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Localization has many important applications in wireless sensor networks
(WSNSs). A variety of technologies, such as acoustic, infrared, and UWB
(ultra-wide band) media have been utilized for localization purposes. In
this paper, we propose a holistic, bottom-up design of a UWB-based com-
munication architecture and related protocols for localization in WSNs. A
new UWB coding method, called U-BOTH (UWB based on Orthogonal
Variable Spreading Factor and Time Hopping), is utilized for minimum
interference communication, and an ALOHA-type channel access method
and a message exchange protocol are used to collect sensor location and
signal strength information in WSNSs. After establishing the UWB path
loss model, we apply the maximum likelihood estimation (MLE) method to
compute the distances between neighbor nodes using the RSS information.
Then, we propose NMDS-MLE (Non-metric Multidimensional Scaling
and Maximum Likelihood Estimation) localization algorithms by match-
ing the sensor coordinate estimates with the distance estimates derived
from the path loss model. The performance of the system is validated
using theoretic analysis, simulation and real testbed experiments.

Keywords: Orthogonal Variable Spreading Factor (OVSF), Time Hopping (TH),
Ultra-Wide Band (UWB), localization, ranging.

1 INTRODUCTION

Large-scale economic wireless sensor networks (WSNs) are widely deployed
for environmental monitoring and control operations. Object tracking and
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localization are two important capabilities in many WSN applications [3].
The basic approach to a WSN localization is to infer distances to anchors
(coordinate-known nodes), then to derive targets (coordinate-unknown nodes)
by trilateration or other estimation algorithms. The first step is called
“ranging”, and the second step is called “localization”.

So far, various ranging solutions have been proposed based on two major
ranging techniques: 1) time of arrival (ToA) [16], time difference of arrival
(TDOA) and angle of arrival (AOA), as used by GPS systems, 2) path loss
models describing the propagation characteristics of radio received signal
strength (RSS) [4] or acoustic signal strength [21], 3) Range-free techniques
using hop count or centroid methods [9]. In this paper, we adopt the path loss
model to derive ranges, because it only requires signal strength information,
which is easy to collect in WSNSs, in contrast to expensive synchronization or
topology information collection used in other techniques [8].

Ranging algorithms based on path loss model depend on the wireless
medium and signal transmission methods. In order to provide precision
ranging, we utilize the UWB (ultra-wide band) transmission and coding tech-
nologies in both indoor and outdoor environments. Beside providing high data
bandwidth, UWB exhibits excellent resistance to co-channel interference.
IEEE 802.15.4a has appeared asdbéacto standard to provide low-power
long-distant low-data-rate service for real-time communication and precise
ranging and localization applications [1, 14].

Of the different UWB transmission techniques, Impulse Radio Ultra Wide-
band (IR-UWB) is most attractive for localization purposes in WSNs [22].
However, existing coding algorithms for IR-UWB communication systems,
such as DS-UWB (Direct Sequence UWB) and TH-UWB (Time Hopping
UWB) [13] have failed to guarantee high quality localization due to mul-
tipath and multi-user interference. In this paper, we apply the Orthogonal
Variable Spread Factor (OVSF) coding algorithm in IR-UWB networks to
solve the multi-user interference problem in data transmissions.

Once the approximate distances between a target and a subset of anchor
points are derived in the WSNs, the target coordinate can be derive by local-
ization algorithms. Savarest al. presented a trilateration algorithm based
on least squares (LS) method in large-scale WSNs [18]. Cagilah [7]
proposed a GPS-free positioning system for mobile ad hoc networks, by first
establishing the local coordinates of two-hop neighbors with each node as
the origin, then tuning these local coordinates to the global coordinates of
the entire system. DV-coordinate (distance vector) algorithm [15] applied a
similar idea.

Different from trilateration algorithms, the MDS (Multidimensional Scal-
ing) method translates data objects representaéd-dimensional similarity
metric to locations in the 2- or 3-dimensional Euclidean space [5]. The rela-
tive map provides partial and relative inter-nodal relationships, whereas the
absolute map conforms to the relationships in the relative map. Therefore,
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MDS requires less information and configuration overhead than other local-
ization algorithms in WSNs, and provides strong resilience to measurement
errors.

Several variants of MDS-based localization algorithms exist. MDS-MAP
uses connectivity information (whether or not two devices are in range)
for localization [20]. MDS-MAP(P) improved the basic MDS-MAP on
anisotropic topologies [19] by building the local relative map of a small sub-
network for each node using MDS, then patching them to form a global relative
map. However, most of MDS algorithms were based on the assumption that
the proximity between nodes in the relative map should be proportional
to Euclidean distances in the absolute map in the underlying quantitative
transformation function, which is not flexible or robust.

