
The VLDB Journal
DOI 10.1007/s00778-012-0305-7

REGULAR PAPER

Super-EGO: fast multi-dimensional similarity join

Dmitri V. Kalashnikov

Received: 30 March 2012 / Revised: 20 December 2012 / Accepted: 22 December 2012
© Springer-Verlag Berlin Heidelberg 2013

Abstract Efficient processing of high-dimensional simi-
larity joins plays an important role for a wide variety of
data-driven applications. In this paper, we consider ε-join
variant of the problem. Given two d-dimensional datasets
and parameter ε, the task is to find all pairs of points, one
from each dataset that are within ε distance from each other.
We propose a new ε-join algorithm, called Super-EGO,
which belongs the EGO family of join algorithms. The
new algorithm gains its advantage by using novel data-
driven dimensionality re-ordering technique, developing a
new EGO-strategy that more aggressively avoids unneces-
sary computation, as well as by developing a parallel version
of the algorithm. We study the newly proposed Super-EGO
algorithm on large real and synthetic datasets. The empirical
study demonstrates significant advantage of the proposed
solution over the existing state of the art techniques.

Keywords Epsilon join · Similarity join ·
Multi-dimensional join · Euclidean space

1 Introduction

In the ε-join variant of similarity join, the algorithm is given
two d-dimensional datasets A, B ∈ R

d . The goal is to find
all pairs of points (a, b), where a ∈ A and b ∈ B such that
||a − b|| < ε. That is,

A ��ε B = {(a, b) : ||a − b|| < ε, a ∈ A, b ∈ B}. (1)

Here a = (a1, a2, . . . , ad) and b = (b1, b2, . . . , bd) are
d-dimensional points and ||a− b|| is the distance between a
and b, e.g. measured using the generic L p norm:

D. V. Kalashnikov (B)
Department of Computer Science, University of California,
Irvine, CA, USA
e-mail: dvk@ics.uci.edu

||a − b||p =
[

d∑
i=1

(ai − bi)
p

] 1
p

, where p = 1, 2, . . . ,∞.

For instance, the focus of many ε-join techniques is often
the standard Euclidean distance which corresponds to the L2

case, where p = 2.
Similarity join operations play an important role in such

areas as data mining, data cleaning, entity resolution, and
so on [8,15,20,25]. Specifically, this join often serves as
pre-processing step, also known as blocking, in applica-
tions that analyze similarity of objects. To find similar
objects, such application would first map each object into its
d-dimensional feature representation. Then, they would
apply a similarity join as a crude-but-fast preprocessing step
to find pairs of objects that might potentially be similar. The
goal of this step is to quickly find a superset of the true
set of similar objects.1 Then, more advanced techniques are
typically applied to this superset to remove false positives
and get similar objects with higher accuracy.

The main challenge of computing A ��ε B is to be able to
do it efficiently on large datasets. For example, a simple way
to compute A ��ε B, which we will refer to as SimpleJoin,
is to implement it as two loops: one over elements of A and
the other one over elements of B, inside of which perform-
ing a check on if ||a − b|| < ε. However, the computational
complexity of this simple algorithm is quadratic on data size
O(|A| · |B| · d). Given that the cardinality of datasets A and
B can be large, this algorithm is considered to be infeasi-
ble in practice. Hence, more efficient techniques have been
proposed to address the challenge [3,4,17,19,21,23,24].

1 That is, the result is allowed to contain false positives (pairs of objects
that are not similar) but should minimize false negatives (pairs of objects
that are similar but not included in the result set).

123

The International Journal on Very Large Data Bases (VLDB Journal), 4(2):561–585, 2013

D. V. Kalashnikov

In this paper, we present Super-EGO algorithm for effi-
cient similarity join. As its name suggests, it belongs to the
EGO family of ε-join algorithms [2] which are overviewed
in Sect. 3. We show that Super-EGO is more efficient,
often by very significant margins, than recent state of the art
techniques such as EGO-star [14,16], CSJ [5], LSS [18],
and E2-LSH [1]. The speedup is achieved by developing
a dimensionality reordering technique, designing an EGO-
strategy that more aggressively avoids unnecessary compu-
tations, reorganizing the simple-join part of the solution, as
well as developing a scalable parallel version of the algo-
rithm, as will be explained in Sect. 4.

We also highlight the importance of considering the selec-
tivity of a join operation in assessing the performance of var-
ious join algorithms. The selectivity measures the average
number of points from dataset B that joins each point from
dataset A and it is controlled by ε parameter for given A and
B. Given practical uses of epsilon-join (e.g., as a blocking
procedure, or for finding pairs of similar objects), selectivity
is expected to be within certain limits in practice. However,
setting ε appropriately can be unintuitive, especially during
testing for higher dimensional cases, as we discuss in Sect. 5.

This paper also contains a fairly extensive experimen-
tal evaluation in Sect. 6. It thoroughly tests the proposed
approach on eight different real datasets. Furthermore, in
addition to the usual types of ε-join experiments, Sect. 6.7
contains a number of empirical results that the reader might
find particularly interesting:

– When ε ≥ 0.5, Super-EGO, as any EGO-based tech-
nique, will reduce to a quadratic algorithm. However, we
will see that it reduces to a “smart” quadratic algorithm
that often runs much faster than the naive SimpleJoin
explained above.

– Section 6.2 defines a simple quadratic baseline called
O(n2)block. Section 6.7 demonstrates that it is surpris-
ingly competitive. We thus encourage researchers work-
ing on new ε-join solutions to compare to this baseline
to demonstrate that their solutions can outperform this
simple quadratic algorithm.

– We show that the join selectivity is often disregarded
in various research efforts, which leads to the situations
where authors draw conclusions about the performance
of their techniques from pure zero or very excessive selec-
tivity cases. Instead, we strongly suggest that the join
selectivity be always presented to the readers so that
they themselves can judge the performance of ε-join
algorithms at various selectivity levels.

The rest of the paper is organized as follows. We first
overview related work in Sect. 2. Next, we summarize the
originalEGO-join in Sect. 3. The newSuper-EGO frame-
work is then covered in Sect. 4. Section 5 discussed issues

related to the notion of selectivity. The proposed approach
is then empirically evaluated in Sect. 6 and compared to the
state of the art techniques. Finally, we conclude in Sect. 7
by highlighting key insights learned from our work and sug-
gesting future research directions.

2 Related work

The ε-join variant of similarity join has high practical
significance for data mining, data cleaning, entity resolution,
and other applications. Hence, many ε-join techniques have
been proposed in the past [3,4,17,19,21,23,24]. We mention
a few most-related approaches in more detail below.

State of the art. The database literature considers ε-joins in
space R

d , where d is typically somewhere in [2,32]. Often
authors target either lower dimensional cases (e.g., spatial
joins in 2-3 dimensions [5]) or higher dimensional cases (e.g.,
E2LSH authors state that the algorithm is only meant for
cases of � 10–20 dimensions and above [1]). Often, higher
dimensional cases are considered to be more challenging due
to the “dimensionality curse” discussed below.

One common ε-join solution is to build an index, such
as an R-tree, on both of the datasets and then iteratively
check whether MBRs, or their equivalents, are within epsilon
distance from each other when performing a join [4]. This
approach is known not to perform well compared to the cur-
rent state of the art techniques, especially for higher dimen-
sional cases due to (a) the need to load the data into the index
first and (b) poor performance of indexes such as R-tree in
higher dimensional spaces. We note that both EGO-star
and Super-EGO operate with a related to MBR concept
of a bounding box BB constructed on a sequence of points.
The difference is that a BB is not necessarily minimal for
a sequence—rather what is more important for EGO-based
techniques is to be able to estimate it quickly. In addition,
in BB’s used by these two EGO-based techniques, last few
consecutive dimensions are often unbounded, that is, they
range from the minimum to maximum possible values.

A similar approach is to build an index, such as Grid, on
circles of radius epsilon centered at the points of one of the
datasets and then use points from the other datasets as queries
to this index [14]. While this approach works well for lower
dimensional cases, techniques such asEGO-join have been
shown to outperform this solution for higher dimensional
cases [16].
CSJ is a compact similarity join technique [5]. Its main

idea is that a join algorithm might sometimes be able to detect
subsets of points A1 ⊆ A and B1 ⊆ B such that each point
a ∈ A1 joins each points b ∈ B1. According to the problem
definition, ε-join is then supposed to add |A1| × |B1| pairs
of (a, b) points to the result set R. CSJ changes the original

123

Fast multi-dimensional similarity join

problem definition by allowing to simply add (A1, B1) to
R. This results in the reduction of the physical size of R.
CSJ works by employing a two-index solution. It builds
indexes, such as an R-tree, on A and B and then checks if
the max-distance between two MBRs is less than epsilon—
in which case points inside these MBRs are outputted as
groups.
LSS [18] is a recent approximate epsilon-join technique

that is based on leveraging a GPU (video card) to perform
a join by using NVIDIA’s CUDA framework. By creating
multiple space-filling curves, LSS converts a similarity join
operation into the corresponding GPU sort-and-search prob-
lem. In addition to performing an ε-join, LSS can also be
modified to support an approximate or exact search of the
k-NNs in dataset A to all points in dataset B.
E2LSH (Exact Euclidean LSH) [1] is a modification of

the LSH algorithm that uses locality-sensitive hash functions
to perform an approximate nearest-neighbor search. Though
E2LSH has been developed as an NN technique, its authors
also view it as an approximate ε-join method. As a key
motivation, the authors have tried to develop algorithm that
would have sublinear query time for NN queries to beat the
“curse of dimensionality” on very high-dimensional spaces.
In [26], authors propose another improvement of LSH. How-
ever, E2LSH has not performed well in our tests, frequently
running orders of magnitude slower than competing solutions
such as LSS or Super-EGO.
GESS is one of the earlier ε-join techniques developed by

Dittrich and Seeger in [10]. It is based on associating with
each feature vector x an ε-length hypercube H(x) and then
performing an intersection join that can involve splitting and
replicating these hypercubes. Even though GESS and EGO-
based joins operate with somewhat similar concepts, the two
algorithms are, however, sufficiently different. EGO-join
does not use the concept of hypercube H(x), instead it keeps
track of which virtual cell each x falls in. A single cell can
contain multiple points that fall into it. EGO-join forms
sequences out of adjacent cells. EGO-join does not parti-
tion the original space the way GESS does, instead it rather
partitions sequences of points into subsequences. In this
process, it never splits or replicates cells. EGO-join then
uses geometric properties of two given sequences to check if
they can join—it does not check for intersections of H(x)’s.
EGO has been experimentally shown to be faster than GESS,
often by significant margins [18].

Problem variants. Similarity joins have different variants,
many unrelated to each other. For instance, in [27], the
authors consider an implementation of a set-based variant of
a similarity join using the map/reduce framework. The set-
based and ε-join variants, however, are not related to each
other. A set-based join uses a set-based similarity metric,
such as the Jaccard similarity or edit distance for strings to

compute similarity of sets based on their common members.
For instance, such a join can detect that two strings “algo-
rithm” and “algorithmic” are similar. Consequently, [27]
addresses a different problem than is studied in this paper.

Parallelization. One of the important techniques we con-
sider in this article is the parallelization of the EGO-join
algorithm. Incidentally, [27] also studies parallelization, but
of a different kind. The two methods have different motiva-
tion. The authors of [27] attempt to scale a set-based join
operation to a large map/reduce cluster, where the latter is
currently a hot topic of research. First, we deal with ε-join
and not set-based join. Second, ε-join is an operation that
is useful not only to computer scientists and, most often, it
can be successfully performed on commodity hardware such
as a regular PC. We therefore seek wide applicability of our
algorithm, so that everyone can use it—not only people who
have access to large map/reduce clusters. In other words, we
are targeting common everyday devices.

Our motivation for a parallel version of the algorithm
comes from the observation that modern computers, such
as desktops and notebooks, are increasingly multi-core or
even multi-processor. Hence, we want to run parallel code
on a single machine. This can be achieved by employing
the classic multi-process/multi-thread programming model,
so that each thread can be executed concurrently on each par-
allel CPU core. However, creating parallel version of specif-
ically EGO-join has certain challenges that are explained
in Sect. 4.4.1. Section 4.4.2 explains how to successfully
resolve these challenges.

