many 

applications do not provide their own merge capabilities. This suggests that an external merge tool should 

handle merging of multiple object types, a feasible, but time-consuming activity that results in a brittle tool 

that must be constantly upgraded as applications modify their object organizations. Alternately, the 



  180 

concurrency control technique can be set so that simultaneous development is impossible, at the cost of 

requiring serialization of editing activities. At present, no good solution exists.  

Hypertext versioning capability is often added to an initially versioning unaware system, as was the 

case with Neptune/HAM, CoVer, the Hypermedia Version Control Framework, and WebDAV/DeltaV 

[31]. When this happens, there can be an existing base of versioning unaware clients that need to interact 

with the system even after versioning support is added. One technique for ensuring this is to carefully 

develop the interfaces in the API so that omitting version information (such as a revision identifier) causes 

useful default behavior to occur. The Hypertext Abstract Machine (HAM) used by Neptune provides a 

good example. When versioned composites were added to the HAM, it resulted in the addition of the notion 

of an active composite revision. Existing entry points in the HAM API still work, since they do not specify 

a specific composite, and hence they now use the active composite by default. Another way to handle 

versioning unaware applications is to automatically version items when they are written to the repository. 

In DeltaV, it is possible to turn on auto-revisioning for an object, meaning that every time it is written, it 

causes the DeltaV server to perform a check-out, write, and then check-in. 

8.14 Interaction with an External Repository 

In link server systems, the responsibility for storing representations of works is external to the 

hypertext system, which manages, and provides storage only for the hypertext network. When version 

control is added to both the external work objects and the internally stored anchors and links, the problem 

arises of synchronizing the external with the internal, across a control boundary.  

The structure versioning design space (Section 8.5.2) can be applied here. Objects in the external 

repository cannot possibly be contained inclusively, since they are in a different repository, and hence they 

must be contained referentially. Furthermore, a revision selection rule over an externally stored versioned 

object cannot be evaluated by the link server, and must be evaluated by the external store. Additionally, it 

might not be possible to directly interact with the external repository; use of an intermediate store, such as 

the filesystem, might be necessary. Given these restrictions, it is possible to use the structure versioning 

design space to create a structure container that holds a subset of the versioned hypertext. An example of 

this is given in Section 9.2.2, which describes versioning for the Chimera link server system. 
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The difficulty introduced by the split in storage is how best to maintain consistency of the structure 

container. It is possible that an object could be removed from the external repository, and hence there can 

be revisions of the structure container that are no longer realizable, and links that are no longer traversable. 

If a structure container is checked out, and is being edited, a change in an external versioned object may 

cause an update in the structure container. However, how are these changes detected, and transmitted to the 

link server system? Ideally the external repository can be integrated with the link server so it sends event 

notification messages when relevant changes occur within the external repository.  Based on these 

notifications, the link server can better maintain the consistency of the structure container. Alternately, the 

link server could make use of the repository’s query interface, if available, and directly request information 

on the current state of the external store. This implies there would be a lag between a change in the 

repository, and its detection by the link server system. 

8.15 Namespace Interactions  

Discussion of how to design namespaces to satisfy the requirements from Section 7.14 (Namespace 

Interactions) is provided in Chapter 5 (Address and Name Spaces). 

8.16 Maintaining Consistent Structures 

If it is possible to revert a single revision of a work or link within a composite, it raises the issue of 

how to adjust the revisions of other links and works within the composite. If a work is reverted to a 

previous revision, then links in the composite selecting the original revision are no longer consistent with 

the new state of the composite. A traversal over one of these links would display a different revision from 

the one currently selected by the composite. Similarly, if a link is reverted, the endpoint revisions may no 

longer be the work revisions currently contained by the composite. In fact, the older link revision may be to 

a work revision no longer contained by the composite. 

Revision consistency of a single link, L, within a composite, C, is defined as: 

link-consistent(L, C) = ∀ en, en ∈  L,  e1 ∈  C ^ e2 ∈  C ^ … ^ en ∈  C 

This states that, for all endpoints, en, of link L, the link is consistent only if composite C also contains 

all endpoints. Each endpoint is the identifier for a work revision, and resolution of the identifier yields Vn 
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for some work. Note that this definition only applies to links that have a work objects as endpoints. If the 

endpoints are anchors, the definition is: 

link-consistent(L, C) = ∀ an, an ∈  L, en ∈  an, e1 ∈  C ^ e2 ∈  C ^ … ^ en ∈  C 

That is, for all anchors of link L, the link is consistent only if the object identifier part of each anchor 

(en ∈  an) is a member of the composite C. The definition of link consistency can be used to define 

consistency of the composite: 

composite-consistent(C) = ∀ Lm, Lm ∈  C, link-consistent(L1, C) ^ … ^ link-consistent(Lm, C) 

A composite is considered consistent if all of its contained links are consistent. 

If a new revision of a work or a link is selected in a composite, it may result in composite-

consistent(C) evaluating to false. If an older work revision is selected, consistency might be re-achieved by 

reverting to older links having revisions of the work as an endpoint. It might be possible to find a link that 

has the older work revision, where the other endpoints are currently members of the composite. If an older 

link revision cannot be found, a new link revision can be made automatically, containing the currently 

selected revisions of the works at its endpoints. 

If an older link revision is selected and causes the composite to become inconsistent, consistency might 

be re-achieved by selecting within the composite the work revisions at the endpoints of the link. However, 

changing these work revisions might cause additional links to become inconsistent. Creating new link 

revisions having the newly selected work revisions as endpoints resolves this inconsistency. 
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Chapter 9 

Applying the Domain Model 

In this chapter, the hypertext versioning domain model is applied to two systems, WebDAV/DeltaV 

[79, Clemm, 2000 #194], and the Chimera hypertext versioning proposal Whitehead, 1994 #17]. In both 

cases, the system went through a period of development, and was released, before versioning capability 

was added; the WebDAV protocol was fielded before the versioning extensions in DeltaV were fully 

developed, and the Chimera versioning proposal builds upon the versioning unaware capabilities of 

Chimera [7]. These systems all predate the hypertext versioning domain model, and hence the domain 

model was not used in the development of either WebDAV/DeltaV or the Chimera versioning proposal. 

Since the addition of versioning capability to an existing system is the ideal scenario for application of 

the domain model, as described in the idealized process for application of the domain model in Section 1.3, 

it should be possible to use the domain model to develop a data model of these systems before and after 

versioning capability was added, and to reconstruct the original requirements, and the design choices 

chosen to satisfy them. By comparing their actual requirements (DeltaV and the Chimera versioning 

proposal both have their own, independently developed sets of requirements) with the ones in the domain 

model, and comparing the actual design choices against the design spaces listed in Chapter 8, it is possible 

to judge if the domain model is complete, and has sufficient descriptive power to handle the two example 

systems. The exhaustive examination of the domain requirements and design choices, along with the 

modeling of the complex data models of both systems, provides evidence that the domain model is 

complete. 
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In addition to its validation role, this chapter also serves as an example of the kind of outputs that 

would result from application of the domain model to add hypertext versioning to a versioning unaware 

system. 

9.1 WebDAV and DeltaV 

The Web Distributed Authoring and Versioning (WebDAV) protocol [79] is an extension to the 

Hypertext Transfer Protocol (HTTP) [68]. Though the detailed set of requirements for WebDAV have been 

captured elsewhere [175], a synopsis of protocol goals are: 

• Concurrency control. To prevent overwrite conflicts, support is needed for concurrency control 

that works equally for all Internet content types. 

• Metadata storage. To allow the recording of metadata (properties) on resources, such as 

bibliographic information, support is needed for reading and modifying metadata. 

• Containers. To allow hierarchical containment, support is needed for creating and listing 

container objects. Also, where meaningful, existing operations should be extended to work on 

containers. 

Since HTTP has no mechanism for representing per-user variants, the only concurrency control 

technique that has the required high genericity is whole resource locking (see Table 8), supported in 

WebDAV using the LOCK and UNLOCK methods. Metadata storage is provided by extending the HTTP 

object model from an all data to a data plus properties organization (using the terminology from Section 

4.2).  The PROPFIND and PROPPATCH methods support reading and writing properties. Since HTTP had no 

notion of containment, a container object was added, along with the MKCOL method for creating them. 

Listing a collection is performed using PROPFIND. An in-depth discussion of these features, and their 

rationale, is provided in [201]. A data model diagram for WebDAV is shown in Figure 31. 
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Figure 31 – The data model of the WebDAV extensions to HTTP [201]. The portrayed collection 
containment semantics are specified in the bindings extension to WebDAV [174]. 

Though the initial goals of the WebDAV protocol included support for version control (indeed, half of 

the requirements in [175] concern version control capabilities), in order to reduce the complexity of the 

protocol, and to ensure it would be completed more rapidly, version control capabilities are not in the 

WebDAV Distributed Authoring protocol [79]. Another working group, called DeltaV, was formed in the 

Internet Engineering Task Force (IETF) to extend WebDAV with versioning and configuration 

management capabilities. 