In this paper, we present the NMDS-MLE (Non-metric MDS and Max-
imum Likelihood Estimation) localization algorithm. In contrast to MDS
which relies on accurate distance measurements to derive the Euclidean
coordinates, NMDS only needs pair-wise comparative distance relations,
represented with “less than”, to adjust the Euclidean coordinates.

In NMDS-MLE, we deploy a small number of anchor nodes along with
target nodes in the WSN, and derive the comparative distance relations in the
relative map between possible pairs of nodes according to the RSS (Received
Signal Strength) measurements using the MLE method based on the IR-UWB
path loss model. The known coordinates of the anchor nodes provide the
transformation matrix between the relative map and the absolute map, and
the transformation matrix is used to derive the actual coordinates of the target
nodes in the WSN.

NMDS-MLE is different from other MDS variants in that it only utilizes
the comparative distance relationships to derive the relative map, instead of
the proportional distance measurements.

Overall, the contribution of this work is the following:

1. Anew UWB coding method, called U-BOTH (UWB based on Orthog-
onal Variable Spreading Factor and Time Hopping), is proposed for
minimum interference communication.

2. An ALOHA-type channel access protocol and a message exchange
protocol are used to collect distance information in WSNSs.
3. The UWB path loss modelin U-BOTH is derived and applied in the max-

imum likelihood estimation (MLE) method to compute the distances
between neighbor nodes using the RSS information.

4. The NMDS-MLE (Non-metric Multidimensional Scaling and Maxi-
mum Likelihood Estimation) localization algorithm is proposed com-
parative distance information.

The rest of the paper is organized as follows. Section 2 describes the
basic assumptions of the localization system, and the notation used in this
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paper. Section 3 presents a new IR-UWB coding method, called U-BOTH
(UWB based on Orthogonal Variable Spreading Factor and Time Hopping),
and provides the signal processing model. Section 4 specified a message
exchange protocol for localization purposes using U-BOTH. According to
the path loss model and the RSS information gathered by the target nodes,
Section 5 and Section 6 present the ranging and localization algorithms using
the MLE and NMDS methods, respectively. Section 7 evaluates the system
using simulations and real testbed prototyping. Section 8 concludes the paper.

2 ASSUMPTIONSAND NOTATION

We assume that a small set of sensors in a WSN work as anchors with known
coordinate information, while the others are target nodes whose coordinates
are to be determined. Each node in the WSN is able to exchange messages
with each other using the communication protocols specified in this paper.
Although our algorithms can be easily extended to carry out target tracking
operations, we assume that all anchors and targets in the WSN are stationary
for simplicity.

For convenience, the notation in Table 1 is used in this paper.

3 PHYSICAL LAYER MODEL

3.1 UWB Signal Spreading and Modulation

In order to achieve accurate localization, a reliable physical layer communi-
cation technique is highly desirable that reduces bit error rate (BER), while
mitigating the multi-users-interference (MUI) and Gaussian noise interfer-
ence. Therefore, we utilize a UWB system based on time-hopping (TH)
signal transmission as well as OVSF (orthogonal variable spread factor) for
spreading out the symbols in the physical layer.

OVSF (Orthogonal Variable Spread Factor) was extensively used in CDMA
systems to provide variable spreading codes [2]. Shorter OVSF code lengths
are usually optimized for short-distance and high-data-rate transmission in
less crowed environments due to its smaller spreading factor. TH (time hop-
ping) is one of many signal modulation methods used by UWB. We describe
a system, called U-BOTH (UWB modulation Based on OVSF and Time Hop-
ping), which applies the time-hopping pulse position modulation (TH-PPM)
algorithm to encode UWB pulse streams, and OVSF direct sequence to spread
the user data bit stream.

Figure 1 illustrates the utilization of time hopping (TH) pulse position
modulation and OVSF spreading to encode a single bitin the user data stream.
First, U-BOTH sends each bitin the bittime, denoted’pyThen it modulates
the bit 1 using a TH code, 12110021, in which each digit denotes a chip slot
position within a frame timeT;, to send a broadband radio pulse. The number
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Notation Meaning

Tt The frame time.

Te The chip time.

Ty The bit time.

Ns The number of pulses for every bit.

N The number of chips for every frame.

d’ The OVSF code of transmitter

S The spreading factor of OVSF codes.

Ng The period of OVSF code.