In general, parallelization of regular join (but not ε-join)
operations has been studied extensively in the past, for
example, [22] overviews some of these techniques. Such
methods would often consider issues unrelated to EGO join
and its setup, such as how to partition data across machines
and/or multiple disks. The work on parallelization of ε-joins
is rather scarce, and we are unaware of any existing technique
that deals with parallelizing specifically EGO-join.

The curse of dimensionality. The curse of dimensionality
is a notion that does not have an exact definition, but which
in general refers to the dramatic drop of the efficiency that
different querying algorithms face when the dimensionality
d of space R

d increases. For example, for NN queries, [1]
refers to the “curse of dimensionality” to mean that the fastest
way to process a given NN query becomes a naive linear-cost
O(n) algorithm that compares the query point to each point
in the database. Hence, [1] attempts to design an approximate
NN algorithm with a sublinear query cost. For ε-join A ��ε
B, a similar definition would be that the fastest way to process
the join becomes a quadratic algorithm O(n2) that compares
each point a ∈ A to each point b ∈ B. In Sect. 6.7, we will see
that several state of the art techniques we test actually might
not be able to overcome the curse of the dimensionality.

123

D. V. Kalashnikov

Miscellaneous. There have been very significant amount of
research efforts on various spatial and spatio-temporal data-
base issues and multi-dimensional data processing that are
also related. Currently, we can observe a key methodological
difference between spatio-temporal work and the best per-
forming ε-join techniques. The former is often making use
of creative advanced indexing (e.g., R-tree-based indexes)
for lower dimensional case, for example, 2D, 3D. The mod-
ern trend for ε-join work is to look at the (more challenging)
case where the data dimensionality d is high and where many
standard indexing techniques stop working well. Hence, the
best performing modern ε-join techniques are often not based
on building indexes on data [14,18]. An example of a related
work from the spatial domain is [9]. It defines the K -CPQ
queries whose goal is to find K closest to each other pairs
in the database, under the assumptions that R-tree indexes
are maintained on data. We can notice that by dynamically
increasing K and applying distance filtering, it should be pos-
sible to answer ε-join queries using K -CPQs, and vice versa.
However, it should be noted that K -CPQs are often tuned
and/or tested to retrieve just a few pairs, such as K ≤ 100,
whereas the number of pairs in a typical result of an ε-join
is significantly higher. A similar work is [12] that consid-
ers using hierarchical indexing techniques (e.g. R-tree) to
process the distance join, whose goal is to find all pairs of
points that satisfy the predicate on the distance between these
points. The distance join can be viewed as a generalization of
the ε-join. In [7], the authors present a nice generalization of
top-k pairs queries. The solution is not indexing-based and
shown to outperform many existing techniques. The general-
ization allows the user to define (loose monotonic) local scor-
ing functions for each attribute involved and a (monotonic)
global function to combine these local values.

Our previous work. This paper builds on our previous work
[14,16]. Section 3 presents a summary of that work, whereas
all the other content is new. While [14,16] considered selec-
tivity, they were based on simplified models. For instance,
the models could not predict when selectivity would drop to
zero and could not explain why ε can become larger than 1
for higher dimensionality cases.

3 Overview of the original EGO-join

Super-EGO framework is based on the EGO-star algo-
rithm [14,16] which in turn is an improved version of
EGO-join algorithm introduced by Böhm et al. in [2].
Both of the algorithm work with L p norm where ||a −
b||p =

[∑d
i=1(ai − bi)

p
] 1

p
, where p = 1, 2, . . . ,∞,

though the cases where p = 1 and p = ∞ are special cases
which should be considered separately. For simplicity, in the

Fig. 1 EGO-join. Original EGO-join does not use dstr

Fig. 2 Recursive join procedure

following discussion, we will assume the Euclidean space
with L2 norm, though the methods apply to L p.

Let us assume that the domain � ⊆ R
d is normalized to

d-dimensional cube [0, 1]d . In EGO-based algorithms, a vir-
tual grid G is overlaid on top of �. This grid is imaginary
and never materialized. G is a regular grid with the cell side
size of ε. It quantizes the domain � into regular-size cells,
such that the mapping of each point into its correspond-
ing grid coordinates can be done efficiently in O(d) time.
Namely, for point a = (a1, a2, . . . , ad), its grid coordinates
are ca = (
a1/ε�,
a2/ε�, . . . ,
ad/ε�).

To join two d-dimensional datasets A and B, EGO-based
algorithms would first “EGO-sort” points in A and B, see
Fig. 1. EGO-sort is a very simple procedure. It is just a
regular sorting of points, except for it uses each point’s
d-dimensional cell coordinates, in lexicographical order, as
the sorting key. For example, for a 3D case, point with cell
coordinates (1, 2, 3) would come before points (1, 2, 4) and
(2, 1, 1), but after point (1, 1, 4).

Then, the algorithm would call a recursive EGO-join
procedure Join(A, B) on A and B. EGO-join is a divide
and conquer type of an algorithm which splits A and B
into parts as the algorithm proceeds forward, see Fig. 2.
This procedure would first apply EGO-strategy (A, B),

123

Fast multi-dimensional similarity join

which returns a binary success or fail answer. Its main
purpose is, for certain cases of A and B, to be able to effi-
ciently determine that no point in A will join a point in B,
in which case EGO-strategy (A, B) returns success. This
check is done quickly without scanning all points in A and B.
Typically it is done by analyzing only the first and last points
in A and B and by leveraging the fact that A and B are EGO-
sorted. For example, EGO-strategy (A, B) of EGO-star
computes spatial bounding boxes B BA and B BB for points
in A and B, respectively, and then checks whether there is a
separation of ε between them. In general, EGO-strategy is a
key component of EGO-based approaches, which implement
it differently which greatly affect their efficiency.

If EGO-strategy (A, B) returns success, the algorithm
returns empty set R = ∅ as the result of Join(A, B). If EGO-
strategy (A, B) returnsfail, then there could be a point in A
that joins a point in B. The algorithm then proceeds to “divide
and conquer” recursively, based on four possible cases. Let
t be a predefined threshold used to specify the bottom of
recursion: the algorithm will not split sequences of length
smaller than t into subsequences. Then,

Case 1: |A| < t and |B| < t . The algorithm then
checks if |A| and |B| are already small enough (smaller
than t) and if so it applies the simple-join algorithm
R = SimpleJoin(A, B), described in the introduction,
to compute the result by comparing each point in A to
each point in B. We will explain SimpleJoin(A, B) later
on in more detail.
Case 2: |A| < t and |B| ≥ t . In this case, the algorithm
splits B in the middle into two equal parts B1 and B2

and computes the result by calling join recursively as
R = Join(A, B1) ∪ Join(A, B2).
Case 3: |A| ≥ t and |B| < t . Similarly, the algorithm
splits A in the middle into A1 and A2 and computes R =
Join(A1, B) ∪ Join(A2, B).
Case 4: |A| ≥ t and |B| ≥ t . Then, the algorithm
splits both A and B and computes R = Join(A1, B1) ∪
Join(A1, B2) ∪ Join(A2, B1) ∪ Join(A2, B2).

4 Super-EGO framework

In this section, we present the proposed Super-EGO
approach. We start by introducing a novel phase for EGO-
based algorithms that reorders dimensions of data in Sect. 4.1.
We then explain the new EGO-strategy used bySuper-EGO
in Sect. 4.2. In Sect. 4.3, we cover a smart SimpleJoin strat-
egy that employs sampling techniques to decide the ranges of
dimensions to scan. Section 4.4 then presents our solution for
the parallelization of the algorithm. The space complexity of
the overall approach is analyzed in Sect. 4.5. Finally, Sect. 4.6
briefly outlines miscellaneous issues related to the presented

solution, including a potential extension to the dimension-
ality reordering algorithm, an optimization for the self-join
case, and a disk-based version of the approach.

4.1 Data-driven dimensionality reordering

4.1.1 Basic technique

The default EGO-join algorithm analyzes dimensions in
a sequential order from 1 to d. However, for higher dimen-
sional cases, some of the dimensions might have more dis-
criminative power than the others. Thus, there could be merit
in reordering the dimensions based on their discriminative
power.

The discriminative power for EGO-join A ��ε B can be
measured by applying data sampling techniques to datasets
A and B. Assume that A and B are normalized to unit cube
[0, 1]d . Then, for dataset A, for each dimension i , we con-
struct a histogram H A

i with �1/ε� bins of size ε. The bins
directly correspond to cells of the virtual grid G used by
EGO-join. We will refer to the j th bin of H A

i as H A
i [j].

We then sample m points from A. For each sampled point
a ∈ A, we increase the count H A

i [j] by 1 if the value of a
falls into j th bin in its i th dimensions. At the end of sam-
pling, the counts in each bin are normalized by dividing them
by m. Then, the procedure is repeated for dataset B and its
histogram H B

i is constructed.
The two histograms H A

i and H B
i are then used to compute

the fail factor fi for i th dimension for the given ε. This factor
estimates the fraction of all (a, b) pairs of points on which
EGO-strategy will fail, for the given ε, if it is allowed to
analyze only the i th dimension. Specifically, EGO-strategy
will fail on (a, b) in the i th dimension only if a and b are in
the same or directly neighboring cells in these dimensions.
Consequently, fi for bin j is computed as

fi [j] = H A
i [j] · (H B

i [j − 1] + H B
i [j] + H B

i [j + 1]),
except for the marginal cases where i, j = 0 and i, j = max ,
which are computed accordingly. The overall fi is then com-
puted as fi =∑

j fi [j].
After computing the fail factor fi for each dimension i for

the given ε, we can compute the success factor si = 1 − fi

for this ε. It corresponds to the fraction of pairs on which
EGO-strategy will succeed if allowed to analyze only the
i th dimension. We then re-order the dimension of A and
B in the ascending order of their si so that the dimensions
with the most discriminatory power will appear first. The
process of reordering consists of constructing the map of
re-ordering (e.g., it will tell that, say, dimension 5 should
become dimension 1, and so on) and then changing each
point in A and B according to this map.

Notice that after applying the re-ordering phase, the new
join algorithm will work on a set of different points compared

123

D. V. Kalashnikov

Fig. 3 Example of histograms for 2-dimensional case

to the old algorithm. Even though the points are differ-
ent, they are equivalent in terms of computing the distance
between them, that is, ||a− b|| = ||anew − bnew||. However,
the new algorithm will discover and then process different
EGO-sequences (subsequences of A and B) from those of
EGO-join and EGO-star join.

Figure 3 demonstrate an example of histograms for
2-dimensional case, where ε = 0.2 and thus all histograms
have 5 buckets. For dimension d1, H A

1 reveals that A’s values
in d1 are located toward the middle of [0, 1], whereas accord-
ing to H B

1 , the values of B in d1 are distributed uniformly in
[0, 1]. For this simple example, it is easy to see that for d1,
the fail factor is going to be f1 = 1 · (0.2+0.2+0.2) = 0.6,
and hence, the success factor is s1 = 1− f1 = 0.4. Similarly,
for dimension d2 histograms H A

2 and H B
2 indicate that the

values of A are distributed mostly in the first three buckets in
d2, whereas the values of B are mostly in the last two. The
fail factor for d2 is f2 = 0.2 · 0.5 = 0.1 and the success
factor is s2 = 0.9. Since s2 > s1, dimensions d1 and d2 will
be reordered.

4.1.2 Average-distance histogram

In practice, the success factor si for i th dimension will be
strongly correlated with the average distance ri between
points in A and B in the i th dimension. See, for exam-
ple, Fig. 4 which demonstrates si and ri values for a
32-dimensional dataset. Like si , the value of ri can also
be computed by sampling points from A and B, and then,
the dimensions can be re-ordered based on ri . The value
of si , however, provides a more direct measure into the

Fig. 4 Example of si , ri values on a 32-dimensional dataset

(a)

(b)

Fig. 5 Example for si and ri

discriminatory power than ri , since it reflects how the points
are placed inside cells that are used by EGO-join.

For example, consider points a1, b1, a2, and b2 in
Fig. 5a, b. In both cases, the distance between points is the
same ||a1 − b1|| = ||a2 − b2|| = 1.5ε. However, points
a1 and b1 in Fig. 5a will be separated by the EGO-strategy
since there is a cell [ε, 2ε] of size ε separating them. How-
ever, points a2 and b2 in Fig. 5b will not be separated by the
EGO-strategy since they are in the neighboring cells [0, ε]
and [ε, 2ε]. So if we assume that sample of A consist of only
{a1} for (a) and {a2} for (b), and sample of B of only {b1} for
(a) and {b2} for (b), then for figure (a), si = 1, whereas for
(b) si = 0.