9.1.1 Requirements 

DeltaV has a rich set of requirements. Using the organization of the Domain Reference Requirements 

given in Chapter 7 as a guide, the following list highlights which domain requirements were, and were not, 

selected when adding versioning and configuration management capability to WebDAV. A complete list of 
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goals for the DeltaV protocol are captured in the consensus goals document produced by the DeltaV 

working group [5], and a synopsis of these goals are presented in [199]. 

1. The history of objects must be persistently stored. This is a basic requirement of all versioning systems, 

and so DeltaV has this as a requirement. 

2. Immutable and mutable object revisions, and object metadata, must be supported. In order to 

accommodate document management systems that allow checked in revisions to be modified, DeltaV 

does have a requirement to support mutable object revisions. The primary motivation is to support 

making small changes, and the preservation of logical revision names. However, this requirement 

directly contradicts the desire to support configuration management, which depends on revisions being 

immutable. As a result, mutable object revisions are only supported in the basic versioning feature set 

of the DeltaV protocol. Advanced versioning, which supports configuration management, does not 

permit mutable revisions.  

In DeltaV, properties cannot be versioned independently of their resource. This implies that client-

settable properties can only be modified when the body of the resource is writeable. However, both 

WebDAV and DeltaV support “live” properties, where the server controls the state of the property. 

Live properties are often used for protocol-specific information, such as the revision set property of a 

history resource, which contains a URL for each revision in a versioned resource. For some live 

property values, the server may change the property value, even if its resource has been checked in, 

and is immutable. Additionally, there are some client-settable properties that must be writeable, even if 

the revision has been checked in immutable. Access control properties are the most important example, 

since it is desirable to be able to change the access permissions on a resource even after it has been 

checked in. 

3. Versioned and non-versioned objects can co-exist. Remote software development is an important use 

scenario that DeltaV should support. Since the software build process often results in the creation of 

intermediate build objects (such as .o files created during the compilation of C code), there is a 

requirement that unversioned objects should be able to coexist in the same collections, and same 

portions of the URL namespace as versioned objects. 
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4. All content types must be versionable. Since the Web is composed of many different kinds of data, the 

DeltaV protocol has a requirement to provide version support for all content types, including those that 

are binary, rather than textual, in composition. 

5. A mechanism must exist for giving a human readable name to a single revision. DeltaV has a 

requirement to support human readable revision labels, which can be set by a DeltaV client, to 

complement revision identifiers, which can are set by the server. DeltaV also has a requirement that 

these labels be unique only to a specific versioned object, that is, the same label value can be used in 

multiple versioned objects. 

6. Revisions and versioned objects can be removed. To provide a mechanism that maps to the deletion or 

destruction capabilities of repositories that implement DeltaV, the protocol has a requirement to 

support deletion of revisions, and versioned objects.  

7. Stability of references. DeltaV has a requirement to support linking to individual revisions. Since Web 

links are currently URLs embedded inside HTML and other document types (Word, PDF, etc.), this 

effectively requires each revision to have a URL, and this URL should be moderately stable. However, 

DeltaV does not have any explicit requirements concerning the stability of revision URLs, as this was 

considered to be too great an imposition on a server’s ability to control and organize its URL 

namespace.  

8. Change aggregation support. DeltaV has a requirement to be able to logically group a change, even 

though it may span multiple revisions across multiple versioned resources. 

9. It must be possible to version links. At present Web links are URLs embedded within HTML, and 

other link-aware content types. Though work is progressing on an XML-based link standard, XLink 

[47], this standard has not yet been approved or adopted. Since all links are embedded within objects, 

by versioning objects DeltaV also versions links as a side-effect. However, there is no explicit 

requirement to version links in DeltaV, consistent with its emphasis on providing functionality similar 

to existing versioning and configuration management systems. 

10. It must be possible to version structure. Since Web links are embedded in objects, it is impossible to 

separately version structure, and hence DeltaV has no requirement for this. 
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11. It must be possible to link to a specific revision of an object. As discussed above in #8, DeltaV does 

have a goal to support linking to a specific revision of an object. 

12. Variant support. DeltaV has no explicit requirement to provide mechanisms for representing variants. 

However, DeltaV does explicitly require a branching version history, ostensibly to support parallel 

work, though this could also be used, in conjunction with labels, to represent variants. 

13. Collaboration support. DeltaV has explicit requirements to prevent overwrite conflicts when multiple 

people work on the same revision at the same time. It also has a requirement to allow multiple 

simultaneous checkouts of the same revision. DeltaV also has a requirement to make it possible to 

prevent parallel development on a resource. 

Furthermore, though its goals document does not explicitly list this as a goal, it is certainly the 

intent that a mechanism be supplied that allows individual collaborators to work in isolation on the 

same set of objects, at the same time. This capability is provided by a workspace. DeltaV also has an 

implicit requirement to provide support for WebDAV locks, since DeltaV must support successful 

interoperation with versioning-unaware clients. 

DeltaV has an additional goal that it be possible to easily determine which resources have changed 

within a workspace. This makes it possible for collaborators to be aware of one another’s changes. 

14. Navigation in the Versioned Space. Besides providing the ability to link to a specific revision, the 

DeltaV protocol has no requirements for versioned hypertext navigation. In part, this is because DeltaV 

is an application layer network protocol, and hence is only concerned with interoperability between a 

client/server pair, and inherently has no responsibility for the client (or server’s) user interface. 

15. Searching. WebDAV does not have any search capabilities, beyond the limited ability of retrieving the 

values of a known set of properties from within a hierarchical set of collections. The DAV Searching 

and Locating (DASL) effort was created to address this shortcoming by providing the ability to 

remotely search a WebDAV repository [12]. In this context, DeltaV specified some additional 

requirements on searching capabilities: 

“If the DAV server supports searching, it should be possible to narrow the scope of a 
search to the revisions of a particular versioned resource.” [5], #12, p. 17. 

“If the DAV server supports searching, revision IDs and label names should be 
searchable.” [5], #13, p. 17. 
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DeltaV also specifies some versioning-specific queries. Since a graphical display of a version 

graph is a common element of the user interface of many version control systems, it must be possible 

to retrieve, for a versioned resource, the complete set of revisions, their predecessor and successor 

information, the initial and latest revision, as well as label names. Furthermore, this information should 

be retrievable using a single network request so the information can be retrieved efficiently. 

16. Visualizing the Versioned Space. Since DeltaV is a protocol, and not a client application, it has no 

visualization requirements. 

17. Traceability. DeltaV has no requirement for tracing the (re)use of objects. DeltaV also has no real 

requirement, or support for change tracking, since activities, which support change aggregation, are not 

flexible enough, and do not support enough metadata, to provide a good change tracking system. 

Activities are limited to holding changes just on a single branch, and do not have a standard property, 

such as “change request identifier”, that could be used to associate a set of changes with a human-

entered description of the desired change. Activities could potentially be used in the construction of a 

change-tracking system, but alone they do not provide this support. 

18. Goals for User Interaction. Since DeltaV is a protocol, and not a client application, it has no user 

interface requirements. 

19. Goals for Tool Interaction. In many respects, since DeltaV is a network protocol, the entire focus of 

DeltaV is creating a standard interface for tools to interact with a versioning and configuration 

management repository. However, there are some more fine-grained requirements. Since DeltaV builds 

on the WebDAV protocol, and there are currently many commercially important WebDAV clients that 

are versioning unaware (e.g., Office 2000, Go Live 5), allowing versioning unaware clients to interact 

with a DeltaV server is important. DeltaV has a goal of providing version support for versioning 

unaware clients, automatically performing check outs and check ins, thereby creating new revisions. 

Tool adoption is another important issue. There is much concern that if the protocol is too 

complex, it will not be widely adopted. Furthermore, there are some repositories that only provide 

versioning operations, and have no configuration management support. For these two reasons, DeltaV 

has an explicit requirement to separate its functionality into two layers, basic and advanced. Basic 

support includes version control, while advanced features includes activities, workspaces, and 
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configuration management. The version control layer provides all of the functionality most authoring 

clients need, and the advanced functionality can be employed by a more sophisticated client, such as a 

software development environment. 

Since protocol requests issued by tools can potentially travel across the Internet, several security 

measures are necessary.  First, users of tools will need to authenticate themselves, proving some 

evidence to the server that they are who they claim to be. Authentication in the reverse direction, a 

server authenticating itself to a client, is also desirable. Furthermore, it is also desirable to encrypt 

communications between client and server, so that any intermediaries are unable to eavesdrop. Finally, 

it might be desirable to encrypt resource contents on the server itself, providing some protection from 

unauthorized access there. 