EX The transmission energy of transmitter
[SLY The received energy of transmitter
Po(t) The energy normalized pulse waveform.

q' The time-hopping code with peridds.

Y The indication of information bib.
ru(t) The input useful signal of the receiver.

Fmai (1) The input multiple users interference signal of the receiver.
n(t) The input additive white Gaussian noise of the receiver.
m(t) The correlation template of the receiver.

Z, The output useful signal of the receiver.

Zmi(t) The output multiple users interference of the receiver.
Zn The output additive white Gaussian noise of the receiver.
No The noise spectral density.

T The delay of the other transmitter’s interfering pulse.
M The mean value of variable
oy The standard deviation of a random variakle

erfc (X) The complementary error function of value

Pry The bit error rate (BER).
TABLE 1

Notation and Meaning

of pulses is denoted hys. Therefore, each bit durationTs = T; x Ns. Each
chip slot lasts foiT, sufficient to send a short UWB pulse signal.

After the initial pulse position modulation using UWB signals, the pulse
sequence is again applied with OVSF code so that the phases are shifted by
7 to provide orthogonality between multiple users. The length of the OVSF
code is called the spread fact®¥, which is equal td\s.
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FIGURE 1
U-BOTH: Interference Resistant UWB Modulation Using Time Hopping and OVSF.

In U-BOTH, the TH code is a pseudo-random sequence generated from
foreknown seeds, such as node IDs. While the OVSF codes are selected from
a well-defined set of orthogonal spreading codes.

To formally analyze the system in this paper, we represent the transmitted
signal by thenth transmitter in Eq. (1):

400
) =Y d'af N vENPolt —iTr — ¢'To), (1)
j=—00

in which, d" = £1 is the OVSF code with the peridd;, E7y is the energy
of the nth transmitterpo(t) is the energy normalized pulse waveforef}, e
[0,N; — 1] is the TH code with periotils anda'ﬂi/,\,sj indicates the data stream
bit. If the data bit is 1a[j \, = +1. Otherwiseaj \, = —1.
At the receiver side, the received signal consists three source of informa-
tion:

r(t) = ru(t) + roa(t) + n(t),

in which, ry(t) is the desired user signal,(t) is co-channel interference
from multiple users, and(t) is the additive white Gaussian noise (AWGN).

Denote the pulse energy of timeth transmitter adkl,. Without loss of
generality, we assume that the first user’s transmission is the desired signal at
the receiver for simplicity, then Eq. (2) provides the desired signal function
at the receiver:

~+00
() = D dajngy Ebolt —jTr = ¢ To). 2

j=—00
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We define the correlation template of the receiver:

(i-+1)Ns—1

mit) =Y d'po(t —jTr — ¢'Te);i € (— o0, +00). €)
j=iNs

3.2 Single User System Analysis

As the first step, we assume that the channel is AWGN multipath-free channel,
and that the transmitter and the receiver are synchronized. In a single user
signal processing system, the input of the receiver has two paty:and

n(t), and the output of the receiver in time interval Tg] is represented by:

Tp
Z=2+2Zn= / (ru(®) + n(t))m(t)dt. 4)
0

In Eq. (4), the useful output signal is:

Nl T TeTe 1411 1
z,=Y / 1 didal Bl
i=0 ijJer Te
wherew(t) = po(t — jTr — ¢/ Te)po(t — jTr — ¢'Te).

Becaused'd' = 1, po(t) is the energy normalized pulse waveform, we
have

Zu= 335" Jo° af iy EdxPo(dpo(t)at
= Neal; ./ Edx 3° po(t)pot)ct
Al 1
= &N Nsy/ Brx

In EqQ. (4), the output noise signal is:

Ns—1 .7, Ns—1
Zy=Y_ / d'po(®)n(t)dt = > " d'n;,
j=0 70 j=0
wheren; is Gaussian random variable with mean 0 and vari&la¢2. Because
dj1 is not a random variable, the varianceZyfis:
Ns—1 N
D(Zn) = D( ) d'mj) = N5,

j=0

Zn ~ N(0,NoNs/2).
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Suppose that the statistical probabilities of databbit 0 andb = 1 are
equal, we obtain the BER (bit error rate) of the single user system in AWGN
channel as follows:

Pry — %P(Z > 0lb=0)+ %P(Z <0b=1)=P(Z > 0b=0).

