
Domain-Independent Data Cleaning via
Analysis of Entity-Relationship Graph

DMITRI V. KALASHNIKOV and SHARAD MEHROTRA

University of California, Irvine

In this article, we address the problem of reference disambiguation. Specifically, we consider a

situation where entities in the database are referred to using descriptions (e.g., a set of instantiated

attributes). The objective of reference disambiguation is to identify the unique entity to which each

description corresponds. The key difference between the approach we propose (called RELDC) and

the traditional techniques is that RELDC analyzes not only object features but also inter-object

relationships to improve the disambiguation quality. Our extensive experiments over two real data

sets and over synthetic datasets show that analysis of relationships significantly improves quality

of the result.

Categories and Subject Descriptors: H.2.m [Database Management]: Miscellaneous—Data clean-
ing; H.2.8 [Database Management]: Database Applications—Data mining; H.2.5 [Information
Systems]: Heterogeneous Databases; H.3.3 [Information Storage and Retrieval]: Information

Search and Retrieval

General Terms: Algorithms, Design, Experimentation, Performance, Theory

Additional Key Words and Phrases: Connection strength, data cleaning, entity resolution, graph

analysis, reference disambiguation, relationship analysis, RELDC

1. INTRODUCTION

Recent surveys [KDSurvey 2003] show that more than 80% of researchers work-
ing on data mining projects spend more than 40% of their project time on clean-
ing and preparation of data. The data cleaning problem often arises when infor-
mation from heterogeneous sources is merged to create a single database. Many
distinct data cleaning challenges have been identified in the literature: dealing
with missing data [Little and Rubin 1986], handling erroneous data [Maletic

This material is based upon work supported by the National Science Foundation under Award Num-

bers 0331707 and 0331690 and in part by the National Science Foundation under Award Numbers

IIS-0083489 as part of the Knowledge Discovery and Dissemination program. Any opinions, find-

ings, and conclusions or recommendations expressed in this material are those of the author(s) and

do not necessarily reflect the views of the National Science Foundation.

Corresponding Author’s addresses: D. V. Kalashnikov, University of California, Irvine, 4300 Calit2

Building, Irvine, CA 92697-2815; email: dvk@ics.uci.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 0362-5915/06/0600-0716 $5.00

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006, Pages 716–767.

Domain-Independent Data Cleaning • 717

and Marcus 2000], record linkage [Bilenko and Mooney 2003; Jin et al. 2003;
Chaudhuri et al. 2003], and so on. In this article, we address one such chal-
lenge called reference disambiguation, which is also known as “fuzzy match”
[Chaudhuri et al. 2003] and “fuzzy lookup” [Chaudhuri et al. 2005].

The reference disambiguation problem arises when entities in a database
contain references to other entities. If entities were referred to using unique
identifiers, then disambiguating those references would be straightforward.
Instead, frequently, entities are represented using properties/descriptions that
may not uniquely identify them leading to ambiguity. For instance, a database
may store information about two distinct individuals ‘Donald L. White’ and
‘Donald E. White’, both of whom are referred to as ‘D. White’ in another
database. References may also be ambiguous due to differences in the rep-
resentations of the same entity and errors in data entries (e.g., ‘Don White’
misspelled as ‘Don Whitex’). The goal of reference disambiguation is for each
reference to correctly identify the unique entity it refers to.

The reference disambiguation problem is related to the problem of record de-
duplication or record linkage [Jin et al. 2003; Chaudhuri et al. 2003; Bilenko
and Mooney 2003] that often arise when multiple tables (from different data
sources) are merged to create a single table. The causes of record linkage and
reference disambiguation problems are similar; viz., differences in represen-
tations of objects across different data sets, data entry errors, etc. The differ-
ences between the two can be intuitively viewed using the relational termi-
nology as follows: while the record linkage problem consists of determining
when two records are the same, reference disambiguation corresponds to en-
suring that references (i.e., “foreign keys”1) in a database point to the correct
entities.

Given the tight relationship between the two data cleaning tasks and the sim-
ilarity of their causes, existing approaches to record linkage can be adapted for
reference disambiguation. In particular, feature-based similarity (FBS) meth-
ods that analyze similarity of record attribute values (to determine whether
two records are the same) can be used to determine if a particular reference
corresponds to a given entity or not. This article argues that quality of dis-
ambiguation can be significantly improved by exploring additional semantic
information. In particular, we observe that references occur within a context
and define relationships/connections between entities. For instance, ‘D. White’
might be used to refer to an author in the context of a particular publication.
This publication might also refer to different authors, which can be linked to
their affiliated organizations, etc., forming chains of relationships among en-
tities. Such knowledge can be exploited alongside attribute-based similarity
resulting in improved accuracy of disambiguation.

In this article, we propose a domain-independent data cleaning approach
for reference disambiguation, referred to as Relationship-based Data Cleaning
(RELDC), which systematically exploits not only features but also relationships

1We are using the term “foreign key” loosely. Usually, foreign key refers to a unique identifier of

an entity in another table. Instead, foreign key above means the set of properties that serve as a

reference to an entity.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

718 • D. V. Kalashnikov and S. Mehrotra

Fig. 1. Author records.

among entities for the purpose of disambiguation. RELDC views the database
as a graph of entities that are linked to each other via relationships. It first
utilizes a feature-based method to identify a set of candidate entities (choices)
for a reference to be disambiguated. Graph theoretic techniques are then used
to discover and analyze relationships that exist between the entity containing
the reference and the set of candidates.

The primary contributions of this article are:

(1) developing a systematic approach to exploiting both attributes as well as
relationships among entities for reference disambiguation,

(2) developing a set of optimizations to achieve an efficient and scalable (to
large graphs) implementation of the approach,

(3) establishing that exploiting relationships can significantly improve the
quality of reference disambiguation by testing the developed approach over
2 real-world data sets as well as synthetic data sets.

A preliminary version of this article appeared in Kalashnikov et al. [2005];
it presents an overview of the approach, without implementation and other de-
tails, required for implementing the approach in practice. The rest of this article
is organized as follows: Section 2 presents a motivational example. In Section 3,
we precisely formulate the problem of reference disambiguation and introduce
notation that will help explain the RELDC approach. Section 4 describes the
RELDC approach. The empirical results of RELDC are presented in Section 6.
Section 7 contains the related work, and Section 8 concludes the article.

2. MOTIVATION FOR ANALYZING RELATIONSHIPS

In this section, we will use an instance of the “author matching” problem to
illustrate that exploiting relationships among entities can improve the quality
of reference disambiguation. We will also schematically describe one approach
that analyzes relationships in a systematic domain-independent fashion.

Consider a database about authors and publications. Authors are repre-
sented in the database using the attributes 〈id, authorName, affiliation〉
and information about papers is stored in the form 〈id, title, authorRef1,
authorRef2, . . . , authorRefN〉. Consider a toy database consisting of the author
and publication records shown in Figures 1 and 2.

The goal of the author matching problem is to identify for each authorRef in
each paper the correct author it refers to.

We can use existing feature-based similarity (FBS) techniques to compare the
description contained in each authorRef in papers with values in authorName
attribute in authors. This would allow us to resolve almost every authorRef
references in the above example. For instance, such methods would identify

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 719

Fig. 2. Publication records.

that ‘Sue Grey’ reference in P2 refers to A3 (‘Susan Grey’). The only exception
will be ‘D. White’ references in P2 and P6: ‘D. White’ could match either A1

(‘Dave White’) or A2 (‘Don White’).
Perhaps, we could disambiguate the reference ‘D. White’ in P2 and P6 by

exploiting additional attributes. For instance, the titles of papers P1 and P2

might be similar while titles of P2 and P3 might not, suggesting that ‘D. White’ of
P2 is indeed ‘Don White’ of paper P1. We next show that it may still be possible to
disambiguate the references ‘D. White’ in P2 and P6 by analyzing relationships
among entities even if we are unable to disambiguate the references using title
(or other attributes).

First, we observe that author ‘Don White’ has co-authored a paper (P1) with
‘John Black’ who is at MIT, while the author ‘Dave White’ does not have any
co-authored papers with authors at MIT. We can use this observation to dis-
ambiguate between the two authors. In particular, since the co-author of ‘D.
White’ in P2 is ‘Susan Grey’ of MIT, there is a higher likelihood that the author
‘D. White’ in P2 is ‘Don White’. The reason is that the data suggests a connec-
tion between author ‘Don White’ with MIT and an absence of it between ‘Dave
White’ and MIT.

Second, we observe that author ‘Don White’ has co-authored a paper (P4)
with ‘Joe Brown’ who in turn has co-authored a paper with ‘Liz Pink’. In con-
trast, author ‘Dave White’ has not co-authored any papers with either ‘Liz Pink’
or ‘Joe Brown’. Since ‘Liz Pink’ is a co-author of P6, there is a higher likelihood
that ‘D. White’ in P6 refers to author ‘Don White’ compared to author ‘Dave
White’. The reason is that often co-author networks form groups/clusters of
authors that do related research and may publish with each other. The data
suggests that ‘Don White’, ‘Joe Brown’ and ‘Liz Pink’ are part of the cluster,
while ‘Dave White’ is not.

At first glance, the analysis above (used to disambiguate references that
could not be resolved using conventional feature-based techniques) may seem
domain specific. A general principle emerges if we view the database as a graph
of interconnected entities (modeled as nodes) linked to each other via relation-
ships (modeled as edges). Figure 3 illustrates the entity-relationship graph
corresponding to the toy database consisting of authors and papers records. In
the graph, entities containing references are linked to the entities they refer
to. For instance, since the reference ‘Sue Grey’ in P2 is unambiguously resolved
to author ‘Susan Grey’, paper P2 is connected by an edge to author A3. Sim-
ilarly, paper P5 is connected to authors A5 (‘Joe Brown’) and A6 (‘Liz Pink’).
The ambiguity of the references ‘D. White’ in P2 and P6 is captured by linking
papers P2 and P6 to both ‘Dave White’ and ‘Don White’ via two “choice nodes”
(labeled ‘1’ and ‘2’ in the figure). These “choice nodes” represent the fact that

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

720 • D. V. Kalashnikov and S. Mehrotra

Fig. 3. Graph for the publications example.

the reference ‘D. White’ refers to either one of the entities linked to the choice
nodes.

Given the graph view of the toy database, the analysis we used to disam-
biguate ‘D. White’ in P2 and P6 can be viewed as an application of the following
general principle:

Context Attraction Principle (CAP): If reference r made in the
context of entity x refers to an entity y j whereas the description pro-
vided by r matches multiple entities y1, y2, . . . , y j , . . . , yN , then x
and y j are likely to be more strongly connected to each other via
chains of relationships than x and y�, where � = 1, 2, . . . , N and
� �= j .

Let us now get back to the toy database. The first observation we
made, regarding disambiguation of ‘D. White’ in P2, corresponds to the
presence of the following path (i.e., relationship chain or connection) be-
tween the nodes ‘Don White’ and P2 in the graph: P2 ↔ ‘Susan Grey’↔
‘MIT’ ↔ ‘John Black’ ↔ P1 ↔ ‘Don White’. Similarly, the second observation, re-
garding disambiguation of ‘D. White’ in P6 as ‘Don White’, was based on
the presence of the following path: P6 ↔ ‘Liz Pink’ ↔ P5 ↔ ‘Joe Brown’ ↔ P4 ↔
‘Don White’. There were no paths between P2 and ‘Dave White’ or between P6

and ‘Dave White’ (if we ignore ‘1’ and ‘2’ nodes). Therefore, after applying the
CAP principle, we concluded that the reference ‘D. White’ in both cases probably
corresponded to the author ‘Don White’. In general, there could have been paths
not only between P2 (P6) and ‘Don White’, but also between P2 (P6) and ‘Dave
White’. In that case, to determine if ‘D. White’ is ‘Don White’ or ‘Dave White’
we should have been able to measure whether ‘Don White’ or ‘Dave White’ is
more strongly connected to P2 (P6).

The generic approach therefore first discovers connections between the entity,
in the context of which the reference appears, and the matching candidates
for that reference. It then measures the connection strength of the discovered
connections in order to give preference to one of the matching candidates. The
above discussion naturally leads to two questions:

(1) Does the context attraction principle hold over real data sets. That is, if
we disambiguate references based on the principle, will the references be
correctly disambiguated?

(2) Can we design a generic solution to exploiting relationships for
disambiguation?

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 721

Table I. Notation

Notation Meaning

D the database

X = {x} the set of all entities in D
R = {r} the set of all unresolved references

r a reference

r∗ the to-be-found entity that r refers to

xr the context entity of r
Sr the option set of r

N = |Sr | convenience notation for |Sr |
yr1, yr2, . . . , yr N all elements of Sr

G = (V , E) the entity-relationship graph for D
erj the edge (r, yrj)

wrj the weight of edge erj
L the path length limit parameter

PL(u, v) the set of all L-short simple u-v paths in G
c(u, v) the connection strength between nodes u and v in G
Nk(v) the neighborhood of node v of radius k in graph G

Of course, the second question is only important if the answer to the first
is positive. However, we cannot really answer the first unless we develop a
general strategy to exploiting relationships for disambiguation and testing it
over real data. We will develop one such general, domain-independent strategy
for exploiting relationships for disambiguation, which we refer to as RELDC
in Section 4. We perform extensive testing of RELDC over both real data from
two different domains as well as synthetic data to establish that exploiting
relationships (as is done by RELDC) significantly improves the data quality.
Before we develop RELDC, we first develop notation and concepts needed to
explain our approach in Section 3.

3. PROBLEM DEFINITION

In this section, we first develop notation and then formally define the problem
of reference disambiguation. The notation is summarized in Table I.

3.1 References

Let D be the database that contains references that are to be resolved. Let
X = {x} be the set of all entities2 in D. Each entity x consists of a set of m
properties {a1, a2, . . . , am} and of a set of n references {r1, r2, . . . , rn}. The num-
ber of attributes m and the number of references n in those two sets can be
different for different entities. Each reference r is essentially a description of
some entity and may itself consist of one or more attributes. For instance, in
the example in Section 2, paper entities contain one-attribute authorRef ref-
erences in the form 〈author name〉. If, besides author names, author affiliation
were also stored in the paper records, then authorRef references would have
consisted of two attributes 〈author name, author affiliation〉. Each reference r

2Here entities have essentially the same meaning as in the standard E/R model.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

722 • D. V. Kalashnikov and S. Mehrotra

maps uniquely into the entity, in the context of which it is made. That entity is
called the context entity of reference r and denoted xr . The set of all references
in the database D will be denoted as R.

3.1.1 Option Set. Each reference r ∈ R semantically refers to a single spe-
cific entity in X called the answer for reference r and denoted r∗. The description
provided by r may, however, match a set of one or more entities in X . We refer
to this set as the option set of reference r and denote it by Sr . The option set
consists of all the entities that r could potentially refer to. Set Sr consists of
|Sr | elements yr1, yr2, . . . , yr|Sr | called options of reference r:

Sr = { yr1, yr2, . . . , yr|Sr |}.
We assume Sr is given for each r. If it is not given, we assume a feature-based
similarity approach is used to construct Sr by choosing all of the candidates
such that FBS similarity between them and r exceed a given threshold. To
simplify notation, we will use N to mean |Sr |, that is N = |Sr |.

Example 3.1.1 (Notation). Let us consider an example of using notation.
Consider the reference r = ‘John Black’ in publication P1 illustrated in Figure 2.
Then xr = P1, r∗ = A4, Sr = {A4}, and yr1 = A4. If we consider the reference
s = ‘D. White’ in publication P2 and assume that in reality it refers to A2 (i.e.,
‘Don White’), then xs = P2, s∗ = A2, Ss = {A1, A2}, ys1 = A1, and ys2 = A2.

3.2 The Entity-Relationship Graph

RELDC views the resulting database D as an undirected entity-relationship
graph3 G = (V , E), where V is the set of nodes and E is the set of edges. The
set of nodes V is comprised of the set of regular nodes Vreg and the set of
choice nodes Vcho, that is V = Vreg ∪ Vcho. Each regular node corresponds to
some entity x ∈ X . We will use the same notation x for both the entity and
the node that represents x. Choice nodes will be defined shortly. Each edge in
the graph corresponds to a relationship.4 Let us note that if entity x1 contains
a reference to entity x2, then nodes x1 and x2 are linked via an edge, since
the reference establishes a relationship between the two entities. For instance,
an authorRef reference from a paper to an author corresponds to the writes
relationship between the author and the paper.

In the graph, the edges have weights and the nodes do not have weights.
Each edge weight is a real number between zero and one. It reflects the degree
of confidence the relationship that corresponds to the edge exists. For instance,
in the context of our author matching example, if we are absolutely confident a
given author is affiliated with a given organization, then we assign the weight

3A standard entity-relationship graph can be visualized as an E/R schema of the database that has

been instantiated with the actual data.
4We concentrate primarily on binary relationships. Multi-way relationships are rare and most

of them can be converted to binary relationships [Garcia-Molina et al. 2002]. Most of the design

models/tools only deal with binary relationships, for instance ODL (Object Definition Language)

supports only binary relationships.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 723

Fig. 4. Direct edge.

Fig. 5. Choice node.

of 1 to the corresponding edge. By default, all edge weights are equal to 1.5 We
will use the notation edge label and edge weight interchangeably.

3.2.1 References and Linking. If Sr has only one element yr1, then r is
resolved to yr1, and graph G contains an edge between xr and yr1 as shown in
Figure 4. This edge is assigned weight 1 to denote that we are confident that r∗

is yr1.
If Sr has more than 1 element, then a choice node is created for reference r, as

illustrated in Figure 5, to reflect the fact that r∗ can be one of yr1, yr2, . . . , yr N .
Given the direct correspondence between a reference r and its choice node,
we will use the same notation r for both of them. Node r is linked with node
xr via edge (xr , r). Node r is also linked with N nodes yr1, yr2, . . . , yr N , for
each yrj in Sr , via edges erj = (r, yrj) for j = 1, 2, . . . , N . Edges er1, er2, . . . , er N

are called the option-edges of choice r. The weights of option-edges are called
option-edge weights or simply option weights. The weight of edge (xr , r) is 1.
Each weight wrj of edge erj for j = 1, 2, . . . , N is undefined initially. Since
option-edges er1, er2, . . . , er N represent mutually exclusive alternatives, the sum
of their weights should be 1: wr1 + wr2 + · · · + wr N = 1. Option-weights are
different from other edge weights: they are variables the values of which are to
be determined by the disambiguation algorithm, whereas other edge weights
are constants.

