
7

Exploiting Web Querying for Web People Search

RABIA NURAY-TURAN, DMITRI V. KALASHNIKOV, and SHARAD MEHROTRA,
University of California, Irvine

Searching for people on the Web is one of the most common query types submitted to Web search engines
today. However, when a person name is queried, the returned Webpages often contain documents related to
several distinct namesakes who have the queried name. The task of disambiguating and finding the Webpages
related to the specific person of interest is left to the user. Many Web People Search (WePS) approaches
have been developed recently that attempt to automate this disambiguation process. Nevertheless, the
disambiguation quality of these techniques leaves major room for improvement. In this article, we present
a new WePS approach. It is based on issuing additional auxiliary queries to the Web to gain additional
knowledge about the Webpages that need to be disambiguated. Thus, the approach uses the Web as an
external data source by issuing queries to collect co-occurrence statistics. These statistics are used to assess
the overlap of the contextual entities extracted from the Webpages. The article also proposes a methodology
to make this Web querying technique efficient. Further, the article proposes an approach that is capable of
combining various types of disambiguating information, including other common types of similarities, by
applying a correlation clustering approach with after-clustering of singleton clusters. These properties allow
the framework to get an advantage in terms of result quality over other state-of-the-art WePS techniques.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—Web People
Search; H.2.8 [Database Management]: Database Applications—Entity Resolution; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval; H.3.5 [Information Storage and Retrieval]:
Online Information Services—Web-based services

General Terms: Algorithms, Design, Experimentation, Performance, Theory

Additional Key Words and Phrases: Web people search, WePS, entity resolution, automated Web querying,
skyline-based classifier

ACM Reference Format:
Nuray-Turan, R., Kalashnikov, D. V., and Mehrotra, S. 2012. Exploiting web querying for web people search.
ACM Trans. Datab. Syst. 37, 1, Article 7 (February 2012), 41 pages.
DOI = 10.1145/2109196.2109203 http://doi.acm.org/10.1145/2109196.2109203

1. INTRODUCTION

Search engines are among the most important Web technologies that empower users
to locate and analyze information of interest from billions of Webpages. According to
Search Engine Watch [2006], the Google search engine handles 91 million queries
daily of which about 5 to 10% are Web people searches wherein users are looking for
Webpages of a specific individual using the individual’s name [Guha and Garg 2004].
Given the very large number of people search queries, it is surprising that support for
such queries in modern search engines such as Google, Bing, and Yahoo! is still quite
primitive. For instance, when a user query consists of a person name, search engine

This work was supported in part by NSF grant CNS-1118114 and a gift from Google.
Authors’ addresses: R. Nuray-Turan, D. V. Kalashnikov (corresponding author), and S. Mehrotra, University
of California, Irvine; email: dvk@ics.uci.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 0362-5915/2012/02-ART7 $10.00

DOI 10.1145/2109196.2109203 http://doi.acm.org/10.1145/2109196.2109203

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



7:2 R. Nuray-Turan et al.

return a ranked list of Webpages that correspond not only to the individual of interest
to the user, but also to those of his namesakes. If a user is interested in Webpages of a
particular person, he has to manually disambiguate the returned Webpages.

This problem of disambiguation arises almost every time a Web people search query
is issued, since most individuals’ namesakes also have Web presence.1 For instance,
given a query for “Tom Mitchell”, the top 100 results returned by Google contain 37
different namesakes. Accordingly, if a user is interested in only a specific “Tom Mitchell”
(e.g., the one who is a professor at CMU) he has to look through the top 100 results to
figure out the Webpages of interest.2

One can argue that while having to manually filter out the returned results is a
nuisance, it is not a very serious problem since users can browse through the ranked
results and choose the Webpage corresponding to the individual of interest. There are at
least two situations where the preceding argument does not hold. First, a user’s interest
might not be to identify a specific Webpage of an individual, but a set of Webpages to
build a profile. For instance, a user might be looking for an author on Google Scholar to
measure his/her impact using bibliometrics such as h-index [Hirsch 2005]. Since Google
Scholar does not support the disambiguation of authors, the returned list of papers
usually corresponds to the papers written by different namesakes, which makes the
accurate determination of h-index difficult. Another situation where the ranked list
returned by general search engines does not suffice is when the namesakes include
someone who is very famous (referred to as the famous person problem [Kalashnikov
et al. 2008a]). If the user’s interest is in the Webpages related to someone other than
the famous person, a user may have to scan through pages of search results most of
which are irrelevant to the user’s information need.

The limitations of general search engines to adequately support person name search
have attracted significant research interest recently. Since the time the problem was
identified [Artiles et al. 2005; Kalashnikov et al. 2007], many Web people search engines
have been designed both in academia and in industry. Web People Search (WePS)
systems differ in their support for queries based on individual’s names. Instead of
returning a ranked list of Webpages D = {d1, d2, . . . , dk}, these systems attempt to
return clusters of Webpages in D such that each cluster corresponds to a namesake.
For instance, for the previous “Tom Mitchell” query over Google, the WePS system will
return one cluster for each “Tom Mitchell” enabling the user to quickly identify the
specific individual of interest and perform the analysis. Likewise all the Webpages of a
famous person will be clustered together, enabling other namesake’s pages to be visible
in the top few results.

The primary technology driving WePS is that of Entity Resolution (ER) and a variety
of ER techniques have been explored in the context of WePS. A direct application of
ER solutions to the people search problem is to extract features from Webpages such
as n-grams, named entities, hyperlinks, etc., and then use an ER technique with these
features [Yoshida et al. 2010; Mann and Yarowsky 2003; Niu et al. 2004; Iria et al. 2007;
Gong and Oard 2009; Elmacioglu et al. 2007b]. Performance of such techniques that
use features extracted directly from the Webpages (which we refer to as direct features)
is limited due to a variety of reasons as we discuss in Section 9. To overcome the lim-
itations, some approaches have considered using indirect features (also referred to as

1According to U.S. Census bureau about 100 million people have 90,000 names with an average of about
1000 people with one name. Therefore, the likelihood of multiple namesakes having Web presence is very
high.
2Frequently the problem does not disappear even if the context keywords are provided along with the person
name. For instance, the returned Webpages for the preceding query with the additional keyword “CMU”:
(a) will not include many of his Webpages that do not include keyword “CMU”, making the recall lower, and
(b) will actually still refer to more than one namesake, thus not leading to perfect precision either.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



Exploiting Web Querying for Web People Search 7:3

external features), which include publicly available knowledge-bases such as Wikipedia
[Han and Zhao 2009, 2010] and Web directories [Vu et al. 2008], the connectivity of
the Webpages [Bekkerman and McCallum 2005], and the Web search engine indexes
[Chen et al. 2009a; Rao et al. 2007].