Because; \ = —1if b=0, then the useful output &, = af; ,y_Ns,/Efx =

—Ns,/Ey. Using Eq. (4), the BER become:

Pr, = P(Z > Olb = 0) = P(— Ns,/E& + Z» > 0)

= P(Zy > Ns,/EL)

It can be rewritten by complementary error function exiicas follow:

1
Pry, = %erfc ‘/%

Whereerfc(x) = % 17 exp (— t2)dt.

Because U-BOTH is a rate variable system using OVSF, we analyze the
relation between BER and the bit rate. Suppose the system’s OVSF code
is a code tree of 6 layers [6], and the spreading factor is 2, 4, 8, 16, 32,
64, respectively. Further suppose the basic rate of our systé ithen
the corresponding bit rate of U-BOTH R, = iRy (i= 32, 16, 8, 4, 2, 1,
respectively).

Denote the bit rate d8,, whereR, = iRy, i = 1, 2,--- , 32, we can get the
relation between BER and the bit rate:

Prp, = % erfc (,/ %)
®)
- %f( /%>

Eqg. (5) shows that the BER decrease when the spreading f€tiocreases

or when the bit rate decreases. Therefore, we can agjusst adapt different
environments with various noise levels while maintaining the same bandwidth
of the signal. This is the main reason we adjust OVSF codes in our system.

3.3 Multi-User Interference Analysis

In multi-user communication system, the received signal includes multi-user
interferenceZy,; and noises. Th&, + Z, part is the same as Eq. (4), but the
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FIGURE 2
The Interference to User 1 by Timeth User.

multi-user interferenc@q,; is additional. Because the phase and delajf
interfering pulses is random as shown in Figure 2, we have to compute the
interference’s variance.

Suppose that" is uniformly distributed over [OT;), then the interference
variance of the desired signale. the signal from the 1st user, caused by
transmittem is [13]:

o = e f (J_ / dpoft — “)po(t)dt)) de.

Therefore, the total interference variangg; from all other transmitters is:

Nuy NGED T Te | . 2 |
Z<_TfRX /o ( /0 dldpo(t — 7 )po(t)dt> dr )

n=2

Because the delayfor all transmitters has the same distribution, we get the
following formula:

N Ny T Te 2
o = Y EN ( / ( 0 d,-ldi”po(t—r“)po(t)dt> dr”)
n=2

in which,

2

Ts Te
ai = | ( / d,-ldi“po(t—ﬂpo(t)dt) dr

= /OTf R2(r)dr.
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i ici _ 1 _ g _ 4R
Accgrdlng to [13], .and nopcmg 'thétb = NN an.dNS =S = R, Eg.
(6) gives the BER in multi-user interference environments.

Prp =

N

-1
2 2 o 0.2 1 ZNU =
MT; £=n=2 =RX (6)

_ 1\ —1
Terfc| | (128R°Eéx> l + (—N—Eéx ) l
27PN Pl %R Yontz B

4 NETWORK PROTOCOL OPERATIONS

U-BOTH based communication requires each node to encode signals using
specific OVSF codes. In distributed wireless networks, code assignments are
categorized into transmitter-oriented, receiver-oriented or a per-link-oriented
code assignment schemes (also known as TOCA, ROCA and POCA, respec-
tively) [10, 12]. Regarding the ways of assigning the OVSF-TH codes and
encoding the MAC data frames for transmissions, we propose two different
ways to implement multiple access protocols using U-BOTH.

ROCA-Based Protocol Operations The first approach is based on the
receiver-oriented code assignment (ROCA), in which case the data packet
transmissions are encoded using the unique OVSF-TH code assigned to the
receiver. Beside ROCA, there is a common OVSF-TH code for bootstrapping
and coordination purposes.

In ROCA scheme, in order to carry out localization algorithms, each node
sends location request messages using the common OVSF-TH code to the
neighbor nodes. The request message includes the request command, and
the receiver's OVSF-TH code. Upon receiving the request message, neighbor
nodes sends back a response message using the receiver's OVSF-TH code
using a random backoff mechanism. Handshake messages provide both RSS
information between pairs and the estimated coordinates in the current rounds.

TOCA-Based Protocol Operations The second approach is based on
transmitter-oriented code assignment (TOCA), in which case each packet
transmission is encoded using two OVSF-TH codes — one is a common
OVSF-TH code to encode the common physical layer frame header, and the
other transmitter-specific code is to encode the physical layer frame payload.
The frame head includes the transmitter-oriented OVSF-TH code for encoding
the frame payload.
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Because the physical layer headers are sent on a common OVSF-TH code,
the physical layer header transmissions resemble those of ALOHA networks
with regard to packet collision. Because the headers are usually short, the
collision probability is low.