5To illustrate when the edge weights can be different from 1, consider the following scenario.

Assume the dataset being processed is originally derived from raw data by some extraction software.

For example, the author affiliations can be derived by crawling the web, retrieving various web

pages perceived to be faculty homepages, extracting what appears to be faculty names and their

affiliations and putting them in the dataset. The extraction software is not always 100% confident

in all the associations among entities it extracts, but might be able to assign the degree of its belief

instead.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

724 • D. V. Kalashnikov and S. Mehrotra

3.3 The Objective of Reference Disambiguation

To resolve reference r means to choose one entity yrj from Sr in order to deter-
mine r∗. If entity yrj is chosen as the outcome of such a disambiguation, then r
is said to be resolved to yrj or simply resolved. Reference r is said to be resolved
correctly if this yrj is r∗. Notice, if Sr has just one element yr1 (i.e., N = 1),
then reference r is automatically resolved to yr1. Thus, reference r is said to be
unresolved or uncertain if it is not resolved yet to any yrj and N > 1.

From the graph theoretic perspective, to resolve r means to assign weight 1 to
one edge erj, where 1 ≤ j ≤ N , and assign weight 0 to the other N −1 edges er�,
where � = 1, 2, . . . , N ; � �= j . This will indicate the algorithm chooses yrj as r∗.

The goal of reference disambiguation is to resolve all references as correctly
as possible, that is, for each reference r ∈ R to correctly identify r∗. The accuracy
of reference disambiguation is the fraction of references being resolved that are
resolved correctly.

The alternative goal is for each yrj ∈ Sr to associate weight wrj that reflects
the degree of confidence that yrj is r∗. For this alternative goal, each edge erj

should be labeled with such a weight. Those weights can be interpreted later to
achieve the main goal: for each r try to identify only one yrj as r∗ correctly. We
emphasize this alternative goal since most of our discussion will be devoted to
a method for computing those weights. An interpretation of those weights (in
order to try to identify r∗) is a small final step of RELDC. Namely, it achieves
this by picking yrj such that wrj is the largest among wr1, wr2, . . . , wr N . That is,
the algorithm resolves r to yrj where j : wrj = max�=1,2,...,N wr�.

3.4 Connection Strength and CAP Principle

RELDC resolves references by employing the context attraction principle pre-
sented in Section 2. We now state the principle more formally. Crucial to the
principle is the notion of the connection strength c(x1, x2) between two enti-
ties x1 and x2, which captures how strongly x1 and x2 are connected to each
other through relationships. Many different approaches can be used to mea-
sure c(x1, x2), they will be discussed in Section 4. Given the concept of c(x1, x2),
we can restate the context attraction principle as follows:

Context Attraction Principle: Let r be a reference and
yr1, yr2, . . . , yr N be elements of its option set Sr with the correspond-
ing option weights wr1, wr2, . . . , wr N . Then, for all j , � ∈ [1, N], if
cr� ≥ crj, then it is likely that wr� ≥ wrj, where cr� = c(xr , yr�) and
crj = c(xr , yrj).

Let us remark that, as will be elaborated in Section 4.1.2, not all of the
connection strength models are symmetric, that is, c(u, v) �= c(v, u) for some
of them. In the above definition of the CAP, when resolving a reference r, the
connection strength is measured in the direction of from xr to yrj, for any j .

4. RELDC APPROACH

We now have developed all the concepts and notation needed to explain the
RELDC approach for reference disambiguation. The input to RELDC is the

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 725

Fig. 6. Motivating c(p) formula.

entity-relationship graph G discussed in Section 3. We assume that feature-
based similarity approaches are used in constructing the graph G. The choice
nodes are created only for those references that could not be disambiguated
using only attribute similarity. RELDC will exploit relationships for further dis-
ambiguation and will output a resolved graph G in which each entity is fully
resolved. RELDC disambiguates references using the following four steps:

(1) Compute Connection Strengths. For each reference r ∈ R, compute the con-
nection strength c(xr , yrj) for each yrj ∈ Sr . The result is a set of equations
that relate c(xr , yrj) with the option weights w: c(xr , yrj) = grj(w). Here, w
is the set of all option weights in the graph G: w = {wrj : for all r, j }.

(2) Determine Equations for Option Weights. Using the equations from Step (1)
and the CAP, determine a set of equations that relate option weights to each
other.

(3) Compute Weights. Solve the set of equations from Step (2).

(4) Resolve References. Interpret the weights computed in Step (3), as well as
attribute-based similarity, to resolve references.

We now discuss the above steps in more detail in the following sections.

4.1 Computing Connection Strength

The concept of connection strength is at the core of the proposed data cleaning
approach. The connection strength c(u, v) between the two nodes u and v should
reflect how strongly these nodes are related to each other via relationships in
the graph G. The value of c(u, v) should be computed according to some con-
nection strength model. Below, we first motivate one way for computing c(u, v)
(Section 4.1.1), followed by a discussion of the existing connection strength (c.s.)
models (Section 4.1.2). We will conclude our discussion on c.s. models with one
specific model, called the weight-based model, which is the primary model we
use in our empirical evaluation of RelDC (Section 4.1.3).

4.1.1 Motivating a Way to Compute c(u, v). Many existing measures, such
as the length of the shortest path or the value of the maximum network flow be-
tween nodes u and v, could potentially be used for this purpose. Such measures,
however, have some drawbacks in our context.

For instance, consider the example in Figure 6 which illustrates a subgraph
of G. The subgraph contains two paths between nodes u and v: pa = u ↔ a ↔ v
and pb = u ↔ b↔ v. In this example, node b connects multiple nodes, not just

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

726 • D. V. Kalashnikov and S. Mehrotra

Fig. 7. Example for author matching.

u and v, whereas node a connects only u and v. If this subgraph is a part of an
author-publication graph, for example, as illustrated in Figure 7, then nodes u
and v may correspond to two authors, node a to a specific publication, and node
b to a university which connects numerous authors. Intuitively, we expect that
the connection strength between u and v via a is stronger than the connection
strength between u and v via b: Since b connects many nodes, it is not surprising
we can also connect u and v via b, whereas the connection via a is unique to u
and v. Let c(pa) and c(pb) denote the connection strength via paths pa and pb.
Then, based on our intuition, we should require that c(pa) > c(pb).

Let us observe that measures such as path length and maximum network
flow do not capture the fact that c(pa) > c(pb). That is, the path length of pa

and pb is 2. The maximum network flow via pa is 1 and via pb is 1 as well
[Cormen et al. 2001], provided the weight of all edges in Figure 6 is 1. Next, we
cover several existing connection strength models, most of which will return for
the case in Figure 6 that c(pa) > c(pb), as we desire. To measure c(u, v), several
of those models try to send a ‘flow’ in the graph G from the node u and then
analyze which fraction of this flow reaches v. This fraction then determines the
value of c(u, v).

4.1.2 Existing Connection Strength Models. Recently, there has been a
spike of interest by various research communities in the measures directly
related to the c(u, v) measure. Below we summarize several principal mod-
els. The reader who is primarily interested in the actual model employed by
RELDC, might skip this section and proceed directly to Section 4.1.3 covering
the weight-based model.

To measure c(u, v) between nodes u and v, a connection strength model can
take many factors into account: the paths in G between u and v, how they
overlap, how they connect to the rest of G, the degree of nodes on those paths,
the types of relationships that constitute those paths and so on. The existing
models, and the two models proposed in this article, analyze only some of those
factors. Nevertheless, we will show that even those models can be employed
quite effectively by RELDC.

4.1.2.1 Diffusion Kernels. The area of kernel-based pattern analysis
[Shawe-Taylor and Cristianni 2004] studies ‘diffusion kernels on graph nodes’,
which are closely related to c.s. models. They are defined as follows.

A base similarity graph G = (S, E) for a dataset S is considered. The vertices
in the graph are the data items in S. The undirected edges in this graph are

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 727

labeled with a ‘base’ similarity τ (x, y) measure. That measure is also denoted
as τ1(x, y), because only the direct links (of size 1) between nodes are utilized
to derive this similarity. The base similarity matrix B = B1 is then defined as
the matrix whose elements Bxy, indexed by data items, are computed as Bxy =
τ (x, y) = τ1(x, y). Next, the concept of base similarity is naturally extended to
path of arbitrary length k. To define τk(x, y), the set of all paths Pk

xy of length k
between the data items x and y is considered. The similarity is defined as the
sum over all these paths of the products of the base similarities of their edges:

τk(x, y) =
∑

(x1x2...xk)∈Pk
xy

k∏
i=1

τ1(xi−1, xi)

Given such τk(x, y) measure, the corresponding similarity matrix Bk is defined.
It can be shown that Bk = Bk . The idea behind this process is to enhance the
base similarity by those indirect similarities. For example, the base similarity
B1 can be enhanced with similarity B2, for example, by considering a combina-
tion of the two matrices: B1 + B2. The idea generalizes to more then two ma-
trices. For instance, by observing that in practice the relevance of longer paths
should decay, a decay factor λ is used, resulting in the so-called exponential dif-
fusion kernel: K = ∑∞

k=0
1
k!

λkBk = exp(λB). The von Neumann diffusion kernel
is defined similarly: K = ∑∞

k=0 λkBk = (I − λB)−1. The elements of the matrix
K exactly define what we refer to as the connection strength: c(x, y) = Kxy.
While connection strength between nodes in a graph can be computed using
diffusion kernels, it is of limited utility in our setting since the procedure in
Shawe-Taylor and Cristianni [2004] cannot be directly applied in graphs with
choice nodes.

4.1.2.2 Relevant Importance in Graphs. A natural way to compute the con-
nection strength c(u, v) between node u and v is to compute it as the probability
of reaching node v from node u via random walks in graph G. Each step of
the random walk is done according to certain probability derived from edge
labels. Such problems have been studied for graphs in the previous work under
Markovian assumptions. For example, White and Smyth [2003] study the re-
lated problem of computing the relative importance of a given set of nodes with
respect to the set of “root” nodes by generalizing the PageRank algorithm [Brin
and Page 1998]. Their primary approach views such a graph as a Markov chain
where nodes represent states of the Markov chain and probabilities are deter-
mined by edge labels. White and Smyth [2003] also evaluate different models
and compare them with the PageRank-based model.

The problem of computing c(u, v) can be postulated as computing the rele-
vant importance of node u with respect to the root node v. The procedural part
of the PageRank-based algorithm in White and Smyth [2003], however, cannot
be employed directly in our approach. The main reason is that the Markovian
assumptions do not hold for our graphs. For example, consider two paths G ↔ F
and D ↔ F in Figure 8. In that figure, F is a choice node and BF and FD are
its mutually exclusive option-edges. In general, we can continue G ↔ F path
by following F ↔ B link; however, we cannot continue D ↔ F path by following

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

728 • D. V. Kalashnikov and S. Mehrotra

Fig. 8. Sample graph.

the same F ↔ B link. Thus, the decision of whether we can follow F ↔ B link
is determined by the past links on the path. This violates the Markovian as-
sumption, since a Markov chain is a random process, which has the property
that, conditional on its present value, the future is independent of the past.

4.1.2.3 Electric Circuit Analogy. Faloutsos et al. [2004] consider a model
for computing c(u, v). They view the graph as an electric circuit consisting of
resistors, and compute c(u, v) as the amount of electric current that goes from
u to v. One of the primary contributions of that article is the optimizations that
scale their approach to large graphs.

4.1.3 Weight-Based Model. This section covers one of the c.s. models, which
we will use to empirically evaluate RELDC in Section 6. We refer to this model as
the weigh-based model (WM). WM is a simplification of the probabilistic model
(PM), covered in the electronic appendix. PM model is more involved than WM
model and will be a significant diversion from our main objective of explaining
RELDC. PM computes c(u, v) as the probability of reaching the node u starting
from the node v in the graph G. Like the model proposed in White and Smyth
[2003], WM and PM are also random walk-based models.

WM computes c(u, v) as the sum of the connection strengths of each simple
path between nodes u and v. The connection strength c(p) of each path p from
u to v is computed as the probability of following path p in graph G. In WM,
computation of c(u, v) consists of two phases. The first phase discovers connec-
tions (paths) between u and v. The second phase measures the strength in the
connections discovered by the first phase.

Phase I: Path Discovering. In general, there can be many connections between
nodes u and v in G. Intuitively, many of those (e.g., very long ones) are not very
important. To capture most important connections while still being efficient,
instead of discovering all paths, the algorithm discovers only the set of all L-
short simple paths PL(u, v) between nodes u and v in graph G. A path is L-short
if its length is no greater than parameter L. A path is simple if it does not contain
duplicate nodes.

Complications due to choice nodes. Not all of the discovered paths are con-
sidered when computing c(xr , yrj) to resolve reference r: some of them are il-
legal paths, which are ignored by the algorithm. Let er1, er2, . . . , er N be the
option-edges associated with the reference r. When resolving r, RELDC tries do

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 729

Fig. 9. Graph.

Fig. 10. Computing c(p) of path p = v1 ↔ · · · ↔ vm. Only possible-to-follow edges are shown.

determine weights of these edges via connections that exist in the remainder of
the graph not including those edges. To achieve this, RELDC actually discovers
paths not in graph G, but in Gr = G − r, as illustrated in Figure 9. That is,
Gr is graph G with node r removed. Also, in general, paths considered when
computing c(xr , yrj) may contain option-edges of some choice nodes. If a path p
contains an option-edge esj of some choice node s, it should not contain another
option-edge es�, where � �= j , of the same choice node s, because edges esj and
es� are mutually exclusive.

Phase II: Measuring Connection Strength. In general, each L-short simple
path p can be viewed as a sequence of m nodes v1 ↔ v2 ↔ · · · ↔ vm, where m ≤
L+1, as illustrated in Figure 10. This figure shows that from a node vi, where i =
1, 2, . . . , m−1, it is possible-to-follow6 ni + 1 edges, labeled ai0, ai1, . . . , aini . WM
computes the connection strength of path p as the probability Pr of following
path p: c(p) = Pr. Probability Pr is computed as the product of two probabilities:
Pr = Pr1Pr2, where Pr1 is the probability that path p exists and Pr2 is the
probability of following path p given that p exists.

Probability that Path Exists. First, path p should exist and thus each edge
on this path should exist. WM computes the probability Pr1 that p exist as the
product of probabilities that each edge on path p exists: Pr1 = a10a20 × · · · ×
a(m−1)0. That is, WM assumes that each edge Ei0 exists independently from edge
E�0 where � �= i.

New Labels, Given Path Exists. If we assume that p exists, then situa-
tion will look like that illustrated in Figure 11. In that figure, all edges are

6It is not possible to follow the edges, following which would make the path not simple.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

730 • D. V. Kalashnikov and S. Mehrotra

Fig. 11. Computing c(p): new labels under assumption that p exists.

labeled with new weights a′
ij, derived from the old weights aij under the as-

sumption that path p exists. For example, a′
i0 = 1 for all i, because each

edge Ei0 exists if path p exists. For each a′
ij where j �= 0 it holds that ei-

ther a′
ij = aij, or a′

ij = 0. To understand why a′
ij can be zero, consider path

p1 = ‘Don White’ ↔ P4 ↔ Joe ↔ P5 ↔ Liz ↔ P6 ↔ ‘2’ ↔ ‘Dave White’ in Figure 3
as an example. If we assume p1 exists, then edge (‘2’, ‘Dave White’) must exist
and consequently edge (‘2’, ‘Don White’) does not exist. Thus, if path p1 ex-
ists, the weight of edge (‘2’, ‘Don White’) is zero. That is why in general either
a′

ij = aij, or, if the corresponding edge Eij cannot exist under assumption that

path p exists, then a′
ij = 0.

General Walk Model. Before we present the way WM computes probability
Pr2 of following path p given that p exists, let us discuss the general walk model
utilized by WM when computing c(u, v). Each path starts from u. Assume WM
at some intermediate stage of a walk observes a path px = u � x. If x = v, then
px is a legitimate u-v path and the walk stops. If x �= v and the length of the
path p is L, then the walk stops since L is the path length limit. Otherwise,
WM examines the incident edges of x, specifically those that ‘can be followed’,
such that if an edge is followed the new path will remain simple (will not have
duplicate edges). If there are no such edges, than this walk reached a ‘dead-end’
and the walk stops. Otherwise, WM chooses one edge to follow and continues the
path px by following this edge to some new node y , such that py = u � x → y .
Then, the above procedure is repeated for py .

Probability of Following Path. Next, WM computes probability Pr2 of fol-
lowing path p given that p exists as the product of probabilities of following
each edge on p. In WM, the probability of following an edge is proportional to
the weight of the edge. For example, the probability of following edge E10 in
Figure 11 is: 1

1+a′
11+a′

12+···+a′
1n1

.

Total Formula. The connection strength of path p is computed as c(p) =
Pr1Pr2. The final formula for c(p) is:

c(p) =
m−1∏
i=1

a′
i0

1 + a′
i1 + a′

i2 + · · · + a′
ini

. (1)

The total connection strength between nodes u and v is computed as the sum
of connection strengths of paths in PL(u, v):

c(u, v) =
∑

p∈PL(u,v)

c(p). (2)

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 731

Fig. 12. Computing c11 = c(P2, Dave) in the graph Gr = G − ‘1’.

Measure c(u, v) is the probability of reaching v from u by following only L-short
simple paths, such that the probability of following an edge is proportional to
the weight of the edge.

Example 4.1.1. Let us demonstrate WM formulae on the example in
Figure 6. WM measures c(pa) and c(pb) as the probabilities of following paths
pa and pb, respectively. WM computes those probabilities as follows. For path
pa, we start from u, we go to a with probability 1

2
at which point we have no

choice but to go to v, so the probability of following pa is 1
2
. For path pb, we start

from u. Next, we have a choice to go to a or b with probabilities of 1
2
, and we

choose to follow (u, b) edge. From node b, we can go to any of the N − 1 nodes
(cannot go back to u) but we go specifically to v. Therefore, the probability of
reaching v via path pb is 1

2(N−1)
. Let us observe that 1

2
> 1

2(N−1)
when N ≥ 2

and thus WM captures that c(pa) > c(pb).