In practice, the map for re-ordering dimensions based on
si is often the same as that for ri . While the cases where the
two maps are different do exist, the efficiency results on
the two different maps in such cases tend to be very sim-
ilar. The algorithm leverages this observation for the cases
where ε is very small, that is, when ε ≤ tε for a predefined
threshold tε. When ε is small, the number of bins �1/ε� in
histograms H A and H B is large and the sample size m has
to be large as well to compute reliable statistics. Instead,
when ε ≤ tε, the algorithm reorders dimensions based on ri

instead of si . An additional positive effect of that is that the
space complexity of extra space needed to performs dimen-
sion reordering becomes O(d). This is since the size of his-
tograms H A and H B is O(�1/ε� · d), but restricting ε by
a constant tε makes it O(d). The size of the dimension re-
ordering map is also O(d).

123

Fast multi-dimensional similarity join

4.1.3 Efficiency of reordering

The entire re-ordering phase has the linear computational
cost of O((|A| + |B|) · d) and thus very efficient. It is
also very efficient in terms of the space complexity, as it
only requires O(d) space to store two histograms and a re-
ordering map. We will see in Fig. 28 in Sect. 6 that the actual
execution time of this entire phase is negligible compared
to the end-to-end running time of the overall algorithm. In
theory, one might want to avoid reordering dimensions, for
example, for the cases like uniform data. Specifically, since
sampling is used, values of si will be slightly different for
i = 1, 2, . . . , d even for uniform data, resulting in a map
that might (unnecessarily) change the order of dimensions.
In practice, however, avoiding re-ordering will not affect the
end-to-end running time of the algorithm by any noticeable
margin, see Fig. 28. But if for some reason this is still nec-
essary, then it could be easily achieved by using standard
statistical techniques, such as t-test.2

4.2 New EGO-strategy

At the core of EGO-join is its EGO-strategy, whose effec-
tiveness determines the efficiency of the overall approach. Its
task is to be able to quickly tell, for certain sequences A and
B, that they will not join, without scanning A and B. Let c1

and c2 be the cell coordinates of the first and last points of A,
respectively. Let ca be the coordinates of any point a ∈ A.
Because points in A are EGO-sorted, we know that c1, c2, ca

will have the form:

c1 = (v1, v2, . . . , vi−1, v′i , ∗, ∗, . . . , ∗)
ca = (v1, v2, . . . , vi−1, vi , ∗, ∗, . . . , ∗)
c2 = (v1, v2, . . . , vi−1, v′′i , ∗, ∗, . . . , ∗).

(2)

That is, they will share the same values v1, v2, . . . , vi−1 in
the first zero or more dimensions, which we will call inactive.
Then, if i − 1 < d, there will be i th dimension, which we
will call active, such that v′i < v′′i and v′i ≤ vi ≤ v′′i . The
values in the remaining dimensions can be anything, so they
are denoted as a wildcard ‘∗’.

For example, consider sequence of points A whose cells
coordinates are (5, 2, 3), (5, 2, 4), (5, 1, 9), and (5, 2, 0). If
we EGO-sort them, they will be in the order (5,1,9), (5, 2, 0),

(5, 2, 3), (5, 2, 4). Then, c1 = (5, 1, 9) and c2 = (5, 2, 4).
By observing that c1[1] = c2[1] = 5, we know that dimen-
sion d1 is inactive and that all points in A (i.e., their cell

2 For instance, instead of computing si once, the procedure could be
repeated k times, and then, si can be computed as average of the
k observed samples of si ’s. Sorting procedures (used for dimension
re-ordering), such as qsort, are defined in terms of “<” operation. We
thus can define that si < s j holds for qsort only when both condi-
tions hold: (1) for the averages, it holds si < s j and (2) the difference
between si and s j is statistically significant according to the t-test.

Fig. 6 EGO-Strategy

coordinates) have the same value of 5 in their first dimen-
sion. Since dimension d2 is the first where c1[2] < c2[2], it
is the active dimension. Hence, we know that all points in A
have values from 1 to 2 in their dimension d2.

We can see that points in A are bounded by a bounding box
B BA = [v1, v1] × · · · × [vi−1, vi−1] × [v′i , v′′i] × [0, M] ×
· · ·×[0, M], where M is the maximum possible cell number.
For example, for the above sequence A, the bounding box
is going to be B BA = [5, 5] × [1, 2] × [0, M]. Similarly,
points in B will be bounded by another bounding box B BB =
[w1, w1]× · · ·× [w j−1, w j−1]× [w′j , w′′j]× [0, M]× · · ·×
[0, M], where the active dimension j for B does not have to
be equal to the active dimension i for A. Now, if we can find a
dimension k where intervals B BA[k], B BB[k] of B BA, B BB

in kth dimension are separated by the distance of at least 1
cell, this will imply no point in A will join a point in B since
the distance between such points will be at least ε. This is
since the length of a cell side is exactly ε.

An EGO-strategy can be designed from the above obser-
vation and by noting that B BA and B BB can be constructed
quickly, just by observing cell coordinates of the last and first
points of A and B. But unlike [14,16], the new strategy will
use the notion of BB only conceptually, without literally con-
structing and manipulating them. Furthermore, it now uses
the new notion of starting dimension dstr .

Figure 6 shows the new EGO-strategy. It incrementally
iterates over dimensions trying to find one where intervals
[loA, hi A] for A and [loB, hiB] for B are separated by at
least 1. If it finds such a dimension, it immediately returns
that A and B will not join, without constructing full bounding
boxes for A and B. Otherwise, it also checks whether the
current dimension i is the active dimension for A or B. If it

123

D. V. Kalashnikov

Fig. 7 Regular SimpleJoin procedure

is, it means subsequent intervals for A (or B) could only be
[0, M] and they will intersect with all the remaining intervals
of B (or A); hence, the strategy will not be able to prune away
A and B. Furthermore, it sets starting dimension dstr to the
current dimension i .

The purpose of setting dstr is that since EGO-strategy
fails at that point, the algorithm will proceed by possibly
splitting A and/or B into halves and applying the join pro-
cedure recursively. Let us say A is split into A1 and A2.
We can see that if A has k inactive dimensions, then A1

and A2 will also have at least k inactive dimensions. Fur-
thermore, [loA, hi A] = [loA1 , hi A1] = [loA2 , hi A2] for the
first k dimensions. Since the algorithm has already checked
that there is no distance of 1 among intervals [loA, hi A] and
[loB, hiB] in these k inactive dimensions, there will not be
distance of 1 in these k dimensions for A1 and A2 as well.
Hence, there is no need to recheck the intervals in these
k dimensions and the algorithm can start the checks from
dimension dstr , saving on unnecessary computations.

4.3 New simple-join procedure

Basic intuition. As we have discussed in Sect. 3, the algo-
rithm invokes SimpleJoin(A, B) procedure in the case the
cardinality of A and B is less than the predefined threshold.
SimpleJoin , illustrated in Fig. 7, iterates over each pair of
points (a, b) from A and B. For each (a, b), it then iterates
over dimensions from 1 to d while checking whether the
(squared) partial distance s between a and b already exceeds
c = ε2, and, if so, it quits checking (a, b) pair early and
moves on to the next pair of points.

However, SimpleJoin(A, B) can also be optimized.
Recall that A and B are EGO-sorted. Also, since SimpleJoin
is invoked, this means EGO-strategy failed on A and B. From
these observations, it follows that A and B are too close to
each other in the first few (inactive and active) dimensions.
This in turn implies that when checking whether ||a−b|| < ε

for some pair (a, b), checking it in a certain order of dimen-
sions could speed up the algorithms e.g., as shown in Fig. 8.

Fig. 8 An alternative SimpleJoin procedure

New SimpleJoin procedure. To make this intuition
achieve consistent improvements, we will use another data-
driven strategy. From Sect. 4.1 we know that for each dimen-
sion i = 1, 2, . . . , d we can use sampling (before the join
starts) to estimate the average distance ri between points in A
and B in that dimension. We also know that applying dimen-
sionality reordering will likely result in the situation where
r1 ≥ r2 ≥ · · · ≥ rd , so we will assume it holds for clarity of
further discussion.

Notice, when SimpleJoin is invoked for small subse-
quences A′ and B ′ of A and B, they will have their own
average distances r ′1, r ′2, . . . , r ′d in the corresponding dimen-
sions where r ′1 ≥ r ′2 ≥ · · · ≥ r ′d does not necessarily hold.
Further, since |A′| and |B ′| are already very small, it is too
costly to compute r ′1, r ′2, . . . , r ′d via sampling. Nevertheless,
r ′1, r ′2, . . . , r ′d could be quickly estimated from r1, r2, . . . , rd

and some other parameters, as explained next.
We know that points in A′ and B ′ will have the same

or neighboring cell coordinates in the first dstr dimensions.
If points in A′ and B ′ have the same cell-coordinate in
dimension di , then (under the local uniformity assumption)3

the average distance among them in dimension di can be
estimated as ε/3, see;4 for two neighboring cells—it is 2ε/3.
Thus, on average, the distance among them can be estimated
as r ′i = (ε/3+ 2ε/3)/2 = ε/2. If, however, ri < ε/2, a bet-
ter estimator of the average distance r ′i for i = 1, 2, . . . , dstr

3 Notice, the uniformity assumption is not very restrictive here, espe-
cially when ε � 1. This is since while data is not uniform in general, it is
often “locally uniform”—meaning it could be approximated as uniform
inside small portions of space. A cell would be a good example of a
small portion of space, making data in it locally uniform.
4 This comes from the well-known fact that the average distance
between two randomly placed points in [0,1] is 1

3 . Observe that the
average distance from a given point x ∈ [0, 1] to all points in [0, 1] can
be computed as a Riemann Integral

∫ 1
0 |x − y|dy = x2 − x − 1

2 . Thus,

the average for all points is
∫ 1

0 (x2 − x − 1
2)dx = 1

3 .

123

Fast multi-dimensional similarity join

(a) (b)

Fig. 9 Example for new SimpleJoin procedure

is r ′i = min(ri , ε/2). For dimensions i > dstr , we can use
the original estimation of the average distance: r ′i = ri .5

Hence, the new SimpleJoin procedure scans dimensions
over 1, 2, or 3 ranges, depending on the newly computed
values r ′i for i = 1, 2, . . . , d. Let m = dstr . Recall that
min(r1, ε/2) = r ′1 ≥ r ′2 ≥ · · · ≥ r ′m = min(rm, ε/2). Let k
be the first dimension such that r ′k < r ′m , or let k = d + 1
if there is no such dimension. Values of m and k form three
natural scanning ranges: R1 = [1, m − 1], R2 = [m, k − 1],
R3 = [k, d]. Here, R1 is an empty range if m = 1, and R3 is
empty when k = d+1. By design, range R3, if exists, always
contains the smallest values of r ′i , so it is always scanned
last. Range R2 is scanned before R1 only when r ′m > r ′m−1.
Hence, only three situations are possible:

1. 1-Range. The algorithm will scan [1, d], which corre-
sponds to scanning R1, R2, R3.

2. 2-Ranges. The algorithm will scan [m, d] and [1, m−1]
for m > 1, which corresponds to R2, R1 and R3 = null.

3. 3-Ranges. The algorithm will scan [m, k−1], [1, m−1],
[k, d] for m > 1, which corresponds to R2, R1, R3.

For efficiency, the algorithm precomputes these ranges
right after the dimensionality re-ordering but before the join
itself starts. Namely, it creates a map that maps each possible
m = 1, 2, . . . , d into the corresponding scanning ranges for
that m. Hence, these scanning ranges are computed only once
per m and not re-computed inside SimpleJoin or even Join .