On the other hand, because the data frame payload is transmitted on
unigue OVSF-TH codes, the interference between the payload and other frame
headers and payloads is dramatically reduced.

In both ROCA- and TOCA-based systems, packets from the neighbor
nodes can be lost. However, this does not affect the overall performance of
our localization algorithms because they tolerate such losses.

After getting the respective RSS information between each pair of hodes,
the network calculates its coordinate in two steps — ranging and localization.

5 RANGING ALGORITHM

Ranging is to estimate the approximate distance between adjacent nodes. We
use the MLE (maximum likelihood estimation) method for such calculations.
First of all, we need to establish the path loss model of the UWB channel
in order to inversely derive the distance information from received signal
qualities.

5.1 ThePath Loss Model

Itis well-known that the path loss model can be expressed by the log-distance
path loss law in many indoor or outdoor environments, as shown by Eg. (7).

PM@:G@+NW@M%O+Sdz% @)

in which
e dy is the reference distance (e.g. 1 meter in UWB medium),
e PLy means the path loss in dB @,
e dis the distance between the transmitfex)(and receiverRx),

y refers to the path loss exponent which depends on channel and
environment,

S is the log-normal shadow fading in dB. Usuallg,is a Gaussian-
distributed random variable with zero mean and standard deviagion

Eq. (7) could construct a statistical path loss model for UWB propagation
in different environments. The path |d8s(d) can be expressed as a Gaussian-
distributed random variable with:

S~ N(0,0d),
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PL(d) ~ N(PLo + 10y log,yd, 03).
The probability density functiompf) of path lossPL(d) is:

[PL—(PLo+10y logyod)]?
- 2

20,
p(PL) = & >

\/2nod

IEEE 802.15.4a Task Group provided Channel Model 1-9 by taking lim-
ited real measurements to determine the values, e and other variables

in different situations. When deploying real UWB networks, people could
approximately choose the corresponding channel model with the parameters
specified in IEEE 802.15.4a.

(8)

5.2 Ranging Algorithm based on Maximum Likelihood Estimation

The distance between the transmiffgrand the receiveRx in Eq. (7) can be
calculated by the general ranging method between two nodes using the RSS
information:

. PL(d)—PLo—S
d=10 1

Receiver computes the distance between the transmiittand the receiver

Rx using random valueS. However, in above single random ranging, the

random variables selected by the sensor nodes are not exactly those in

the real time-variant channel. In order to avoid the ranging errors caused by

the large deviation between the estimagdalues and the red& values in

each round of ranging estimation, we propose an iterative ranging based on

MLE (maximum likelihood estimation) in UWB wireless sensor networks.
SupposePL; is theith observation value, we get the joint conditiopef

p(PL|d) using Eg. (9).

_ [PLi—(PLo+10y log; o d)]?

N 202
p(PLId) =[] > 9)
i=1 J2nad
The necessary condition to compute the MLEa$:
dlnp(PLId) 10Ny (1 <N o
90 T 5ZdIn10 (R X P — PLo — 10y logyod) 10

=0.
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We solve Eqg. (10) and have:

N
log,pd = ToNy le PL; 10y
i=

Therefore, the MLE based RSS UWB ranging is:

- 1 N p—Plo
d = 101Ny 2P 10y | (11)

6 LOCALIZATIONALGORITHM

6.1 Multi-Dimensional Scaling (MDS)

MDS (Multidimensional Scaling) is a statistical technique for exploratory
data analysis or information visualization. MDS collects the proximity data
between each pair of spatial objects as reference. Then it visualizes objects
as points in a low dimensional Euclidean space and represents these prox-
imity data as distances between points. In order to derive accurate results,
MDS has to find some solutions that relate distance information to proximity
information as closely as possible.

Suppose that denotes the number of different objects, and the proximity
for objectsi andj is denoted byp;. Thus, we derive a proximity matrix
Pnxn = pij. The coordinates of mapping points are represented by a matrix
Xnxm, Wherem s the dimensions of the solution, e.g. 2D or 3D.

Now, let d;(X) be the Euclidean distance between pointndj with
coordinates iXn.m, respectively. The objective of MDS is to find a matrix
X so thatd;j(X) proportionally matcheg;; as closely as possible, which is
presented by(p;) ~ d;j(X). The closeness is measured by meSiRESS as
follows:

STRESS = Z [f () — dij X)1%

MDS algorithms are categorized into several types, depending on whether the
similarity data is quantitative or qualitative, and are called metric MDS and
non-metric MDS, respectively.