One of the most powerful external knowledge bases for the Web people search is the
Web itself, as it contains a large body of information about people, the entities they are
related to, the topics they are mentioned in, etc. The key question in exploiting such
information for people search is how can an ER system systematically acquire and
exploit such external knowledge from the Web. The primary observation this article
is based on is that such information can be obtained from the Web search engines
by rightly formulated search engine queries that can help identify interrelationships
among entities mentioned on the Webpages returned as original results to the people
search query. We will refer to such entities as contextual entities. Developing a people
search mechanism that exploits interrelationships among the contextual entities for
disambiguation raises multiple questions.

—What types of queries should be submitted to the Web search engine to gather
information about interrelationships among the contextual entities returned as part
of the answer to the person search query?

—How can such (external) interrelationships information be combined with the other
(direct) features to get highly accurate clusters of search results?

—If a Webpage contains only limited amount of information about the person of inter-
est, can some method be devised to increase confidence of whether the page should
be in the result set by itself (i.e., a singleton cluster) or it should be merged with
another cluster?

—Querying Web search engines increases computation time. What techniques can be
devised to limit the number of queries issued to learn the interrelationships so that
the execution time can be constrained?

In this article, we address the questions identified before to develop a principled ap-
proach that uses Web search engine queries for Web people search. In the proposed
approach, interrelationships are defined in terms of the Web co-occurrence statistics
of the contextual entities extracted from the original set of results returned to the
people search query. To collect such information the proposed approach submits a set
of queries to the search engine, which measures the strength of the interrelatedness
of the contextual entities. Co-occurrence features are then combined using a special-
ized classifier based on skylines to derive the external feature-based similarities. The
classifier is specialized for the purpose of entity resolution by taking into account the
dominance that exists in co-occurrence data. Our experiments show that the skyline-
based classifier gets quality improvement over other classifiers such as decision tree
classifiers and support vector machines.

The output of the skyline-based classifier is aggregated with the direct feature simi-
larities to compute the overall similarity of Webpage pairs. The aggregation is achieved
using a simulated-annealing-based classification algorithm, which learns the impor-
tance of each feature for the overall similarity. Our experiments show that exploiting
more direct features increases the quality of the overall clustering.

If there are Webpages with limited information about the namesake they mention,
then the output of the clustering will contain singleton 1-page clusters even if this
Webpage should be a part of another cluster. To overcome such wrong singleton clusters,
the article develops a two-step clustering approach. In the first step direct and indirect
features are used to create initial clustering. The second phase of the algorithm tries
to utilize the limited information that exists in such a Webpage to decide whether

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



7:4 R. Nuray-Turan et al.

it should be merged with another cluster. The cluster refinement step improves the
clustering quality significantly, as will be shown in Section 8.

Finally, the article proposes an algorithm to make the information collection scalable,
by minimizing the number of queries submitted to the search engine. It can get the
same quality results as it could get if all of the queries were issued by submitting only
a fraction of the queries to the search engine.

The rest of this article is organized as follows. Section 2 provides an overview of the
proposed approach. Then Section 3 covers the steps of the Web querying part of the
approach in more detail. The efficiency optimization for the Web querying algorithm is
explained in Section 4. A learning algorithm for aggregating both direct and indirect
feature sets is described in Section 5. The cluster refinement step, an approach to deal
with singleton clusters, is explained in Section 6. Next, Section 7 compares different
possible architectures for implementing a WePS system. The overall approach is then
empirically evaluated in Section 8 and compared to state-of-the-art solutions. Section 9
summarizes the related work. Section 10 concludes the article by highlighting the
impact of the proposed solution. Finally, Appendix A.1 discusses the filters in Web
query selection and Appendix A.2 explains the selected direct feature set.

2. OVERVIEW OF THE APPROACH

The main task of a WePS system is to accurately cluster the Webpages in the result
set D to a person search query, such that each resulting cluster corresponds to a
namesake. The clustering problem can be represented graphically, where the set of
nodes V = {v1, v2, . . . , vk} of the graph G = (V, E) corresponds to the set of Webpages
to be clustered. In the simplest case, an edge is created per each distinct pair of nodes
eij = (vi, v j). The edges are labeled later on by the algorithm with various types of
similarities. The task of a clustering algorithm can be viewed as that of taking the
labeled graph G as input and partitioning it into clusters according to the labeling
of its edges, such that each cluster corresponds to a namesake. The WePS system we
propose performs the following processing steps.

(1) User input. User submits a query Q to the WePS system.
(2) Webpage retrieval. The WePS system then queries a search engine such as Google

with the query Q and retrieves top-K Webpages D = {d1, d2, . . . , dk}.
(3) Preprocessing. The Webpages in D are preprocessed.

—Feature Extraction. The preprocessing step first converts HTML files to plain text
by filtering out HTML tags. It then performs tokenization and extracts features
such as named entities, n-grams, hyperlinks, emails, etc., from the Webpage.
Stemming is performed on the n-grams and tokens. Stop-words, punctuation,
and popular Websites that are associated with the Webpage are removed.

—Indexing. TF.IDF factors for terms and named entities are computed and indexed.
Hyperlinks are normalized and stored, and n-gram counts are indexed as well.