Figure 9a demonstrates an example where initially points
in A (plotted as stars) and B (plotted as circles) are distributed
uniformly in [0, 1] in dimensions d1, d2, and d3, uniformly in
[0.2, 0.8] for d4, uniformly in [0, 0.1] for d5, and uniformly
in [0.95, 1] for d6. Figure 9b illustrates how the points can
be distributed when SimpleJoin is called for two small sub-
sequences A′ and B ′ of A and B, where ε = 0.2 and m = 3.
Points in A′ fall into the cell that corresponds to [0.6, 0.8]
in d1 and to the cell that correspond to [0.4, 0.6] in d2. For

5 While these estimations could be improved by recomputing aver-
age distances ri that are specific to subsequences of A and B right
in Join(A, B) procedure (to account for possible correlation in data),
experiments with such techniques have not lead to any further improve-
ment in practice.

points in B ′, it is [0.4, 0.6] for both d1 and d2. Since the cells
in d1 and d2 for A′ and B ′ are adjacent, the EGO-strategy
failed on them prior to invoking the SimpleJoin . It is easy
to see that in this case R1 = [1, 2], R2 = [2, 4], R3 = [5, 6]
and the algorithm with scan the three intervals in the order
of R2, R1, R3.

4.4 Algorithm parallelization

4.4.1 Challenges

Assume that we want to run some algorithm in parallel on
a single machine that has n CPU cores. Then, a naive way
to do that would be to try to split the task into exactly n
“jobs” and run each job independently. This approach, how-
ever, rarely succeeds in practice, as it is hard to perform this
split perfectly into equal-size jobs. Due to various factors,
including interactions with the OS, this approach often ends
up in the situation where all jobs run for vastly different
length of time (and, frequently, one job running much longer
than the others) leading to suboptimal performance.

This is one of the reasons of why often producer–
consumer-like models are used for parallelization, where pro-
ducers produce a large number of smaller jobs and put them
into the job queue. These jobs are then extracted from the
queue and processed by consumer threads, allowing them to
share the load more equally and finish almost at the same
time.

When it comes to creating a parallel version of specifically
the EGO-join, we are faced with two main challenges if we
want to use a produces-consumer-like model.

The first challenge of parallelizing EGO-join comes
from the fact that there is no direct readily available “unit”
of work in EGO-join that can serve as a “job” in a classic
producer–consumer model. Instead, there are several indirect
ways to define a job. Hence, we need to judiciously select one
that would lead to good performance. The challenge in defin-
ing jobs is to be able to do so such that the overall processing
is load-balanced across independent processing units (e.g.,
CPU cores) and be able to prevent starvation—a situation
where a thread assigned to a CPU core periodically needs
to “wait” for some time to get a job, instead of performing
useful work.

Second, EGO-join algorithm consists of performing a
large number of repetitions of a very lightweight processing
code, see Figs. 2 and 6. Therefore, if not careful, inserting
in the middle of the EGO-join code any extra bookkeep-
ing procedure, or costly OS synchronization calls6 to access
semaphores/mutexes can have a significant negative impact
on the performance of the overall algorithm.

6 For example, in our testing, statement lock(S); k = k+ i ; unlock(S)

is over 10 times slower than just k = k + i .

123

D. V. Kalashnikov

Fig. 10 Parallel EGO-join procedure

Fig. 11 EGO- Thread procedure

Not surprisingly, due to the above challenges, our mul-
tiple initial attempts to parallelize EGO-join have not
succeeded: the performance would actually become slower
and/or would not scale well with the increase in the amount of
parallelism. In the next section, we will describe an algorithm
that successfully solves this parallelization task. In Sect. 6, we
will see that the proposed parallel solution outperforms the
base EGO-join and scales relatively well with the increase
in the level of parallelism.

4.4.2 Parallel solution

In order to succeed, a parallel version of EGO-join will
need to account for the challenges identified in the previous
section. The proposed parallel EGO-join solution starts as
a regular EGO-join by EGO-sorting A and B, as illus-
trated in Fig. 10. But then, it puts a single job (A, B, dstr)

in the priority queue Q which corresponds to joining A and
B starting from the first dimension, as dstr = 1. It then cre-
ates Nthr parallel threads of execution. Figure 11 shows that
each thread simply tries to extract a join job from the priority
queue in a loop, until GetJob returns QUIT. It then executes
the extracted job by issuing the corresponding join.

Join procedure now needs to be modified. The new job-
sharing logic shown in Fig. 12 should be added between
Lines 4 and 5 of the original Join code from Fig. 2. The
new code first checks whether the cardinality of A or B is
sufficiently large to share this branch of recursion. If it is too
small, that branch of recursion will not be shared with other
threads, and the algorithm will proceed as a regular Join ,
skipping the new logic entirely.

But if it is not too small, the algorithm then locks Sdata

mutex that guards global variables like N jbls (the number of
jobless threads) and Q. It then checks if the size of Q exceeds
the number of threads Nthr in Line 4.3. This part of the code
deals with starvation: the job queue should be large enough
so that whenever one or more threads need a job they do not
starve and can immediately find a job in the queue, most of
the time. At the same time, putting too many jobs in the queue

Fig. 12 Sharing jobs in Join(A, B, dstr)

will unnecessarily waist computational resources, preventing
the algorithm from scaling well. Hence, by checking |Q| >
Nthr , the algorithm tries to maintain the job queue of good
size of around Nthr .

If |Q| > Nthr , it does not share its jobs and proceeds as a
regular Join . Otherwise, it shares its current branch of recur-
sion with the other threads. Namely, instead of performing
recursive joins on split portions of A and/or B, it puts the cor-
responding join jobs into the job queue. It then unlocks Sdata

mutex and signal to other threads that new jobs are available
by unlocking Sneed_ job mutex, as some threads might be
waiting on Sneed_ job.

Notice how the new logic is guarded by a single if
statement present in Line 4.1 of Fig. 12. It serves two pur-
poses. The first one is that it allows to avoid frequent calls to
the costly synchronization procedures lock() and unlock().
Second, it avoids unnecessary back-and-forth sharing of very
small jobs among threads. In other words, it addresses the
second parallelization challenge identified in Sect. 4.4.1. To
address the first challenge, Join procedure slightly devi-
ates from the traditional concept of producer–consumer that
assumes a large pool of smaller jobs that are more or less
uniform in size. Instead, in EGO-join algorithm, produc-
ers and consumers are the same threads, and each thread emits
jobs as soon as it detects that |Q| ≤ Nthr . While the jobs are
non-uniform, the algorithm does ensure that the jobs are not
too small.

The very important GetJob procedure illustrated in
Fig. 13 contains more synchronization logic compared to
other parts of EGO-join. It is called by a thread when it is
jobless and is trying to acquire a new job from the job queue.
This is reflected in GetJob by first acquiring access to global

123

Fast multi-dimensional similarity join

Fig. 13 GetJob procedure

data—by locking Sdata mutex, and then increasing the num-
ber of jobless threads N jbls . The subsequent behavior of the
algorithm depends on whether the job queue contains any
jobs or not, which it checks in Line 5.

If there are no jobs, it checks if any thread is still work-
ing, since the working thread can still produce a new job
(Line 6). If no threads are working, it means all work is done,
and thus, the thread quits. But before quitting, it releases the
lock on Sneed_ job mutex, since some other threads might be
suspended at that moment waiting for a new job, and hence
waiting for the lock on Sneed_ job to be released (Line 7).
These threads need to be notified because otherwise they
will wait indefinitely. If some threads are still working, then
they might produce a new job, so the algorithm releases the
lock on global data (Line 10) and suspends itself by waiting
on Sneed_ job mutex. Once some other thread generate a job
(or decides to quit), it will release this mutex, awaking a
thread waiting on it, which will try to get a job again by
repeating the same procedure starting from Line 4.

If the check in Line 5 returns that the job queue is not
empty, the thread will get a job from the queue and decrease
the number of jobless threads N jbls by one, since now it has
a job (Line 13 and 14). Then, it does a very important step:
it checks whether the queue contains more jobs and whether
there are more jobless threads, and if so, it unlocks Sneed_ job

mutex to signal more jobs are available (Line 15 and 16).
This is critical to do when the number of parallel processing
cores is more than 2, as otherwise the code will not scale well
beyond 2 threads. Conceptually, this is equivalent to imple-
menting a counting semaphore (where the count corresponds

to the number of available jobs) out of a (fast) binary mutex.
The algorithm then unlocks the access to the global variables
and returns the job obtained from the job queue.

Finally, it should be noted that each thread now maintains
its own local version of the result set R, because otherwise, a
single global R will need to be locked each time it is updated
with a newly discovered (a, b) tuple, which is inefficient.
When all threads are finished, the overall result is the union
of these local result sets.

4.5 Space complexity

We know that in terms of computational complexity all exact
(i.e., non-approximate) ε-join algorithms by definition have
the worst case quadratic complexity of O(|A| · |B|). This is
since by setting ε to a very large value such algorithms will be
forced to output all pairs of points as their result set. Though
if the problem definition is changed to allow to return groups
of points instead of pairs, then CSJ-like techniques [5] could
reduce the worst-time complexity.

However, ε-join approaches are vastly different in terms
of their space complexity. We can observe that Super-EGO
algorithm is not using any advanced index data structures and
that is why it is very efficient in terms of its space complexity.
Thus, even its in-memory version can be scaled to very large
datasets, as we will see in Sect. 6. In fact, we are not aware of
a single real dataset that has been used in the ε-join literature
that could not be handled by Super-EGO entirely in-memory
of a modern PC.

Super-EGO’s in-memory version requires O((|A|+|B|) ·
d) space to hold datasets A and B as well as O(|R|) space to
hold the result set R. Depending on the desired selectivity, the
size of R, of course, can be up to |A|×|B|, but in many prac-
tical applications that do not require excessive selectivity, the
size of R often is O(|A|+|B|). As discussed in Sect. 4.1, the
space complexity of the reordering phase is O(d) which is
subsumed by the above-mentioned O((|A| + |B|) · d) cost.

It should be noted that if the algorithm is supposed to save
R to disk, then the O(|R|) part of the spatial complexity
becomes O(1). The EGO-sort part of Super-EGO requires
only O(1) extra space, since it uses the space provided for
A and B to sort. The EGO-join procedure is recursive and
needs only O(log |A| + log |B|) amount of space per thread,
which is subsumed by the O((|A|+|B|)·d) cost if we assume
that the number of threads is fixed. Thus, the overall space
complexity is O((|A| + |B|) · d + |R|) if R is kept in main
memory (default mode). It is O((|A|+ |B|) ·d) if R is saved
to disk.7

7 This is since the algorithm can save intermediate results into a fixed
sized circular buffer. A separate thread can continually save the content
of the buffer (in the background, concurrently with the main join algo-
rithm) whenever the buffer is not empty. If for some reason, the saving

123

D. V. Kalashnikov

4.6 Miscellaneous issues

4.6.1 Extensions to dimensionality reordering

We next sketch a promising potential extension of the
dimensionality reordering algorithms presented in Sect. 4.1.
The extension ideas have not been implemented or tested.
Observe that when reordering dimensions for the case of a
self-join, a similar competitive strategy could be to reorder
dimensions by using Principal Component Analysis (PCA)
[13].8 PCA is a technique that tries to find a new coordinate
system in the multi-dimensional space such that the data has
the most variance in the first dimension, the second most vari-
ance in the second orthogonal dimension, and so on. Apply-
ing PCA can handle the cases of linear correlation among
dimensions in multi-dimensional datasets, and it could be
used to reduce the dimensionality in data. Hence, for a self-
join, applying PCA is anticipated to lead to better results than
using the average-distance histograms. However, the chal-
lenge is to develop PCA-like techniques that could handle
the generic case of a A ��ε B where A and B are not the
same, and thus, the dimensionality reordering and compres-
sion should happen simultaneously for A and B. Further, the
criteria for selecting the best dimension should be changed
from the standard one (i.e., the max variance in data) to the
success factor discussed in the previous sections.

4.6.2 Disk-based version

Real datasets used in the literature to test ε-join are often
rather small. We are not aware of a single one thatEGO-join
based algorithms cannot handle entirely in-memory of a reg-
ular PC with 8GB of RAM. That is, the operations with
disk are limited to loading data into memory and saving the
results set to disk, but the algorithm runs in-memory. There-
fore, it is not very surprising that many other modern ε-join
techniques, such as LSS, E2LSH, EGO-star, Grid are
either in-memory approaches, or have been tested entirely in-
memory. If, however, the user wants to apply Super-EGO
to datasets that do not fit in memory, there is a standard tech-
nique to process joins. The idea is to split A and B into
contiguous sub-blocks A1, A2, . . . , An and B1, B2, . . . , Bm

that do fit in memory and then compute A �� B by joining
these sub-blocks Ai �� B j .