4.1.3.1 Connection Strengths in Toy Database. Let us compute connection
strengths c11, c12, c21, c22 for the toy database illustrated in Figure 3. Those
connection strength are defined as:

c11 = c(P2, ‘Dave White’)

c12 = c(P2, ‘Don White’)

c21 = c(P6, ‘Dave White’) (3)

c22 = c(P6, ‘Don White’).

Later, those connection strengths will be used to compute option weights w11,
w12, w21, w22.

Consider first computing c11 = c(P2, ‘Dave White’) in the context of disam-
biguating ‘D. White’ reference in P2. Recall, for that reference choice node ‘1’
has been created. The first step is to remove choice ‘1’ from consideration.
The resulting graph Gr = G − ‘1’ is shown in Figure 12. The next step is to
discover all L-short simple paths in graph Gr between P2 and ‘Dave White’.
Let us set L = ∞, then there is only one such path: p1 = P2 ↔ Susan ↔
MIT ↔ John ↔ P1 ↔ Don ↔ P4 ↔ Joe ↔ P5 ↔ Liz ↔ P6 ↔ ‘2’ ↔ Dave White.
The discovered connection is too long to be meaningful in practice, but we
will consider it for pedagogical reasons. To compute c(p1) we first compute the
probability Pr1 that path p1 exists. Path p1 exists if and only if edge between
‘2’ and ‘Dave White’ exists, so Pr1 = w21. Now we assume that p1 exists and
compute the probability Pr2 of following p1 given that p1 exists on the graph
shown in Figure 13. That probability is Pr2 = 1

2
. Thus, c(p1) = Pr1Pr2 = w21

2
.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

732 • D. V. Kalashnikov and S. Mehrotra

Fig. 13. Computing c11 = c(P2, Dave) under the assumption that path P2 � ‘Dave White’ exists.

Since edge ‘2’ ↔ ‘Dave’ exists, thus edge ‘2’ ↔ ‘Don’ does not exist.

The same result can be obtained by directly applying Equation (1). After
computing c12, c21, and c22 in a similar fashion we have:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c11 = w21

2
= c(p1)

c12 = 1 = c(P2 ↔ Susan ↔ MIT ↔ John ↔ P1 ↔ ‘Don White’)

c21 = w11

2

c22 = 1.

(4)

Notice, the toy database is small and MIT connects only two authors. In
practice, MIT would connect many authors and thus connections via MIT will
be weak.

4.2 Determining Equations for Option-Edge Weights

Given the connection strength measures c(xr , yrj) for each unresolved refer-
ence r and its options yr1, yr2, . . . , yr N , we can use the context attraction prin-
ciple to determine the relationships between the weights associated with the
option-edges in the graph G. Note that the context attraction principle does not
contain any specific strategy on how to relate weights to connection strengths.
Any strategy that assigns weight such that, if cr� ≥ crj, then wr� ≥ wrj is ap-
propriate, where cr� = c(xr , yr�) and crj = c(xr , yrj). In particular, we use the
strategy where weights wr1, wr2, . . . , wr N are proportional to the correspond-
ing connection strengths: wrjcr� = wr�crj. Using this strategy and given that
wr1 + wr2 + · · · + wr N = 1, the weight wrj, for j = 1, 2, . . . , N , is computed as:

wrj =
{ crj

cr1+cr2+···+cr N
if (cr1 + cr2 + · · · + cr N) > 0;

1
N if (cr1 + cr2 + · · · + cr N) = 0.

(5)

For instance, for the toy database we have:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w11 = c11/(c11 + c12) = w21

2
/
(
1 + w21

2

)
w12 = c12/(c11 + c12) = 1/

(
1 + w21

2

)
w21 = c21/(c21 + c22) = w11

2
/
(
1 + w11

2

)
w22 = c22/(c21 + c22) = 1/

(
1 + w11

2

)
.

(6)

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 733

4.3 Determining All Weights by Solving Equations

Given a system of equations, relating option-edge weights as derived in
Section 4.2, our goal next is to determine values for the option-edge weights
that satisfy the equations.

4.3.1 Solving Equations for Toy Database. Before we discuss how such
equations can be solved in general, let us first solve Eqs. (6) for the toy example.
Those equations, given an additional constraint 0 ≤ w11, w12, w21, w22 ≤ 1, have
a unique solution w11 = 0, w12 = 1, w21 = 0, w22 = 1. Once we have computed
the weights, RELDC will interpret these weights to resolve the references. In
the toy example, the above computed weights will lead RELDC to resolve ‘D.
White’ in both P2 and P6 to ‘Don White’, since w12 > w11 and w22 > w21.

4.3.2 General Case. In general case, Eqs. (1), (2), and (5), define each option
weight as a function of other option weights wrj = frj(w):{

wrj = frj(w) (for all r, j)

0 ≤ wrj ≤ 1 (for all r, j).
(7)

The exact function for wrj is determined by Eqs. (1), (2), and (5), and by the
paths that exists between xr and yrj in G. In practice, often frj(w) is constant
leading to the equation of the form wrj = const.

The goal is to solve System (7). System (7) might be over-constrained and
thus might not have an exact solution. Thus, we add slack to it by transforming
each equation wrj = frj(w) into frj(w)−ξrj ≤ wrj ≤ frj(w)+ξrj. Here, ξrj is a slack
variable that can take on any real nonnegative value. The problem transforms
into solving the nonlinear programming problem (NLP) where the objective is
to minimize the sum of all ξrj:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Constraints:

frj(w) − ξrj ≤ wrj ≤ frj(w) + ξrj (for all r, j)

0 ≤ wrj ≤ 1 (for all r, j)

0 ≤ ξrj (for all r, j)

Objective: Minimize
∑

r, j ξrj

(8)

System (8) always has a solution. To show that, it is sufficient to prove that
there is at least one solution that satisfies the constraints of System (8). Let us
prove that by constructing such a solution. Notice, functions frj(w) (for all r, j)
are such that 0 ≤ frj(w) ≤ 1, if 0 ≤ ws� ≤ 1 (for all s, �). Thus, the following
combination: wrj = 0 and ξrj = 1 (for all r, j) is a solution that satisfies the
constraints of System (8), though it does not satisfy the objective in general.
The goal, of course, is to find a better solution that minimizes

∑
r, j ξrj. The

pseudocode for the above procedure will be discussed in Section 5.1.1.

4.3.3 Iterative Solution. The straightforward approach to solving the re-
sulting NLP problem (8) is to use one of the off-the-shelf math solver such as

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

734 • D. V. Kalashnikov and S. Mehrotra

SNOPT. Such solvers, however, do not scale to large problem sizes that we en-
counter in data cleaning as will be discussed in Section 6. We therefore exploit a
simple iterative approach, which is outlined below. Note, however, other meth-
ods can be devised to solve (8) as well, for example, in Kalashnikov and Mehrotra
[2005], we sketch another approximate algorithm for solving (8), which first
computes bounding intervals for all option weights wrj’s and then employs tech-
niques from Cheng et al. [2003a, 2003b, 2004]. That method is more involved
than the iterative solution, which we will present next. The pseudocode for the
iterative method is given in Figure 15 in Section 5.1.2.

The iterative method first iterates over each reference r ∈ R and assigns
initial weights of 1

|Sr | to each wrj. It then starts its major iterations in which it

first computes c(xr , yrj) for all r, j using Eq. (2). After c(xr , yrj)’s are computed,
they are used to compute wrj for all r, j using Eq. (5). Note that the values of

wrj for all r, j will change from 1
|Sr | to new values. The algorithm performs sev-

eral major iterations until the weights converge (the resulting changes across
iterations are negligible) or the algorithm is explicitly stopped.

Let us perform an iteration of the iterative method for the example above.
First

w11 = w12 = 1

2
and w21 = w22 = 1

2
.

Next,

c11 = 1

4
, c12 = 1, c21 = 1

4
, c22 = 1.

Finally,

w11 = 1

5
, w12 = 4

5
, w21 = 1

5
, w22 = 4

5
.

If we stop the algorithm at this point and interpret wrj’s, then the RELDC’s
answer will be identical to that of the exact solution: ‘D. White’ is ‘Don White’.

Note that the above-described iterative procedure computes only an approx-
imate solution for the system whereas the solver finds the exact solution. Let us
refer to iterative implementation of RELDC as IT-RELDC and denote the imple-
mentation that uses a solver as SL-RELDC. For both IT-RELDC and SL-RELDC,
after the weights are computed, those weights are interpreted to produce the
final result, as discussed in Section 3.3. It turned out that the accuracy of IT-
RELDC (with a small number of iterations, such as 10–20) and of SL-RELDC
is practically identical. This is because even though the iterative method does
not find the exact weights, the weights computed by the iterative algorithm
are close enough to those computed using a solver. Thus, when the weights are
interpreted, both methods obtain similar results.

4.4 Resolving References by Interpreting Weights

When resolving references r and deciding which entity among yr1, yr2, . . . , yr N

from Sr is r∗, RELDC chooses such yrj that wrj is the largest among
wr1, wr2, . . . , wr N . Notice, to resolve r we could have also combined wrj weights
with feature-based similarities FBS(xr , yrj) (e.g., as a weighted sum), but we do

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 735

Fig. 14. NAı̈VE-SL-RELDC.

not study that approach in this paper. Once the interpretation of the weights
is done, the main disambiguation goal is achieved, and the outcome of the dis-
ambiguation can be used to create a regular database.

5. IMPLEMENTATIONS

In this section, we discuss several implementations of RELDC, which are crucial
to scale the approach to large datasets.

5.1 Iterative and Solver Implementations of RELDC

The NLP problem in Eq. (8) can be solved iteratively or using a solver. In this
section we present pseudocode for naı̈ve implementations of SL-RELDC and IT-
RELDC. In the subsequent sections, we discuss optimizations of these naı̈ve
implementations.

5.1.1 Solver. Figure 14 shows an outline of SL-RELDC, which we have dis-
cussed in Section 4. In lines 1–2, if the greedy implementation of ALL-PATHS

is used (see Section 5.3), the algorithm initializes weights. Initial values of
option weights wr1, wr2, . . . , wr N of each choice node r are assigned such that
wr1 = wr2 = · · · = wr N = 1

N and wr1 +wr2 +· · ·+wr N = 1. Lines 3–9 correspond
to creating equations for connection strengths c(xr , yrj) (for all r, j) described
in Section 4.1: each c(xr , yrj) is derived based on the simple paths that exist
between nodes for xr and yrj in the graph. Lines 10–13 correspond to the proce-
dure from Section 4.2 that constructs the equations for option weighs wrj (for all
r, j). Then, in Line 14, the algorithm takes the NLP problem shown in Eq. (8)
and creates its representation S suitable for the solver. Next, the solver takes
the input S, solves the problem, and outputs the resulting weights. As the final
steps, all the references are resolved by interpreting those weights.

5.1.2 Iterative. The pseudocode in Figure 15 formalizes the IT-RELDC pro-
cedure described in Section 4.3. IT-RELDC first initializes weights. Then, it

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

736 • D. V. Kalashnikov and S. Mehrotra

Fig. 15. NAı̈VE-IT-RELDC.

iterates recomputing new values for c(xr , yrj) and wrj (for all r, j). Finally, all
the references are resolved by interpreting the weights.

5.1.3 Bottleneck of RELDC. To optimize RELDC for performance we need
to understand where it spends most of its computation time. The most computa-
tionally expensive part of both IT-RELDC and SL-RELDC is ALL-PATHS procedure,
which discovers connections between two nodes in the graph. For certain combi-
nations of parameters, SOLVE-USING-SOLVER procedure, which invokes the solver
to solve the NLP problem, can be expensive as well. However, that procedure is
performed by a third party solver, hence there is little possibility of optimizing
it. Therefore, all of the optimizations presented in this section target ALL-PATHS

procedure.

5.2 Constraining the Problem

This section lists several optimizations that improve the efficiency of RELDC by
constraining/simplifying the problem.

Limiting Paths Length. ALL-PATHS algorithm can be specified to look only for
paths of length no greater than a parameter L. This optimization is based on
the premise that longer paths tend to have smaller connection strengths while
RELDC will need to spend more time to discover those paths.

Weight Cut-Off Threshold. This optimization can be applied after a few it-
erations of IT-RELDC. When resolving reference r, see Figure 5, IT-RELDC can
use a threshold to prune several yrj’s from Sr . If the current value of wrj is too
small compared to wr� for � = 1, 2, . . . , N ; � �= j , then RELDC will assume yrj

cannot be r∗ and will remove yrj from Sr . The threshold is computed per each

reference r as α 1
|Sr | , where α (0 ≤ α < 1) is a real number (a fixed parameter).7

This optimization improves the efficiency since if yrj is removed from Sr , then
IT-RELDC will not recompute PL(xr , yrj), c(xr , yrj), and wrj any longer.

Restricting Path Types. The analyst can specify path types of interest (or for
exclusion) explicitly.8 For example, the analyst can specify that only paths of

7The typical choices for α in our experiments are 0.0 (i.e., the optimization is not used), 0.2 and 0.3.
8This optimization has not been used in our experiments.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 737

Fig. 16. DF-ALL-PATHS.

Fig. 17. GR-ALL-PATHS.

type T1 ↔ T2 ↔ T4 ↔ T1 are of interest, where Ti ’s are node types. Some of such
rules are easy to specify, however it is clear that for a generic framework here
should be some method (e.g., a language) for an analyst to specify rules that are
more complicated. Our ongoing work addresses the problem of such a language
[Seid and Mehrotra 2006].

5.3 Depth-First and Greedy Versions of ALL-PATHS

RELDC utilizes ALL-PATHS procedure to discover all L-short simple paths be-
tween two nodes. We have considered two approaches for implementing ALL-
PATHS algorithm: the depth-first (DF-ALL-PATHS) and greedy (GR-ALL-PATHS) pro-
vided in Figures 16 and 17 respectively.9

The reason for having those two implementations is as follows. The DF-
ALL-PATHS is a good choice if skipping of paths is not allowed: we shall show
that in this case DF-ALL-PATHS is better in terms of time and space complexity
than its greedy counterpart. However, GR-ALL-PATHS is a better option if one is

9All of the optimizations mentioned in this article can be applied to both of these approaches.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

738 • D. V. Kalashnikov and S. Mehrotra

interested in fine-tuning the accuracy vs. performance trade-off by restricting
the running time of the ALL-PATHS algorithm. The reason for this is as follows.
If DF-ALL-PATHS is stopped abruptly in the middle of its execution, then cer-
tain important paths can still be not discovered. To address this drawback,
GR-ALL-PATHS discovers the most important paths first and least important
last.

5.3.1 Depth-First and Greedy Algorithms. As can be seen from Figures 16
and 17, the depth-first and greedy algorithms are quite similar. The difference
between them is that DF-ALL-PATHS utilizes a stack to account for intermediate
paths while GR-ALL-PATHS utilizes a priority queue. The key in this queue is
the connection strengths of intermediate paths. Also, GR-ALL-PATHS stops if the
stop conditions are met (Line 3 in Figure 17) even if not all paths have been
examined yet, whereas DF-ALL-PATHS discovers all paths without skipping any
paths.

Both algorithms look for u � v paths and start with the intermediate path
consisting of just the source node u (Line 2). They iterate until no intermediate
paths are left under consideration (Line 3). The algorithms extract the next
intermediate path p to consider (from the stack or queue) (Line 4). If p is
a u � v path, then p is added to the answer set A and algorithm proceeds
to Line 3 (Lines 5–6). If p is not a u � v path and the length of p is less
than L, then the EXPAND-PATH procedure is called for path p (Lines 7–8). The
EXPAND-PATH procedure first determines the last node x of the intermediate path
p = u � x. It then analyzes each direct neighbor z of node x and if path p ↔ z
is a legal paths, then it inserts this path into the stack (or queue) for further
consideration.

The STOPCONDITION() procedure in Line 3 of GR-ALL-PATHS algorithm allows to
fine-tune when to stop the greedy algorithm. Using this procedure, it is possible
to restrict the execution time and space required by GR-ALL-PATHS. For example,
GR-ALL-PATHS can limit the total number of times Line 4 is executed (the number
of intermediate paths examined), the total number of times Line 8 is executed,
the maximum number of paths in A and so on. GR-ALL-PATHS achieves that by
maintaining auxiliary statistic (count) variables that account for the number
of times Line 4 is executed so far and other parameters. Then STOPCONDITION()
simply check whether those statistic variables still satisfy the predefined con-
straints, and if not, GR-ALL-PATHS will stop looking for new paths and it will
output the paths discovered so far as its result. Thus, GR-ALL-PATHS discovers
most important paths first and least important paths last and can be stopped
at a certain point whereas DF-ALL-PATHS discovers all paths.

5.3.2 Paths Storage. When looking for all L-short simple u-v paths, ALL-
PATHS maintains several intermediate paths. To store paths compactly and ef-
ficiently, it uses a data structure called a paths storage. DF-ALL-PATHS and GR-
ALL-PATHS procedures actually operates with pointers to paths while the paths
themselves are stored in the paths storage.

Each path is stored as a list, in reverse order. The paths storage is organized
as a set of overlapping lists as follows. Since all of the paths start from u, many

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 739

Fig. 18. Example of paths.

Fig. 19. Separate lists for paths.

Fig. 20. The paths storage.

of them share common prefix. This gives an opportunity to save space. For
example, to store paths shown in Figure 18, it is not necessary to keep four
separate lists shown in Figure 19 of lengths 2, 3, 4, and 4, respectively. It is
more efficient to store them as shown in Figure 20 where the combined length
of the lists is just 8 nodes (versus 13 nodes when keeping separate lists). This
storage is also efficient because the algorithm always knows where to find the
right prefix in the storage—it does not need to scan the paths storage to find
the right prefix. This is because when the algorithm creates a new intermediate
path p ↔ z, the following holds:

(1) p is the prefix of p ↔ z
(2) p is already stored in the path storage
(3) the algorithm knows the pointer to p at this point

5.3.3 Comparing Complexity of Greedy and Depth-First Implementations.
Let us analyze complexity of the depth-first and greedy implementations of ALL-
PATHS procedure. The DF-ALL-PATHS and GR-ALL-PATHS procedures in Figures 16
and 17 are conceptually different only in Lines 2 and 3 of ALL-PATHS and in
Line 4 of EXPAND-PATHS. The STOPCONDITION procedure in Line 3 allows to fine-
tune when to stop the greedy algorithm and determines the complexity of GR-
RELDC. But we will analyze only the differences in complexity which arise due
to DF-RELDC using a stack and GR-RELDC using a priority queue. That is, we
will assume STOPCONDITION always returns false.