(4) Similarity computation. As illustrated in Figure 1, this part computes various
similarities among the Webpages in D to label the edges in graph G. The similarity
can be in the form of direct similarity as well as dissimilarity, that is, the evidence
that two Webpages are not the same. For example, the fact that the middle names
of two names do not match can be converted into a measure of dissimilarity. The
overall similarity computation is done in three steps.
(a) Direct Similarity Computation. For each pair of Webpages di, dj , various simi-

larity metrics are computed using their extracted features. For instance, named-
entity-based cosine similarity of the Webpages is computed using TF.IDF fac-
tors. The complete list of the direct features and corresponding similarity func-
tions we use is explained in Appendix A.2.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



Exploiting Web Querying for Web People Search 7:5

Compute-Similarity(G,D)
1 G ← Update-Named-Entity-Sim(G,D)
2 G ← Update-N-Gram-Sim(G,D)
3 G ← Update-Hyperlink-Sim(G,D)
4 G ← Update-Email-Sim(G,D)
5 G ← Update-Middle-Initial-Dissim(G,D)
6 G ← Update-Social-Networking-Site-Dissim(G,D)
7 G ← Update-Web-Query-Based-Sim(G,D)
8 return G

Fig. 1. Computing similarities.

(b) Indirect Similarity Computation. Indirect similarity of Webpage pairs is com-
puted using Web co-occurrence statistics, which are collected using a set of
queries to a Web search engine such as Yahoo!. The collected statistics are
then converted into a similarity measure using a skyline-based classifier that
learns how to convert the indirect feature-based similarities to a “merge” or
“nonmerge” decision (Section 3).

(c) Combining Similarities. Direct and indirect similarities are then combined to
form overall similarity that is used to label the graph G. An adaptive approach
is used to combine the direct and indirect features to compute overall similarity
(Section 5).

(5) Clustering. This step clusters the Webpages based on the collected similarities.
Phase 1: Correlation Clustering. The labeled graph G is partitioned into its clusters

using the Correlation Clustering (CC) [Bansal et al. 2004]. The goal of CC
is to find the partition of the graph that agrees the most with the assigned
edge labels.

Phase 2: Cluster Refinement. After correlation clustering is applied, often the re-
sult consists of a few large clusters and several singleton 1-Webpage clus-
ters. Naturally, there can be true and false singleton clusters. The cluster
refinement step tries to resolve the issue of false singleton clusters (Sec-
tion 6). It first computes the similarities of these singleton 1-page clus-
ters to the remaining pages using a different strategy. The Webpages are
merged with another cluster if their similarity exceeds a certain thresh-
old. This threshold is estimated per queried name by exploiting the num-
ber of initial clusters.

(6) Postprocessing. Each resulting cluster is then further processed to generate cluster
sketches to summarize the content of each cluster, ranks the clusters to decide the
order in which they are presented to the user, and ranks Webpages inside each
cluster.

(7) Visualization of results. The results are presented to the user in the form of clusters
(and their sketches) corresponding to namesakes and that can be explored further.

We next explain the similarity computation steps.

3. WEB QUERY-BASED SIMILARITY COMPUTATIONS

Our goal in this section is to develop a mechanism that exploits Web search engine
statistics to provide additional evidence of whether two Webpages correspond to the
same namesake. Such additional evidence plays an important role in disambiguating
among the namesakes, especially in difficult cases such as when direct features ex-
tracted from the Webpages do not provide enough evidence to make an appropriate
decision.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



7:6 R. Nuray-Turan et al.

Consider, for instance, two pages of Tom Mitchell, the CMU professor. Let us assume
that the first page d1 is his DBLP page, which is a good source to identify the people he is
related to as well as his topic of interest, for example, “learning”, “Andrew McCallum”,
and “Sebastian Thrun”. The second page d2, on the other hand, is a talk announcement
from USC, which has very brief information about him. The second page contains
information only about the organizations he is related to, for example, “Carnegie Mellon
University” and “Center for Automated Learning and Discovery,” which are not listed
on his DBLP page. The content of these Webpages may not directly provide evidence to
declare them as coreferring, so using direct features only might not group these pages
correctly. However, if we look at the contextual entities (i.e.,“Andrew McCallum” and
“Sebastian Thrun” for d1, and “Carnegie Mellon University” and “Center for Automated
Learning and Discovery” for d2) and exploit their relationship by submitting queries to
the search engine such as:

Q: “Tom Mitchell” AND (“Sebastian Thrun” OR “Andrew McCallum”) AND
(“Carnegie Mellon University” OR “Center for Automated Learning and Dis-
covery”),

we may find enough evidence that these contextual entities are interrelated.3 Let us
contrast the preceding with a situation where Webpages of two different Tom Mitchell
namesakes (and their corresponding contextual entities) are not expected to correlate
as much as the Webpages of the same namesake. For instance, let us assume that we
want to gather additional evidence through Web querying for the talk announcement
page from USC and for the Rabbi Tom Mitchell’s homepage, which contains “Yahshua
Messiah” and “JoAnne Elisabeth Kulow” as the contextual entities related to him.
When we query the search engine about the interrelationships of these entities, we
observe that there is no co-occurrence among them.4

In this section, we first explain the set of queries that can be executed on the search
engine to learn such interrelationships and then we develop a skyline-based classifier
to convert the collected co-occurrence statistics into a similarity score.

3.1. Co-Occurrence Queries and Features

Let di and dj be the Webpages under consideration and Ci and C j be the associated
contextual entities of these Webpages, respectively. To learn the interrelationship of
these entities, we use two different types of queries.

(1) N AND Ci AND C j , which estimates the degree of overlap of two contexts Ci and C j
for Webpages di and dj for the queried name N.

(2) Ci AND C j , which on the other hand estimate the degree of overlap of two contexts
Ci and C j for Webpages di and dj in general.

Here, Ci can be either the set of people NEs Pi or organization NEs Oi. Context C j is
defined similarly for Webpage dj . That is, each context Ci has two possible assignments,
which lead to 4 context combinations for the Ci and C j pair. For each context combination
we create two types of queries, one with the queried person name and one without it.
That is, we create 8 queries per Webpage pair di, dj in total. The pseudocode in Figure 2
illustrates the procedure for formulating the queries.