Footnote 7 continued
thread is not quick enough and the buffer becomes full, the main join
algorithm should stop its processing to allow the saving thread to free
up some space in the buffer. This technique has not been implemented
in Super-EGO.
8 This idea has been first suggested to the author by his colleagues. It
has also been suggested by the anonymous reviewers of this article.

4.6.3 Optimizing self-join

It is easy to see that the case of a self-join A �� A can be
optimized further. The optimization builds on the idea that for
a self-join A ��ε A, if a, b ∈ A and (a, b) ∈ R then (b, a) ∈
R. Consequently, it is not necessary to perform both A1 �� A2

and A2 �� A1 in Case 4 as they will produce equivalent
results. Instead, only one join can be performed, but when
(a, b) ∈ R is found, (b, a) should also be added to the result
set. This optimization has not been used by Super-EGO.

5 Selectivity of join

Due to continual inconsistencies made by various research
efforts that arise from disregarding the selectivity in empirical
evaluations, it is desirable that this otherwise secondary issue
be noted by all researchers who work on ε-joins.

5.1 Selectivity and related errors

Throughout this article, we use a new notion of “selectivity
of a join with respect to A”, though for brevity we often refer
to it just as selectivity. Recall that the standard definition
defines the selectivity of a join operation A �� B as |A��B|

|A×B|
[11]. In contrast, the selectivity sA of join A ��ε B with
respect to A is computed as the average number of points
from B that join with a point from A. Let R be the result set
of A ��ε B. Then, the selectivity w.r.t. A can be measured as
follows:

sA = |R||A| . (3)

Frequently, a self-join is performed on a dataset, that is,
A = B. In this case, each point joins with itself, and such
trivial pairs of points {(a, a), a ∈ A} are discarded when
computing sA, that is,

sA = |R| − |A||A| . (4)

When performing a join operation, parameter ε is set by
the user/analyst based on particular needs of the underly-
ing application that invokes the join. This parameter con-
trols the selectivity of the join sA, where setting it to lower
(higher) values results in lower (higher) selectivity. However,
the question arises of how to set ε during testing of various
join techniques in research papers? Which values are rea-
sonable, especially when the underlying application is not
known?

With respect to the selectivity, the reader should expect the
authors to cover a broad and reasonable range of selectivity

123

Fast multi-dimensional similarity join

and explain how their ε-join algorithm behaves for different
selectivity levels.

One common mistake that occurs during testing is when ε

is set to values that are too small: so small that the selectivity
stays at pure zero (or virtually at zero) for the entire range
of ε values tested in some experiments. We have noticed
this problem in several publications, and in fact, our own
group has almost made this mistake while working on [14]
but has managed to avoid it in the end. Most frequently, this
issue happens for datasets with very high dimensionality.
Notice, while having a few small selectivity values in a plot
is reasonable and expected, the case where the selectivity is
zero everywhere in a plot is likely to be a mistake that is
both (a) unintended by the authors, and (b) unexpected by
the reader. Notice that by observing only ε values, the reader
cannot see the achieved selectivity, so she has to assume that
the authors have chosen reasonable ε values, which might
easily be not the case for ε-joins as we shall see soon.

As will be explained shortly, this error occurs because,
with the increase of dimensionality, ε should actually be set
to larger values (the fact that perhaps is not very intuitive),
especially for uniform data. Not doing so will result in empty
result set |R| = 0 when A �= B. For a self-join where A = B,
small ε results in R = {(a, a), a ∈ A}, and hence, |R| = |A|.
Consequently, when this happens, the selectivity sA can stay
at pure zero level sA = 0 for the entire tested range of ε.

A natural question is how it is even possible not to notice
that sA = 0, or very small, for (almost) all ε values in some
experiments? One possible explanation is that frequently a
self-join case of ε-join is tested, where {(a, a), a ∈ A} ⊆ R.
A self-join always produces some non-empty result set R �=
∅, which manifests itself as a portion of occupied memory
space or a (potentially large) file on disk. Hence, without
inspecting R closer, it is possible to wrongly conclude that
ε-join produced a reasonable answer.

The other type of mistake is to draw conclusions about
the performance of various join techniques from the cases
of excessive selectivity. For example, drawing conclusions
exclusively from the cases where sA ≥ 104, whereas the
semantics of the domain dictates that, say, sA ∈ (0, 300) is
more reasonable—is another type of error.

In general, the semantics of a particular join operation,
that is, the end purpose of A ��ε B for the particular A
and B, determines what the reasonable range for sA should
be. For example, if a self-join is used to find similar images
in a large image database of mostly unrelated images, then
testing intervals like (0, 10], (0, 100], or even (0, 1] could be
reasonable. Recall that for a self-join, selectivity sA measures
the average number of points that join a point of from A,
except the point itself. So naturally there can be cases where
some points from A join no other points, or where some
points from A join many more than 100 other points, and
that is why these intervals are reasonable.

5.2 The effect of larger dimensionality on epsilon

Now let us consider why reasonable values for ε can increase
to non-intuitively high values for higher dimensional cases.
Though existing real datasets on which ε-join is performed
are decidedly non-uniform, we will use a uniform case just
to demonstrate the point.

A frequent case that is tested in research publications
is when points in A and B are uniformly distributed in
d-dimensional unit hyper-cube � = [0, 1]d . Observe that
even though it is a “unit” cube, Euclidean distances between
points can be larger than 1, for example, the length of the
diagonal of this cube is

√
d , so if d = 64, it is 8. To demon-

strate that reasonable ε can increase with the increase of d, let
us now compute a (conservative) lower bound on values of
ε to get sA = 1 on this dataset for the given d. The meaning
of this lower bound is that if ε is set to smaller values than
its value, then sA ≤ 1.

Given that a sphere of radius ε has the volume of

Vd(ε) = f (d)εd , where f (d) = π
d
2

�(d
2 + 1)

,

a randomly placed sphere with its center inside � will occupy
no more than Vd(ε) portion of � space. That is, it will
occupy exactly this portion if it is fully inside �, or it will
occupy less if it is only partially inside. Hence, a point from
A on average will join with no more than Vd(ε)n points of B,
where n = |B|. Thus, to get sA ≥ 1, we need to set ε at least

such that Vd(ε)n ≥ 1, which translates into ε ≥ [f (d)n]− 1
d .

Figures 14 and 15 plot [f (d)n]− 1
d function as d is varied in

[2, 32] and [2, 1024], respectively. The three curves in these
plots are for the cases of n = 105, n = 106, and n = 107.
Notice that while ε is small for lower dimensionality cases,
it can be quite large for higher dimensionality: it can exceed
0.5 for d ≥ 16 and can exceed 1.0 for d ≥ 32.

Figure 16 plots average sA for various values of d for actual
experiments on synthetically generated uniform datasets

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

E
p

si
lo

n

Number of Dimensions

n=100K
n=1M
n=10M

Fig. 14 If ε is less than these values, then sA < 1

123

D. V. Kalashnikov

0

1

2

3

4

5

6

7

8

2 4 8 16 32 64 128 256 512 1024

E
p

si
lo

n

Number of Dimensions

n=100K

n=1M

n=10M

Fig. 15 If ε is less than these values, then sA < 1

Fig. 16 Example of setting ε to [f (d)n]− 1
d

where ε is set its lower bound [f (d)n]− 1
d . As expected, sA

stays below 1. We can see that [f (d)n]− 1
d is a conservative

lower bound: sA decreases as d increases. This is since with
the increase of d, the values of ε increase as well. Hence, the
volume of intersection of Vd(ε) and � becomes much less
than Vd(ε) which has been used in the above calculations.

Let us assume now that the cardinality of A is also n = |A|.
Since each point in A joins with no more than Vd(ε)n
points in B on average, the cardinality of the result set R
on average will not exceed |R| ≤ Vd(ε)n2. Consequently, if

ε ≤ [f (d)n2]− 1
d , then Vd(ε)n2 ≤ 1, and hence, |R| ≤ 1

which means sA � 0 for such small values of ε. Fig-

ures 17 and 18 plot [f (d)n2]− 1
d function for d in [2, 32]

and [2, 1024]. Figure 19 is analogous to Fig. 16 but plots |R|
values for the case where ε is set to [f (d)n2]− 1

d . We can see
that |R| stays at zero for such ε.

5.3 Consequences and suggestions

Consequence 1. Many known epsilon-join algorithms,
including our own Grid, Super-EGO, and EGO-star, are sim-
ply not designed for large ε, for example, when ε ≥ 1. For
such cases, at best, they will default to the basic O(n2d)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

E
p

si
lo

n

Number of Dimensions

n=100K
n=1M
n=10M

Fig. 17 If ε is less than these values, then |R| ≤ 1

0

1

2

3

4

5

6

7

8

2 4 8 16 32 64 128 256 512 1024

E
p

si
lo

n

Number of Dimensions

n=100K

n=1M

n=10M

Fig. 18 If ε is less than these values, then |R| ≤ 1

Fig. 19 Example of setting ε to [f (d)n2]− 1
d

algorithm. From Fig. 14, we can see that for uniform data (a
frequent testing case in the literature) when the number of
points in A and B is n = 105, such algorithms will be limited
to dimensionality of less than 32.

Real data tends to be skewed, resulting in smaller ε used in
practice. However, a large increase in dimensionality is likely
to result in an increase of ε thus limiting the applicability
of modern similarity join techniques for real data as well.
Hence, claims that some techniques apply to, say, d ≥ 64
should be verified carefully.

123

Fast multi-dimensional similarity join

Therefore, for high-dimensional cases, it is desirable that
researchers demonstrate that their ε-join techniques beat
the “dimensionality curse”, by comparing them to, say, the
O(n2)block quadratic baseline explained in Sect. 6.2.

Consequence 2. Some experiments reported in the literature
disregard selectivity and we must be cautious in drawing
any conclusions from them. In Sect. 6, we will show con-
crete examples where authors made their conclusions from
cases where selectivity sA was zero or too high. Armed with
Figs. 14, 15, 16, 17 and 18, the interested reader can check
(for tests on uniform data) that similar problems are not lim-
ited to the examples we show.

Consequence 3. To avoid selectivity-related mistakes in the
future, it is desirable that researchers report not only ε used
in their tests (which, apparently, can be deceptive to even the
researchers themselves), but also the corresponding sA =|R|
|A| , |R| or similar measures. Recall that for a self-join A ��ε
A, the metrics are sA = |R|−|A||A| and |R|−|A|. These measures
can also serve as a checksum for other researchers performing
tests on similar datasets. It is also desirable for researchers
to analyze the concrete end goal/application of their specific
join operation and then understand and explain which ranges
of sA are reasonable for that goal.

6 Experimental evaluation

In this section, we empirically evaluate our Super-EGO
approach on several real and synthetic datasets. We com-
pare it to several recent state of the art techniques: CSJ [5],
LSS [18], E2LSH [1], and EGO-star[16]. We are very
thankful to the authors of these techniques for providing us
the latest versions of their code. In addition, we present an
in-depth analysis of the performance of these techniques with
respect to the selectivity factor.

We start this section by first covering the experimen-
tal setup in Sect. 6.1. The setup describes the datasets
used in the experiments, including which join techniques
have utilized these datasets in the past in Sect. 6.1.1. The
setup also introduces two quadratic-cost comparison base-
lines: O(n2)naive and O(n2)block in Sect. 6.2. Next,
Sect. 6.3 presents basic experiments which (a) compare
Super-EGO to its predecessor EGO-star, (b) study the
contribution of the various join phases to the overall join
cost of Super-EGO, (c) demonstrate the scalability of the
algorithm with the increase of the parallelism, (d) test the
contribution of various optimizations proposed in the paper,
and (e) study the performance of the disk-based version of
the algorithm. After that, Sects. 6.4, 6.5, and 6.6 compare the
performance of Super-EGO to that of the state of the art
ε-join algorithms CSJ, LSS, and LSJ, respectively. Finally,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

MG County

Fig. 20 Montgomery County dataset

Sect. 6.7 presents a critique ofEGO-star as well as of some
of other existing ε-join algorithms.

6.1 Experimental setup

Unless stated otherwise in the text, the experiments have been
performed on a notebook with 8GB of RAM.9

6.1.1 Datasets

In our experiments, we compare Super-EGO to the state
of the art techniques on the same datasets these techniques
have used for their own testing:

1. MNIST (real, 784D, 60K) used by J2 join explained
in Sect. 6.7. This real 784-dimensional dataset con-
sists of 28 × 28 matrix representations of handwritten
0-9 digits (gray-scale). Join can be viewed as a way
to perform handwritten digits recognition by classifying
images (assigning 0-9 labels) based on the labels of the
closest ones, for example, by majority voting.