As a network protocol, DeltaV is likely to be used in non-English speaking countries. As a result, 

the protocol must provide support for encoding strings that will be read by a person so they can express 

all of the characters currently in use in human natural languages. 

20. Goals for Interactions with an External Repository. DeltaV assumes that a server controls all of its 

versioned objects, and does not have any interaction with other repositories. 

21. Namespace Interactions. DeltaV places several requirements on the URL namespace. Item #6 noted 

that DeltaV requires each revision to have its own URL. Since URLs do not have sufficient expressive 

power to annotate each URL path segment (text between “/” characters) with a revision identifier, 

forcing each revision to have its own URL effectively implies that the URL where a resource is 

authored will be different from the per-revision URL. For example, authorable URL 

“http://www.foo.com/myresources/index.html” might have a revision URL for revision 1.1 of 

“http://www.foo.com/repository/I/aa0011” or similar machine-generated URL. 

DeltaV also has a requirement that relative URLs should not be disrupted. That is, if a resource 

has a relative URL to another object in the same collection prior to being placed under version control, 

the relative URL should still work even after one or both objects are placed under version control. 

Effectively this means the namespace of objects should be the same before and after the objects are 

placed under version control. This is accomplished by replacing the unversioned resource with a 

versioned resource, which acts as a redirector for requests, forwarding them along to a specific 
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revision. This leads to another DeltaV requirement, that each versioned object needs to have a settable 

revision that is returned for requests that do no explicitly identify a revision. 

Since DeltaV was designed to be a protocol for accessing configuration management capabilities of 

remote repositories, it has several additional requirements that are not in the domain requirements for 

hypertext versioning systems.  

1. Baseline support. A baseline is an object that records the specific revisions of all versioned 

resources specified by a workspace. That is, the workspace lists a number of versioned objects, 

and a specific revision for each versioned object. A baseline is a snapshot of the current state of a 

workspace. This capability directly supports configuration management. 

2. Policies. DeltaV has a requirement that the protocol description should clearly identify the 

versioning and configuration management policies it dictates, and the policies that are still left to 

implementers and users. 

3. Location independence. Since people sometimes change locations while they are working on a set 

of objects, for example, continuing work at home that was begun at work, it should be possible to 

start work using one client in one location, and continue that work using a different client in a 

different location.  

There are several reasons why these requirements have not just been added to the domain 

requirements. While support for baselines provides some of the motivation for the domain requirement to 

maintain consistent structures (Section 7.15), baselines as separate from workspaces are in the realm of 

configuration management, and do not appear in hypertext versioning systems. No hypertext versioning 

systems have listed policy identification as a goal, and even the DeltaV protocol does not implement this 

requirement. Location independence is another goal that has not been identified by other hypertext 

versioning systems, perhaps because they have not addressed use by the same people from multiple 

locations. As more experience is gathered from the use of DeltaV, this requirement could conceivably 

migrate into the domain requirements; at present, it is left as a specialized requirement inherent to the 

remote access capabilities of DeltaV. 
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9.1.2 Design Choices  

Satisfying the requirements for DeltaV led to the introduction of several new abstractions into the 

WebDAV data model, these being: 

• Revision, versioned object, history: Together they represent the revision history of a resource. 

• Working resource: A temporary, writeable resource created by a checkout, and converted to a 

revision upon a check in. 

• Activity: Represents a logical change that can span multiple revisions of multiple versioned 

resources. 

• Workspace: Used to create work areas for individuals or groups that are isolated from other 

collaborators. 

• Baseline: Used to represent a configuration, and contains one revision each from the set of 

versioned resources within a workspace. 

The data model for DeltaV, including these abstractions, is shown in Figure 32. Details on how DeltaV 

satisfies its requirements are given below, organized by requirement. The set of requirements below does 

not include all of the hypertext versioning domain requirements, since DeltaV does not share them all. 

1. Persistent storage of revision histories. DeltaV employs a variant of the versioned objects approach for 

persistently storing object histories. Each revision is a separate object, and each revision has a 

property, predecessor set, that holds references (using URLs) to each of the revisions that precede it. 

Thus, the predecessor relationships are stored using the “containment relationship on container” 

containment type, where the container object is the revision itself. Unlike the typical versioned object 

approach, in DeltaV the versioned object is really two abstractions, the versioned resource, and the 

history resource. The versioned resource acts as a proxy for the complete version history within the 

authorable URL namespace. So, for example, if a resource existed at URL 

http://www.foo.com/index.html before being placed under version control, once it was versioned, a 

versioned resource would now exist at that URL. The contents of the resource prior to version control 

are now within a new revision resource. 

However, the versioned resource does not directly contain revisions. Instead, the versioned 

resource contains a history resource (via a URL reference stored in the history property) that has the 
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responsibility for recording all revisions in the version history. The motivation for separating the 

versioned resource from the history resource is locking, and the need to reconcile it with the branching 

concurrency control supported by versioning. Versioning unaware clients, such as those that 

understand WebDAV, but do not understand the DeltaV protocol, only have locking available as a 

concurrency control technique. When interacting with a versioned part of the URL namespace, one 

where objects have been placed under version control and a versioned resource is available at each 

URL, a locking client would end up locking the versioned resource. If the versioned resource 

contained all of the revisions, only the lock owner would be able to perform a checkin, an operation 

that modifies the state of the versioned resource. By separating revision containment from namespace 

participation, the versioned object can be locked without limiting checkins. 

2. Revision mutability, and immutability. Mutable revisions are controlled by a revision property called 

mutable.  If the mutable property is true, then it is possible to overwrite the revision. WebDAV, hence 

DeltaV, properties are divided into dead and live properties, where dead properties have values set by 

the client, and live properties are set by the server, and hence the mutability of properties is divided 

into dead and live behaviors. Dead properties have the same mutability as the resource itself. Live 

properties are always mutable.  

3. Coexistence of versioned and unversioned objects. This requirement is satisfied by the lack of any 

constraint on the membership of versioned containers, and by the division of container containment 

relationships into “public” relations that are permanently versioned, and “private” relations that are 

unversioned. While it is possible that versioned resources can be contained using a private relationship, 

the intent is for versioned objects to be contained using public relationships. 

4. Versioning of all content types. This requirement is achieved by not introducing any restrictions on the 

types of content that can be versioned, and by not making any design decisions that depend on the 

content type being known. Thus, DeltaV is precluded from using within-object versioning or within-

object variance techniques for all object types. Additionally, the existence of both binary and textual 

content increases the requirements on DeltaV repositories, since they need to support delta storage for 

all content types. 
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Figure 32 – Data model of the DeltaV versioning and configuration management extensions to WebDAV. 
The data model is based on revision –05 of the DeltaV protocol specification [31], and depicts advanced 
versioning. Many properties are not shown on this diagram to reduce visual clutter. Properties shown in this 
diagram represent containment relationships between entities. 
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5. Revision naming. DeltaV provides a facility called labels that allow a human readable name to be 

attached to a revision.  

6. Removing revisions and versioned objects. Though DeltaV identified deletion of revisions as a goal, 

the protocol specification does not mandate support for this feature, leaving the results of a delete on a 

revision “undefined,” meaning that it is possible a server supports this capability, though a client 

cannot depend on it being present. Similarly, the effect of a delete on a versioned resource is 

undefined, except in the case where the versioned resource is contained by a versioned collection, in 

which case no deletions are allowed. Due to the lack of definition, and the contradiction with the stated 

requirements, this capability will likely be clarified before the DeltaV protocol is completed. 

7. Change aggregation support. DeltaV introduces the activity object to act as a container for logically 

related changes. However, since the activity is a subtype of a plain resource, it is not a 

WebDAV/DeltaV collection, and hence the activity is an example of the “new container” approach 

discussed in Section 8.4. The activity contains the set of related revisions within a property called the 

revision set. An activity is associated with a working resource on checkout, so that when it is checked 

in, the activity will correctly add the new revision. 

8. Linking to a specific revision. DeltaV mandates that every revision have a separate URL, called a 

revision URL, that can be used to directly access it. This revision URL is also used as a revision 

reference for containers like the history resource, activity, and baseline. 

9. Collaboration support. Since DeltaV needs to provide equal versioning support for all content types, it 

is limited to selecting from concurrency control techniques that have high genericity. Since support for 

parallel work is also a requirement, whole-resource locking, as provided by WebDAV, is insufficient. 

The only concurrency control technique left that has high genericity is branching; hence DeltaV uses 

this technique. 

When a resource has been checked out, it must be writeable, allowing changes to it. In DeltaV, 

though clients will likely perform local, client-side caching of resources that are being authored, this 

behavior cannot be depended on, and hence there is a need to provide a writeable resource on the 

server that can be written to using the standard PUT method. The writeable resource created during a 
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checkout is a working resource. Since multiple checkouts can be performed on a single revision, the 

working resource directly supports branching concurrency control. 