For instance, for the “Tom Mitchell” example given in the Introduction, suppose that
the algorithm extracts 2 named entities of each type per Webpage, that is, m = 2. Then
assume that the person NEs extracted from di are “Sebastian Thrun” and “Andrew

3For instance, query Q currently returns 7,790 results when issued to the Google search engine, which might
be enough evidence to declare them as coreferring.
4Web query for two webpages of Tom Mitchell who are not the same returns 0 answers.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



Exploiting Web Querying for Web People Search 7:7

Get-Web-Counts(di, dj)
Let:
N be the queried name
Pi1,Pi2,. . . ,Pim be the people NEs extracted from di
Pj1,Pj2,. . . , Pjm be the people NEs extracted from dj
Oi1,Oi2,. . . ,Oim be the org. NEs extracted from di
Oj1,Oj2,. . . ,Ojm be the org. NEs extracted from dj

1 Pi ← (Pi1 OR Pi2 OR · · · OR Pim)
2 Pj ← (Pj1 OR Pj2 OR · · · OR Pjm)
3 Oi ← (Oi1 OR Oi2 OR · · · OR Oim)
4 Oj ← (Oj1 OR Oj2 OR · · · OR Ojm)

5 cij1 ← GetWebCount(N AND Pi AND Pj)
6 cij2 ← GetWebCount(Pi AND Pj)
7 cij3 ← GetWebCount(N AND Pi AND Oj)
8 cij4 ← GetWebCount(Pi AND Oj)
9 cij5 ← GetWebCount(N AND Oi AND Pj)

10 cij6 ← GetWebCount(Oi AND Pj)
11 cij7 ← GetWebCount(N AND Oi AND Oj)
12 cij8 ← GetWebCount(Oi AND Oj)

Fig. 2. Algorithm for querying the Web.

McCallum”, and the person NEs extracted from Webpage dj are “William Cohen” and
“Andrew Ng”. Then the person NE queries will be as follows.

Q1: “Tom Mitchell” AND (“Sebastian Thrun” OR “Andrew McCallum”) AND
(“William Cohen” OR “Andrew Ng”) .
Q2: (“Sebastian Thrun” OR “Andrew McCallum”) AND (“William Cohen” OR
“Andrew Ng”)

We can utilize the Web search engine APIs that return the estimated number of
results for queries, without retrieving the results themselves. Once the queries are
created and executed on the search engine, we need to convert the collected Web co-
occurrence statistics, for example, |N · Ci · C j | which refers to the number of results
for the N AND Ci AND C j query, into the corresponding co-occurrence features that can
be used by the algorithm. It might be difficult to interpret the absolute co-occurrence
value without comparing it to certain other values. For instance, if this count value
is high, does it mean the contexts overlap significantly and thus di and dj should be
merged? Or, is it simply because N is a common name and thus there are lots of
Webpages that contain it under many contexts? Or, is it because contexts Ci and C j
are too unspecific, and thus too many Webpages contain them? To address these is-
sues, we normalize co-occurrence counts using a set-based similarity measure such as
Jaccard or Dice similarities. There have been studies showing that the differences in
retrieval quality, when using different set-based measures, is insignificant and further-
more these measures are monotone with respect to each other [Lerman 1970]. Accord-
ingly, the proposed algorithm uses the Dice similarity to get the normalized version of
|N · Ci · C j |.

The Dice similarity between two sets A and B computes the fraction of common
elements in A and B among all the elements (including nondistinct) in A and B, and

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



7:8 R. Nuray-Turan et al.

normalizes it to the [0, 1] interval.

Dice(A, B) = 2|A∩ B|
|A| + |B| (1)

Observe that there are two different ways to normalize the co-occurrence count using
Dice similarity. We can view the N · Ci · C j set: (1) as the intersection of the sets N · Ci
and N · C j or (2) as the intersection of the sets N and Ci · C j . We have

Dice1(N · Ci, N · C j) = 2|N · Ci · C j |
|N · Ci| + |N · C j | ,

and

Dice2(N, Ci · C j) = 2|N · Ci · C j |
|N| + |Ci · C j | .

The algorithm employs the second formula, as it has proven to capture the ambiguity
of context better. The following example provides just one type of scenario to illustrate
the choice of the formula. Assume that the namesakes mentioned in two Webpages di
and dj are different. Suppose that the extractor makes a mistake and extracts “This” as
the only person NE from di, and “That” as the only person NE from dj . Assume that all
(or, most of) the Webpages of the two namesakes contain both “this” and “that”. Then,
Dice1 similarity will be 1 (or, very high), causing the wrong merge of the Webpages.
However, the Dice2 similarity will be low, since |Ci · C j | will be large. That is, Dice2
will automatically capture that “this” and “that” is not a good choice to be used as the
contexts.

We note that we need to filter out certain types of NEs that are too ambiguous to
be used in Web querying in order to make queries more effective in collecting merge
evidence. For instance, the approach filters out an NE if it is also a common English
word. Filters play an important role in the Web query generation, since without them
the proposed technique might cause the algorithm to collect wrong evidence. This
wrong evidence will lead to wrong merge decisions so that the cluster will not be pure.
Interested readers can find the detailed explanation of filters we used in Appendix A.1.

At first glance it might seem the algorithm employs two different strategies to
achieve the same goal. That is, it detects ambiguous context by using the filtering
strategy. But, frequently the same can be achieved by simply using the |Ci · C j | part
of the Dice similarity. Notice, however, the Dice similarity can be low, for instance,
because there is no evidence on the Web of the context co-occurrence. But it also can be
low because some of the context terms were too ambiguous. In the latter case, perhaps
if some of the ambiguous terms are filtered out, there actually will be sufficient
evidence to merge di and dj . This is what precisely the filtering strategy attempts to
do, by filtering out potentially ambiguous context terms upfront.

For each of the 4 possible N · Ci · C j combinations (i.e., P-P, P-O, O-P, O-O), the
algorithm generates two features. The first one is the raw |N ·Ci ·C j | count. The second is
its normalized version computed using the Dice2 formula. Therefore, the co-occurrence
feature vector will contain 8 features in total.

3.2. Skyline-Based Classification

Now that we created the co-occurrence features, the next question is how to combine
these features to compute the overall external similarity of the Webpage pairs. We use
these features in a classifier to decide whether they correspond to a merge or do-not-
merge decision. Observe that the feature vector is composed of co-occurrence features
that satisfy the dominance property. That is when a point (i.e., the feature vector)

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



Exploiting Web Querying for Web People Search 7:9

a

b

c

d

e

f

g

h

i j
l

m

p

k

o

q

r

a

c

d

e

f

g

h

i j
l

m

p

k

o

q

r

(a) skyline of the feature space (b) classification skyline dividing the feature space

Misclassification. Documents 
will be  grouped wrongly.

b

f1
f1

f2 f2

Fig. 3. Example of a skyline.

in the feature space is declared as merge decision, then any Webpage pair whose co-
occurrence feature vector is dominated by this point should also be merged. Therefore
we propose a new specialized classifier that uses the dominance property explicitly.