Classical metric MDS formulates the relationship between proximity data
of objects and distances in the Euclidean space by transformation functions. In
order to find a perfect fithess between proximity data and Euclidean distance,
the transformation formuld; (X) = f(p;) is pursued, such as a linear model:
dij(X) = a+ bp;j. Becausel;(X) represents the Euclidean distance between
pointsi andj in coordinate matrix, MDS rests on the fact that the coordinate
matrix X can be derived by double centering and eigenvalue decomposition
from the proximity matrixP with the least error.
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The relationship between the proximity of objects and the Euclidean dis-
tances of points in Non-metric MDS is not as strict as metric MDS. Non-metric
MDS only requires a monotonic relationship between them.

When Non-metric MDS takes proximity data of different objects to con-
struct corresponding spatial coordinates, it only requires that the rank order of
the proximityp;; have to keep the same ordinal level as the distasicdhatis,

Vi, j kL opi < pe = dij(X) < da(X).

Compared with metric MDS, the monotonic assumption that the data is mea-
sured at the ordinal level in Non-metric MDS makes it more flexible and
applicable for localization in wireless sensor networks.

6.2 TheNMDS-MLE Localization Algorithm

NMDS-MLE localization algorithm combines the ranging and localization
processes. Ranging is based on the iterative RSS information collected by
above U-BOTH UWB system and refined by the MLE method. Localization
is based on the NMDS algorithm. As a whole, NMDS-MLE localization
consist of 5 steps:

1 Gather RSS information between neighbors by U-BOTH system in the
network, and form a sparse matfk which is derived from the esti-
mated distances denotedyr;; is estimated by iterative ranging based
on RSS information and MLE method. For the nodes that is out of the
communication range;; is zero.

2 Construct the proximity data matrX based on sparse matiix The
estimated distang® between every pair of nodes in the network is com-
puted by the shortest path algorithm, such as the Dijkstra’s or Floyd’s
algorithm.

3 Construct the coordinate system to plot the objects in the Euclidean
space and obtained the distance mayiromposed by the Euclidean
distanced;;.

4 Compare the ordinal level between aforementioned two types of dis-
tance information: estimated distanpg and Euclidean distanod;,
and refine the relative coordinaXeof nodes in Non-metric MDS.

5 Transform relative coordinate into global absolute coordinate by the
anchor nodes in the network.

In Step 3 and Step 4, localization is executed by NMDS-MLE as Algorithm 1.
In Algorithm 1, a monotonic transformation between proximity data and
Euclidean distance is calculated in line 6 to 14, which yields an intermediate
distance valuélij. By performing a monotone regression with the current dis-
tancedd; as targets and proximity; as inputs, NMDS-MLE generatéiﬁ to
reflectthe ordinal level gfj; in each iteration, Wher@}j should be subjected to:



Locavization Usine UWB 233

Algorithm 1: NMDS-MLE

Input: node seN, initial coordinate matrixX©, proximity data matrixP, thresholck,
iteration numbek «— 0
Output: relative coordinate®™
1 for eachi,j € Ndo

2| e O =X o — 2

3 construct the Euclidean distance mai
4 end

5 while STRESS > ¢ do

6 for eachi,j,u,v e N do

7 if p.J < puv and df > df, then

8 «— (A +dk)/2

9 «— (df+dk)/2

10 elself p,J < pw and df < df, then
1 dl < d

12 dk, «— d¥,

13 end

14 end

15 k<«—k+1

16 update the coordinate matr)

17 update the distance matix®)

18 end

Vij k| pj < pa = dij(X) < da(X).

Because of above relation betwgananddi;, NMDS-MLE takes following
STRESS applied in line 5 to evaluate the accuracy of the fitting:

STRESS= | (dj —dy)?/ ) _df. (12)

iji#] iji#

A small STRESS indicates a good fit, whereas a high value indicates a bad
fit. Kruskal [11] provide some guide lines of stress value with respect to the
goodness of fit of the solution, shown in Table 2.

Note in line 16 and line 17 in Algorithm 1, NMDS-MLE updates spatial
coordinate matrix** to X according tcﬂi‘fl andai‘}*l, and then obtains a

new Euclidean distanag; (X)*. The spatial coordinated, y¥) is updated as
follows:

‘ dk 1
X; =X1 +j2]eMJ;ﬁ| 1- _k_ (X] )
13)

AU
yk + 1ZJEM];EI (l_ all]<_1> (y]k 1_in< 1)-
1
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Stress Goodness of fit
>.20 poor

.10 fair

.05 good

.025 excellent

.00 perfect

TABLE 2
Stress and goodness of fit

Wheren is the number of target nodasjs the iteration step length, which is
set to be 0.2 in the paper.