2. Aerial (real, 60D, 275 K) used by E2LSH. This real
dataset represent geographic map image tiles. Join cor-
responds to finding similar tiles.

3. MG County (real, 2D, 27 K) used by CSJ. A real dataset
that represents the road network of Montgomery County,
illustrated in Fig. 20.

4. LB County (real, 2D, 36 K) used by CSJ. A real dataset
for the road network of Long Beach County, illustrated
in Fig. 21.

5. ColorHistogram (real, 32D, 68 K) used by LSS. A real
dataset of image features extracted from a Corel image

9 The notebook has a single Intel(R) Core(TM) i7-2820QM (4-core)
CPU @ 2.30 GHz. Its Geekbench score (Geekbench 2.1.13 32-bit)
is 10,531. This score can be used as a means to compare different
epsilon-join techniques across publications in an approximate fashion:
the reported execution time results can be prorated according to this
score.

123

D. V. Kalashnikov

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

LB County

Fig. 21 Long Beach County dataset

Fig. 22 Quadratic baseline O(n2)naive

collection. Histogram intersection (overlap area between
color histograms of two images) can be used to measure
the similarity between two images.

6. ColorMoments (real, 9D, 68 K) used by LSS. Also real
image features, but of different type. Euclidean distance
between Color Moments of two images can be used
to represent the dis-similarity (distance) between two
images.

7. CoocTexture (real, 16D, 68 K) used by LSS. Real image
features, but of different type.

8. LayoutHistogram (real, 32D, 66 K) used by LSS. Also
real image features. Histogram Intersection can be used
to measure the similarity between images.

9. Uniform (synthetic, up to 200 Million points). A syn-
thetic dataset where n data points are distributed uni-
formly inside a unit cube [0, 1]d .

All datasets are normalized to fit in [0, 1]d domain.

6.2 Two quadratic baselines

To test if a given ε-join technique “beats the curse of the
dimensionality” on a given dataset, we have implemented two
quadratic baselines called O(n2)naive and O(n2)block.

Figure 22 provides the pseudocode for O(n2)naive.
It first re-orders dimensions of A and B in the descend-
ing order of ri , as explained in Sect. 4.1. It then calls the
quadratic SimpleJoin(A, B, ε) procedure explained in Fig. 7
in Sect. 4.3.

The pseudocode for the second O(n2)block baseline is
provided in Fig. 23. It is similar to the first one, except for
it calls SimpleBlockJoin instead of SimpleJoin , with the
“block size” parameter M set to 100. SimpleBlockJoin is

Fig. 23 Quadratic baseline O(n2)block

Fig. 24 SimpleBlockJoin procedure

shown in Fig. 24. It views (array) B as consisting of Nblc

contiguous blocks (subarrays) of size M . The new procedure
adds one extra external loop to SimpleJoin that iterates over
each block Bk ∈ B. The final change is that now it iterates
over b ∈ Bk instead of b ∈ B.

Initially, one might assume that O(n2)naive should be
faster or about the same as O(n2)block. This is since
O(n2)naive does the same comparisons as O(n2)block
(though in different order) but with less code. However, we
will see that O(n2)block can be significantly faster than
O(n2)naive due to the reasons that will be explained in
Experiment 12.

It is easy to see that these two baselines can be further
sped up by factor of up to� 2 for the case of a self-join. This
is since a self-join can be implemented as a loop over i ← 1
to |A|, and then, a loop over j ← i + 1 to |A| (instead of
j ← 1 to |A|). We, however, will not use this optimization,
but the reader can estimate its effect by dividing the reported
time by 2.

6.2.1 Selectivity

We will demonstrate the importance of selectivity sA for
making a proper comparison among various join techniques.
We will see that it plays a crucial role in explaining many
plots. Recall from Sect. 5 that the selectivity sA for a self-
join R = A ��ε A was defined as sA = |R|−|A||A| = |R|−n

n ,
where n = |A| is the number of points in A and R is the
result set of the self-join. It tells the average number of points
that joins with any given point a ∈ A, except for itself, that
is, (a, a) pair is not counted. The selectivity is plotted as a
dashed curve using the secondary (right) axis in each plot in
this section. Unless stated otherwise, in our plots we vary ε

such that sA covers a broad range of reasonable values.

123

Fast multi-dimensional similarity join

Fig. 25 Super-EGO versus EGO-star on ColorHist

6.2.2 Validation

As we shall see, Super-EGO gains major improvement
over competing strategies, including our own older tech-
niques. To validate that this is not due to an accidental
error in the code, we performed frequent validations of the
results across different datasets. Specifically, the result set R
obtained by Super-EGO was compared to the results sets
R1, R2, . . . , Rn obtained by different strategies, including
(where applicable)EGO-star,Grid,O(n2)naive,O(n2)
block and were found to be identical.

6.3 Basic experiments

Experiment 1 (Comparing with EGO-star: high-dimen-
sional case) Since Super-EGO is based on EGO-star
[14,16], in this experiment we compare their performance,
using the original EGO-star code.

Figure 25 plots the execution time (for a self-join) of var-
ious techniques as a function of ε on 32-dimensional Col-
orHist dataset that contains 68,000 data points. This dataset
was used in [14,16] for testing EGO-star.

We can see that choosing ε > 0.16 leads to very
high selectivity for this image dataset. Hence, values where
ε ∈ [0, 0.16] are more likely to be used in practice. When
ε ∈ [0, 0.1], the new Super-EGO algorithm outperforms
EGO-star from� 53 to 9 times. Even 1-threaded version of
Super-EGO, “1-thrd SEGO”, outperforms EGO-star
anywhere from � 21 to 2 times when ε ∈ [0, 0.1]. The
figure also shows that all the tested methods outperform the
quadratic-cost baselineO(n2)block, as they should, to beat
the dimensionality curse on ColorHist.

Experiment 2 (Comparing with EGO-star: low-dimen-
sional case) As explained in [14,16], EGO-star is not
meant for lower dimensional (e.g., 2D) cases and instead the
Grid technique should be used in such cases. We can see
why this is the case from Fig. 26 which plots the performance
of various techniques on 2D MG County dataset.

Fig. 26 Super-EGO versus Grid on MG County

When ε ∈ [0.001, 0.008] the selectivity reaches rea-
sonable values of sA ∈ [0.5, 26.3]. For such ε val-
ues Super-EGO is from � 59 to 17 times faster than
EGO-star. In Fig. 25, ε is varied in [0.001, 0.256] instead
of [0.001, 0.008] because the CSJ technique, which we will
compare to later on, uses even larger interval.

We can see that while Super-EGO outperforms grid, its
1-threaded version 1-thrd SEGO is� 3 times slower than
grid when ε = 0.001. This means that Grid is still a good
technique for lower dimensional data and lower selectivity
cases. In [14,16], EGO-star was designated as a method
meant for higher dimensional cases only. Now, the new EGO-
join—Super-EGO—demonstrates reasonable performance
across a wide spectrum of dimensionality and selectivity (Fig.
26).

Experiment 3 (Contribution of various phases) The end-
to-end Super-EGO process can be viewed as consisting of
several phases:

1. Load. Data is loaded from a file on disk.
2. Reorder. Dimensions of data are reordered.
3. Sort. EGO-sort is applied to data.
4. Join. EGO-join is applied to sorted data.
5. Save. Result set R is saved to disk (optional).

Figures 27 and 28 plot the relative fraction and actual
time each join phase takes in the end-to-end join operation
on ColorHist dataset. These figures correspond to Fig. 25.

The first phase is loading data. We have made no attempt
to optimize this phase as its cost is traditionally ignored.10

10 One of the reasons of why it is often ignored is that, as we will see
later on, many other join techniques are much slower thanSuper-EGO,
and in their case, the cost of loading data is negligible compared to the
cost of the join itself. Another reason is that raw data comes in vastly
different formats, and an ad-hoc procedure is often needed to convert
it to some predefined format or an ad-hoc loader needs to be created.
Furthermore, some techniques (such as CSJ) that, unlike Super-EGO,
contain an index-building phase, even ignore the cost of building
(R-tree) index on data, which is often quite large.

123

D. V. Kalashnikov

Fig. 27 Fraction of time per phase

Fig. 28 Time per phase

We do not report the loading cost as well, unless we com-
pare the end-to-end running times of algorithms, for example,
when comparing with LSH. Currently, in Super-EGO, data
is loaded one value at a time, and, if necessary, it is very
likely that that phase can be optimized by, say, implementing
a buffered read.

The second phase is reordering of dimensions. Its cost is
so small that it is indiscernible in these two plots.

The third phase is sorting of data. It only plays a role for
low-selectivity cases. It can be easily optimized by using
a parallel sort and/or hash sort, but as we can see from
the plots—that would not lead to any major performance
improvement.

The fourth phase is the join itself and since the cost of
loading data is ignored—it is the most expensive part of the
overall processing even for Super-EGO.

Finally, we can see that the cost of saving data to disk (if
that is required by the user) is also negligible—unless the
selectivity of the join has to be excessively high, which is
rare in practice. But even if the selectivity is high, the saving
phase does not have to start after the join phase: instead it
can overlap with it as the results can be buffered and then
saved periodically during the join itself (not implemented
in the Super-EGO). So implementing the saving phase as
a separate thread that runs concurrently with the join will
likely amortize the cost of that phase considerably. Notice
that, by default, Super-EGO does not save data to disk.

Fig. 29 Increasing parallelism: 1 CPU with 4 cores and 8 hardware
threads

Overall, this picture is consistent with those of other
research efforts. For example, the authors of the LSS tech-
nique state in [18]: “we found I/O times to be insignificant
when compared to the actual join processing times, so they
are not shown separately in our experimental results”.

Experiment 4 (Scaling with the increase of parallelism) In
this experiment, we test the scalability of the join phase of
Super-EGO with the increase of the level of parallelism.
We perform tests on two machines:

1. 1 CPU 4 Cores 8 Threads. This is the default
notebook, released in early 2011.

2. 4 CPU’s × 2 Cores. This is a slower and outdated
2004 machine. However, it has 4 independent CPU’s each
with 2 cores, that is, 8 CPU cores in total.

Figure 29 plots the normalized performance as a func-
tion of the number of threads for the 1 CPU machine. The
normalized performance of n threads is computed as the exe-
cution time of the join phase for 1 thread, divided by that of n
threads. The figure plots curves for: the “ideal” performance,
for tests with various values of ε on ColorHist dataset, and a
curve for the second 8-core machine as a point of reference.

We can see that the scalability depends on the values of
ε. Knowing that the machine has 4 cores, we can expect that
the performance should grow till 4 threads, but then should
become flat (or should not grow) after that. However, curves
for “ε = val” consist of two distinct (almost straight) grow-
ing line segments: one segment for n from 1 to 4 and another
one for n from 4 to 8. The second segment shows slower
growth than the first one, but it is not flat. This is since the
machine has 4 cores but 8 hardware threads. According to
Intel [6], hardware threads can create additional level of par-
allelism but only at the level of up to� 30 % of extra perfor-
mance. Interestingly, the performance for these curves does

123

Fast multi-dimensional similarity join

1

2

3

4

2 3 4 5 6 7 8

S
p

ee
d

u
p

 =
 T

im
e

at
 2

 /
Ti

m
e

at
 n

Num. of threads

BTO-PK-OPRJ

Ideal

4CPUs x 2cores

Fig. 30 Increasing parallelism: 4 CPU’s × 2 cores = 8 CPU cores

Fig. 31 The contribution of optimizations

increase by � 30 % as we increase the number of threads
from 4 to 8. Figure 29 also includes a curve for the second 4
CPU’s × 2 cores machine. We can see that with full 8 cores
Super-EGO scales visibly better on the second machine.

To provide at least some concrete comparison yardstick,
Fig. 30 plots the scalability of Super-EGO against that of
the (unrelated set-based) similarity join approach proposed
in [27] for map/reduce. The best-scaling technique in [27]
was called BTO-PK-OPRJ, and its performance is reflected
in Fig. 30. As in [27], we plot the speedup which is com-
puted as time at 2 divided by the time at n. We can see that
Super-EGO scales better than BTO-PK-OPRJ.