For a stack, PUSH and POP procedure take O(1) time. If n is the size of a
priority queue, each GET and INSERT procedures take O(lg n) time [Cormen et al.
2001]. Therefore, it takes O(1) time to process Lines 4–8 of DF-ALL-PATHS and
it takes O(lg n) to process the same Lines 4–8 of DF-ALL-PATHS where n is the
current size of the priority queue. Also it take O(degree(x)) time to execute DF-
EXPAND-PATH procedure and it takes O(degree(x) · lg (n + degree(x)) to execute
GR-EXPAND-PATH procedure.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

740 • D. V. Kalashnikov and S. Mehrotra

Fig. 21. Neighborhood.

Thus, if the goal is to discover all L-short simple paths without skipping any
paths, then the DF-ALL-PATHS is expected to show better results than GR-ALL-
PATHS. However, since the greedy version discovers the most important path
first, it is a better choice in terms of the ‘accuracy versus performance’ trade-off
than its depth-first counterpart. Therefore, the greedy version is expected to be
better if the execution time of the algorithm needs to be constrained.

5.4 NBH Optimization

The NBH optimization is the most important performance optimization pre-
sented in this article. It consistently achieves 1–2 orders of magnitude perfor-
mance improvement under variety of conditions. The neighborhood Nk(v) of
node v of radius k is the set of all the nodes that are reachable from v via at
most k edges. Each member of the set is tagged with ‘the minimum distance
to v’ information. That is, for graph G = (V , E) the neighborhood of node v of
radius k is defined as the following set of pairs: Nk(v) = {(u, d) : u ∈ V , d =
MinDist(u, v), d ≤ k}.

Let us recall that, when resolving reference r, the algorithm invokes ALL-
PATHS algorithm N times, in order to compute PL(xr , yrj) for j = 1, 2, . . . , N ,
see Figure 5. These computations can be optimized by (a) computing neighbor-
hood Nk(xr) once per each distinct xr ; (b) discovering paths not from xr to yrj

but in reverse order: from yrj to xr ; and (c) exploiting Nk(xr) to prune certain
intermediate paths as explained below.

When resolving references of entity xr , the algorithm first computes the
neighborhood Nk(xr) of xr of radius k, where k ≤ L, see Figure 21. The neigh-
borhood is computed only once per each distinct xr and discarded after xr is
processed. There are two factors responsible for the speedup achieved by the
NBH optimization:

(1) ALL-PATHS(u, v), with the NBH optimization, first requires building Nk(v)
and only then applying NBH-optimized ALL-PATHS-NBH(u, v, Nk(u)). Nev-
ertheless, the computational cost of building Nk(v) and then executing ALL-
PATHS-NBH(u, v, Nk(v)) is less than the cost of the nonoptimized version of
ALL-PATHS(u, v).

(2) The neighborhood Nk(xr) is built once per each distinct xr when processing
yr1. Then, it is reused when processing yr2, . . . , yr N . After that, Nk(xr) is
discarded to save space, since it is not needed any longer.

ALL-PATHS procedure shown in Figures 16 and 17 should be modified to be
used with NBH. First, it should be able to accept an additional input parameter

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 741

Fig. 22. PRUNE-PATH-NBH().

Nk(v). Second, Line 7 should be changed from

7 else if Length(p) < L then
to

7 else if Length(p) < L and PRUNE-PATH-NBH(p, Nk(v)) = false then

This will allow pruning certain paths using the NBH optimization. The PRUNE-
PATH-NBH(p, Nk(v)) procedure is provided in Figure 22. It takes advantage of
Nk(v) to decide whether a given intermediate path p = u � x can be pruned.
First, it determines the length m of path p. If m is such that (m + k) < L, then
it cannot prune p, so it returns false. However, if (m + k) ≥ L, then x must be
inside Nk(v). If it is not inside, then path p is pruned, because there cannot be

an L-short path u
p� x

p1� v for any path p1 : x
p1� v. If x is inside Nk(v), then

the procedure retrieves from Nk(v) the minimum distance d from x to v. This
distance d should be such that (m + d) ≤ L: otherwise path p is pruned.

The NBH optimization can be improved further. Let us first define the ac-
tual radius of neighborhood Nk(v): kact = maxu:(u,d)∈Nk (v) MinDist(u, v). While
usually kact = k, sometimes10 kact < k. The latter happens when nodes from
the neighborhood of v and their incident edges form a cluster which is not con-
nected to the rest of the graph or when this cluster is the whole graph. In this
situation Nkact(v) = N�(v) for any � = kact, kact + 1, . . . , ∞. In other words, when
kact < k, we know the neighborhood of v of radius k = ∞. Regarding PRUNE-
PATH-NBH, this means that all intermediate nodes must always be inside the
according neighborhood. This further improvement is reflected in Line 2 of the
PRUNE-PATH-NBH procedure in Figure 22.

5.5 Storing Discovered Paths Explicitly

Once the paths are discovered on the first iteration of IT-RELDC, they can be
exploited for speeding up the subsequent iterations when those paths need to be
rediscovered again. One solution would be to store such paths explicitly. After
paths are stored, the subsequent iterations do not rediscover them, but rather
work with the stored paths. Next, we present several techniques that reduce
the storage overhead of storing paths explicitly.

5.5.1 Path Compression. We store paths because we need to recompute
the connection strengths of those paths (on subsequent iterations), which can

10Naturally, the greater the k the more frequently this is likely to occur.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

742 • D. V. Kalashnikov and S. Mehrotra

change as weights of option-edges change. One way of compressing path in-
formation is to find fixed-weight paths. Fixed-weight paths are paths the con-
nection strength of which will not change because it does not depend on any
other system variables that can change. Rather than storing a path itself, it is
more efficient to store the (fixed) connection strength of that path, which, in
turn, can be aggregated with other fixed connection strengths. For WM model,
a path connection strength is guaranteed to be fixed if none of the intermediate
or source nodes on the path are incident to an option-edge (the weight of which
might change).

5.5.2 Storing Graph Instead of Paths. Instead of storing paths one by one,
it is more space efficient to store the connection subgraphs. The set of all L-short
simple paths PL(u, v) between nodes u and v defines the connection subgraph
G(u, v) between u and v. Storing G(u, v) is more efficient because in PL(u, v)
some of the nodes can be repeated several times, whereas in G(u, v) each node
occurs only once. Notice, when we store PL(u, v) or G(u, v), we store only nodes:
edges need not be stored since they can be restored from the original graph G.
There is a price to pay for storing only G(u, v): the paths need to be rediscovered.
However, this rediscovering happens in a small subgraph G(u, v) instead of the
whole graph G.

5.6 Miscellaneous Implementation Issues

5.6.1 Compatibility of Implementations. In general, it is possible to com-
bine various implementations and optimizations of RELDC. For example, there
can be an implementation of RELDC that combines IT-RELDC, DF-ALL-PATHS,
NBH, and the optimization that stores paths. However, certain implementa-
tions and optimizations are mutually exclusive. They are as follows:

(1) IT-RELDC vs. SL-RELDC

(2) DF-RELDC vs. GR-RELDC

(3) SL-RELDC and Storing Paths.

Let us note that there are some compatibility issues of GR-RELDC with SL-
RELDC. Notice, GR-RELDC computes the connection strengths of intermediate
paths. Consequently, it must know weights of certain edges and, in general,
it must know weights of option-edges. That is why Lines 1–2 of the NAı̈VE-SL-
RELDC procedure assign to option-edge weights some initial values.

5.6.2 Preventing Path Rediscovering. Since the ALL-PATHS algorithm is the
bottleneck of the approach, once PL(u, v) is computed for given nodes u and v, it
should not be recomputed later on again for the same u and v, neither asPL(u, v)
nor as PL(v, u). Currently, this issue does not arise in our implementation of
RELDC due to a systematic way the processing is done. Specifically, for the
datasets being tested, when computing PL(u, v), all u’s belong to one class of
entities C1 (e.g., publications), and all v’s belong to a different class C2 (e.g.,
authors). The algorithm first iterates over each entity u in C1 and then over
each reference r in entity u. After u is processed, the algorithm never comes
back to it on the same iteration, so that the issue mentioned above cannot arise.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 743

In general case, this issue can be handled by maintaining the set SP of all
(u, v) pairs for which PL(u, v) is already computed by the algorithm. Specifically,
after computing PL(u, v), if u.id < v.id, the algorithm should store (u, v) in SP ,
and, if u.id > v.id, it should store (v, u) in SP . Here, u.id and v.id are unique
identifiers of nodes u and v. To check whether PL(u, v) has already been dis-
covered, the algorithm should check whether (u, v) pair (if u.id < v.id), or (v, u)
pair (if u.id > v.id) is in SP yet. This simple procedure will allow the algorithm
to prevent rediscovering PL(u, v) multiple times, by performing a lookup in SP .
Let us clarify that the purpose of the above “u.id < v.id” comparisons is to make
one lookup in SP , instead of two.

5.7 Computational Complexity of RELDC

Let us analyze the computational complexity of nonoptimized IT-RELDC with
GR-ALL-PATHS procedure. GR-ALL-PATHS procedure, provided in Section 5.3, dis-
covers L-short simple u � v paths such that it finds paths with the highest
connection strength first and with the lowest last. It achieves that by main-
taining the current connection strength for intermediate paths and by using a
priority queue to retrieve the best (in terms of connection strength) intermedi-
ate path to expand next. GR-ALL-PATHS(u, v) maintains the connection strength
of intermediate paths, so a straightforward modification of this procedure can
return not only the desired set of paths but also the value of c(u, v).

GR-ALL-PATHS has several thresholds that limit the number of nodes it can
expand, the total number of edges it can examine, the length of each path, the
total number of u � v paths it can discover, and the total number of all paths
it can examine. Those thresholds can be specified as constants, or as functions
of |V |, |E|, and L. If they are constants, then the time and space complexity
needed to compute c(u, v) is limited by constants Ctime and Cspace.

Assume that there are Nref references that need to be disambiguated, where
typically Nref = O(|V |). The average cardinality of their option sets is typ-
ically a constant, or O(|V |). Thus, IT-RELDC will need to compute c(xr , yrj)
for at most O(|V |2) pairs of (xr , yrj) per iteration. Therefore, the time com-
plexity of an iteration of IT-RELDC is O(|V |2) multiplied by the complexity
of the GR-ALL-PATHS procedure, plus the cost to construct all option sets us-
ing an FBS approach, which is at most O(|V |2). The space complexity is
O(|V | + |E|) to store the graph plus the space complexity of one GR-ALL-PATHS

procedure.

6. EXPERIMENTAL RESULTS

In this section we experimentally study RELDC using two real (publications
and movies) and synthetic datasets. RELDC was implemented using C++ and
SNOPT solver [GAMS solvers 2005]. The system runs on a 1.7GHz Pentium
machine. We test and compare the following implementations of RELDC:

(1) IT-RELDC vs. SL-RELDC. The prefixes indicate whether the correspond-
ing NLP problem discussed in Section 4.3 is solved iteratively or using a
solver. If none of those prefixes is specified, IT-RELDC is assumed by default.
SL-RELDC is applicable only to more restricted problems (e.g., smaller

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

744 • D. V. Kalashnikov and S. Mehrotra

Table II. Sample Content of the Publication Table Derived from CiteSeer

Paper ID Author Name Paper ID Author Name

51470 Hector Garcia-Molina 641294 Surajit Chaudhuri

51470 Anthony Tomasic 641294 Venkatesh Ganti

351993 Hector Garcia-Molina 273193 Venkatesh Ganti

351993 Anthony Tomasic 273193 Johannes Gehrke

351993 Luis Gravano 273193 Raghu Ramakrishnan

641294 Luis Gravano 273193 Wei-Yin Loh

graphs and smaller values of L) than IT-RELDC. SL-RELDC is also slower
than IT-RELDC.

(2) WM-RELDC vs. PM-RELDC. The prefixes indicate whether the weight-
based model (WM) covered in Section 4.1.3, or the probabilistic model (PM)
covered in the electronic appendix, has been utilized for computing connec-
tion strengths. By default, WM-RELDC is assumed.

(3) DF-RELDC vs. GR-RELDC. The prefixes specify whether the depth-first (DF)
or greedy (GR) implementation of ALL-PATHS is used. By default DF-RELDC
is assumed.

(4) Various optimizations of RELDC can be turned on or off. By default, opti-
mizations from Section 5 are on.

In each of the RELDC implementations, the value of L used in computing the
L-short simple paths is set to 7 by default. In this section, we will demonstrate
that WM-DF-IT-RELDC is on of the best implementations of RELDC in terms of
both accuracy and efficiency. That is why the bulk of our experiments use that
implementation.

6.1 Case Study 1: The Publications Dataset

6.1.1 Datasets. In this section, we will introduce RealPub and SynPub
datasets. Our experiments will solve author matching (AM) problem, defined
in Section 2, on these datasets.

RealPub dataset. RealPub is a real data set constructed from two public-
domain sources: CiteSeer[CiteSeer 2005] and HPSearch[HomePageSearch
2005]. CiteSeer is a collection of information about research publication cre-
ated by crawling the Web. HPSearch is a collection of information about
authors. HPSearch can be viewed as a set of 〈id, authorName, department,
organization〉 tuples. That is, the affiliation consists of not just organization
like in Section 2, but also of department. Information stored in CiteSeer is
in the same form as specified in Section 2, that is 〈id, title, authorRef1,
authorRef2, . . . , authorRefN〉 per each paper, where each authorRef reference
is a one-attribute 〈author name〉 reference.

Tables II and III show sample content of two tables derived from CiteSeer
and HPSearch based on which the corresponding entity-relationship graph is
constructed for RELDC. Figure 23 shows a sample entity-relationship graph
that corresponds to the information in those two tables.

The various types of entities and relationships present in RealPub are shown
in Table IV. RealPub data consists of 4 types of entities: papers (255K), authors

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 745

Table III. Sample Content of the Author Table Derived from HPSearch.

Author from CiteSeer not Found in HPSearch are Also Added

Author ID Author Name Organization Department

1001 Hector Garcia-Molina Stanford cs.stanford

1002 Anthony Tomasic Stanford cs.stanford

1003 Luis Gravano Columbia Univ. cs.columbia

1004 Surajit Chaudhuri Microsoft research.ms

1005 Venkatesh Ganti Microsoft research.ms

1006 Johannes Gehrke Cornell cs.cornell

1007 Raghu Ramakrishnan Univ. of Wisconsin cs.wisc

1008 Wei-Yin Loh Univ. of Wisconsin stat.wisc

Fig. 23. Sample entity-relationship graph for Publications dataset. A paper with paper id of, say

51470 can be retrieved from CiteSeer via URL: http://citeseer.ist.psu.edu/51470.html.

(176K), organizations (13K), and departments (25K). To avoid confusion, we
use “authorRef” for author names in paper entities and “authorName” for author
names in author entities. There are 573K authorRef’s in total. Our experiments
on RealPub will explore the efficiency of RELDC in resolving these references.

To test RELDC, we first constructed an entity-relationship graph G for the
RealPub database. Each regular node in the graph corresponds to an entity
of one of these types. If author A is affiliated with department D, then there
is (A, D) edge in the graph. If department D is a part of organization U , then
there is (D, U) edge. If paper P is written by author A, then there is (A, P) edge.
For each of the 573K authorRef references, feature-based similarity (FBS) was
used to construct its option set.

In the RealPub data set, the paper entities refer to authors using only their
names (and not affiliations). This is because the paper entities are derived from
the data available from CiteSeer, which did not directly contain information
about the author’s affiliation. As a result, only similarity of author names was
used to initially construct the graph G.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

746 • D. V. Kalashnikov and S. Mehrotra

Fig. 24. E/R diagram for RealPub.

Table IV. No Affiliation in Paper Entities, thus FBS Cannot Use Affiliations

Entity Types Entity Structure Relationship Types

1. Paper 〈pid, authorRef1, . . . , authorRefN〉 1. Author–Paper

2. Author 〈aid, name, dept id〉 2. Author–Department

3. Department 〈did, name, org id〉 3. Department–Organization

4. Organization 〈oid, name〉

This similarity has been used to construct option sets for all authorRef refer-
ences. As the result, 86.9% (498K) of all authorRef references had option set of
size one and the corresponding papers and authors were linked directly. For the
remaining 13.1% (75K) references, 75K choice nodes were created in the graph
G. RELDC was used to resolve these remaining references. The specific experi-
ments conducted and results will be discussed later in the section. Notice that
the RealPub data set allowed us to test RELDC only under the condition that a
majority of the references are already correctly resolved. To test robustness of
the technique, we tested RELDC over synthetic data sets where we could vary
the uncertainty in the references from 0 to 100%.

SynPub Dataset. We have created two synthetic datasets SynPub1 and Syn-
Pub2, which emulate RealPub. The synthetic data sets were created since, for
the RealPub dataset, we do not have the true mapping between papers and
the authors of those papers. Without such a mapping, as will become clear
when we describe experiments, testing for accuracy of reference disambigua-
tion algorithm requires a manual effort (and hence experiments can only val-
idate the accuracy over small samples). In contrast, since in the synthetic
data sets, the paper-author mapping is known in advance, accuracy of the ap-
proach can be tested over the entire data set. Another advantage of the SynPub
dataset is that by varying certain parameters we can manually control the
nature of this dataset allowing for the evaluation of all aspects of RELDC un-
der various conditions (e.g., varying level of ambiguity/uncertainty in the data
set).

Both the SynPub1 and SynPub2 datasets contain 5000 papers, 1000 authors,
25 organizations and 125 departments. The average number of choice nodes
that will be created to disambiguate the authorRef’s is 15K (notice, the whole
RealPub dataset has 75K choice nodes). The difference between SynPub1 and

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 747

SynPub2 is that author names are constructed differently as will be explained
shortly.

6.1.2 Accuracy Experiments. In the context, accuracy is defined as the frac-
tion of all authorRef references that are resolved correctly. This definition in-
cludes the references that have option sets of cardinality 1. In all figures in this
section, the higher accuracy of RELDC, compared to FBS, is the direct result
of applying the CAP principle, discussed in Section 3.4, to the dataset being
processed.