DeltaV also has a requirement to provide isolated work areas for individuals, or small teams. This 

requirement is satisfied by the introduction of workspaces. Since multiple working resources can 

simultaneously have the same revision as their parent, the workspace is used to select which of these 

working resources a particular person authors. A workspace also provides revision selection, picking a 

specific set of revisions for a set of versioned objects. This allows people to simultaneously work on 

different views of the same set of resources, supporting tasks such as performing a bug fix on an older, 

released version of a software project, or making changes to a set of documents without having to 

constantly integrate the changes other collaborators. Unlike the composite-based hypertext versioning 

systems where workspaces and collections are combined, DeltaV separates the workspace, providing 

isolated work areas, from collections, used generally for grouping resources.  

DeltaV provides the ability to merge together two collaborator’s work once they have finished 

working in parallel. Since DeltaV cannot guarantee it will understand the internals of every content 

type, it cannot provide automatic merging for resources. Furthermore, automatic merges may produce 

semantically incorrect results. When the MERGE method has been invoked, DeltaV checks out 

resources that are in conflict, and flags them by setting the “merge-set” property on the working 

resources created by the check out. Unless the server has specific knowledge about the internal 

organization of the content type allowing it to perform an automatic merge (as might be the case for 

plain text), the client is then responsible for performing the actual content merge, presumably by 

creating a display so a user can select changes from each revision to preserve. Activities can be used to 

select which revisions to merge, thus allowing one user to include a logical change made by another 

collaborator into their workspace. 

10. Navigation in the Versioned Space. Though DeltaV does not have a requirement for supporting 

navigation through a consistent time slice, by using workspaces, and default revisions, this capability is 

supported fairly well. Since workspaces select revisions from a set of versioned resources, workspaces 

can be used to select an internally consistent set of revisions, which can then be navigated among. 
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11. Searching. DeltaV provides a mechanism for generating versioning-specific reports, using the REPORT 

method. Provided reports include:  

• A version history report, 

• A successor report for a revision, needed since each revision only stores predecessors, 

• A checked out report that lists all working resources derived from a specific revision,  

• A latest checkin report that lists the most recently checked in revision within a versioned 

resource, 

• A “property report” that takes advantage of the fact that many properties are acting as 

collections (e.g., revision set, predecessor set), and allows properties to be retrieved from the 

members of these “property collections.” 

• A merge preview report, detailing what would happen if a set of revisions were merged into a 

workspace, without actually performing the merge, 

• A compare report that allows the membership of two baselines or workspaces to be compared. 

• A current workspace report, which identifies, for a specific activity, those workspaces where 

work is being performed on the activity. 

12. Goals for Tool Interaction. As noted above in Section 9.1.1, item #19, DeltaV separates its 

functionality into two layers, basic and advanced. The purpose of this separation is to reduce the 

adoption barrier for clients and servers that only require version control capability. 

DeltaV relies on HTTP and WebDAV for its authentication mechanisms. HTTP provides two 

forms of authentication, Basic and Digest [73]. Basic authentication effectively sends 

username/password pairs in the clear, while Digest authentication performs multiple one-way hashes 

on the username/password pair before it is sent over the wire. Encryption of the communication path 

between client and server is accomplished using Secure Sockets Layer (SSL), also known as Transport 

Layer Security (TLS) [79]. This protocol prevents casual eavesdropping of data transmitted between 

client and server. 

For strings that will be presented to a human in a user interface, DeltaV relies on the 

internationalization capabilities of the Extensible Markup Language (XML), which is capable of 

recording both the language, and the characters of most human languages [24]. DeltaV employs XML 
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for marshalling of protocol information. This information can be used to correctly display these strings 

to a user. 

13. Interactions with the Object Namespace. As discussed above in Section 9.1.1, item #21, DeltaV 

requires both that the original URL namespace be preserved, so that relative URLs still behave 

correctly for objects under version control, and that each revision has its own URL. 

Additionally, DeltaV satisfies some requirements that are not part of the hypertext versioning domain 

reference requirements. 

1. Baseline support. Baselines are an additional container-like object added into the DeltaV data model to 

permanently record a snapshot of the revisions of resources and collections comprising a project. In 

DeltaV, each baseline is a versioned resource, and is associated with a specific workspace. When a 

baseline is checked out, and hence writeable, its revision set property contains the same set of revisions 

as are contained by its associated workspace. When a baseline is checked in, and hence immutable, it 

contains a snapshot of the contents of the workspace as of the moment of checkin. A baseline can also 

be used to populate a workspace with a set of revisions. This allows a collaborator to start working 

from a known configuration of resources, such as a released, or tested version of a project. 

2. Policies. Though the DeltaV protocol has several use processes deeply embedded within it, these are 

not discoverable via the protocol, and at times are even implicit in the protocol description itself. Thus, 

the goal of making policies explicit and discoverable has not been met. 

3. Location independence. The goal of accessing a DeltaV repository equally from multiple locations has 

largely been met just by using HTTP as a base for extension.  HTTP is a stateless protocol, implying 

that there is no protocol state associated with a specific network connection. Hence, even if someone is 

working against a DeltaV repository from work, they are still able to perform operations on the same 

set of resources from another location, even if the DeltaV client is still running at work.  The only 

potential difficulty might arise when using only WebDAV aware clients against a DeltaV repository, 

since these clients would be using locking for concurrency control, and thus might prevent the same 

user from accessing a resource, unless the client is intelligent enough to retrieve and resubmit lock 

tokens.  
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9.2 Chimera 

Chimera-1 [7] provides hypertext services to the heterogeneous tools and data sources populating 

software development environments. Chimera manages a hypertext structure of anchors and links over the 

various works created during software development, such as source code, specifications, design and 

requirements documents, etc. Since storage of these artifacts is under the control of applications, Chimera 

is classified as a link server system [142]. The separation of storage responsibility between hypertext and 

artifact storage allows Chimera to create hypertext webs over works stored in multiple repositories, from 

the filesystem to an application-specific store. 

Chimera’s abstractions can be divided in two groups, those used to create hypertexts, and those that 

model the external environment of tools and works. A Chimera link is defined as a set of anchors, and 

anchors are defined on symbolic renditions, called views by Chimera. A symbolic rendition is created by a 

renderer, in this case a specific application in the environment, termed a viewer by Chimera. The renderer 

operates on a data representation of a work stored in an accessible repository; Chimera uses the term object 

to refer specifically to the representation of a work, a more restrictive definition than the definition of 

object as a single or aggregate data item, in use to this point. Chimera models viewers and objects as 

references out into the environment. A view is modeled as a (viewer, object) pair. The anchor can be 

viewed as the connection between Chimera’s hypertext abstractions, and its model of the external 

environment. Figure 33 displays Chimera’s data model. 

Figure 34a shows the architecture of the Chimera system. Applications in the environment that desire 

access to Chimera’s hypertext services have been integrated using Chimera’s API so they communicate 

with the Chimera server, thus making them clients. The Process Invoker component executes applications 

that are needed to complete a link traversal. Figure 34b shows how a Chimera client creates a rendition that 

includes hypertext anchors and links. The client reads an object from its native repository, and combines 

that with anchor and link information retrieved from the Chimera server to create its symbolic rendition. If 

the user initiates a link traversal, the client communicates the link traversal to the Chimera server. The 

Chimera server checks to see if any additional clients need to be running to complete the link traversal. If 

so, it instructs the Process Invoker to start the needed client application(s). Once all the applications are  
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running, the Chimera server sends them link traversal messages, causing them to display their link 

endpoint. 

Software development environments typically employ either a version control or configuration 

management system to record revisions of works as they are developed. Unfortunately, Chimera does not 

handle versioned objects well. If an object is reverted to an older revision, Chimera has no way of ensuring 

that anchors within views of the revision will remain attached to right words or symbols, since Chimera 

only stores anchor positions for the latest revision. Furthermore, Chimera has no way of tracking changes 

to links over time, and thus cannot version structure.  

To address these shortcomings, a proposal for versioning support for Chimera was developed in 1994 

[200]. For the sake of brevity, the discussion below will used the name ChimeraVP to describe the Chimera 

system as amended with the Chimera versioning proposal. The following sections describe the 

requirements that guided this proposal, and the recommended approach for meeting the requirements. 

Unfortunately, this proposal was never implemented. However, it is interesting to examine since it is the 

only known work that addresses structure versioning where works and their revisions are outside the 

control of the hypertext system, and thus provides an interesting test case for the application of the 

hypertext versioning domain model. 

9.2.1 Requirements 

Using the organization of the Domain Reference Requirements given in Chapter 7 as a guide, the 

following list describes the requirements for ChimeraVP. While the proposal itself listed several 

requirements, they are a subset of the requirements below. Since the Domain Reference Requirements were 

developed by looking at a broad range of systems, it is not surprising that they are more comprehensive. 