In Step 4, the estimated location matdxrepresents the relative coor-
dinates of nodes, which have a different orientation and scaling than the
original coordinates. And in Step 5, the transformation from relative coor-
dinateX into absolute coordinates usually includes shift, rotation, scaling,
and reflection of coordinates, which are implemented by some transforma-
tion to minimize the errors between the absolute coordinates of anchor nodes
and their relative locations in the NMDS map. Suppose therenesiachor
nodes whose relative locations afg = (Xr,, Xr,, - - - , Xry,), and real loca-
tions areXt = (X1, X1,,- - , X1,,). First, we derive optimal transformation
functionQ, then transfer all the relative coordinates of nodes to the absolute
coordinates by the optimal transformation funct@n

7 EVALUATIONS

Our algorithms were implemented in Matlab 7.0 to verify our localization
algorithms based on U-BOTH system for WSNs. The datum for evaluations
were collected and validated through two sets of experiments, one based on
simulations and the other on real experiments.

In the simulations, we set the following scenarios for evaluations:

1. With regard to the BER (bit error rate), we evaluated U-BOTH system
performance in single and multi-user scenarios.

2. Using NMDS-MLE localization algorithm, we evaluated our localiza-
tion model both in random network and grid network.

In the real testbed experiments, we deployed wireless sensors that run
the IEEE 802.11 standard. The mathematical tools and the results of these
experiments similarly applied to other wireless systems. In our testbed, we
deployed five WiFi nodes, with the same transmission power (30dBm) on our
office floor as represented by the solid dots with ID labels in Figure 3. The
transmission radius of the WiFi nodes is approximately 30 meters.
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FIGURE 3
Testbed Experiment Scenario.

Value
Notation Meaning
LOS NLOS
do The reference distance ni im
PL, The path loss at reference distance 4R6 73dB
y The path loss exponent 1.7§ 2.5
Og The standard deviation of shadow fadipg 0.88 2

FIGURE 4
Parameters on Log-distance Path Loss Model.

In both simulated and testbed experiments, we adopted the log-distance
UWB path loss model in NLOS (Non-Line-of-Sight) environment for our
estimators, which is parameterized in Figure 4.

We evaluated the performance of localization algorithms with mean
estimation error, which was widely used in previous research works:

n X, Xi 2
E::|==n1+—1 || est re&ﬂl| x ]_()()94) (].11)

error = (h—m xR
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wheren andmare the total number of sensors and the number of anchor nodes
in the WNS, respectivel\R represents communication range.

7.1 Simulation Results
U-BOTH System Performance

We assumed the channel is AWGN multipath-free single user channel, the
transmitter and the receiver are synchronized perfectly. Then we randomly
generated 2000 bits, every bit uses 4 pulses to repeat cdding 4).

Figure 5 illustrates the BER of the received signal using U-BOTH sys-
tem, in contrast to DS-UWB that only uses direct sequence spreading, and
TH-UWB that uses time-hopping pulse position modulation alone for UWNB
transmissions. We can see that the BER of U-BOTH and the DS-UWB system
which use ther-phase shift keying modulation are lower than TH-UWB. This
is because the distance of two signals in binary phase shift keying (BPSK)
modulation is 2/Epuse, but/2Epuse in TH-UWB [17].

Secondly, we leE, /Ny = 0dB,Ns = 4 and generated 2000 bits randomly.
Figure 6 shows the relative performance of U-BOTH, TH-UWB and DS-
UWB systems in multiple access scenarios. In this case, the received signal
includes noise and co-channel interference. In Figure 6, although both the
BER and the variance of error bits increase as the number of users increases,
the performance of our U-BOTH system is still better than DS-UWB and
TH-UWAB, proving that the UWB coding based OVSF-TH effectively handle
the burst errors.

Evaluation of the Localization Algorithms

Random Deployment 100 nodes were deployed randomly in a &0
100msquare area as shown in Figure 7(a), in which points represent nodes and
edges represent the connections between neighbor nodes. The communication

—<&— U-BOTH

Eb/No (dB)

FIGURE 5
Bit Error Rate in A Single User System with Additive White Gaussian Noise (AWGN).