Experiment 1 (RealPub: Manually Checking Samples for Accuracy). Since
the correct paper-author mapping is not available for RealPub, it is infeasible to
test the accuracy on this dataset. However, it is possible to find a portion of this
paper-author mapping manually for a sample of RealPub by going to authors
web pages and examining their publications.

We have applied RELDC to RealPub in order to test the effectiveness of an-
alyzing relationships. To analyze the accuracy of the result, we concentrated
only on the 13.1% of uncertain authorRef references. Recall, the cardinality of
the option set of each such reference is at least two. For 8% of those references,
there were no xr � yrj paths for all j ’s, thus RELDC used only FBS and not re-
lationships. Since we want to test the effectiveness of analyzing relationships,
we remove those 8% of references from further consideration as well. We then
chose a random sample of 50 uncertain references that were still left under con-
sideration. For this sample, we compared the reference disambiguation result
produced by RELDC with the true matches. The true matches for authorRef ref-
erences in those papers were computed manually. In this experiment, RELDC
was able to resolve all of the 50 sample references correctly! This outcome is,
in reality, not very surprising since in the RealPub data sets, the number of
references that were ambiguous was only 13.1%. Our experiments over the
synthetic data sets will show that RELDC reaches very high disambiguation
accuracy when the number of uncertain references is not very high.

Ideally, we would have liked to perform further accuracy tests over RealPub
by testing on larger samples: around 1, 000 references should be tested to get
an estimation of the accuracy within 3% error interval and 95% confidence.
However, due to the time-consuming manual nature of this experiment, this was
infeasible. Instead, we next present another experiment that studies accuracy
of RELDC on the whole RealPub.

Experiment 2 (RealPub: Accuracy of Identifying Author First Names). We
conducted another experiment over the RealPub data set to test the accuracy
of RELDC in disambiguating references. We first remove from RealPub all the
paper entities that have an authorRef in format “first initial + last name”.
This leaves only papers with authorRef’s in format “full first name + last
name”. Then, we pretend we only know “first initial + last name” for those
authorRef’s. Next, we run FBS and RELDC and see whether or not they would
disambiguate those authorRef’s to authors whose full first names coincide with
the original full first names. In this experiment, for 82% of the authorRef’s the
cardinality of their option sets is 1 and there is nothing to resolve. For the rest

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

748 • D. V. Kalashnikov and S. Mehrotra

Fig. 25. RealPub: Identifying first names.

18% the problem is more interesting: the cardinality of their option sets is at
least 2. Figure 25 shows the outcome for those 18%.

Notice that the reference disambiguation problem tested in the above exper-
iment is of a limited nature. The tasks of identifying (a) the correct first name
of the author and (b) the correct author, are not the same in general.11 Never-
theless, the experiment allows us to test the accuracy of RELDC over the entire
database and does show the strength of the approach.

Let us compare Experiments 1 and 2. Experiment 1 addresses the lack of
the paper-author mapping by requiring laborious manual work and allows only
testing on a sample of authors. Experiment 2 does not suffer from those draw-
backs. However, Experiment 2 introduces substantial uncertainty to data by
assuming that only the first initial instead of the full first name is available for
each authorRef. Knowing the full first name in an authorRef, instead of just
the first initial, would have allowed to significantly narrow down the option set
for this authorRef and, thus, improve the accuracy of disambiguating this and,
potentially, other references. To address the drawbacks of Experiments 1 and 2,
we next study the approach on synthetic datasets.

Accuracy on SynPub. The next set of experiments tests accuracy of RELDC
and FBS approaches on SynPub dataset. “RELDC 100%” (“RELDC 80%”) means
for 100% (80%) of author entities the affiliation information is available. Once
again, paper entities do not have author affiliation attributes, so FBS cannot
use affiliation, see Table IV. Thus, those 100% and 80% have no effect on the
outcome of FBS. Notation “L=4” means RELDC explores paths of length no
greater than 4.

Experiment 3 (Accuracy on SynPub1). SynPub1 uses uncertainty of type 1
defined as follows. There are Nauth = 1000 unique authors in SynPub1, but

11That is, it is not enough to correctly identify that ‘J.’ in ‘J. Smith’ corresponds to ‘John’ if there

are multiple ‘John Smith’s in the dataset.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 749

Fig. 26. SynPub1: Accuracy vs. unc1.

there are only Nname, where 1≤Nname≤Nauth, unique authorName’s. We con-
struct the authorName of the author with id = k, for k = 0, 1, . . . , 999, as
‘name’ concatenated with (k mod Nname). Each authorRef specifies one of those
authorName’s. Parameter unc1 is unc1 = Nauth

Nname
ratio. For instance, if Nname = 750,

then the authors with id = 1 and id = 751 have the same authorName =
‘name1’, and unc1 = 1000

750
= 1 1

3
. In SynPub1, for each author whose name is not

unique, one can never identify with 100% confidence any paper this author has
written. Thus, the uncertainty for such authors is very high.

Figure 26 studies the effect of unc1 on accuracy of RELDC and FBS. If unc1 =
1.0, then there is no uncertainty and all methods have accuracy of 1.0. As
expected, the accuracy of all methods monotonically decreases as uncertainty
increases. If unc1 = 2.0, the uncertainty is very high: for any given author, there
is exactly one other author with the identical authorName. For this case, any FBS
have no choice but to guess one of the two authors. Therefore, the accuracy of
any FBS, as shown in Figure 26, is 0.5. However, the accuracy of RELDC 100%
(RELDC 80%) when unc1 = 2.0 is 94%(82%). The gap between RELDC 100%
and RELDC 80% curves shows that in SynPub1 RELDC relies substantially on
author affiliations for the disambiguation.

Comparing the RELDC implementations. Figure 27 shows that the accuracy
results of WM-IT-RELDC, PM-IT-RELDC, WM-SL-RELDC implementations are
comparable, whereas Figure 28 demonstrates that WM-IT-RELDC is the fastest
among them.

Experiment 4 (Accuracy on SynPub2). SynPub2 uses uncertainty of type 2.

In SynPub2, authorName’s (in author entities) are constructed such that the
following holds, see Table IV. If an authorRef reference (in a paper entity) is in
the format “first name + last name” then it matches only one (correct) author.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

750 • D. V. Kalashnikov and S. Mehrotra

Fig. 27. SynPub1: The accuracy results for SL-RELDC, IT-RELDC, and IT-RELDC with PM model

are comparable.

Fig. 28. SynPub1: IT-RELDC is more efficient than (i)SL-RELDC and (ii)IT-RELDC with PM model.

But if it is in the format “first initial + last name” it matches exactly two
authors. Parameter unc2 is the fraction of authorRef’s specified as “first initial
+ last name”. If unc2 = 0, then there is no uncertainty and the accuracy of
all methods is 1. Also notice that the case when unc2 = 1.0 is equivalent to
unc1 = 2.0.

There is less uncertainty in Experiment 4 than in Experiment 3. This is
because for each author there is a chance that he is referenced to by his full
name in some of his papers, so for these cases the paper-author associations are
known with 100% confidence.

Figure 29 shows the effect of unc2 on the accuracy of RELDC. As in Figure 26,
in Figure 29 the accuracy decreases as uncertainty increases. However, this

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 751

Fig. 29. SynPub2: Accuracy vs. unc2.

Fig. 30. SynPub: Accuracy vs. fraction of available affiliation.

time the accuracy of RELDC is much higher. The fact that curves for RELDC 100%
and RELDC 80% are almost indiscernible until unc2 reaches 0.5, shows that
RELDC relies less heavily on weak author affiliation relationships but rather
on stronger connections via papers.

6.1.3 Other Experiments

Experiment 5 (Importance of Relationships). Figure 30 studies the effect of
the number of relationships and the number of relationship types on the accu-
racy of RELDC. When resolving authorRef’s, RELDC uses three types of relation-
ships: (1) paper-author, (2) author-department, (3) department-organization.12

12Note, there is a difference between a type of relationship and a chain of relationships: for example,

RELDC can discover paths like: paper1-author1-dept1-org1-dept2-author2.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

752 • D. V. Kalashnikov and S. Mehrotra

Fig. 31. SynPub: Accuracy vs. L.

The affiliation relationships (i.e., (2) and (3)) are derived from the affiliation
information in author entities.

The affiliation information is not always available for each author entity in
RealPub. In our synthetic datasets, we can manually vary the amount of avail-
able affiliation information. The x-axis shows the fraction ρ of author entities
for which their affiliation is known. If ρ = 0, then the affiliation relationships
are eliminated completely and RELDC has to rely solely on connections via
paper-author relationships. If ρ = 1, then the complete knowledge of author af-
filiations is available. Figure 30 studies the effect of ρ on accuracy. The curves
in this figure are for both SynPub1 and SynPub2: unc1 = 1.75, unc1 = 2.00,
and unc2 = 0.95. The accuracy increases as ρ increases showing that RELDC
deals with newly available relationships well.

Experiment 6 (Longer Paths). Figure 31 examines the effect of path limit
parameter L on the accuracy. For all the curves in the figure, the accuracy
monotonically increases as L increases with the only one exception for “RELDC
100%, unc1 = 2” and L = 8. The usefulness of longer paths depends on the
combination of other parameters. For SynPub, L of 7 is a reasonable compromise
between accuracy and efficiency.

Experiment 7 (The Neighborhood Optimization). We have developed sev-
eral optimizations that make RELDC 1–2 orders of magnitude more efficient.
Figure 32 shows the effect of one of those optimizations, called NBH (see
Section 5.4), for subsets of 11K and 22K papers of CiteSeer. In this figure, the
radius of neighborhood is varied from 0 to 8. The radius of zero corresponds
to the case where NBH is not used. Figure 33 shows the speedup achieved by
NBH optimization with respect to the case when NBH is off. The figure shows
another positive aspect of NBH optimization: the speed up grows as the size of
the dataset and L increase.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 753

Fig. 32. RealPub: Optimizations are crucial.

Fig. 33. RealPub: Speedup achieved by NBH.

Experiment 8 (Efficiency of RELDC). To show the applicability of RELDC to
a large dataset we have successfully applied it to clean RealPub with L ranging
from 2 up to 8. Figure 34 shows the execution time of RELDC as a function of
the fraction of papers from RealPub dataset, for example, 1.0 corresponds to all
papers in RealPub (the whole CiteSeer) dataset.

Experiment 9 (Greedy vs. Depth-First ALL-PATHS Implementations). This
experiment compares accuracy and performance of greedy and depth-first
versions of RELDC. The depth-first version discovers exhaustively all paths in
a depth-first fashion. RELDC has been heavily optimized and this discovery
process is very efficient. The greedy implementation of ALL-PATHS discovers

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

754 • D. V. Kalashnikov and S. Mehrotra

Fig. 34. RealPub: Time vs. Fraction of RealPub.

Fig. 35. SynPub1: unc1 = 2. Accuracy of GR-RELDC vs. DF-RELDC.

paths with the best connection strength first and with the worst last. This gives
an opportunity to fine-tune in a meaningful way when to stop the algorithm
by using various thresholds. Those thresholds can limit, for example, not only
path length but also the memory that all intermediate paths can occupy, the
total number of paths that can be analyzed, and so on.

Figures 35 and 36 study the effect of Nexp parameter on the accuracy and
efficiency of GR-RELDC and DF-RELDC. Parameter Nexp is the upper bound on
the number of paths that can be extracted from the priority queue for GR-RELDC.
The ALL-PATHS part of GR-RELDC stops if either Nexp is exceeded or the priority
queue is empty.

The series in the experiment are obtained by varying: (1) DF-RELDC and GR-
RELDC, (2) path length limit L = 5 and L = 7 and (3) the amount of affiliation

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 755

Fig. 36. SynPub1: unc1 = 2. Time of GR-RELDC vs. DF-RELDC.

information 100% and 80%. Since DF-RELDC does not use Nexp parameter, all
DF-RELDC curves are flat. Let us analyze what behavior is expected from GR-
RELDC and then see if the figures corroborate it. We will always assume that
path length is limited for both DF-RELDC and GR-RELDC.

If Nexp is small, then GR-RELDC should discover only a few paths and its
accuracy should be close to that of FBS. If Nexp is sufficiently large, then GR-
RELDC should discover the same paths as DF-RELDC. That is, we can compute
mrj = |PL(xr , yrj)|, where |PL(xr , yrj)| is the number of paths inPL(xr , yrj). Then,
if we choose Nexp such that Nexp ≥ maxr, j (mrj), then the set of all paths that GR-
RELDC will discover will be identical to that of DF-RELDC. Thus, the accuracy
of GR-RELDC is expected to increase monotonically and then stabilize (and be
equal to the accuracy of DF-RELDC) as Nexp increases. The execution time of
GR-RELDC should increase monotonically and then stabilizes as well (and be
larger than the execution time of DF-RELDC after stabilizing).

The curves in Figures 35 and 36 behave as expected except for one surprise:
when L = 5, GR-RELDC is actually faster than DF-RELDC. It is explained by the
fact that when L = 5, NBH optimization prunes very effectively many paths.

That keeps the priority queue small. Thus, the performance of DF-RELDC
and GR-RELDC becomes comparable. Notice, in all of the experiments NBH
optimization was turned on, because the efficiency of any implementation of
RELDC with NBH off is substantially worse than the efficiency of any imple-
mentation with NBH on.

Figure 37 combines Figures 35 and 36. It plots the achieved accuracy by DF-
RELDC and GR-RELDC when L = 5 and L = 7 as a function of time. Using this
figure, it is possible to perform a retrospective analysis of which implementation
has shown the best accuracy when allowed to spend only at most certain amount
of time t on the cleaning task. For example, in time interval [0, 17.7) RELDC
cannot achieve better accuracy than FBS, so it is more efficient just to use FBS.
In time interval [17.7, 18.6), it is better to use GR-RELDC with L = 5. If one

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

756 • D. V. Kalashnikov and S. Mehrotra

Fig. 37. SynPub1: unc1 = 2. Choosing the best among GR-RELDC L = 5, GR-RELDC L = 7, DF-

RELDC L = 5, DF-RELDC L = 7 at each moment in time.

is allowed to spend only [18.6, 41) seconds, it is better to use GR-RELDC with
L = 5 for only 18.6 seconds. If you intend to spend between 41 and 76.7 seconds
it is better to use GR-RELDC with L = 7. If you can spend 76.7 seconds or more,
it is better to run DF-RELDC with L = 7, which will terminate in 76.7 seconds.

6.2 Case Study 2: The Movies Dataset

6.2.1 Dataset. RealMov is a real public-domain movies dataset described
in [Wiederhold 2005], which has been made popular by the textbook [Garcia-
Molina et al. 2002]. Unlike RealPub dataset, in RealMov all the needed correct
mappings are known, so it is possible to test the disambiguation accuracy of var-
ious approaches more extensively. However, RealMov dataset is much smaller,
compared to RealPub. RealMov contains entities of three types: movies (11, 453
entities), studios (992 entities), and people (22, 121 entities). There are five
types of relationships in the RealMov dataset: actors, directors, producers, pro-
ducingStudios, and distributingStudios. Relationships actors, directors, and
producers map entities of type movies to entities of type people. Relationships
producingStudios and distributingStudios map movies to studios. Figure 38
illustrate a sample graph for RealMov dataset, and Figure 39 shows its E/R
diagram.

6.2.2 Accuracy Experiments

Experiment 10 (RealMov: Accuracy of Disambiguating Director References).
In this experiment, we study the accuracy of disambiguating references from
movies to directors of those movies.

Since in RealMov each reference, including each director reference, already
points directly to the right match, we artificially introduce ambiguity in the ref-
erences manually. Similar approach to testing data cleaning algorithms have
also been commonly used by other researchers, for example, in Singla and

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 757

Fig. 38. Sample entity-relationship graph for movies dataset.

Fig. 39. E/R diagram for RealMov.

Domingos [2004] and Chaudhuri et al. [2003]. Given the specifics of our prob-
lem, to study the accuracy of RELDC, we will simulate that we used FBS to
determine the option set of each reference but FBS was uncertain in some of
the cases.

To achieve that, we first choose a fraction ρ of director references (that will
be uncertain). For each reference in this fraction, we will simulate that FBS
part of RELDC has done its best but still was uncertain as follows. Each director
reference from this fraction is assigned a option set of N people. One of those
people is the true director, the rest (N − 1) are chosen randomly from the set of
people entities.

Figure 41 studies the accuracy as ρ is varied from 0 to 1 and where N is dis-
tributed according to the probability mass function (pmf) shown in Figure 42.13

Figure 40 is similar to Figure 41 but N is always 2. The figures show that
RELDC achieves better accuracy than FBS. The accuracy is 1.0 when ρ = 0,
since all references are linked directly. The accuracy decreases almost linearly
as ρ increases to 1. When ρ = 1, the cardinality of the option set of each refer-
ence is at least 2. The larger the value of L, the better the results. The accu-
racy of RELDC improves significantly as L increases from 3 to 4. However, the

13The distribution in Figure 42 is computed as taking integer part of the value of a random variable

distributed according to the normal distribution with mean of 3.0 and standard deviation of 3.0.

Values are regenerated until they fall inside the [2, 20] interval.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

758 • D. V. Kalashnikov and S. Mehrotra

Fig. 40. RealMov: disambiguating director references. The size of the option set of each uncertain
reference is 2.

Fig. 41. RealMov: disambiguating director references. The pmf of sizes of option sets of uncertain
references is given in Figure 42.

Fig. 42. PMF of sizes of option sets.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 759

Fig. 43. RealMov: disambiguating studio references. The size of the option set of each uncertain
reference is 2.

Fig. 44. RealMov: disambiguating studio references. The pmf of sizes of option sets of uncertain
references is given in Figure 42.

improvement is less significant as L increases from 4 to 5. Thus, the analyst
must decide whether to spend more time to obtain higher accuracy with L = 5,
or whether L = 4 is sufficient.