Let us first make a few auxiliary definitions. We will say that point f = ( f1, f2, . . . , f8)
up-dominates point g = (g1, g2, . . . , g8), if f1 ≤ g1, f2 ≤ g2, . . . , f8 ≤ g8, and will denote
it as f ≤ g. Similarly, we will say f down-dominates g, if f1 ≥ g1, f2 ≥ g2, . . . , f8 ≥ g8,
and will denote it as f ≥ g. Similarly, there is a notion of strict dominance where “≤”
and “≥” are substituted with “<” and “>”. For instance, for 2-dimensional case, point
(2, 3) up-dominates point (2, 4) since 2 ≤ 2 and 3 ≤ 4, but does not up-dominate (1, 4)
since 2 �≤ 1. Similarly, point (2, 3) down-dominates (2, 2) since 2 ≥ 2 and 3 ≥ 2, but
does not down-dominate (1, 4) since 3 �≥ 4.

Assume that di, dj pair is characterized by the feature vector f = ( f1, f2, . . . , f8).
Suppose that based on f the algorithm decides that di and dj should be merged. Assume
that there is another pair of Webpages dk and d�, which is characterized by vector
g = (g1, g2, . . . , g8). Then, if f ≤ g, then dk and d� should also be merged, since their
contextual entities contain even more evidence that the two namesakes are the same
person. Thus, there is dominance in feature data in terms of merge decisions.

The proposed approach uses a well-studied notion of Skyline [Borzsonyi et al. 2001;
Kossmann et al. 2002] for classifying points as “merge” or “do not merge”. A skyline of
a set of points, P, is the subset, S, of all points from P such that each point p ∈ S is
not strictly dominated by any other point from P. Skylines are originally proposed to
filter out the interesting points from a potentially very large set of points in databases.
Figure 3(a) illustrates an example of a down-dominating skyline consisting of points
{a, b, g, j}.

Figure 3(b) plots the up-dominating skyline for all the merge (“+”) points, plotted as
filled circles. The do-not-merge (“−”) points are plotted as empty circles in that figure.
A classification skyline is an up-dominating skyline on all the points the classifier
declares to be “merge” points. Given a classification skyline, the classifier will classify
any point this skyline up-dominates (i.e., any point that is “on” or “above” the skyline) as
a “merge” point, and any other point “–” as a do-not-merge point. Figure 3(b) illustrates
one possible classification skyline for the plotted dataset. As any classifier, a skyline-
based classifier can make mistakes. The figure shows that this choice of skyline will
cause a do-not-merge point k to be wrongly classified as a merge point.

3.3. Training Classification Skyline

The clustering algorithm works by merging pairs of Webpages whose co-occurrence
feature vectors are above the classification skyline. This section covers a greedy

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



7:10 R. Nuray-Turan et al.

h

a

c

d

f

g

i j
l

m

p

k

o

q

r

b

s

t

(a)

a

c

d

e

f

g

h

i j
l

m

p

k

o

q

r

b

s

t

(b)

u u

v
v

e

w w

f1 f1

f2 f2

Fig. 4. Skyline learning steps.

Train-Classification-Skyline(D)
Spool // Skyline 1: a pool of points to choose from
Sclas // Skyline 2: current classification skyline
Sbest // Skyline 3: best classification skyline observed
1 Sclas ← {(∞,∞,∞,∞,∞,∞,∞,∞)}
2 Sbest ← Sclas

3 Spool ← Compute-Skyline(P+
actv)

4 while Spool �= ∅ do
5 Plsterr ← Get-BestNegQual-PointSet(Spool, Sclas, Pactv)
6 pbest ← Get-BestQual-Point(Plsterr, Sclas, Pactv)
7 Sclas ← Update-Skyline(Sclas,pbest)
8 if Qual(Sclass) > Qual(Sbest) then
9 Sbest ← Sclass

10 Pactv ← Update-Active-PointSet(Pactv,pbest)
11 Spool ← Update-Pool-PointSet(Spool, pbest)
12 return Sbest

Fig. 5. Algorithm for training.

algorithm for learning such a skyline. The example in Figure 4 illustrates one iter-
ation of the algorithm.

The training algorithm is given a training dataset wherein each point that should
be merged is labeled with “+”, and each point that should not is labeled with “−”. In
Figure 5, the filled circles are the “+” points, and the empty circles are the “−” points.
The algorithm is also given some quality metric, such as the pairwise F measure or
B-cubed [Bagga and Baldwin 1998], so that at any point in time it can measure which
quality it can get by making certain types of decisions.

The current classification skyline Sclas initially consists of one point (∞,∞, . . . ,∞),
which causes no points to be classified as “+”. At each iteration, the algorithm tries
to greedily locate the best point to add to Sclas, to make it better. For that it examines
all the points from a certain pool of “+” points Spool, whose construction will be ex-
plained shortly . In Figure 4(a), the current classification skyline is Sclas = {q, d, c} and
Spool = { f, e, u, h}.

Among points in Spool, the algorithm first selects the subset of points Plsterr ⊆ Spool
such that adding a point p ∈ Plsterr to Sclas would cause the least error; see Figure 6. It
does so by examining the quality of the clustering when using Sclas and using p ∈ Spool
to classify only the “−” points. For the example in Figure 4(a), notice that among yet-
unclassified “−” points (the ones below the classification skyline) f dominates 1 point:
{k}, e dominates 2 points: {k, v}, u dominates 1 point: {i}, and h dominates 2 points: {i, t}.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



Exploiting Web Querying for Web People Search 7:11

Get-BestNegQual-PointSet(Spool, Sclas, Pactv)
1 Qbest ← 0 // best quality observed
2 Pbest ← ∅ // set of best points
3 for each p ∈ Spool do
4 S ← Update-Skyline(Sclas, p)
5 Q ← Qual(S, P−

actv)
6 if Q > Qbest then
7 Pbest ← {p}
8 Qbest ← Q
9 else if Q = Qbest then

10 Pbest ← Pbest ∪ {p}
11 return Pbest

Fig. 6. GET-BESTNEGQUAL-POINTSET.