1. The history of objects must be persistently stored. Within the Chimera system, the term object refers to 

just the representation of works, however, this requirement applies to all abstractions. For ChimeraVP, 

responsibility for maintaining work revisions lies with the external, heterogeneous repositories in the 

environment, and hence outside the control of ChimeraVP. However, ChimeraVP does have a 

requirement that it must accommodate work revisions, if present. ChimeraVP also requires that all 
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abstractions under its control, both the hypertext abstractions (anchor, link) and the abstractions used to 

model the external environment (view, viewer, object) are versioned. 

2. Immutable and mutable object revisions, and object metadata, must be supported. ChimeraVP does not 

have any requirements concerning the mutability of work revisions, since these are outside its scope. 

For its internal objects, ChimeraVP requires revisions of their primary state to be immutable, so 

structure versioning can be performed. However, since Chimera stores access permissions on 

attributes, minimally at least access permission attributes must be mutable, even on checked-in 

revisions. 

3. Versioned and non-versioned objects can co-exist. ChimeraVP requires that its internal objects must all 

be versioned, and hence does not support this requirement. However, the primary motivation for this 

requirement is to allow versioned and unversioned works to co-exist, and here ChimeraVP has no 

requirements, since this is a property of the external store, outside its control. 

4. All content types must be versionable. Since software development environments contain a wide 

variety of work content types, ChimeraVP definitely has the support of all content types as a goal. 

However, for ChimeraVP an external repository performs the versioning of works, and hence this 

requirement translates into a constraint on these external repositories. 

5. A mechanism must exist for giving a human readable name to a single revision. The original system 

described in the Chimera versioning proposal did not have support for revision selection rules, and 

hence also had no support for labels, or other human readable revision names. However, even if 

revision selection support is not provided, it seems reasonable to list human readable name support as a 

goal, so that specific link revisions, for example, could be given meaningful names. An application 

program could potentially use this facility to consistently label anchor and link revisions with the same 

label used for work revisions, for example, with the name of a software release. 

6. Revisions and versioned objects can be removed. Since external repositories can potentially delete 

revisions, or entire revision histories, ChimeraVP must be able to accommodate this. Additionally, to 

ensure scalability over time, ChimeraVP should be able to remove old, unused (or infrequently used) 

revisions of objects. 
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7. Stability of references. A basic architectural decision in link server systems is the ceding of control 

over the storage of works and their revisions. Due to this, works may be deleted or modified at any 

time, and the link server cannot prevent this. As a result, reference stability cannot be guaranteed by a 

link server system alone; it must be accomplished by the cooperation of the link server and the external 

repositories. As a result, ChimeraVP does not have absolute stability of references as a goal. However, 

if a work is merely changed, and not deleted, then ChimeraVP has a requirement that anchors must 

accurately track their endpoints over work revisions. As [200] states, “hypertext versions will get out 

of synchronization with object versions – a hypertext versioning system must accommodate this.” (p. 

46) 

8. Change aggregation support. ChimeraVP assumes that change aggregation support is a feature 

provided by external repositories, and hence this is not a requirement for ChimeraVP. 

9. It must be possible to version links. Chimera links are defined as a set of anchors, and this set of 

anchors can change over time.  Additionally, Chimera links have attributes defined on them, and this 

metadata can change over time as well. As a result, ChimeraVP must provide link versioning support, 

so that individual link changes can be tracked. 

10. It must be possible to version structure. ChimeraVP requires that the link structure centered on a 

specific work revision must be versioned. That is all links that have an anchor on a view of the work 

revision are included in the structure. This structure centered on a work revision is necessary to select 

the revisions of Chimera objects that correspond to a specific work revision. When a client application 

contacts ChimeraVP, it typically only knows the name and revision of the work it is rendering, and 

ChimeraVP must to associate this work revision with the Chimera object revisions (viewer, object, 

view, anchor, link) that correlate with that work revision. 

11. It must be possible to link to a specific revision of an object. ChimeraVP supports this requirement. 

Since an application program can request the creation of an anchor on any revision of a work, 

ChimeraVP must be able to accommodate this, and the inclusion of these anchors in links. 

12. Variant support. Since many versioning and configuration management systems support variant 

segregation (see Section 8.6.1), often using branches of a revision history, ChimeraVP must 

accommodate this behavior.  
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13.  Collaboration support. While collaboration support was not explicitly addressed in the original 

Chimera versioning proposal, since multiple developers usually work simultaneously on large software 

projects, collaboration support is a must. This implies sub-requirements for concurrency control to 

avoid overwrite conflicts on Chimera objects, and merge support to combine multiple simultaneous 

changes. The ability to work in isolation is also desirable, requiring a combination of work isolation 

capabilities in ChimeraVP and the external repository. 

14. Navigation in the versioned space. ChimeraVP has a requirement to support navigation that is linkwise 

consistent. That is, the endpoints of a specific link should be consistent with the meaning of the link. 

However, traversal of any other link is not guaranteed to result in a rendition of a work revision that is 

consistent in time (or any other measure of consistency). The rationale for this behavior is the 

assumption that the facilities of the external repository will be used to create consistent collections of 

works, such as by using configuration management facilities. By focusing on versioning the structure 

centered on a single, the external repository has maximum flexibility for creating arbitrary 

compositions of work revisions. 

Support for navigation from revision to revision must be supported by ChimeraVP, although the 

actual user interface for initiating such a link traversal must be supplied by a specific application, and 

adds to the integration effort. Additionally, the external repository must support the retrieval of an 

arbitrary work revision (see requirement #19 below). 

15. Searching. ChimeraVP has no requirement for supporting revision selection rules. Additionally, since 

works are externally stored, searching work revisions must be performed in each repository. The 

decision not to support revision selection rules is fairly arbitrary. Not providing this feature results in a 

simpler system, while their presence would increase the flexibility of revision selection. 

16. Visualizing the versioned space. ChimeraVP, being an infrastructure service with a minimal user 

interface, does not itself have any requirement for visualizing the versioned space. However, 

ChimeraVP should provide sufficient capabilities in its API so that a hypertext viewer client could be 

constructed. Such a viewer could provide a visualization of a versioned hypertext. 

17. Traceability. ChimeraVP tends to assume that works are complete, and not parts of some composite, 

and anyway treats the reuse of composite parts as something outside its control, a concern of specific 
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applications and repositories. As a result, ChimeraVP has no requirement for tracing the reuse of parts 

of a work. 

18. Goals for user interaction. This requirement is explicitly noted in [200], “The versioning of hypertext 

structures should occur as transparently to the user as possible. The versioning system should not 

constantly prompt the user for version names, instead automatically selecting and assigning version 

names where possible.” (p. 46) 

19. Goals for tool interaction. Several tool interaction goals are listed in [200], p. 46-47. First, it lists as a 

goal, “demands on external tools should be minimized.” Next, it states that an “external repository 

must be able to retrieve an arbitrary version of an object,” so it is possible to complete a link traversal 

to an arbitrary work revision. If the external repository makes work revisions available via the 

filesystem (a common feature in SCM systems), an application must have some way of determining 

the current revision of a file. 

20. Interaction with an external repository. This goal is explicitly listed in [200], p. 46. “Objects stored 

external to the hypertext system and hypertext structures stored internal to the hypertext system must 

be capable of independent development.” Support for this goal has affected almost every requirement. 

21. Namespace interactions. Naming of work revisions stored in external repositories is outside the scope 

of ChimeraVP. ChimeraVP requires simply that applications be capable of distinguishing the name 

associated with the abstract work concept, or versioned object, from the identifier or name used for 

individual work revisions. Applications must be able to communicate this information to ChimeraVP, 

since it is used as the key for determining the subset of Chimera’s structure centered on a specific work 

revision.  

22. Maintaining consistent structures. SCM systems often provide the ability to revert to a previous 

revision of a single work, without also reverting all other works in a given collection, or workspace. As 

a result, ChimeraVP must be flexible enough to accommodate this behavior. 

9.2.2 Design Choices 

Satisfying the requirements resulted in the addition of the time dimension by making all Chimera 

object, so that they would be capable of versioning links, anchors, as well as changes to the abstractions 



  206 

used to model the external environment. For this latter set (views, viewers, objects), the addition of 

versioning is primarily intended to capture changes in attributes, though the ability to capture changes in 

the name of works (the value of a Chimera object) is also useful.  

Several new abstractions were added to the Chimera data model to satisfy the requirements: 

• Configuration. A configuration holds a subset of a hypertext containing all of the Chimera objects 

needed by an application rendering a specific work revision. So, for each work revision, it holds a 

revision of a viewer, object, and view, along with all anchor revisions defined on the view, all 

links revisions containing those anchors, and all additional anchor revisions contained by the links. 

Configurations are versioned, with the intent being that each revision of a work will have a 

corresponding configuration revision. 