Locavization Usine UWB 237

10 10

—<&— U-BOTH
——k—— Ds-UwB
—H— TH-UWB
. | 2
10" o
g
x X i}
. _ 5
8
107 8
&
>
4 —<— U-BOTH
—f—— DS-UWB
—FH— TH-uwB
10°
2 4 7 10 15 20 4 7 10 15 20
Numbers of Interfering Users Numbers of Interfering Users

FIGURE 6
Bit Error Rate and The Variance of The Number of Error Bits of 2000 Generated Bits.

range is 12nand the average connectivity is 4.6. TBERESS value was set
between .00 and .025 guide line.

Figure 7(b) reflects the relative coordinate of every node generated by
NMDS-MLE. It shows that the relative coordinates have a different orientation
and scaling than the original network in Figure 7(a). This is because that
relative coordinate is derived only based on the distance relationship between
every pair of nodesin the network. Figure 7(c) derives the absolute coordinates
ofallthe nodes. Their relative coordinates in Figure 7(b) are transformed based
on the location information provided by 4 random anchor nodes denoted by
x. The dots represent the real locations of the nodes, and the lines with
arrows indicate the errors of the estimated locations from the real locations,
the average localization error is about 5.3850%. The MDS-MAP algorithm is
also applied in the case and the average localization error is about 18.4747%.

Grid Deployment 100 nodes were deployed in am5 45m square area

with grid deploymentin Figure 8(a). The communication range im&8d the
average connectivity is 16.8. TRERESS value was set between .00 and .025
guide line.With the same symbol meaning in the figures, Figure 8(b) represents
the relative coordinate map using NMDS-MLE algorithm and Figure 8(c)
depicts the absolute coordinate map by transformation based on 4 random
anchor nodes. The average localization error in the grid case is about 1.2876%.
For MDS-MAP algorithm, it is about 6.0543%.

Performance analysis

The localization performance of NMDS-MLE in different scenarios under
different degrees of connectivity is analyzed by Figure 9, compared with
the MDS-MAP by the same experimental settings. From the figure, we can
see that localization error of NMDS-MLE algorithm is much lower and more
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—4— NMDS-MLE in Random
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FIGURE 9
Relation between The Connectivity and The Localization Error.

stable than MDS-MAP in different scenarios. Furthermore, when NMDS-RSS
and MDS-MAP are applied in grid deployment with varies of connectivity. It
shows that NMDS-RSS obtain higher localization accuracy in the grid layout
than in the random layout for the same connectivity level.

Figure 10 presents the relation between localization error and the number
of iterationN in NMDS-MLE algorithm. Because the accuracy of ranging is
improved by MLE method based on the RSS information provided by our U-
BOTH system, it is obvious that the localization error decreases dramatically

when the number of iterations in ranging increases in both random and grid
deployment.

—+— NMDS-MLE in Random
97 —+H— NMDS-MLE in Grid ~

Localization Error (%)

. . . .
5 10 15 20 25 30
The Number of Iterations N

FIGURE 10
Relation between The Number of Iteratidnand The Localization Error.
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Testbed Experimental Results

In the testbed experiments, we evaluated the real effects of NMDS-MLE
localization algorithm. Five nodes were deployed on our office floor under
the NLOS environment as shown in in Figure 3. The communication range
is 30mand the connectivity is 5. THETRESS value was set below .00 guide
line. We randomly selected node 1 and node 3 as the anchor nodes.

With the same symbol meaning in the figures, Figure 11(a) represents the
absolute coordinate map by collecting 20 RSS values for iterations in NMDS-
MLE algorithm. The average localization error is about 2.1256%. Meanwhile,
Figure 11(b) represents the localization results by collecting 100 RSS values,
and the corresponding localization error is about 0.7522%.
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FIGURE 11
Testbed Experiment Estimation Results of NMDS-MLE.
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From the real experiments, it shows that given profeRESS value
and iteration number, NMDS-MLE performs fairly accurately for location
estimation under complex signal propagation environments.

8 CONCLUSION

In order to provide a localization algorithm using the NMDS-MLE methods,
we have proposed the communication protocols based on a new UWB cod-
ing method, called U-BOTH (UWB based on Orthogonal Variable Spreading
Factor and Time Hopping), and an ALOHA-type channel access method and
a message exchange protocol to collect distance information in WSNs. Then
we specified the NMDS-MLE algorithms using the UWB path loss model for
ranging and localization purposes. The performance of NMDS-MLE algo-
rithms in the U-BOTH based communication system were analyzed using
communication theories and simulations. Simulation and real testbed experi-
ment results show that U-BOTH transmission technique can effectively reduce
the bit error rate under the path loss model, and the corresponding ranging and
localization algorithms can achieve comparable or better results than previous
localization methods.
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