Experiment 5 (Effect of optimizations) Fig. 31 illustrates
the relative effect of different optimizations on ColorHist
dataset for different selectivity levels.

For example, the figure shows that applying the new
EGO-strategy described in Sect. 4.2 is responsible for 5
times improvement (of � 400 %) of the algorithm when
sA = 0.35. Applying the reordering strategy outlined in
Sect. 4.1 on top of that, doubles the performance (the increase
of � 100 %). Applying the new SimpleJoin algorithms
described in Sect. 4.3 on top of the previous two techniques
increases the performance further by � 35 %. Hence, the

Fig. 32 Scaling to 100–200 Millions of points

overall improvement in this case is � 5 · 2 · 1.35 = 13.5
times.

The effect of these techniques decreases with the increase
in selectivity. This is since with increase in sA more pairs of
points join with each other. Consequently, the optimizations,
which are aimed at early detection of points that will not join,
become less effective.

Experiment 6 (Scalability w.r.t. data size) Fig. 32 studies
the scalability of Super-EGO on 4- and 8-dimensional
uniform datasets as the cardinality of A increases. It shows
that the approach can be scaled to 200 Million 4D points and
100 Million 8D points on a notebook with 8 GB of RAM.
Incidentally, to the best of our knowledge, these are the high-
est cardinality tested for 4- and 8-dimensional data as well
as the best results reported for such data on any platform.

For instance,LSS authors scale their approach to 4 million
16D uniform points. Even though CSJ is disk-based, it was
only tested on 1.5 million 2D real points. One of the largest
cardinality tested in the literature that we are aware of is
40 million of 8D uniform points, published in [2]. In general,
the reasons why others are using smaller cardinality include
(a) absence of real datasets for ε-join with such cardinality,
(b) some techniques require large amounts of memory, for
example, LSH, Grid, and (c) for slower techniques it takes
significant amount of time for the experiments to finish on
large datasets.

Figure 32 is a log-log plot, where curves are straight lines.
Hence, given the slope of the curves, we can compute that the
scalability for the 4D and 8D cases as O(n1.30) and O(n1.49),
respectively, where n = |A|.

Experiment 7 (Disk-based Super-EGO) Fig. 32 also con-
tains a curve for the end-to-end running time (including load-
ing data) of the disk-basedSuper-EGO for 6D uniform data.
It is implemented as described in Sect. 4.6.11 Its behavior is

11 Buffers for Ai ’s and B j ’s have been set to include no more than 50M
points.

123

D. V. Kalashnikov

0.016
0.019

0.039

0.2
0.36

1.473

0.5

7.8

26.3

90.9

322.0

1,147.4

3,875.0

11,432.0

0

1

10

100

1,000

10,000

0.01

0.1

1

10

100

0.001 0.004 0.016 0.064 0.256

S
el

ec
ti

vi
ty

T
im

e
(s

ec
s)

Epsilon

MG County (2D, 27K)

Super-EGO

1-thrd SEGO

CSJ all

CSJ

LSH

Selectivity

Fig. 33 MG County

0.5

7.8

26.3

90.9

322.0

1,147.4

3,875.0

0

1

10

100

1,000

10,000

8

16

32

64

128

256

512

1024

0.001 0.004 0.016 0.064 0.256

S
el

ec
ti

vi
ty

S
p

ee
d

u
p

Epsilon

MG County (2D, 27K)
Spd over CSJ all

Spd over CSJ

Spd over LSH

Selectivity

Fig. 34 MG County. Speedup over CSJ(10)

similar to those of 4D and 8D in-memory joins.Super-EGO
is not meant as a disk-based strategy, and it is likely that this
disk-based version of the algorithm can be improved.

6.4 Comparing with CSJ

CSJ is the Compact Similarity Join technique proposed in
[5], where the authors show that detecting and reporting
groups/cliques of points that all join with each other is a
good idea. CSJ is the only disk-based strategy we test—the
others all run in-memory. We will compareSuper-EGO and
the original CSJ code on 2-dimensional MG and LB County
datasets. While these datasets are “real”, more interesting
datasets to test a spatial join would have been a POI database
or twitter feeds with GPS coordinates. However, we test on
MG and LB data since they have been used in [5] by CSJ

Experiment 8 (CSJ for spatial join) Figs. 33, 34, 35 and 36
compare performance on of Super-EGO, 1-threaded ver-
sion of Super-EGO, CSJ all which is CSJ with index-
building cost not ignored, and CSJ with index-building cost
ignored. The figures demonstrate that Super-EGO signif-
icantly outperforms CSJ even if the index-building cost is
ignored. The difference can be more than 2-orders of magni-
tude for CSJ all for reasonable selectivity values. This is
not very surprising, as EGO-star (on which Super-EGO

0.016 0.021 0.019 0.029
0.052

0.195

0.584
1.095

2.922

0.1

1.3

6.1

22.7

81.6

289.6

992.2

3,257.8

0

0

1

10

100

1,000

10,000

0.01

0.1

1

10

100

0.001 0.004 0.016 0.064 0.256

S
el

ec
ti

vi
ty

T
im

e
(s

ec
s)

Epsilon

LB County (2D, 36K)

Super-EGO

1-thrd SEGO

CSJ all

CSJ

LSH

Selectivity

Fig. 35 LB County

13.75
16.33

40.26

29.62

41.56

24.45

17.71 16.57

10.56
0.

1

1.
3

6.
1

22
.7

81
.6

28
9.

6 99
2.

2 3,
25

7.
8

0

0

1

10

100

1,000

10,000

10

20

40

80

160

320

640

1280

0.001 0.004 0.016 0.064 0.256

S
el

ec
ti

vi
ty

S
p

ee
d

u
p

Epsilon

LB County (2D, 36K)
Spd over CSJ all

Spd over CSJ

Spd over LSH

Selectivity

Fig. 36 LB County. Speedup over CSJ(10)

is based) has been shown to outperform SSJ (on which CSJ
is based) by over 1 order of magnitude [14,16]

What is interesting is that in Figs. 34 and 36 the speedup
over CSJ for ε = 0.001 and 0.002 is less than that for ε =
0.016. The explanation for it is that this is a rare case where
the computational cost of the sort phase of Super-EGO
becomes substantial: normally it is negligible, whereas here,
it is up to 40–50 %. Hence, we see the effect of a parallel
version of EGO-sort not being implemented.12

Figure 33 is similar to Figure 5 from [5]. Since Fig. 33 in
addition plots the actual selectivity sA for each ε, it can pro-
vide interesting insights into Figure 5 in [5]. For instance, in
Figure 5 from [5], CSJ does not show a very major improve-
ment in the execution time over SSJ for ε ≤ 0.032. How-
ever, this is where the selectivity already reaches the very
high value of � 300. Hence, a reasonable question could
be whether users would want to run CSJ with ε ≥ 0.032
on specifically MG and LB County-like datasets, and hence,
whether they will see a tangible improvement of CSJ over
SSJ in practice. This highlights the importance of analyzing
the selectivity sA in join operations.

12 It was not implemented exactly because EGO-sort cost is normally
just a small fraction of the overall cost.

123

Fast multi-dimensional similarity join

The MG and LB county figures also include the curves
for LSH. The LSH authors very clearly state that LSH is not
meant for low-dimensional cases and the figures reflect that,
as expected.

6.5 Comparing with LSS

LSS [18] is an ε-join algorithm that is based on an interesting
idea of using GPU (video card) to perform a join by lever-
aging NVIDIA’s CUDA toolkit. That idea, however, has its
pros and cons in practice. The obvious advantage is the gain
in speed from extra hardware. A disadvantage is that LSS
is coded for NVIDIA GPUs, so the code simply would not
work on the default early-2011 notebook we used for testing
due to its video card mismatch. Hence, to test LSS we have
used a 2012 notebook that has 60–70 % faster GPU but only
10 % faster CPU. Thus, we are giving LSS an advantage.

An important point about LSS is that it is already a mas-
sively parallel algorithm that runs on GPU and fully loads
GPU, not CPU. The GPU is the bottleneck of the approach.
Therefore, implementing a multi-threaded version of LSS
(to run it in multiple threads on CPU) should not lead to
any noticeable performance gain of that technique. Conse-
quently, LSS should be compared to Super-EGO, not to its
1-threaded version.

The LSS authors have given us the original code. LSS
runs entirely in-memory. The authors have requested to put
a disclaimer that the code has been optimized for older ver-
sion of CUDA and that tuning it for the current version can
improve the performance of LSS.

Experiment 9 (Comparing with LSS: Real Data) Figs. 37,
38, 39 and 40 correspond to Figure 4 in [18]. They plot LSS
and Super-EGO values on four real datasets that represent
4 different types of image features of the same collection
of Corel images. Performing a self-join on Color Histogram
and Layout Histogram loosely corresponds to finding similar
images. Hence, the most reasonable selectivity sA for these
datasets is likely to be somewhere around 1, and most likely

Fig. 37 Color histogram

Fig. 38 Color moments

Fig. 39 Co-occurrence texture

Fig. 40 Layout histogram

less than 100. A self-join on Color Moments finds pairs of the
most dissimilar images—practical usefulness of which is not
clear. The meaning of a self-join on Co-occurrence Texture
is not apparent from the description of the dataset.

As we can see, Super-EGO tends to outperform LSS by
about an order of magnitude across the board. The figures
also include results for 1-threaded version of Super-EGO.
Even though 1-threaded version is largely irrelevant in this
context (this is since multi-threaded, LSS is unlikely to work
faster) the figure demonstrate that even that version tends to
be faster than LSS, except for very high selectivity cases.

123

D. V. Kalashnikov

Fig. 41 Comparing to LSH on Aerial dataset

6.6 Comparing with LSH

Although E2LSH has been designed as an NN algorithm
[1], its authors (and the community) view it as one of the
best modern epsilon-join algorithms of today.E2LSH authors
state that it is not meant for lower dimensional cases and that
it only applies for dimensionality starting from � 10–20.
While in the database literature ε-join is typically studied for
d ≤ 32, the preferred dimensionality of E2LSH is d ≥ 60.
The authors of E2LSH have given us the latest version of the
code, which we will use in our tests. E2LSH is an approxi-
mate join algorithm. To compare it to exact techniques, we
set its “probability that nearest neighbor is not reported” to
δ = 0.01 %.

Experiment 10 (LSH on real image data) Figs. 37, 38, 39
and 40 tests E2LSH on four real datasets that correspond to
image features. These datasets have not been used to test
LSH before. The figures demonstrate that LSH “as is” cannot
compete with other techniques on these 9–32 dimensional
datasets.

Experiment 11 (LSH on Aerial data) Fig. 41 compares
E2LSH and Super-EGO on Aerial 60-dimensional dataset
of 275K points that has been used by LSH in the past.

The points represent features of map tiles, and the join is
used to find similar tiles. E2LSH outperforms O(n2)block
quadratic-cost baseline, but Super-EGO and its 1-threaded
version 1-thrd S-EGO demonstrates better performance
than E2LSH.

6.7 Miscellaneous experiments

This section demonstrates examples of several issues that
are present in some of ε-join research efforts. Namely, it
shows instances of cases where the selectivity stayed at the
zero (or very low) level in entire plots. It also demonstrate
examples where ε-join techniques could not outperform

Fig. 42 Comparing to J2 on MNIST dataset

our quadratic baseline O(n2)block, or its parallel version
where appropriate.

We note that the issues themselves are more important than
the names of the concrete techniques where they are present.
Thus, we will anonymize the names of the actual techniques
tested and refer to them only as J1, J2, J3, and J4. Some
of them can be the same as tested above, some of them can
be different. We should note, however, that J1–J4 are not
some marginal outliers: they are well-known recent state of
the art methods developed by prominent research groups.

Experiment 12 (J2 on MNIST data) This is probably the
most interesting experiment in this paper. The main dataset
used by J2 is the 784-dimensional MNIST dataset that
contains 60 K points. A point in a dataset represents a hand-
written digit from 0 to 9, mapped into 28 × 28 gray-scale
matrix. Hence, the ε-join can be used for recognizing writ-
ten digits—by assigning a label based on the labels of points
that join with a given point, for example, by using majority
voting.