• Version association table. The version association table creates a bi-directional association 

between a (work identifier, revision identifier) pair, such as a filename with a revision identifier, 

with a specific configuration revision. The version association table acts as the bridge between the 

versioned repository and a versioned hypertext structure. 

• Versioned objects. For each Chimera object, a versioned object is introduces to be a container for 

its revisions. So, a versioned view, versioned viewer, versioned object, versioned link, and 

versioned anchor were all added to Chimera’s data model.  

The data model for ChimeraVP, including these new abstractions, is shown below in Figure 35. An 

example of this data model is shown in Figure 36. 
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Figure 35 – Data model of the Chimera system, with version support added. 
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Details on how the Chimera versioning proposal addressed the requirements are given below, 

organized by requirement. The sections below cover a subset of the Domain Reference Requirements, since 

ChimeraVP does not use them all. 

1. Persistent storage of revision histories. ChimeraVP uses the versioned object approach for persistent 

storing the revision history of all its objects. This is visible in Figure 35, which shows every Chimera 

object with its matching versioned object. Since revisions can only belong to a single revision history, 

the versioned object stores the predecessor/successor information. Repositories in the external 

environment are responsible for versioning works, and may use a variety of techniques for doing so; 

ChimeraVP can accommodate any existing versioning technique, as long as the external repository 

requirements are satisfied (described above, in item #19). 

2. Revision mutability, and immutability. The mutability of work revisions is under the control of external 

repositories. While the mutability of the attributes of Chimera objects was not discussed in the original 

Chimera versioning proposal, an approach that would satisfy the need for mutable attributes is to have 

a mutability flag that is settable when the attribute is created. Predefined attributes, such as those used 

for access control, would have their mutability predefined by the Chimera system. The actual contents 
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of the Chimera objects is only mutable when performing consistency cleanup after the destruction of 

anchor and link revisions. 

3. Versioning of all content types. Since ChimeraVP does not provide storage for works, this requirement 

must be satisfied by ChimeraVP’s accommodation of a wide variety of external repositories. However, 

ChimeraVP also satisfies this requirement by not making any assumptions about the content type of 

works, assuming them to be opaque objects. 

4. Revision naming. ChimeraVP can easily support this requirement by having applications store a label 

in an attribute on the Chimera object, and by establishing a convention by which a standard name is 

used for this attribute, such as “label.” 

5. Removing revisions and versioned objects. External repositories control whether work revisions can be 

deleted or destroyed. When a work revision is destroyed, ChimeraVP should remove its associated 

configuration revision, and its entry in the association table, to free up its storage. Additionally, to aid 

the scalability of the ChimeraVP repository, it should be possible to destroy old, unused revisions of 

Chimera abstractions (anchors, links, etc.). Destruction of these revisions results in a consistency 

update step, where references to the deleted objects are removed. 

6. Stability of references. The complete design space for ensuring link endpoint consistency in open 

hypertext systems is described in [41]. At present, ChimeraVP requires that applications must inform 

the Chimera system when changes are made to anchor endpoints in order for Chimera to correctly 

update the anchor endpoints. Since previous revisions are available, more sophisticated techniques are 

possible. For example, Chimera could grab the surrounding context of an anchor from a previous 

revision, then search for that context in a later revision, updating the anchor if found. However, this 

search and update capability would need to be added to individual client applications, since only they 

have knowledge concerning the internal organization of work objects. 

7. Link versioning. ChimeraVP versions links using the versioned object approach. Anchors are also 

versioned in this way, and hence links in ChimeraVP contain a set of anchor revisions. 

8. Structure versioning. The configuration, and version association table abstractions were introduced to 

provide versioning of the structure associated with a single work revision. This can be viewed as an 

instance of the structure versioning design space. The structure container is the configuration, and it 
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holds one Chimera viewer, object, and view revision, along with any number of anchor and link 

revisions. All containment relationships are referential, with multiple containment, single membership, 

no ordering, and the containee identifier stored on the container. No revision selection rules are in use.  

The version association table provides the mapping between a revision in an external repository, 

and a specific configuration revision, representing the subset of the Chimera database that applies to it. 

9. Linking to a specific revision. Support for this requirement is an emergent property of ChimeraVP’s 

design. Since any revision of a work can be associated with a configuration, and since an anchor can be 

defined on any work revision, it is possible to create a link to a specific work revision. 

10. Variant support. If an external repository uses variant segregation to model variants, meaning that each 

variant is a separate object, then ChimeraVP can provide variant support as-is, so long as each work 

variant is given a unique identifier that can be combined with its name to create the (name, identifier) 

pair that is passed to the version association table. Support for within-object storage of variants is also 

possible, so long as the external repository provides a mechanism for extracting or working with 

specific variants.  

11. Collaboration support. For collaboration support, ChimeraVP needs to provide concurrency control to 

avoid the lost update problem. Concurrency control for objects is the responsibility of applications, and 

is outside the control of ChimeraVP. ChimeraVP can provide concurrency control items in its 

repository. Since these items typically have small amounts of state, and the Chimera server creates a 

single point of control, whole object locking is a good form of concurrency control.  Locking is 

frequently used by SCM systems, and so this choice is consistent with the typical concurrency control 

mechanism used by external repositories. 

When locking, the ChimeraVP server should lock only a subset of the items in a configuration, 

specifically the viewer, object, view, and all anchors defined on the view. Links should not be locked, 

nor should anchors defined on other views. Since links span views, a policy of locking links would 

prevent collaborators from working on views reachable by links from an active view. 

12. Navigation in the versioned space. Introduction of the configuration satisfies the requirement to 

support linkwise consistent navigation.  It is possible for applications to create revision-to-revision 
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links by creating an anchor revision on a view of each work revision, then creating a link holding both 

anchor revisions. 

13. Visualizing the versioned space. The information needed by an external application to visualize the 

versioned space—the membership lists of configurations, links, and views—is the same information 

needed by applications integrating with ChimeraVP. As a result, creating an API usable by client 

applications satisfies this requirement. 

14. Goals for user interaction. Minimizing the need to ask the user for revision identifiers and names can 

be addressed by the ChimeraVP system automatically assigning revision identifiers. This will reduce 

the need for applications will constantly ask the user for this information. However, since the primary 

user interface to ChimeraVP is through applications, it is ultimately their responsibility to meet the 

user interaction requirements. 

15. Goals for tool interaction. While the addition of version control capability will lead to additional 

burdens on tool interactions with the Chimera server, aspects of the Chimera versioning proposal act to 

minimize these additions. For each user, ChimeraVP supports a series of active configurations, one for 

each work revision currently being edited or viewed by an application run by the user. Since the active 

configuration contains all of the ChimeraVP object revisions used by the application, it is possible for 

the application to omit revision identifier information, using the revision contained by the active 

configuration instead. This has the nice quality that existing applications which are versioning unaware 

still have the ability to interact with a versioned ChimeraVP repository, thus reducing the burden on 

tool integration. This is similar to the approach used by Neptune/HAM when versioning was added to 

contexts; the existence of a default context allows tools to default the revision identification in  their 

interactions with the HAM [46]. Of course, such an application would be unable to provide 

information to the user concerning the revision of link destinations, or be able to create links across 

different revisions of the same work.  

16. Maintaining consistent structures. The configuration is the key to ChimeraVP’s support for the ability 

to arbitrarily revert a single work revision in a collection or workspace.  A configuration holds only 

that part of the hypertext structure centered on a single work revision, and limits the enclosed items to 

just the endpoint anchors of all links emanating from the work’s rendition. This is much less than the 
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hypertext subset held within the composites used by composite-based systems.  Due to the focus on a 

single work revision, it is easy for ChimeraVP to select another configuration revision when a work 

revision is changed. In contrast, when a work revision is reverted in a composite, the consistency 

issues discussed in Section 8.16 arise. The drawback to the ChimeraVP approach is that each 

configuration holds such a small subset of the overall hypertext; the composite approach holds larger 

subsets, and hence provides better structure versioning. 
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Chapter 10 

Related Work 

In the process of presenting a domain model for hypertext versioning, this document has performed an 

extensive analysis of the hypertext versioning literature, often bringing in related work from the 

neighboring disciplines of hypertext, configuration management, computer supported cooperative work, 

and document management. However, there are some pieces of related work whose scope of inquiry is 

either a whole, or significant portion of, a domain. Often these are domains other than hypertext versioning, 

though there has been some limited work in this domain as well. This related work can take the form of a 

survey paper, wherein a significant aspect of a domain is analyzed in the process of the survey, but 

typically not having the same structural organization into domain characterization and domain model as the 

domain analysis presented within. Alternately, there are examples of the analysis of full domains that come 

from the software reuse community, and hence do share organizational similarities to this work. 