Get-BestQual-Point(Plsterr, Sclas, Pactv)
1 Qbest ← 0 // best quality observed
2 pbest // best point observed
3 for each p ∈ Plsterr do
4 S ← Update-Skyline(Sclas, p)
5 Q ← Qual(S, Pactv)
6 if Q > Qbest then
7 pbest ← p
8 Qbest ← Q
9 return pbest

Fig. 7. GET-BESTQUAL-POINT.

If the goal of our quality measure is to minimize the number of false positives, then
Plsterr will be chosen as Plsterr = { f, u} since they introduce only 1 new error each.

Then, among the points in Plsterr the algorithm selects a point pbest adding which to
Sclas would lead to the best overall quality; see Figure 7. Point pbest is then added to
the classification skyline Sclas. The algorithm keeps track of the best skyline observed
so far by storing and updating it in Sbest. For our running example in Figure 4(a),
given a choice of adding f or u to the skyline Sclas, assume that adding f would lead
to the best classification quality. Then the algorithm will choose pbest = f . Figure 4(b)
demonstrates what happens after adding f to the skyline.

Adding point pbest to the classification skyline Sclas can make several (at least one)
yet-unclassified points to be classified as “+” by the algorithm, where for the running
example that was point pbest = f itself. In general, this can happen for two reasons.

—Direct Merges. The points dominated by pbest will be classified as “+”.
—Transitive Merges. Classifying pbest as “merge” can cause multiple clusters to merge,

triggering the merges of the elements of those clusters due to the transitivity. This
corresponds to classifying the corresponding points as “+”.

The algorithm maintains in Pactv the set of yet-unclassified points. We will use notation
P+

actv and P−
actv to denote the “+” and “−” points in this set. For instance, in Figure 4(a),

Pactv = { f, k, v, e, l, u, i, h, t, w, m, o, p} are all the points below the current classification
skyline, P+

actv = { f, e, u, h, w}, and P−
actv = {k, v, i, t, l, m, o, p}.

The pool of points Spool from which Plsterr is constructed is the down-dominating
skyline on P+

actv, for example, in our example Spool = { f, e, u, h}. The choice of Spool is
motivated by several factors. First, for efficiency reasons we want to avoid using large

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



7:12 R. Nuray-Turan et al.

Update-Skyline(Sclas, p)
1 S ← Sclas

2 remove from S all points dominated by p // use indexing
3 S ← S ∪ {p}
4 return S

Fig. 8. UPDATE-SKYLINE.

Update-Active-PointSet(Pactv, p)
1 Use indexing to remove all points in Pactv dominated by p.

//Remove points in the region with diagonal p− (1, 1, . . . , 1).
2 return Pactv

Fig. 9. UPDATE-ACTIVE-POINTSET.

Update-Pool-PointSet(Spool, p)
1 Spool ← Spool { p}
2 Use indexing to find points P from P+

act (if any) that now
should be in Spool due to removal of p. This procedure
incrementally maintains the skyline of P+

act in Spool.
3 Spool ← Spool ∪ P
4 return Spool

/

Fig. 10. UPDATE-POOL-POINTSET .

sets, like for instance Pactv, and the chosen skyline tends to be much smaller than Pactv.
For instance, in our example, the size of Pactv is 13 whereas the size of that skyline is
4. Second, since it is a set of +’s, this guarantees making at least one correct merge
decision. Third, if we look to add a “+” point to Sclas that would minimize the number of
misclassifications of −’s (false positives), then that skyline will contain all such points.
Figures 6, 7, 8, 9, and 10 demonstrate the steps of the learning algorithm in more
detail. The feature space is indexed for efficient processing and the skyline of P+

actv is
updated incrementally as the points are removed from it instead of being rebuilt from
scratch.

Discussion. Observe that one of the solutions would be just to use any classifier, such
as SVM, to classify the points as +’s and −’s. Unlike that solution, the skyline-based
classier utilizes several additional factors to its advantage. First, it explicitly takes
into account the dominance that exists in data. Second, it is aware that there is a
clustering underneath the +’s and −’s and that classifying a point as a + can cause
several other points be classified as + due to transitivity. Third, it greedily fine-tunes
itself to a given quality metric; whereas the first approach is more geared toward
specifically pairwise F-measure. As we shall see in the experimental section, these
qualities allow the skyline-based solution to outperform SVM/DTC-based classifiers.
We will now discuss how to make Web statistics collection step scalable.

4. EFFICIENCY OPTIMIZATIONS FOR WEB QUERYING

As discussed in Section 3, if implemented naively the Web-querying approach requires
for each pair of Webpages in D to make 8 additional Web queries to collect Web co-
occurrence information among contextual entities, resulting in a large number of Web
queries which can affect the response time of the WePS system.

In this section we study a new method that considers the time and network limita-
tions in choosing which queries to submit to the search engine. The proposed method
aims to optimize the clustering quality by submitting smaller number of queries within

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



Exploiting Web Querying for Web People Search 7:13

Disambiguate-With-Selective-Querying(G,D, T ,B)
1 Tstart ← Tcurrent

2 Epromise ← ∅
3 Eprocessed ← ∅
4 C ← Cluster(G) //G is labeled with the direct features
5 repeat
6 if C changed and Epromise = ∅ then
7 Epromise ← Find-Promising-Edges(C,G,Eprocessed)
8 if Epromise = ∅ then
9 break

10 if C changed then
11 Eqry ← Select-Edges-To-Query(G,Epromise)
12 Eselect ← Top-B-Edges(Eqry)
13 G ← Web-Query(Eselect, G)//updates the graph using web evidence
14 Eprocessed ← Eprocessed ∪ Eselect

15 C ← Cluster(G)
16 until (Tcurrent − Tstart) ≤ T
17 return C

Fig. 11. Algorithm for efficient web statistics collection.

the given time budget. In addition, it utilizes the option of batch querying, using ei-
ther multithreading or Yahoo! Query Language (YQL)-like Web search engine query
languages.