Experiment 11 (RealMov: Accuracy of Disambiguating Studio References).
This experiment is similar to the previous Experiment 10, but now we disam-
biguate producingStudio references, instead of director references. Figure 43
corresponds to Figure 40 and Figure 44 to Figure 41. The RELDC’s accuracy of
disambiguating studio references is even higher.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

760 • D. V. Kalashnikov and S. Mehrotra

7. RELATED WORK

In recent years the data-cleaning challenge has attracted numerous efforts both
in the industry as well as academia [Raedt et al. 2001; Getoor 2001; Cohen and
Richman 2002; Monge and Elkan 1996; Gravano et al. 2001; Verykios et al. 2003;
Christen et al. 2002; Cohen 1998; Sarawagi and Bhamidipaty 2002; Ristad and
Yianilos 1998; Cohen et al. 2003]. In this section, we present an overview of the
existing work most related to the RELDC approach proposed in this article. We
will classify data-cleaning approaches along three dimensions.

The first dimension is the type of data-cleaning problem a particular ap-
proach solves. Many types of data-cleaning problems have been identified and
explored in the literature: dealing with missing data [Little and Rubin 1986],
handling erroneous data [Maletic and Marcus 2000], disambiguation and entity
resolution [Ananthakrishna et al. 2002] etc. This article focuses on one of the
disambiguation problems, called reference disambiguation. In general, there
are many variations of disambiguation problems studied by various research
communities, such as record linkage [Fellegi and Sunter 1969; Lee et al. 1999;
Monge and Elkan 1997; Jaro 1989, 1995], reference matching [McCallum et al.
2000], object identification [Tejada et al. 2002], identity uncertainty [Pasula
et al. 2002], name disambiguation [Li et al. 2004; Malin 2005], reference rec-
onciliation [Dong et al. 2005], and so on; though sometimes different names
are used for virtually identical problems. In the general setting of the problem,
the dataset contains information about the set of objects O = {o1, o2, . . . , on}.
The objects in the dataset are represented by the set of their descriptions
R = {r1, r2, . . . , rm}, where m ≥ n, such that each object is represented by one
or more descriptions. The subtle differences among the various disambiguation
challenges arise because different types of extra information about R and O
can be available in each particular problem. The most studied disambiguation
challenges include:

—Reference Disambiguation. The problem of reference disambiguation
[Kalashnikov et al. 2005], which is also known as fuzzy match [Chaudhuri
et al. 2003], assumes that some information about each object in O is avail-
able and the goal is for each reference ri ∈ R to identify the object o j ∈ O to
which it refers.

—Object Consolidation. In object consolidation [McCallum and Wellner 2003]
it is assumed that very limited information is available about O. The goal is
to correctly group the representations in R that refer to the same object.

—Record Linkage. The problem of record linkage is similar to the problem of
object consolidation. Unlike object consolidation, which deals with objects,
record linkage deals with lower-level representation of information—records
in one or more tables. The goal is to identify duplicate records in the database.
A record, in general, does not have to represent an object from O. Each record
has the same fixed set of attributes. It is often assumed that each record has
many attributes, which can be very effectively employed for de-duplication. In
contrast, in object consolidation often only a few attributes can be available,
making the problem more complex [Dong et al. 2005].

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 761

The second dimension we use to classify data-cleaning methods is whether
a given method employs the standard FBS approach or a more advanced tech-
nique. The difference between them will be covered in Sections 7.1 and 7.2.

Finally, an approach can be domain-specific or domain-independent. Let us
note that it can be hard to draw a line between domain-specific and domain-
independent data-cleaning techniques. In distinguishing between domain inde-
pendent and dependent techniques, we will follow the classification developed
in Chaudhuri et al. [2005] where the authors define domain-specific approaches
as those where the analyst, supervising the cleaning process, has to handcraft
rules and logic for cleaning, which are applicable only to the specific domain.
Let us note that many of the prevalent industrial solutions for data cleaning
by companies such as Trillium, Vality, FirstLogic, DataFlux are domain spe-
cific. In this section, we focus instead on domain-independent techniques, since
they are more directly related to our work. We note that in the RelDC project,
we have taken an even more stringent definition of domain-independence than
suggested by Chaudhuri et al. [2005]. In our view, a domain-independent so-
lution should be such that (a) it can be incorporated into a real DBMS, (b) be
applicable to different types of dataset, (c) scale to datasets of reasonable size,
and (d) require minimum participation from the analyst so that even regular
(nonexpert) database users can use it. Those have been the guiding principles
in designing RELDC. To fully achieve this goal, our ongoing work [Kalashnikov
and Mehrotra 2004] studies the issue of learning connection strength models
directly from data.

7.1 Traditional FBS Methods

Many domain-independent FBS-based techniques for data cleaning have been
proposed in the literature, including Newcombe et al. [1959], Fellegi and Sunter
[1969], Hernandez and Stolfo [1995], Ananthakrishna et al. [2002], McCallum
et al. [2000], and Winkler [1994, 1999]. Their work can be viewed as address-
ing two challenges: (1) improving similarity function, as in Bilenko and Mooney
[2003]; and (2) improving efficiency of linkage, as in Chaudhuri et al. [2003].
Typically, two-level similarity functions are employed to compare two records.
First, such a function computes attribute-level similarities by comparing values
in the same attributes of two records. Next, the function combines the attribute-
level similarity measures to compute the overall similarity of two records. A re-
cent trend has been to employ machine learning techniques, for example, SVM,
to learn the best similarity function for a given domain [Bilenko and Mooney
2003]. Many techniques have been proposed to address the efficiency challenge
as well: for example, using specialized indexes [Chaudhuri et al. 2003], sortings,
etc.

7.2 Methods that Go beyond FBS

The domain-independent techniques mentioned above deal only with at-
tributes. A number of data-cleaning techniques have been developed recently
that go beyond the traditional FBS approaches. In particular, many of them

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

762 • D. V. Kalashnikov and S. Mehrotra

in addition to attributes/features, can also take into account so-called ‘context
attributes’, or attributes derived from the context.

For example, Ananthakrishna et al. [2002] employ similarity of directly
linked entities, for the case of hierarchical relationships, to solve the record
de-duplication challenge. The example the authors consider is as follows: two
records ‘United States’ and ‘USA’ might have similar context attributes ‘CA’,
‘IN’, ‘MO’ while the records ‘Canada’ and ‘USA’ do not have the same context
attributes. This fact might suggest that ‘United States’ and ‘USA’ are duplicates
whereas ‘Canada’ and ‘USA’ are not. Let us note that there is no straightfor-
ward way to apply this technique to clean author-references in publications. For
example, if we were to apply that technique, author-references should play the
role of countries, for example, ‘United States’, and publications will play the role
of context attributes, for example, states. First, the relationship author-writes-
paper is not a hierarchical relationship. Second, there are no duplicate papers.
The latter means if for two author-references their context attributes match,
then the two authors are merely co-authors of the same paper, but they are
not the same person and must not be de-duplicated. Therefore, such context at-
tributes are of little value in our case and the approach in Ananthakrishna et al.
[2002] cannot perform better than FBS methods on our datasets. Bhattacharya
and Getoor [2004] propose an interesting object consolidation approach that is
related to Ananthakrishna et al. [2002], but does not limit itself to hierarchical
relationships only.

Lee et al. [2004] develop an association rule mining based method to dis-
ambiguate references using similarity of the context attributes. The proposed
technique is still an FBS method, but the paper discusses ‘concept hierarchies’,
which are related to relationships. In their approach, the authors rely on more
information/attributes than is available in our datasets and the exact hierar-
chies they employ are not yet available to others for testing purposes. Overall,
however, this is a very promising data-cleaning approach in our view, especially
if it is enhanced to make it less analyst dependent.

Cohen et al. [2000] the authors study the problem of ‘hardening soft
databases’, which is related to the problem of object consolidation. While that
work does not consider relationships, it is similar to RELDC as it also attempts
to find an optimal ‘global’ solution, rather than using a ‘local’ approach, such as
merging references one by one. Specifically, the authors try to determine what
is the most likely hard database, that corresponds to a particular soft database,
under the assumptions of their model. The authors prove that the task of finding
such a hard database is NP-hard, and instead propose a priority-queue-based
algorithm. However, the empirical evaluation, model calibration and many im-
plementation details are amiss in Cohen et al. [2000], making it hard to compare
against other object consolidation techniques, such as Chen et al. [2005].

In Pasula et al. [2002], the authors study the problem of identity uncer-
tainty (object consolidation, fuzzy grouping) and specifically its application
to the problem of citation matching. The approach builds on a relational
probability model and is capable of simultaneous reasoning about various
types of references. The authors demonstrate, on datasets consisting of 300
publications, that the approach achieves high disambiguation quality. Unlike

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 763

RELDC and many other data-cleaning methods, the approach in Pasula et al.
[2002] is analyst-dependent and rather complex for a regular user [Singla and
Domingos 2004; McCallum and Wellner 2004], as it requires an analyst (an
expert user) with deep understanding of the approach, probabilistic modeling,
and nature/aspects of many components of the domain. The analyst should be
able to model all the dependencies in the dataset and be capable of identifying
the right external datasets/sources for model calibration. The authors suggest
that scaling up the approach to 300 publications is a challenge since it employs
the MCMC algorithm and discuss a way to improve the efficiency. However,
the efficiency of the approach is not evaluated empirically.

In Singla and Domingos [2004], McCallum and Wellner [2004], and Dong
et al. [2005] the authors propose relational object consolidation techniques
where pair-wise matching decisions are not made independently, but rather
a decision of whether given attributes match, or do not match, can further trig-
ger similar decisions about more attributes, which ultimately leads to group-
ing or not grouping of various object representations. The authors demon-
strate that such an approach leads to better consolidation quality, compared
to the standard approach, where the pair-wise matching decisions are made
independently.

Another interesting solution is proposed in Li et al. [2004], where the authors
study the problem of ‘robust reading’—a natural language problem that corre-
sponds to the problem of object consolidation and fuzzy grouping in database
research. The authors show that grouping documents originated in about the
same time period and analyzing co-occurrences of mentions of locations and
organizations, found in the documents, can improve the quality of object con-
solidation, across those documents.

7.3 RELDC Approach

To better distinguish RELDC from other related work, we next review some of its
pertinent aspects. RELDC has been first publicly released in Kalashnikov and
Mehrotra [2003] as a domain-independent data-cleaning framework that em-
ploys analysis of interobject relationships to achieve better quality of the result.
RELDC enhances, but does not substitute, the traditional domain-independent
FBS methods, as it applies an analysis of relationships only to the cases which
FBS methods cannot resolve with high confidence. This article concentrates
on one data-cleaning challenge, known as reference disambiguation or fuzzy
lookup. In Chen et al. [2005] we have applied similar techniques to another
related data-cleaning challenge, known as object consolidation.

Relationships. RELDC is based specifically on analyzing inter-object (chains
of) relationships, where ‘relationships’ has the same definition as in the stan-
dard E/R model [Garcia-Molina et al. 2002]. There is a difference between what
is known as ‘relational’ approaches, such as Singla and Domingos [2004], and
techniques that analyze interobject relationships for data-cleaning, such as
RELDC. ‘Relational’ data-cleaning techniques are those, which take into account
the dependence among multiple co-reference decisions [Singla and Domingos
2004; McCallum and Wellner 2004]. For example, in a relational approach the

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

764 • D. V. Kalashnikov and S. Mehrotra

analyst can specify a rule that if a pair of attributes co-refer, then another pair of
attributes must co-refer as well. In general, relational techniques are different
from techniques that analyze interobject relationships.

Scalability. The problem of data-cleaning is treated by the database research
community as an applied practical problem. A thorough empirical evaluation
of the proposed solution is a must, and the authors are expected to demonstrate
that their solution is efficient (i.e., scales) and achieves high cleaning quality
for datasets of reasonable size. That is why significant effort, and significant
portion of this article, has been devoted to the scalability issues of RELDC. Let us
note that various communities study problems closely related to data-cleaning.
A number of interesting and involved techniques have been designed to address
those problems. However, in contrast to data-cleaning, scalability is not always
considered to be an important issue there. As a result, scaling those techniques
to even small datasets, found in data-cleaning, is often a nontrivial challenge
[Pasula et al. 2002], or the authors do not evaluate their solutions empirically
at all [Cohen et al. 2000].

Weaknesses of RELDC. RELDC relies on a ALL-PATHS procedure, which is com-
putationally expensive and the absolute bottleneck of the approach. Conse-
quently, the efficiency of RELDC will strongly depend on how well this procedure
is implemented and optimized in a particular DBMS system.

7.4 Other Related Work

Finally, let us conclude this section by summarizing related work, which does
not deal with the problem of data-cleaning directly. In Bhalotia et al. [2002],
the authors propose a system called BANKS (Browsing ANd Keyword Search-
ing) for keyword-based search on relational databases, together with data and
schema browsing. While the heuristic algorithm proposed in that paper does
not deal with data-cleaning, it has many similarities with the RELDC approach.
For instance, the approach in Bhalotia et al. [2002] models the database as a di-
rected graph. Conceptually, the graph is similar (but different) to the undirected
graph employed by RELDC. Like RELDC, the BANKS algorithm also weighs
edges for computing the ‘proximity through links’: a measure related to the
connection strength measure, employed by RELDC. Finally, similar to RELDC,
BANKS is also a domain-independent approach, the way we defined it above.
Another related work is on similarity joins [Cohen and Lewis 1999; Kalashnikov
and Prabhakar 2003, 2006], as RELDC essentially performs a similarity join
when constructing the choice sets for all references. In addition Cohen and
Lewis [1999] covers several other related concepts, such as random walks in
graphs.

8. CONCLUSION

In this article, we have shown that analysis of interobject relationships al-
lows to significantly improve the quality of reference disambiguation. We have
developed a domain-independent approach, called RELDC, which combines tra-
ditional feature-based similarity techniques with techniques that analyze rela-
tionships for the purpose of reference disambiguation. To analyze relationships,

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 765

RELDC views the database as the corresponding entity-relationship graph and
then utilizes graph theoretic techniques to analyze paths that exist between
nodes in the graph, which corresponds to analyzing chains of relationships
between entities. Two models have been developed to analyze the connection
strength in the discovered paths. Several optimizations of RELDC have been
presented to scale the approach to large datasets. The extensive empirical eval-
uation of the approach has demonstrated that RELDC improves the quality of
reference disambiguation beyond the traditional techniques.

This article demonstrated the usefulness of analyzing relationships for one
data-cleaning challenge known as the reference disambiguation or fuzzy lookup.
In Chen et al. [2005], we have applied similar techniques to the problem of object
consolidation. Our ongoing work [Kalashnikov and Mehrotra 2004] addresses
the challenge of automatically adapting the proposed data-cleaning techniques
to datasets at hand, by learning how to weigh different connections directly
from data, in an automated fashion. Solving this challenge, in general, can not
only make the approach a plug-and-play solution, but also can improve both
the accuracy and efficiency of the approach, as discussed in Kalashnikov and
Mehrotra [2004].

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital
Library. The appendix contains the description of the Probabilistic Model (PM)
and the alternative WM formulae.

REFERENCES

ANANTHAKRISHNA, R., CHAUDHURI, S., AND GANTI, V. 2002. Eliminating fuzzy duplicates in data

warehouses. In Proceedings of the VLDB Conference.

BHALOTIA, G., HULGERI, A., MAKHE, C., CHAKRABARTI, S., AND SUDARSHAN, S. 2002. Keyword searching

and browsing in databases using BANKS. In Proceedings of the IEEE ICDE Conference. IEEE

Computer Society Press, Los Alamitos, CA.

BHATTACHARYA, I. AND GETOOR, L. 2004. Iterative record linkage for cleaning and integration. In

Proceedings of the DMKD Workshop.

BILENKO, M. AND MOONEY, R. 2003. Adaptive duplicate detection using learnable string similarity

measures. In Proceedings of the ACM SIGKDD Conference. Washington, DC.

BRIN, S. AND PAGE, L. 1998. The anatomy of a large-scale hypertextual web search engine. In

Proceedings of the International World Wide Web Conference.

CHAUDHURI, S., GANJAM, K., GANTI, V., KAPOOR, R., NARASAYYA, V., AND VASSILAKIS, T. 2005. Data clean-

ing in Microsoft SQL Server 2005. In Proceedings of the ACM SIGMOD Conference. Baltimore,

MD.

CHAUDHURI, S., GANJAM, K., GANTI, V., AND MOTWANI, R. 2003. Robust and efficient fuzzy match for

online data-cleaning. In Proceedings of the ACM SIGMOD Conference. San Diego, CA.

CHEN, Z., KALASHNIKOV, D. V., AND MEHROTRA, S. 2005. Exploiting relationships for object consoli-

dation. In Proceedings of the IQIS Workshop at ACM SIGMOD Conference. Baltimore, MD.

CHENG, R., KALASHNIKOV, D., AND PRABHAKAR, S. 2003a. Evaluating probabilistic queries over im-

precise data. In Proceedings of the ACM SIGMOD Conference. San Diego, CA.

CHENG, R., KALASHNIKOV, D. V., AND PRABHAKAR, S. 2004. Querying imprecise data in moving object

environments. IEEE TKDE J. 16, 9 (Sept.).

CHENG, R., PRABHAKAR, S., AND KALASHNIKOV, D. 2003b. Querying imprecise data in moving object

environments. In Proceedings of the IEEE ICDE Conference. Bangalore, India. IEEE Computer

Society Press, Los Alamitos, CA.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

766 • D. V. Kalashnikov and S. Mehrotra

CHRISTEN, P., CHURCHES, T., AND ZHU, J. X. 2002. Probabilistic name and address cleaning and

standardization. In Proceedings of the Australasian Data Mining Workshop.

CITESEER 2005. http://citeseer.nj.nec.com/cs.

COHEN, W. W. 1998. Integration of heterogeneous databases without common domains using

queries based on textual similarity. In Proceedings of the ACM SIGMOD Conference, Seattle,

WA.

COHEN, E. AND LEWIS, D. 1999. Approximating matrix multiplication for pattern recognition tasks.

J. Algorithms 30, 2, 211–252.

COHEN, W., KAUTZ, H., AND MCALLESTER, D. 2000. Hardening soft information sources. In Proceed-
ings of the ACM SIGKDD Conference. Boston, MA.

COHEN, W. W., RAVIKUMAR, P., AND FIENBERG, S. E. 2003. A comparison of string distance metrics

for name-matching tasks. In Proceedings of the IIWeb Workshop.

COHEN, W. W. AND RICHMAN, J. 2002. Learning to match and cluster large high-dimensional data

sets for data integration. In Proceedings of the ACM SIGKDD Conference. ACM, New York.