The original purpose of this test of Super-EGO on
MNIST dataset was to show where Super-EGO should fail.
This is since, as we now know from Sect. 5, with 784 dimen-
sions the “right” value of ε is likely to be more than 0.5,
in which case Super-EGO should degrade to a quadratic
strategy. But the outcome of this experiment has led to a few
completely unexpected surprises discussed next.

Figure 42 is a log-lin plot of the results on the MNIST
dataset. It shows that, yes, ε has to be larger than 1 to get
meaningful selectivity. The first surprise is thatSuper-EGO
is still the fastest technique, even though it is supposed to be
quadratic for ε ∈ [1, 8]. Furthermore, even its one threaded
version, 1-thrd SEGO, is either about the same for ε ∈
[1, 2], or faster than J2 for ε ∈ [3, 8].

Because of the above, we have implemented our first
quadratic baseline O(n2)naive which is nothing more that
the dimensionality reordering procedure (Sect. 4.1) followed
by a quadratic SimpleJoin (Sect. 4.3). The second sur-
prise was that O(n2)naive got the same result set R

123

Fast multi-dimensional similarity join

as Super-EGO, but was visibly slower than 1-threaded
Super-EGO, see Fig. 42.

The question is how is that even possible? Intuitively,
Super-EGO will do the same comparisons of each point
to each point as O(n2)naive. However, it has all that extra
code from Sect. 4 to do that. Therefore, from purely the-
oretical point of view, one might initially think it should
be less efficient than O(n2)naive. But a closer look at
Super-EGO reveals that when it performs a SimpleJoin
it always joins a small contiguous block of points from A
with a block from B. Therefore, it takes advantage of the
CPU cache, whereas O(n2)naive “AS IS” actively purges
points from the CPU cache.

Armed with these observations, we have implemented our
second quadratic baselineO(n2)block. LikeSuper-EGO,
O(n2)naive also takes advantage of the CPU cache by
using blocks in its procedure. Naturally, it computes the same
result R as Super-EGO and O(n2)naive. We can see that
the new O(n2)block outperforms both J2 and 1-thrd
SEGO on MNIST data. This is important since any good
join algorithm is supposed to be faster than any quadratic
strategy. In a way, this experiment show that the “curse of
dimensionality” is not addressed for MNIST dataset by any
of the existing ε-join algorithms.

Experiment 13 (J2 as an Approximate Join) We know that
Super-EGO and J2, when they have been invoked as exact
joins, failed to beat the dimensionality curse on MNIST 784-
dimensional data. An interesting question to study is whether
J2, as an approximate join, could beat the curse.

Thus, we test J2 on MNIST data while setting its
“probability of success” p parameter to p = 50 %. To
level the play-field, we run an “approximate” version of
O(n2)block. That version is the same as before, except for
it has the following line added to the pseudocode in Fig. 24
(as Line 6.5): if rnd() > 0.5 then continue.

Figure 43 demonstrates that the approximate version
J2,p = 0.5 still cannot beat the quadratic baseline
O(n2)block,p = 0.5.

Fig. 43 J2 as an approximate join

7.8

26.3

90.9

322.0

1,147.4

0

1

10

100

1,000

10,000

0.5

1

2

4

8

16

32

64

0.004 0.008 0.016 0.032 0.064

S
el

ec
ti

vi
ty

T
im

es
 s

lo
w

er
 t

h
an

 q
u

ad
ra

ti
c

Epsilon

MG County (2D, 27K)

J1

J2

J4

Selectivity

Fig. 44 Time of J1, J2, J4, divided by time of O(n2)block

Fig. 45 Time of J2 and J3 divided by time of O(n2)block

Experiment 14 (Comparing with Quadratic Baseline)
Experiment 12 has made us develop O(n2)block quadratic
baseline. It has become interesting to know how other state
of the art techniques would fair against it. What we have
discovered is that J1–J4would often have difficulty outper-
forming it. We note that while our own EGO-star tends
to outperform O(n2)block, the difference between them is
often not very drastic—especially if O(n2)block is further
optimized by a factor of 2 for the self-join case. Hence, in
a way, EGO-star suffers from the same issue. Among the
datasets, we have used for testing, 1-threaded Super-EGO
has always outperformedO(n2)blockon all datasets except
for the 784-dimensional MNIST dataset.

Figures 44 and 45 plot how much J1–J4 are slower than
the quadratic-cost baselineO(n2)block on MG County and
ColorHist datasets. This metric is computed as the time of a
J divided by the time of O(n2)block for the given ε. We
tested J1–J4 and several other datasets as well, and we will
summarize the results below.

Figures 44 and 45 demonstrate that J2 and J4 cannot
outperformO(n2)block on these datasets.J2 have not per-
formed will in our tests on many other datasets as well. In

123

D. V. Kalashnikov

Fig. 46 “Scaling to 4M” plot in J3. Selectivity stays at zero

fact, it could not outperform O(n2)block on all but one
dataset. This was quite surprising since J2 is a very famous
technique.

Figure 44 shows that J1 is better than O(n2)block only
for lower selectivity cases. Interestingly, J1 is a technique
that makes more sense for higher selectivity cases. Figure 45
demonstrates that J3 outperforms O(n2)block only for
lower selectivity cases and by a factor of� 2 at most. Recall
that O(n2)block could be further optimized by a factor of
� 2 for the self-join case, in which case the advantage of J1
and J3 should be less than what is currently shown.

Experiment 15 (Zero-Selectivity Tests) While the CSJ
authors draw some of their conclusions from very large selec-
tivity cases, some authors go to the other extreme and draw
their conclusions from plots where selectivity stays at the zero
level everywhere in a plot or where it is zero in very large por-
tions of their plots. In fact, our own group has almost made
this mistake in the past for uniform data while working on
[14], but we have managed to avoid it in the end. Analyzing
the selectivity should help prevent this type of error.

For instance, Fig. 46 demonstrates a plot taken from J3
paper, but with the actual selectivity values added. We can
see that the selectivity stays at zero in the entire plot. From
Fig. 17 from Sect. 5 we know that to get nonzero selectivity
even for 10M point 16D data the value of ε should have been
set to at least� 0.15 whereas in this experiment it was set to
only 0.10 by the J3 authors.

Figure 47 is another plot from the J3 paper, except for we
added the actual selectivity values. The figure tests the per-
formance of J3 as the dimensionality d increases from 2 to
1,024. It draws attention because of such a grand dimension-
ality used. We can see that the selectivity quickly plunges to
zero with the increase of d, and the plot is not very interest-
ing already for d ≥ 9—the result set contains no pairs except
for the trivial (a, a) pairs for each a ∈ A. From Fig. 18 from
Sect. 5, we know that ε should have been set to higher values.

Fig. 47 “Time versus d” plot in J3. Here, sA = 0 for d[9, 1024]

7 Conclusion

In this paper, we have proposed Super-EGO ε-join algo-
rithm. We have demonstrated that it performs well compared
to several prominent state of the art techniques on a vari-
ety of real and synthetic datasets. We have highlighted the
importance of the selectivity factor in comparing various join
algorithms. We strongly encourage all developers of ε-join
techniques to report selectivity in their experiments and to
compare to the O(n2) block quadratic baseline introduced
in this article. As future work we plan to look into different
ε-join methods that can apply to high-dimensional cases
where reasonable values of ε are expected to be larger than 1.

References

1. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions. In FOCS, (2006)

2. Böhm, C., Braunmüller, B., Krebs, F., Kriegel, H.-P.: Epsilon
grid order: an algorithm for the similarity join on massive high-
dimensional data. In SIGMOD, (2001)

3. Böhm, C., Kriegel, H.-P.: A cost model and index architecture for
the similarity join. In ICDE, (2001)

4. Brinkhoff, T., Kriegel, H.-P., Seeger, B:. Efficient processing of
spatial joins using R-trees, In SIGMOD (1993)

5. Bryan, B., Eberhardt, F., Faloutsos, C.: Compact similarity joins,
In ICDE (2008)

6. Casey, S.D.: How to determine the effectiveness of hyper-threading
technology with an application. Intel Technol. J. 6(1), (2009)

7. Cheema, M.A., Lin, X., Wang, H., Wang, J., Zhang, W.: A unified
approach for computing top-k pairs in multidimensional space, In
ICDE, pp. 1031–1042 (2011)

8. Chen, Z.S., Kalashnikov, D.V., Mehrotra, S.: Exploiting con-
text analysis for combining multiple entity resolution systems, In
SIGMOD (2009)

9. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos,
M.: Closest pair queries in spatial databases, In SIGMOD (2000)

10. Dittrich, J.-P., Seeger, B.: Gess: a scalable similarity-join algorithm
for mining large data sets in high dimensional spaces. In KDD,
(2001)

11. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems,
3rd edn. Addison-Wesley, Longman (2000)

123

Fast multi-dimensional similarity join

12. Hjaltason, G.R., Samet, H.: Incremental distance join algorithms
for spatial databases. In SIGMOD, (1998)

13. Jolliffe, I.: Principal component analysis. Encyclopedia of Statis-
tics in, Behavioral Science, (2005)

14. Kalashnikov, D., Prabhakar, S.: Similarity join for low- and high-
dimensional data, pp. 26–28. In DASFAA, Mar (2003)

15. Kalashnikov, D.V., Mehrotra, S.: Domain-independent data clean-
ing via analysis of entity-relationship graph. ACM Trans. Database
Syst. (ACM TODS) 31(2), 716–767 (2006)

16. Kalashnikov, D.V., Prabhakar, S.: Fast similarity join for multi-
dimensional data. Inf. Syst. J. 32(1), 160–177 (2007)

17. Koudas, N., Sevcik, K.C.: High dimensional similarity joins: algo-
rithms and performance evaluation. In ICDE, (1998)

18. Lieberman, M.D., Sankaranarayanan, J., Samet, H.: A fast
similarity join algorithm using graphics processing units, In ICDE
(2008)

19. Lo, M.-L., Ravishankar, C.V.: Spatial hash-joins. In SIGMOD,
(1996)

20. Nuray-Turan, R., Kalashnikov, D.V., Mehrotra, S., Yu, Y.: Attribute
and object selection queries on objects with probabilistic attributes.
ACM Trans. Database Syst. (ACM TODS), 37(1), Feb. (2012)

21. Patel, J.M., DeWitt, D.J.: Partition based spatial-merge join.
In SIGMOD, (1996)

22. Schneider, D.A., DeWitt, D.J.: A performance evaluation of four
parallel join algorithms in a shared-nothing multiprocessor envi-
ronment. In SIGMOD, (1989)

23. Shafer, J.C., Agrawal, R.: Parallel algorithms for high-dimensional
similarity joins for data mining applications. In VLDB, (1997)

24. Shim, K., Srikant, R., Agrawal, R.: High-dimensional similarity
joins, In ICDE (1997)

25. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining.
Addison-Wesley Longman Publishing Co., Inc., Boston (2005)

26. Tao, Y., Yi, K., Sheng, C., Kalnis, P.: Efficient and accurate nearest
neighbor and closest pair search in high-dimensional space. ACM
Trans. Database Syst., 35(3), (2010)

27. Vernica, R., Carey, M.J., Li, C.: Efficient parallel set-similarity
joins using mapreduce, In SIGMOD (2010)

123

	Super-EGO: fast multi-dimensional similarity join
	Abstract
	1 Introduction
	2 Related work
	3 Overview of the original EGO-join
	4 Super-EGO framework
	4.1 Data-driven dimensionality reordering
	4.1.1 Basic technique
	4.1.2 Average-distance histogram
	4.1.3 Efficiency of reordering

	4.2 New EGO-strategy
	4.3 New simple-join procedure
	4.4 Algorithm parallelization
	4.4.1 Challenges
	4.4.2 Parallel solution

	4.5 Space complexity
	4.6 Miscellaneous issues
	4.6.1 Extensions to dimensionality reordering
	4.6.2 Disk-based version
	4.6.3 Optimizing self-join

	5 Selectivity of join
	5.1 Selectivity and related errors
	5.2 The effect of larger dimensionality on epsilon
	5.3 Consequences and suggestions

	6 Experimental evaluation
	6.1 Experimental setup
	6.1.1 Datasets

	6.2 Two quadratic baselines
	6.2.1 Selectivity
	6.2.2 Validation

	6.3 Basic experiments
	6.4 Comparing with CSJ
	6.5 Comparing with LSS
	6.6 Comparing with LSH
	6.7 Miscellaneous experiments

	7 Conclusion
	References