Formally, let us assume that the algorithm is given a time budget T , a batch size
B, and an initial clustering C for graph G = (V, E) where the nodes correspond to
the Webpages and the edges to the similarities between these pages. Initially, these
similarities are computed by using the direct features only. Let Q = {q1, q2, . . . , q|E0|}
be the complete set of queries that will be submitted to the search engine by the
default Web querying approach. The objective of the proposed approach is to select
n different batches (subsets) from Q (i.e., total of nB queries) so that the collected
Web co-occurrence-based (external) similarity esim feature maximizes the expected
quality within the given time budget T . Here n is essentially the number of iterations
of the algorithm which depends on the search engine’s response time and traffic on
the network. The problem of finding an optimal set of queries to put in nB batches is
NP-hard; please refer to Appendix A.3 for the proof. Hence in this section we explore
an efficient approximate solution to this problem. In the following subsections we
first explain a high-level algorithm which iteratively queries the Web in a given time
budget in Section 4.1. After that in Section 4.2 we discuss strategies to select the most
promising queries to put in the next batch.

4.1. Disambiguation with Selective Querying

Figure 11 highlights the steps of the proposed clustering algorithm. Its inputs are graph
G, dataset D, time budget T , and batch size B. The algorithm starts by clustering the
Webpages using their direct feature similarities dsim. These initial clusters are then
exploited in deciding which edges are more important for querying. After that, the
algorithm iteratively identifies the set of promising edges Epromise that can potentially
affect the clustering. At each iteration a subset Eselect of Epromise edges is selected and
queried. The query results are then used to update the similarities on G and the
resulting clusters.

The algorithm for identifying the Epromise set is illustrated in Figure 12. Initially all
the edges in the graph are unprocessed. An unprocessed edge is an edge that has not

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



7:14 R. Nuray-Turan et al.

Find-Promising-Edges(C,G,Eprocessed)
1 Eyes ← Find-Intra-CL-Edges(C)
2 Gtemp ← Create-Temp-Copy(G)
3 Gtemp ← Update-All-Unprocessed-Edges(Gtemp,αweb, Eprocessed)

// the similarity of the edges in (E Eprocessed) is updated with the weight of
// the web querying feature αweb which is learned from the past data as will be explained in
// Section 5.

4 Ctemp ← Cluster(Gtemp)
5 Eno ← Find-Inter-CL-Edges(Ctemp)
6 Emaybe ← (E Eprocessed) (Eyes ∪ Eno)
7 if Emaybe �= ∅ then
8 return Emaybe

9 else if Eno �= ∅ then
10 return Eno

11 else
12 return Eyes

/

/ /

Fig. 12. Algorithm for finding the edges that can change the clustering.

(a) “yes” edges. initial clusters.

C1 C2 C3

a

b

c

d

e

f

(b) “yes” (solid), “maybe” (broken), “no” (absent).

C1 C2 C3

a

b

c

d

e

f

Fig. 13. Example graph to explain the concepts which are used in the efficiency section. (a) The initial
clusters and Eyes edge set is shown. (b) The pessimistic clusters under the assumption that all queries
returned a merge decision. All possible edges that can be in the final clusters are shown.

been queried yet. The algorithm classifies the unprocessed edges into three distinct
categories.

(1) “Yes” edges Eyes. The inter-cluster edges of initial clusters are called yes-edges.
Recall that initial clusters are created using direct features only, so these are the
edges which are already identified as the “merge” edges by using only direct sim-
ilarities. The Web evidence gathered by collecting co-occurrence statistics mostly
contributes more evidence in favor of the “merge” decision. Thus, such edges are
likely to still remain “merge” edges even after co-occurrence queries are issued.5
Acquiring more evidence for such queries might not be beneficial for the clustering.
Figure 13(a) shows an example of three clusters C1 = {a, b, c}, C2 = {d}, C3 = {e, f }
as the output of the initial clustering step and the corresponding yes-edges.

(2) “No” edges Eno. These are the edges which are likely to remain “nonmerge” decisions
despite the Web querying. To identify the “no” edges, the approach assumes that
Web querying is done and all of the issued Web queries return “merge” decision.
After applying clustering on both the direct features and these decisions, some
of the edges will be classified as “merge” edges, and some as “nonmerge” edges.

5They might change into “nonmerge” edges due to using correlation clustering, but this is rare.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



Exploiting Web Querying for Web People Search 7:15

The nonmerge edges are called no-edges to reflect the fact that even if all the
Web evidence is positive, these edges still remain nonmerge edges.6 Lines 2–5 in
Figure 12 illustrate the procedure of finding Eno edges. Figure 13(b) illustrates
an example where the assumptions that all Web queries return “merge” decisions
leads to merging of initial clusters C1 and C2, whereas C3 still remains a separate
cluster. Similar to the Eyes edges, the queries corresponding to the edges in Eno are
also not expected to change clustering significantly. The edges (not shown) among
the elements of the resulting clusters {a, b, c, d} and {e, f } are the no-edges.

(3) “Maybe” edges Emaybe. Note that the merge decisions for edges in Eyes and Eno are
unlikely to change after Web querying. The most beneficial Web queries to issue
are for those unprocessed edges that do not belong to Eyes and Eno sets. These
edges are called maybe-edges Emaybe: they are the “nonmerge” edges in the initial
clustering that can become merge edges through Web querying. In Figure 13(b),
edges (d, a), (d, b), and (d, c) are maybe-edges.

Now that the edges are classified into three different categories, the next step is to
identify the Epromise set. Since the edges in the Emaybe set are expected to be the most
beneficial they are first inserted into the Epromise set. The approach processes all such
queries and if time budget permits, edges in the other sets Eno and Eyes may also be
queried. In the next section, we discuss multiple strategies for choosing the best edges
from Epromise to put in the next batch, such that the clustering quality is optimized
under the time constraint.

4.2. Selecting Edges to Query

Given a set of promising edges Epromise, our next task is to select from it B queries
to submit to the Web search engine. Our goal is to identify edges that will maximize
the quality of the clustering with minimum number of queries under the time and
network limitations. To do that, the approach needs to select the queries that are more
beneficial for the clustering quality. The benefit of Web querying for an edge depends on
the benefit of Web querying for the cluster pair that this edge belongs to. The proposed
solution computes the expected benefit of each query and submits more useful ones
to the Web search engine. We will refer to this solution as ERWeb-QB. The expected
benefit of each query is calculated in three main steps. It first estimates the expected
quality improvement �Qij if the cluster pair Ci, Cj is merged. After that it calculates
the number of queries required to merge the cluster pair Ci, Cj . Finally, the benefit
of each query is computed using these values. Now, we discuss each of these steps in
detail. For each cluster pair Ci, C j , the proposed solution follows these steps.