CORMEN, T., LEISERSON, C., RIVEST, AND STEIN. 2001. Introduction to algorithms. MIT Press,

Cambridge, MA.

DE RAEDT, L. ET AL. 2001. Three companions for data mining in first order logic. In Proceedings
of the Relational Data Mining, S. Dzeroski and N. Lavrac, Eds. Springer-Verlag, New York.

DONG, X., HALEVY, A. Y., AND MADHAVAN, J. 2005. Reference reconciliation in complex information

spaces. In Proceedings of the ACM SIGMOD Conference. Baltimore, MD.

FALOUTSOS, C., MCCURLEY, K. S., AND TOMKINS, A. 2004. Fast discovery of connection subgraphs.

In Proceedings of the ACM SIGKDD Conference. Seattle, WA.

FELLEGI, I. AND SUNTER, A. 1969. A theory for record linkage. J. Amer. Stat. Assoc. 64, 328, 1183–

1210.

GAMS SOLVERS 2005. http://www.gams.com/solvers/.

GARCIA-MOLINA, H., ULLMAN, J. D., AND WIDOM, J. 2002. Database Systems: The Complete Book.

Prentice-Hall, Englewood Cliffs, NJ.

GETOOR, L. 2001. Multi-relational data mining using probabilistic relational models: Research

summary. In Proceedings of the 1st Workshop in Multi-Relational Data Mining.

GRAVANO, L., IPEIROTIS, P., JAGADISH, H., KOUDAS, N., MUTHUKRISHNAN, S., AND SRIVASTAVA, D. 2001.

Approximate string joins in a database (almost) for free. In Proceedings of the VLDB Conference.

HERNANDEZ, M. AND STOLFO, S. 1995. The merge/purge problem for large databases. In Proceedings
of the ACM SIGMOD Conference. San Jose, CA.

HOMEPAGESEARCH 2005. http://hpsearch.uni-trier.de.

JARO, M. 1989. Advances in record-linkage methodology as applied to matching the 1985 census

of Tampa, Florida. J. Amer. Stat. Assoc. 84, 406.

JARO, M. 1995. Probabilistic linkage of large public health data files. Stat. Med. 14, 5–7 (Mar.–

Apr.).

JIN, L., LI, C., AND MEHROTRA, S. 2003. Efficient record linkage in large data sets. In Proceedings
of the DASFAA Conference.

KALASHNIKOV, D. AND MEHROTRA. 2003. Exploiting relationships for data cleaning. UCI Tech. Rep.

TR-RESCUE-03-02.

KALASHNIKOV, D. V. AND MEHROTRA, S. 2004. Learning importance of relationships for reference

disambiguation. UCI Tech. Rep. TR-RESCUE-04-23.

KALASHNIKOV, D. V. AND MEHROTRA, S. 2005. Exploiting relationships for domain-independent data-

cleaning. SIAM SDM (extended version), www.ics.uci.edu/~dvk/pub/sdm05.pdf.

KALASHNIKOV, D. V., MEHROTRA, S., AND CHEN, Z. 2005. Exploiting relationships for domain-

independent data-cleaning. In Proceedings of the SIAM International Conference on Data Mining
(SIAM SDM 2005) (Newport Beach, CA).

KALASHNIKOV, D. AND PRABHAKAR, S. 2003. Similarity join for low- and high-dimensional data. In

Proceedings of the DASFAA Conference.

KALASHNIKOV, D. V. AND PRABHAKAR, S. 2006. Fast similarity join for multi-dimensional data. Inf.
Syst. J. to appear.

KDSURVEY 2003. http://www.kdnuggets.com/polls/2003/data_preparation.htm.

LEE, M., HSU, W., AND KOTHARI, V. 2004. Cleaning the spurious links in data. IEEE Intell. Syst.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 767

LEE, M., LU, H., LING, T., AND KO. 1999. Cleansing data for mining and warehouse. In Proceedings
of the DEXA.

LI, X., MORIE, P., AND ROTH, D. 2004. Identification and tracing of ambiguous names: Discrimi-

native and generative approaches. In Proceedings of the AAAI.
LITTLE, R. AND RUBIN, D. 1986. Statistical Analysis with Missing Data. Wiley, New York.

MALETIC, J. AND MARCUS, A. 2000. Data cleansing: Beyond integrity checking. In Proceedings of
the Conference on Information Quality.

MALIN, B. 2005. Unsupervised name disambiguation via social network similarity. In Proceedings
of the Workshop on Link Analysis, Counterterrorism, and Security.

MCCALLUM, A. AND WELLNER, B. 2003. Object consolidation by graph partitioning with a

conditionally-trained distance metric. In Proceedings of the KDD Workshop on Data Cleaning,
Record Linkage and Object Consolidation.

MCCALLUM, A. AND WELLNER, B. 2004. Conditional models of identity uncertainty with application

to noun coreference. In Proceedings of the NIPS.

MCCALLUM, A. K., NIGAM, K., AND UNGAR, L. 2000. Efficient clustering of high-dimensional data

sets with application to reference matching. In Proceedings of the ACM SIGKDD Conference.

Boston, MA.

MONGE, A. E. AND ELKAN, C. 1996. The field matching problem: Algorithms and applications. In

Proceedings of the ACM SIGKDD Conference. Portland, OR.

MONGE, A. E. AND ELKAN, C. P. 1997. An efficient domain-independent algorithm for detecting

approximately duplicate database records. In Proceedings of the SIGMOD Workshop on Research
Issues on Data Mining and Knowledge Discovery. Tucson, AZ.

NEWCOMBE, H., KENNEDY, J., AXFORD, S., AND JAMES, A. 1959. Automatic linkage of vital records.

Science 130, 954–959.

PASULA, H., MARTHI, B., MILCH, B., RUSSELL, S., AND SHPITSER, I. 2002. Identity uncertainty and

citation matching. In Proceedings of the NIPS Conference.

RISTAD, E. AND YIANILOS, P. 1998. Learning string edit distance. IEEE Trans. Patt. Anal. Mach.
Intell. 20, 5 (May), 522–532.

SARAWAGI, S. AND BHAMIDIPATY, A. 2002. Interactive deduplication using active learning. In Pro-
ceedings of the ACM SIGKDD Conference. Alberta, Canada.

SEID, D. AND MEHROTRA, S. 2006. Complex analytical queries over large attributed graph data.

Submitted for Publication.

SHAWE-TAYLOR, J. AND CRISTIANNI, N. 2004. Kernel Methods for Pattern Analysis. Cambridge Uni-

versity Press, Cambridge, MA.

SINGLA, P. AND DOMINGOS, P. 2004. Multi-relational record linkage. In Proceedings of the MRDM
Workshop.

TEJADA, S., KNOBLOCK, C. A., AND MINTON, S. 2002. Learning domain-independent string trans-

formation weights for high accuracy object identification. In Proceedings of the ACM SIGKDD
Conference. Alberta, Canada.

VERYKIOS, V., MOUSTAKIDES, G. V., AND ELFEKY, M. 2003. A Bayesian decision model for cost optimal

record matching. VLDB J. 12, 28–40.

WHITE, S. AND SMYTH, P. 2003. Algorithms for estimating relative importance in networks. In

Proceedings of the ACM SIGKDD Conference. Washington, DC.

WIEDERHOLD, G. 2005. The movies dataset. www-db.stanford.edu/pub/movies/doc.html.

WINKLER, W. E. 1994. Advanced methods for record linkage. In Proceedings of the U.S. Bureau of
Census.

WINKLER, W. 1999. The state of record linkage and current research problems. In Proceedings of
the U.S. Bureau of Census, TR99.

Received January 2005; revised September 2005 and January 2006; accepted February 2006

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Online Appendix to:
Domain-Independent Data Cleaning via
Analysis of Entity-Relationship Graph

DMITRI V. KALASHNIKOV and SHARAD MEHROTRA

University of California, Irvine

A. PROBABILISTIC MODEL

In the main body of the article, we have presented the weight based model (WM)
for computing connection strength. In this section of the appendix, we study a
different connection strength model, called the probabilistic model (PM). In the
probabilistic model, an edge weight is treated not as “weight” but as “probabil-
ity” that the edge exists.

A.1 Preliminaries

Notation. We will compute probabilities of certain events. Notation P(A) refers
to the probability of event A to occur. We use E ∃ to denote event “E exists”
for an edge E. Similarly, we use E �∃ for event “E does not exist”. Therefore,
P(E ∃) refers to the probability that E exists. We will consider situations where
the algorithm computes the probability of following (or, ‘going along’) a specific
edge E, usually in the context of a specific path. This probability is denoted as
P(E →). We will use dep(e1, e2) notation as follows: dep(e1, e2) = true if and only
if events e1 and e2 are dependent. Notation denote the path being currently
considered. Table V summarizes the notation.

The challenge. Figure 45 illustrates an interesting property of graphs with
probabilistic edges: each such graph maps on to a family of regular graphs.
Figure 45(a) shows a probabilistic graph where three edges are labeled with
probability of 0.5. This probabilistic graph maps on to 23 regular graphs. For
instance, if we assume that none of the three edges is present (the probability of
which is 0.53) then the graph in 45(a) will be instantiated to the regular graph
in Figure 45(b). Figures 45(c) and 45(d) show other two possible instantiations
of it, each having the same probability of occurring of 0.53.

The challenge in designing algorithms that compute any measure on such
probabilistic graphs, including the connection strength measure, comes from
the following observation. If a probabilistic graph has n independent edges, that
are labeled with non-1 probabilities, then this graph maps into the exponential
number (i.e., 2n) of regular graphs, where the probability of each instantiation
is determined by the probability of the corresponding combination of edges to
exist. Algorithms that work with probabilistic graphs should be able to account
for the fact that some of the edges exist only with certain probabilities. If such

This work was supported in part by NSF grants 0331707, 0331690, and IRI-9703120.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006, Pages 1–13.

2 • D. V. Kalashnikov and S. Mehrotra

Table V. Notation

Notation Meaning

x ∃ event “x exists” for (edge,path) x
x �∃ event “x does not exist”

x → event that corresponds to following x
dep(e1, e2) if events e1 and e2 are dependent,

then dep(e1, e2) = true, else false

P(x ∃) probability that (edge) x exists

P(x →) probability of following (going via) x

the path being considered

vi i-th node on path

Ei (vi , vi+1) edge on path

Eij edge labeled with probability pij
aij aij = 1 if edge Eij exists; else aij = 0

ai0 = 1 dummy variables: ai0 = 1 (for all i)
pi0 = 1 dummy variables: pi0 = 1 (for all i)

opt(E) if edge E is an option-edge, then

opt(E) = true, else opt(E) = false

choice[E] if edge E is an option-edge, then choice[E]

is the choice node associated with E
a (vec) vector, a = (a10, a11, . . . , a(k−1)nk−1

)

a (set) a = {aij : for all i, j }
a (var) at each moment variable a is one

instantiation of a as a vector

Fig. 45. Probabilistic graph maps to a family of regular graphs.

an algorithm computes a certain measure on a probabilistic graph it should
avoid computing it naı̈vly by computing it on each of 2n instantiations of this
graph separately and then outputting the probabilistic average as the answer.
Instead, smart techniques should be designed capable of computing the same
answer by applying more efficient methods.

Toy Examples. We will introduce PM by analyzing two examples shown in
Figures 46 and 47. Let us consider how to compute the connection strength
when edge weights are treated as probabilities that those edges exist. Each
figure show a part of a small sample graph with path = A↔ B ↔ C ↔ D ↔ E,
which will be of interest to us.

In Figure 46, we assume the events “edge BF is present” and “edge DG is
present” are independent. The probability of the event “edge BF is present” is
0.8. The probability of the event “edge DG is present” is 0.2. In Figure 47, node
F represents a choice node and BF and DF are its option-edges. Events “edge
BF exists” and “edge DF exists” are mutually exclusive (and hence strongly

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 3

Fig. 46. Toy example: independent case.

Fig. 47. Toy example: dependent case.

dependent): if one edge is resent, then the other edge must be absent due to the
semantics of the choice node.

PM computes the connection strength c() of path as the probability of fol-
lowing the path : c() = P(→). In PM computing c() is a two step process.
PM first computes the probability P(∃) that path exists, then it computes
the probability P(→| ∃) of following the path , given that exists. Then
PM computes c() as c() = P(→) = P(→| ∃)P(∃).

Thus, the first step is to compute P(∃). A path exists if each edge on that
path exists. For the path in Figures 46 and 47, probability P(∃) is equal
to P(AB ∃ ∩ BC ∃ ∩ CD ∃ ∩ DE ∃). If the existence of each edge in the path is in-
dependent from the existence of other edges, for example, like for the cases
shown in Figures 46 and 47, then P(∃) = P(AB ∃ ∩ BC ∃ ∩ CD ∃ ∩ DE ∃) =
P(AB ∃)P(BC ∃)P(CD ∃)P(DE ∃) = 1.

The second step is to compute the probability P(→| ∃) of following the path
, given that exists. Once this probability is computed, we can compute c(p)

as c() = P(→) = P(∃)P(→| ∃). The probability P(→| ∃) is computed
differently for the cases in Figures 46 and 47. This will lead to different values
of c().

Example A.1.1 (Independent Edge Existence). Let us first consider the case
where the existence of each edge is independent from the existence of
the other edges. In Figure 46, two events “BF exists” and “DG exists”
are independent. The probability of following the path is the product
of probabilities of following each of the edges on the path: P(→| ∃) =
P(AB→| ∃)P(BC→| ∃)P(CD→| ∃) × P(DE→| ∃). Given path exists, the
probability of following the edge AB in path is one. The probability of follow-
ing the edge BC is computed as follows. With probability 0.2 edge BF is absent,

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

4 • D. V. Kalashnikov and S. Mehrotra

Fig. 48. Independent edge existence. Computing c(v1 ↔ v2 ↔ · · · ↔ vk). All edges shown in the

figure are “possible to follow” edges in the context of the path. Edges that are not possible to follow

are not shown.

in which case the probability of following BC is 1. With probability 0.8, edge BF
is present, in which case the probability of following BC is 1

2
– because there

are two links, BF and BC, that can be followed. Thus, the total probability of
following BC is 0.2 ·1+0.8 · 1

2
= 0.6. Similarly, the probability of following CD is

1 and the probability of following DE is 0.8 · 1 + 0.2 · 1
2

= 0.9. The probability of
following the path , given it exists, is the product of probabilities of following
each edge of the path, which is equal to 1 · 0.6 · 1 · 0.9 = 0.54. Since for the case
shown in Figure 46 path exists with probability 1, the final probability of
following is c() = P(→) = 0.54.

Example A.1.2 (Dependent Edge Existence). Let us now consider the case
where the existence of an edge can depend on the existence of the other edges.
For the case shown in Figure 47 edges BF and DF cannot exist both at the
same time. To compute P(→| ∃), we will consider two cases separately: BF ∃

and BF �∃. That way we will be able to compute P(→| ∃) as P(→| ∃) =
P(BF ∃|p ∃)P(→| ∃ ∩ BF ∃) + P(BF �∃|p ∃)P(→| ∃ ∩ BF �∃).

Let us first assume that BF ∃ (i.e., edge BF is present) and then compute
P(BF ∃|p ∃)P(→| ∃ ∩ BF ∃). For the case of Figure 47, if no assumptions about
the presence or absence of DF have been made yet, P(BF ∃|p ∃) is simply equal
to P(BF ∃), which is equal to 0.8. If BF is present then DF is absent and the
probability of following is P(→| ∃ ∩ BF ∃) = 1 · 1

2
· 1 · 1 = 1

2
. Now let us

consider the second case BF �∃ (and thus DF ∃). The probability P(BF �∃|p ∃) is 0.2.
For that case, P(→| ∃ ∩ BF �∃) is equal to 1 · 1 · 1 · 1

2
= 1

2
. Thus, P(→| ∃) =

0.8 · 1
2

+ 0.2 · 1
2

= 0.5. Therefore, c() = P(→) = 0.50, which is different from
that of the previous experiment.

A.2 Independent Edge Existence

Let us consider how to compute path connection strength in general case, as-
suming the existence of each edge is independent from existence of the other
edges.

A.2.1 General Formulae. In general, any path can be represented as a
sequence of k nodes 〈v1, v2, . . . , vk〉 or as a sequence of (k −1) edges 〈E1, E2, . . . ,
E(k−1)〉, as illustrated in Figure 48, where Ei = (vi, vi+1) and P(E ∃

i) = qi, for
i = 1, 2, . . . , k − 1. We will refer to the edges labeled with probabilities pij (for
all i, j) in this figure as Eij. The goal is to compute the probability of following
the path , which is the measure of the connection strength of the path :

c() = P(→) = P(∃)P(→| ∃). (9)

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 5

Fig. 49. The case in this figure is similar to that of Figure 48 with an additional assumption that

path exists.

The probability that exists is equivalent to the probability that each of its
edges exists:

P(∃) = P

(
k−1⋂
i=1

E ∃
i

)
. (10)

Given our assumption of the independence, P(∃) can be computed as

P(∃) =
k−1∏
i=1

P
(
E ∃

i

) =
k−1∏
i=1

qi. (11)

To compute P(→), we now need to compute P(→| ∃). In turn, to compute
P(→| ∃), let us analyze how labels pij and qi (for all i, j) in Figure 48 will
change, if we assume that exists. We will compute the corresponding new
labels, p̃ij and q̃i, and reflect the changes in Figure 49. Since qi is defined as
qi = P(E ∃

i) and pij is defined as pij = P(E ∃
ij), the new labels are computed as

q̃i = P(E ∃
i |p ∃) = 1 and p̃ij = P(E ∃

ij |p ∃). Given our assumption of independence,

p̃ij = pij. The new labeling is shown in Figure 49.
Let us define a variable aij for each edge Eij (labeled pij) as follows: aij = 1 if

and only if edge Eij exists; otherwise aij = 0. Also, for notational convenience,
let us define two sets of dummy variables, ai0 and pi0, such that ai0 = 1 and
pi0 = 1, for i = 1, 2, . . . , k − 1.14 Let a denote a vector consisting of all aij’s:
a = (a10, a11, . . . , a(k−1)nk−1

). Let A denote the set of all possible instantiations

of a, i.e. |A| = 2n1+n2+···+nk−1 . Then, probability P(→| ∃) can be computed as

P(→| ∃) =
∑
a∈A

{P(→|a ∩ ∃)P(a| ∃)}, (12)

where P(a| ∃) is the probability of instantiation a to occur while assuming
∃. Given our assumption of independence of probabilities, P(a| ∃) = P(a).