Within the hypertext community, the Dexter hypertext reference model effort can be viewed as an 

example of domain analysis for hypertext systems [94]. The Dexter group included researchers involved in 

the creation of many early hypertext systems, including NLS/Augment, Concordia/Document Examiner, 

HyperCard, Hyperties, IGD, Intermedia, KMS, Neptune/HAM, NoteCards, the Sun Link Service, and 

TEXTNET [95]. Together, they developed a common set of terms to describe hypertext abstractions, such 

as anchor, link, atom, and composite.  Some requirements common to hypertext systems were captured. 

Though the Dexter group was unaware of the domain analysis work being performed in the software reuse 

community, the common terms and requirements, along with the set of systems that participated, can be 

viewed as a characterization of the hypertext systems domain circa 1988-1990. The Dexter group also 

produced a high level architectural model of hypertext systems, breaking them down into a run-time layer, 
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a storage layer, and a within-component layer. This was augmented by specific operations that could be 

performed at each layer, and these operations were formally specified using the Z language in the 

workshop’s final report [94]. The operations and their formal specification can be viewed as a domain 

model for hypertext systems. After the Dexter group had concluded, the DHM system implemented the 

Dexter architecture, and refined its notion of composite [85,84]. This work can be viewed as implementing 

the domain reference architecture within the Dexter model. 

Within hypertext versioning Fabio Vitali has written the only published survey, a short paper that 

belongs to a special issue of ACM Computing Surveys on hypertext [193]. This paper provides a good 

overview of hypertext versioning, presenting its advantages for history recording, work accountability, 

collaboration, and reference permanence. The paper also presents a brief overview of some hypertext 

versioning issues, and a brief history of hypertext versioning. Despite being a good introduction to the 

hypertext versioning literature, this paper does not contain sufficient detail to be considered a full domain 

analysis. Of course, that was not its objective. 

The Hypermedia Version Control Framework by Hicks et al. presents the HURL data model, and a 

conceptual architecture [100]. The HURL data model extends the SP3/HB3 [116] data model by making 

every object versionable. The conceptual architecture adds a version control component to an open 

hyperbase system [142], wherein applications that have been integrated to work with the system can 

interact with a set of open interfaces to perform hypertext capability. Though the HURL data model builds 

upon the experiences of other hypertext versioning research, especially HyperPro [141] and CoVer [87], its 

strong roots in the SP3/HB3 data model, instead of an analysis of existing hypertext versioning systems, 

make it a weak starting point for a domain model. Though a brief description of mapping the CoVer data 

model into HURL was provided in [100], much work would need to be performed to model the complex 

containment structures of the DeltaV data model, or the revision selection behavior of HyperPro or 

HyperProp [179]. Furthermore, the act of mapping these data models into HURL would cause them to lose 

their nuances and subtleties in favor of the normative data model. The approach taken in this dissertation of 

representing the data models using containment relationships allows each data model to be expressed with 

less loss of detail. However, the Hypermedia Version Control Framework is still the first effort to 

comprehensively describe the data modeling issues inherent to hypertext versioning, and thus it can be 
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viewed as performing a preliminary domain analysis. Unlike this work, which is only an analysis, the 

Hypermedia Version Control Framework was implemented by extending the HB3/SP3 system, providing a 

concrete instance of the conceptual architecture and domain model. 

Similar to the Hypermedia Version Control Framework, the HyperForm system provides a hyperbase 

containing a version control component, and demonstrated models of the hypertext capabilities of 

Neptune/HAM and the Danish HyperBase [202]. The later HyperDisco system extended this work [204]. 

This work focuses primarily on the architecture needed to flexibly represent and implement various 

hypertext data models, including components for concurrency control, notification control, version control, 

access control, along with query and search. The drawback to this work is its lack of flexibility. The 

concurrency control component only supports locking and short database transactions, while the version 

control component supports only state-based versioning. Thus these components are not be able to model 

the full range of capabilities found in the hypertext versioning domain. Nevertheless, this architecture, 

along with the one in the Hypermedia Version Control Framework, provides a good starting point for the 

development of a domain reference architecture. 

Outside of hypertext versioning, two survey articles are relevant to hypertext versioning: the Conradi 

and Westfechtel survey of versioning data models [35] in versioning and configuration management 

systems, and the Katz survey of versioning in engineering database systems [108]. Not surprisingly, by 

focusing on a different domain, Conradi and Westfechtel found different data models. In addition to the 

predominantly state-based versioning, where each revision has distinct, persistent identity, which Conradi 

and Westfechtel term extensional versioning, they also discuss intensional versioning, where revisions are 

constructed from property-based descriptions. They also provide a more detailed discussion of change-

based versioning, a taxonomy of versioning data models, as well as a discussion of the interplay of 

“product” space and version space. Due to its broad consideration of versioning and configuration 

management systems, this work will be integrated with the data model herein as the domain of inquiry is 

expanded from hypertext versioning out to include versioning and configuration management systems. 

Many of the versioning issues encountered in hypertext versioning and configuration management are 

also found in engineering database systems that support the development of integrated circuits. Randy Katz 

performed a substantive survey of the version data models in engineering database systems [108]. Similar 
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to this work, Katz’s survey used as basic modeling primitives derivation (predecessor/successor), 

composition (containment), and variant (is-kind-of) relationships. These were then used to show how 

engineering database systems model various versioning and work scenarios. The survey provides a set of 

unified terminology, a unified data model, and a high-level conceptual architecture, and thus has many of 

the outputs associated with domain analysis. Due to the similarity in modeling approach, this work will be 

important when merging engineering database systems into this domain analysis. 

Much has been written on the general practice of domain analysis. Descriptions and processes for 

performing domain analysis are provided by Arango in [9] and his dissertation [10], by Prieto-Díaz in 

[155,156], and by Hooper and Chester in [102], p. 51-66. The domain-specific software architecture 

(DSSA) approach is described by Tracz in [187,188], by Might in [131], and in curriculum form by Taylor, 

Tracz, and Coglianese in [184]. 
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Chapter 11 

Future Work 

As a domain, hypertext versioning combines a wide range of version control, collaboration, hypertext, 

and user interface issues, with a relatively small set of systems that have explored the design space so far. 

As a result, it is not at all surprising that the systematic organization of hypertext versioning knowledge 

performed during this domain analysis results in a number of broad, and interesting avenues for future 

research. 

When we first defined the hypertext versioning domain, the definition only included those systems that 

whose links could be traversed using a hypertext style of navigation. However, since links are very similar 

to the kinds of relationships that also exist in document management, engineering databases [108], and 

configuration management systems [35], it is a natural direction to expand the domain description to fully 

encompass these related domains. Indeed, recent work within the SCM community by Estublier et al. on 

similarities with product data management (PDM) [62], and by Westfechtel and Conradi on parallels with 

engineering data management (EDM) [197], highlight a growing awareness of this domain overlap. Where 

possible, aspects from these other domains have been included in this document, but only the hypertext 

versioning domain was fully explored and represented. Future work will explore these other domains in 

depth, and will expand the model based on new abstractions, terminology, requirements, and design spaces 

gathered from this examination. Ideally this work will be the foundation for a new domain, that of support 

environments for complex information artifacts. 

This domain analysis has not had code reuse as goal, choosing instead to develop a characterization of 

the domain, and a domain model. In a typical domain analysis, these steps are followed by the creation of a 

reference architecture for the domain, and reusable components can be developed for this architecture, 
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sometimes using automatic code generation [16,17,136,10]. Especially since the design spaces for 

containment and representation of revisions have been well parameterized in this model, it would be a 

straightforward extension to create a reference architecture, and investigate automatic generation of 

components from a formal specification. We envision a “YACC (Yet Another Compiler-Compiler) for 

hypertext versioning” where the primary input is a formal description of the data model of the system, and 

the output is a repository that implements the data model. We expect that the formal model will need to be 

augmented, as YACC files are, with a description of the semantics associated with elements of the data 

model. The system would also have some built-in functions to handle common operations, such as link 

traversal, or compound documents. 

The representation of variants within hypertext versioning systems is a relatively unexplored area, 

since only the CoVer [87] system has addressed this issue at all. Configuration management and document 

management systems have tried several approaches that have not yet been used for hypertext versioning, 

such as within-object variants, change-based approaches, and system models. Exploring these alternate 

techniques, along with a thorough exploration of variant management for hypertext systems in general, 

would be a valuable addition to this work. 

Composite-based hypertext versioning systems tend to use branching as their concurrency control 

technique. However, there are several concurrency control techniques that do not use branching. In 

particular, it would be interesting to employ a synchronous editor that uses operational transforms [58] in a 

hypertext versioning system.  Such a system would not need to use branching for version control, and this 

might make it easier to represent other kinds of variants using branching. In general, the insight that variant 

management and concurrency control are entangled issues should be further explored to tease out the truly 

orthogonal aspects of the combined variant and concurrency control design space. 

To date, user interface issues have not been the focus of investigation in hypertext versioning systems. 

This observation also holds for configuration management systems too. Research that focuses on data 

modeling and system modeling has been more the norm. Since there have been concerns raised about the 

user-perceived complexity of hypertext versioning systems [141], exploration of user interfaces for 

hypertext versioning systems, and for containment structures in general would provide further information 

on whether these systems are too complex. Visualizing containment data structures for system builders is 
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also an issue. If it is possible to automatically generate a hypertext versioning repository based on a formal 

model, is it also possible to automatically generate the containment data model diagrams? The realm of 

possible containment structures is vast, and the ability for humans to understand them is limited. Automatic 

visualization of containment structures could help this understanding process. Another user interface issue 

is how to visualize and control versioned link traversal at the user interface. Users ideally would like to 

know the revision and time of the object they are about to navigate into.  

Providing awareness of other collaborator’s state and activities is an issue in many collaborative 

systems, and hypertext versioning is no exception. However, this area has not been thoroughly investigated. 

Due to the influence of time in the system, hypertext versioning adds new requirements to the general 

awareness problem. For example, it would be nice to know what time another user is navigating at (e.g., 

what is the current setting on the time dial of their way-back machine?) Also, knowing the revision of each 

object and container that is being worked on would also aid awareness. It would also be useful to know 

where in the whole hypertext structure other collaborators are working. 

An important issue for composite-based systems is controlling and visualizing hypertext network 

merges, since this is how collaborators combine their separate strands of work. Yet, this area has received 

very little research attention. Since the structural aspects of merging depend on the system’s data structure, 

it might be possible to automatically create a merge tool from a description of the system’s data model. One 

area that began to be explored in [90] was visualizations support the merge process. However, these user 

interfaces were never tested against actual users. We would like to know which visualizations users find it 

easy to understand, and which are difficult? Importantly, is the concept of merging hypertext networks too 

confusing for general computer users? 

Finally, this work has almost entirely focused on versioning of static objects and links. However, 

dynamic content abounds on the Web, and research systems such as Microcosm [43] have highlighted the 

utility of dynamic links. The general problem of versioning of dynamic content and dynamic links is 

unsolvable, since too many controlling variables (e.g., hardware characteristics, operating system version) 

are outside the realm of control of the hypertext versioning system. However, there might be some middle 

ground where the hypertext versioning system could work in tandem with an application in the user’s 

environment to control some system aspects normally considered out of bounds, and thereby provide some 
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versioning capability for dynamic objects and links. Such an approach might work in a trusted 

environment; security would certainly be an important issue in such a system. 
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Chapter 12 

Contributions and Conclusion 

Taken as a whole, the major contribution of this work is its systematic organization of the vast majority 

of information concerning hypertext versioning. This was accomplished by performing a domain analysis 

over existing research in hypertext versioning, at times drawing upon relevant research in the disciplines of 

configuration management, computer-supported cooperative work, and document management. The field 

of domain analysis, traditionally used to foster software reuse, was employed here to take advantage of its 

framework for organizing information about a specific domain. This is the first application of domain 

analysis techniques on hypertext systems. Furthermore, by concentrating solely on reuse of the domain 

characterization and domain model, and not on actual code reuse, this is an unusual application of domain 

analysis techniques.  

The hypertext versioning domain analysis yielded a characterization of the domain, consisting of 

domain terminology, a taxonomy of hypertext versioning systems, and a set of domain reference 

requirements. All of these outputs of domain characterization are novel contributions. By detailing the 

origin of the terms anchor and domain, and by cataloging the terms systems use for their linkable 

information and for anchors, the domain terminology has increased our knowledge of these terms. Prior to 

this work it was not known that Norm Meyrowitz coined the term anchor in the mid to late 1980’s, or that 

the term domain has roots back into Artificial Intelligence. The taxonomy of hypertext versioning systems 

organized systems into five categories: versioning for reference permanence, systems that version data, but 

not structure, composite-based, Web versioning, and open hypertext versioning. This categorization of 

systems is a first for hypertext versioning, and encompasses work that has been published in both the 

hypertext, and configuration management communities on hypertext and Web versioning. The 
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comprehensive collection of reference requirements is also a solid contribution, capturing more 

requirements, in greater detail, than previous summaries such as [154] and [179] which provided a 

foundation for this work. 

The second major output of domain analysis, the domain model, itself contains many significant 

contributions. The first aspect of the domain model is the data modeling model. By focusing on 

containment relationships within hypertext systems, this data modeling model has exposed both that 

containment is inherent to all hypertext systems, and that data models cannot be fully understood without 

also understanding the containment relationships. Most existing hypertext systems provide only an object 

oriented inheritance hierarchy to describe their data models. However, the experience of creating a standard 

collaborative work scenario across several composite-based systems showed that inheritance relationships 

offer little explanatory power when describing how the system represents hyperdocuments and working 

areas, while containment relationships, by highlighting how container objects and links hold other objects, 

provided a much better understanding. Finally, the act of using a consistent approach to modeling the data 

models of several hypertext, and hypertext versioning systems, makes the similarities and differences 

among their data models more consistent. 

Modeling static hypertext links as containers, using the same set of containment relationships, is 

another contribution. Viewing links as containers allows the data models of hypertext versioning and 

configuration management systems to both be characterized as systems of containment relationships. While 

this robs links of some of their special status, it allows these different classes of systems to be examined in 

a more commensurable way, teasing out similarities previously hidden by terminology. 

This examination of the containment properties of hypertext versioning systems would not have been 

possible without a solid model of containment. While containment has often been employed and discussed, 

very few researchers have moved beyond the deceptive categories of reference and inclusion containment 

to characterize all of the subtleties in containment. This comprehensive model of containment has 

applicability to a wide range of object management and file systems. 

The second aspect of the domain model, the characterization of the design spaces for meeting the 

domain requirements, also resulted in several contributions. The very expression of this information as a 

space of design choices is a useful contribution, since existing work tends to explore a subset of the entire 
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space. By describing all choices, along with their tradeoffs, a more holistic view of each area emerges. 

Tying these design spaces explicitly to specific requirements also exposes cases where little is known, and 

more research needs to be performed. 

The three-layer model of the state-based versioning design space provides a clean separation of 

concerns between the abstract notion of a revision history, the three major approaches for representing that 

history (versioned object, within-object, and predecessor/successor relationships), and the many ways these 

approaches can be concretely realized. This allows the characteristics of each approach to be modeled and 

evaluated independent of their specific concrete realization, and bases the variation among versioning 

approaches on differences in containment relationships between the versioned object, revisions, and 

predecessor/successor relationships. The description of the link versioning design space as an application of 

the general versioning design space is novel, since existing hypertext versioning systems have only 

provided a single link versioning mechanism, without exploring design tradeoffs.  

Building on the model of containment, and the versioning design space, the structure versioning design 

space concisely describes a range of techniques for recording the history of hypertext structures. The major 

aspects of this space are a determination of the objects contained by the structure container, the versioning 

design space choice for the structure container and its containees, the containment design space choice for 

all container/containee pairs, and the location and scope of revision selection rules. Where previously 

composite-based hypertext versioning systems have explored only individual points, the structure 

versioning design space teases out their commonality, providing a map of design possibilities and a 

coherent model for describing the structure versioning capabilities of existing systems. 

An unexpected result from this work is the recognition that the concept of variance encompasses both 

the notion of revisions, which are time-based variants, and concurrency control, concerned with per-user 

variants. The taxonomy of concurrency control techniques in terms of the lifespan of per-user variants is 

useful because it spans the branch-based concurrency control employed in versioning systems, as well as 

other concurrency control techniques that assume no versioning is in use. 

Finally, though readers holding this document may find it hard to contemplate, entering into this 

project it was unknown whether domain analysis techniques could usefully be applied to hypertext 

versioning systems, since this domain is more abstract, and disparate than many prior foci of domain 
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analysis. The standard outputs of domain analysis, a characterization of the domain, and a domain model, 

have in practice provided a useful structure for separating concerns within the hypertext versioning domain. 

This work’s primary motivation is to enhance the state of hypertext versioning knowledge so that 

future engineers creating systems for use in software engineering, document management, audits, law, and 

archives, would be able to quickly learn what is known about hypertext versioning. This knowledge would 

allow them to add hypertext capabilities to systems that otherwise would not, due to the lack of 

understanding concerning the interactions of links and the versioned objects that populate these use cases. 

However, whether this work will, in fact, have this effect is still unknown. To achieve this goal, the results 

in this document need to be distributed. In this respect, things are off to an inauspicious start, as 

dissertations are notorious for their lack of readership. Additionally, further work needs to be done to 

embrace different types of object management systems, not just those encountered in hypertext systems. 

The more broadly this work applies, the more likely a particular project will find it relevant. Though a 

significant work in its own right, this dissertation is just a way station. Much work remains to be done. 
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