Probability P(a) can be computed as

P(a| ∃) = P(a) =
∏

i=1,2,...,k−1
j=0,1,...,ni

p
aij
ij (1 − pij)

1−aij . (13)

Probability P(→|a ∩ ∃), which is the probability to go via given (1) a

14Intuitively (1) ai0 = 1 corresponds to the fact that edge Ei exists given path exists; and (2)

pi0 = 1 corresponds to pi0 = P(E ∃
i |p ∃) = 1.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

6 • D. V. Kalashnikov and S. Mehrotra

particular instantiation of a; and (2) the fact that exists, can be computed as

P(→|a ∩ ∃) =
k−1∏
i=1

1

1 + ∑ni
j=1 aij

≡
k−1∏
i=1

1∑ni
j=0 aij

. (14)

Thus,

P(→) =
(

k−1∏
i=1

qi

) (∑
a∈A

{[
k−1∏
i=1

1∑ni
j=0 aij

] [∏
ij

p
aij
ij (1 − pij)

1−aij

]})
. (15)

A.2.2 Computing Path Connection Strength in Practice. Notice, Equa-
tion (15) iterates through all possible instantiations of a, which is impossible to
compute in practice, given |A| = 2n1+n2+···+nk−1 . This equation must be simplified
to make the computation feasible.

Computing P(→| ∃) as
∏k−1

i=1 P(E →
i | ∃). To achieve the simplification,

we will use our assumption of independence of probabilities, which allows us
to compute P(→| ∃) as the product of the probabilities of following each in-
dividual edge in the path:

P(→| ∃) =
k−1∏
i=1

P(E →
i | ∃). (16)

Let ai denote vector (ai0, ai1, . . . , aini), that is a = (a1, a2, . . . , ak−1). Let Ai de-
note all possible instantiations of ai. That is, A = A1 × A2 × · · · × Ak−1 and
|Ai| = 2ni . Then

P(E →
i | ∃) =

∑
ai∈Ai

{[
1∑ni

j=0 aij

] [
ni∏

j=0

p
aij
ij (1 − pij)

1−aij

]}
. (17)

Combining Equations (9), (16), and (17), we have

P(→) =
(

k−1∏
i=1

qi

)
k−1∏
i=1

(∑
ai∈Ai

{[
1∑ni

j=0 aij

] [
ni∏

j=0

p
aij
ij (1 − pij)

1−aij

]})
. (18)

The Effect of Transformation. Notice, using Eq. (15), the algorithm will need
to perform |A| = 2n1+n2+···+nk−1 iterations – one per each instantiation of a. Using
Eq. (18), the algorithm will need to perform |A1|+|A2|+· · ·+|Ak−1| = 2n1 +2n2 +
· · · + 2nk−1 iterations. Furthermore, each iteration requires less computation.
These factors lead to a significant improvement.

Handling Weight-1 Edges. The formula in Eq. (17) assumes 2ni iterations
will be needed to compute P(E →

i | ∃). This formula can be modified further
to achieve more efficient computation as follows. In practice, some of the pij’s,
or even all of them, are often equal to 1. Figure 50 shows the case where m
(0 ≤ m ≤ ni) edges incident to node vi are labeled with 1. Let ãi denote vector
(ai0, ai1, . . . , ai(ni−m)) and let Ãi be the set of all possible instantiations of this
vector. Then, Eq. (17) can be simplified to

P(E →
i | ∃) =

∑
ãi∈Ãi

{[
1

m + ∑ni−m
j=0 aij

] [
ni−m∏
j=0

p
aij
ij (1 − pij)

1−aij

]}
. (19)

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 7

Fig. 50. Probability of following the edge Ei = (vi , vi+1).

The number of iteration is reduced from 2ni to 2ni−m.

Computing P(E →
i | ∃) as

∑ni
�=0

1
1+�

P(si = �). Performing 2ni−m iterations
can still be expensive for the cases when (ni − m) is large. Next, we discuss
several methods to deal with this issue.

Method 1. Do Not Simplify Further. In general, the value of 2ni−m can be
large. However, for a particular instance of a cleaning problem, it can be that
(a) 2ni−m is never large or (b) 2ni−m can be large but bearable and the cases
when it is large are infrequent. In those cases, further simplification might not
be required.

Method 2. Estimate Answer Using Results from Poisson Trials Theory. Let
us denote the following sum as si: si = ∑ni

j=1 aij. From a basic probability course,

we know that the binomial distribution gives the number of successes in n
independent trials where each trial is successful with the same probability p.
The binomial distribution can be viewed as a sum of several i.i.d. Bernoulli
trials. The Poisson trials process is similar to the binomial distribution process
where trials are still independent but not necessarily identically distributed,
that is, the probability of success in the ith trial is pi. We can modify Eq. (18)
to compute P(E →

i | ∃) as follows:

P(E →
i | ∃) =

ni∑
�=0

1

1 + �
P(si = �). (20)

Notice, for a given i we can treat ai1, ai2, . . . , aini as a sequence of ni Bernoulli
trials with probabilities of success P(aij = 1) = pij. One would want to estimate
P(si = �) quickly, rather than compute it exactly via iterating over all cases
when (si = �). That is, we would like to avoid computing P(si = �) as

P(si = �) =
∑
ai∈Ai
si=�

ni∏
j=0

p
aij
ij (1 − pij)

1−aij .

There are multiple cases when P(si = �) can be computed quickly. For ex-
ample, in certain cases it can be possible to utilize the Poisson trials theory to
estimate P(si = �). For instance, if each pij is small, then from the probability

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

8 • D. V. Kalashnikov and S. Mehrotra

theory we know that

P(si = �) = λ�e−λ

�!

{
1 + O

(
λ max

j=1,2,...,ni

pij + �2

λ
max

j=1,2,...,ni

pij

)}
, where λ =

ni∑
j=1

pij.

(21)

One can also utilize the following “Monte-Carlo like” method to compute P(si =
�). The idea is to have several runs. During run number m, the method decides
by generating a random number (“tossing a coin”) if edge Eij is present (variable
aj will be assigned 1) or absent (aj = 0) for this run based on the probability
pij. Then, the sum Sm = ∑ni

j=1 pij is computed for that run. After n runs, the

desired probability P(si = �) is estimated as the number of Si ’s which are equal
to �, divided by n.

Method 3. Use Linear Cost Formula. The third approach is to use a cut-
off threshold to decide if the cost of performing 2ni−m iterations is acceptable.
If it is acceptable, then compute P(E →

i | ∃) precisely, using iterations. If it is
not acceptable (typically, rare case), then try to use Eq. (21). If that fails, use
the following (linear-cost) approximation formula. First, compute the expected
number of edges μi among ni edges Ei1, Ei2, . . . , Eini , where P(E ∃

ij) = pij, as

follows: μi = m + ∑ni−m
j=1 pij. Then, since there are 1 + μi possible links that can

be followed on average, the probability of following Ei can be coarsely estimated
as

P(E →
i | ∃) ≈ 1

1 + μi
= 1

m + ∑ni−m
j=0 pij

. (22)

A.3 Dependent Edge Existence

In this section, we discuss how to compute connection strength if occurrence of
edges is dependent. In our model, dependence between two edges arises only
when those two edges are option-edges of the same choice node. We next show
how to compute P(→) for those cases.

We need to address two principal situations. The first is to handle all choice
nodes on the path. The second step is to handle all choice nodes such that a
choice node itself is not on the path but at least two of its option nodes are on
the path. Next, we address those two cases.

A.3.1 Choice Nodes on the Path. The first case of how to deal with choice
nodes on the path is a simple one. There are two subcases in this case illustrated
in Figures 51 and 53.

Figure 51 shows a choice node C on the path which has options D, G, and F .
Recall, we compute P(→) = P(∃)P(→| ∃). When we compute P(∃) each
edge of path should exist. Thus, edge CD must exist, which means edges
CG and CF do not exist. Notice, this case is equivalent to the case shown in
Figure 52 where (a) edges CG and CF are not there (permanently eliminated
from consideration); and (b) node C is just a regular (not a choice) node con-
nected to D via an edge (in this case the edge is labeled 0.2). If we now consider
this equivalent case, then we can simply apply Eq. (18) to compute the connec-
tion strength.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 9

Fig. 51. Choice node on the path.

Fig. 52. Choice node on the path: Removing choice.

Fig. 53. Choice node on the path: Illegal path.

In general, all choice nodes on the path, can be “eliminated” from the path
one by one (or, rather, “replaced with regular nodes”) using the procedure
above.

Figure 53 shows a choice node C on the path which have options B, F , and
D, such that B ↔ C ↔ D is a part of the path . Semantically, edges CB, CF,
and CD are mutually exclusive, so path cannot exist. Such paths are said to
be illegal and they are ignored by the algorithm.

A.3.2 Options of the Same Choice Node on the Path. Assume now that
we have applied the procedure from Section and all choice nodes are “elimi-
nated” from path . At this point the probability P(∃) can be computed as

P(∃) = ∏k−1
i=1 qi. The only case that is left to be considered is where a choice

node itself is not on the path but at least two of its options are on the path.
An example of such a case is illustrated in Figure 54 where choice node F
has four options: G, B, D, and H, two of which B and D belong to the path
being considered. After choice nodes are eliminated from the path, the goal be-
comes to create a formula similar to Eq. (18), but for the general “dependent”
case.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

10 • D. V. Kalashnikov and S. Mehrotra

Fig. 54. Options of the same choice node on the path.

Let us define two sets, f and d, of ‘free’ and ‘dependent’ aij’s as:

f = {
aij : ∀r, s (r �= i or s �= j) ⇒ dep

(
E ∃

ij , E ∃
rs

) = false
}
,

d = {
aij : ∃r, s (r �= i or s �= j) : dep

(
E ∃

ij , E ∃
rs

) = true
}
.

(23)

Notice, a = f ∪ d and f ∩ d = ∅. If d = ∅, then there is no dependence and the
solution is given by Eq. (18). To handle the case where d �= ∅, let us define fi

and di as:

fi = {aij : aij ∈ f, j = 0, 1, . . . , ni},
di = {aij : aij ∈ d, j = 1, 2, . . . , ni}. (24)

Notice, ai = fi ∪ di and fi ∩ di = ∅. Let us define D as the set of all possible
instantiations of d, and Fi as the set of all possible instantiations of fi. Then

P(→) =
(

k−1∏
i=1

qi

)
︸ ︷︷ ︸

P(
∃
)

∑
d∈D

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
⎡⎣k−1∏

i=1

⎛⎝ ∑
fi∈Fi

⎧⎨⎩
[

1∑ni
j=0

aij

]⎡⎣ ∏
j :aij∈fi

p
aij
ij (1 − pij)

1−aij

⎤⎦⎫⎬⎭
⎞⎠⎤⎦

︸ ︷︷ ︸
�(d)

P(d)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

(25)

Eq. (25) iterates over all feasible instantiations of d. P(d) is the probability
of a specific instance of d to occur. Eq. (25) contains term

∑
d∈D

{
�(d)P(d)

}
.

What this achieves is that a particular instantiation of d “fixates” a particular
combination of all “dependent” edges, and P(d) corresponds to the probability
of that combination. Notice, �(d) directly corresponds to P(→| ∃) part of
Eq. (18). To compute P(→) in Eq. (25), we only need to specify how to compute
P(d).

Computing P(d). Recall, we now consider the cases where aij is in d only
because there is (at least one) another ars ∈ d such that dep(E ∃

ij , E ∃
rs) = true

and choice[Eij] = choice[Ers], where choice[Eij] is the choice node associated
with Eij. Figure 47 illustrates an example of such a case. Therefore, for each
aij ∈ d, we can identify choice node r� = choice[Eij] and compute set C� = {ars ∈
d : choice[Ers] = r�}. Then, for any two distinct elements aij ∈ C� and ars the
following holds: dep(E ∃

ij , E ∃
rs) = true if and only if ars ∈ C�.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 11

Fig. 55. Intra choice dependence.

In other words, we can split set d into nonintersecting subsets d = C1 ∪ C2 ∪
· · · ∪ Cm. The existence of each edge Eij such that aij is in one of those sets C�

depends only on the existence of those edges Ers’s whose ars is in C� as well.
Therefore, P(d) can be computed as P(d) = P(dC1

)P(dC2
) × · · · × P(dCm), where

dC�
is a particular instantiation of aij’s from C�. Now, to be able to compute

Eq. (25), we only need to specify how to compute P (dC�
) for � = 1, 2, . . . , m.

Computing P (dC�
). Figure 55 shows choice node r� with n options

u1, u2, . . . , un. Each edge (r�, u j) for j = 1, 2, . . . , n is labeled with probability
pj .

As before, to specify which edge is present and which is absent, each option
edge has variable aj associated with it. Variable aj = 1 if and only if the edge
labeled with pj is present, otherwise aj = 0. That is, P(aj = 1) = pj and
p1 + p2 + · · · + pn = 1.

Let us assume, without loss of generality, that the first k (2 ≤ k ≤ n)
options u1, u2, . . . , uk of r� belong to path while the other (n − k) options
uk+1, uk+2, . . . , un do not belong to , as shown in Figure 55. In the context
of Figure 55, computing P (dC�

) is equivalent to computing the probability a
particular instantiation of vector (a1, a2, . . . , ak) to occur.

Notice, only one ai among a1, a2, . . . , ak , ak+1, ak+2, . . . , an can be 1, the rest
are zeroes. First, let us compute the probability of instantiation a1 = a2 =
· · · = ak = 0. For that case, one of ak+1, ak+2, . . . , an should be equal to 1. Thus,
P(a1 = a2 = · · · = ak = 0) = pk+1 + pk+2 + · · · + pn.

The second case is when one of a1, a2, . . . , ak is 1. Assume that aj = 1, where
1 ≤ j ≤ k, then P(aj = 1) = pj . To summarize:

P(a1, a2, . . . , ak) =
{

pj if ∃ j (1 ≤ j ≤ k) : aj = 1;

pk+1 + pk+2 + · · · + pn otherwise.

Now we know how to compute P (dC�
) for � = 1, 2, . . . , m, thus we can compute

P(d). Therefore, we have specified how to compute path connection strength
using Eq. (25).

A.4 Computing the Total Connection Strength

The connection strength between nodes u and v is computed as a sum of con-
nection strengths of all simple paths between u and v: c(u, v) = ∑

∈PL(u,v) c().

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

12 • D. V. Kalashnikov and S. Mehrotra

Based on this connection strength, the weight of the corresponding edge will be
determined.

Let us give the motivation of why the summation of individual simple paths
is performed. We associate the connection strength between two nodes u and v
with probability of reaching v from u via only L-short simple paths. Let us name
those simple paths 1, 2, . . . , k . Let us call G(u, v) the subgraph comprised
of the union of those paths: G(u, v) = 1 ∪ 2 ∪ · · · ∪ k . Subgraph G(u, v) is
a subgraph of the complete graph G = (V , E), where V is the set of vertices
V = {v1, v2, . . . , v|V |} and E is the set of edges E = {E1, E2, . . . , E|E|}. Let us
define ai as: ai = 1 if and only if edge Ei is present, otherwise ai = 0. Let a
denote vector (a1, a2, . . . , a|E|) and let A be the set of all possible instantiations
of a.

We need to compute the probability of reaching v from u via subgraph
P(G(u, v)→), which we treat as the measure of the connection strength. We
can represent P(G(u, v)→) as

P(G(u, v)→) =
∑
a∈A

P(G(u, v)→|a)P(a). (26)

Notice, when computing P(G(u, v)→|a) we assume a particular instantiation
of a. Therefore, the complete knowledge of which edges are present and which
are absent is available, as if all the edges were “fixed”. Assuming one particular
instantiation of a, there is no dependence among edge existence events any
longer: each edge is either present with 100% probability or absent with 100%
probability. Thus,

P(G(u, v)→|a) =
k∑

i=1

P(→
i |a), (27)

and

P(G(u, v)→) =
∑
a∈A

P(G(u, v)→|a)P(a)

=
∑
a∈A

[(
k∑

i=1

P(→
i |a)

)
P(a)

]

=
k∑

i=1

[∑
a∈A

(P(→
i |a)P(a))

]

=
k∑

i=1

P(→
i).

(28)

Equation (28) shows that the total connection strength is the sum of the
connection strength of all L-short simple paths.

B. ALTERNATIVE WM FORMULAE

One could argue that the original WM formulae, covered in the main body of
this article, does not address properly the situation illustrated in Figure 56.
In the example in Figure 56, when disambiguating references r the option set
for this reference Sr has three elements y1, y2, and y3. In Figure 56(a), the

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning • 13

Fig. 56. Motivation for Normalization method 2.

connection strengths c j = c(xr , y j) for j = 1, 2, 3 are as follows: c1 = 0, c2 = 0,
and c3 is a nonnegative value which is small. That is, RELDC has not been able
to find any evidence that r∗ is y1 or y2 and found insubstantial evidence that
r∗ is y3. However, the original WM formulae will compute w1 = 0, w2 = 0,
and w3 = 1, one interpretation of which might be that the algorithm is 100%
confident y3 is r∗.

One can argue that in such a situation, since the evidence that r∗ is y3 is
very weak, w1, w2, and w3 should be roughly equal. That is, their values should
be close to 1

3
in this case, as shown in Figure 56(b), and w3 should be slightly

greater than w1 and w2.
Figure 56(c) is similar to Figure 56(a), except for c3 is large with respect to

other connection strengths in the system. Following the same logic, weights w1

and w2 should be close to zero. Weight w3 should be close to 1, as in Figure 56(d).
We can correct those issues with the WM formulae and achieve the desired

weight assignment as follows. We will assume that since y1, y2, and y3 are in
the option set Sr of reference r (whereas other entities are not in the option
set), in such situations there is always a very small default connection strength
α between each xr and y j . That is, the weights should be assigned as follows:

wj = (c j + α)∑N
�=1(cr� + α)

. (29)

where α is a small positive weight. Equation (29) corrects the mentioned draw-
backs of the WM formulae.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