(1) Measuring the expected quality improvement. Since the ground-truth clustering is
unknown to the approach, it computes the expected quality improvement �Qij as
follows. It assumes that the ground truth CG is equal to the current clustering C
except Ci and Cj which are merged in CG. �Qij is measured as the error from the
expected true clustering

�Qij = 1 − Qij(C, CG), (2)

where Q(C, CG) is the quality of the current clustering C for the expected true
clustering CG. Any quality metric such as FB and pairwise FP can be used to
compute the quality Q(C, CG). In our experiments we utilize FB.

(2) Estimating the number of queries. The number of queries mij to merge the cluster
pair Ci, C j depends on the number of merge decisions Nij required to merge these

6Due to the use of correlation clustering, these edges could become “merge” edges, but it is rare.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



7:16 R. Nuray-Turan et al.

Select-Edges-To-Query(G,C,Epromise)
1 for each cluster pair Ci and Cj do
2 ΔQij ← Expected-Quality-Improvement(G,Ci, Cj)
3 Nij ← Required-Number-Of-Merge-Decisions(G,Ci, Cj)
4 mij ← Required-Number-Of-Queries(G,Ci, Cj , Nij)

5 sfactor ← min( Σ
mij
k

pk
Nij

, 1)

// pk is the probability of the k-th unprocessed edge between Ci and Cj

6 ΔQij ← ΔQij · min(1, sfactor)
7 bij ← ΔQij

mij
//benefit for edges between Ci and Cj.

8 Eqry ← sort edges in Epromise on bij
9 return Eqry

Fig. 14. Algorithm for selecting edges to query.

two clusters and the probability of the queries to return “merge decisions”. There-
fore the approach needs to find out how many “merge decisions” Nij are needed to
group Ci, C j together. It should also be able to estimate the probabilities for each
query to return “merge decisions”. After identifying the number “merge decisions”
and the probabilities, the proposed solution can estimate the number of queries mij
to send using both Nij and the probabilities. Next we explain how these values are
computed.
—Estimating the number of “merge decisions”. The proposed solution uses a binary

search algorithm to find the minimum number of “merge decisions” Nij between
Ci and Cj that will cause the current clustering to change, for example, to merge
Ci and C j . It utilizes the intuition that the edges that are more similar based on
their direct feature similarity are more likely to return a “merge decision” through
Web querying. First, the unprocessed intercluster edges of Ci, C j pair that are
in Epromise are sorted using their direct feature similarity. On each iteration, the
approach creates new clusters assuming that top N of these intercluster edges
(or queries) return “merge decisions”. Since the clustering is time consuming,
to speed up the computations, the approach works on a subgraph of G which
contains only the Webpages in Ci and Cj and their corresponding edges. Then
the output of the clustering step is compared to the input clustering. If these
two clusterings are found to be different, top N of these edges are identified as
beneficial for the Ci and Cj pair. The proposed solution utilizes binary search
on N to find Nij that will change the input clustering. The pseudocode for this
algorithm is illustrated in Figure 15.

—Estimating probabilities. Probability of a query to return a merge decision is
estimated using a logistic regression classifier that is trained on the past data.
The input to the classifier is the direct similarity of the corresponding edge
and the output of the classifier is the probability of that edge returning “merge
decision.”

—Estimating the number of queries. The number of “merge decisions” Nij that is
needed to change the current clustering is a lower bound on the actual number of
queries that the approach must submit to the Web search engine to determine if
two clusters merge, since some of the queries might return “no-merge” decisions.
Further, the approach needs to submit queries for the most probable edges first.
Thus to estimate the required number of queries mij , the approach sorts the
queries using their probabilities to return a “merge decision”. Then starting from
the largest probability, the approach calculates mij by adding up the probabilities
∑mij

k=1 pk < Nij of the queries in this sorted list until
∑mij

k=1 pk < Nij is greater than

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



Exploiting Web Querying for Web People Search 7:17

Number-Of-Queries-For-Merge(G,Ci, Cj)
1 N ← |Ci|· | Cj |, min ← 1, max ← N
2 do
3 med ← ⎣ min+max

2 ⎣
4 G′ ← Update-Top-N-Unprocessed-Edges(G,med)
5 C ← Cluster(G′)
6 if Ci and Cj grouped together in C then
7 max ← med
8 else
9 if min = med then

10 return max
11 min ← med
12 while min ≤ max
13 return max

Fig. 15. Algorithm for finding the minimum number of “merge decisions” to group clusters Ci and C j
together.

C1 C2 C3

a

b

c

d

e

f

C4

g

h

0.7

0.8

0.9 0.5

0.2

0.3

0.8

Fig. 16. Example of maybe-edges with associated probabilities.

or equal to Nij . The value of mij represents the expected number of edges that if
probed would result in merging Ci, C j , since Nij out of mij queries are expected
to return “merge decision.”

Example. Let us assume that the approach identifies N12 = 1 and N34 = 2 for the
cluster pairs C1, C2 and C3, C4 shown in Figure 16. Suppose that the probability
for each edge is as it is shown in the figure. Then the approach computes m12 = 2,
since the sum of the probabilities of the edges (a, d) and (b, d) is greater than 1.
Similarly for the C3, C4 pair, the approach calculates m34 = 4.

(3) Calculating the expected edge benefit. Finally the expected edge benefit of the cluster
pair Ci, C j is computed by dividing the expected quality �Qij by the required
number of queries mij . When

∑mij

k=1 pk < Nij , the cluster pair Ci, C j is more likely
to stay split despite the Web querying. Therefore, the expected benefit of Ci, C j
is scaled when the total probabilities of the edges to be submitted is less than the
number of required “merge decisions”. Accordingly, we propose to scale the expected
benefit of the cluster pair by multiplying it with the ratio of the sum of the total
probabilities of the to-be-submitted edges to Nij .

Let us consider the cluster pairs C1, C2 and C3, C4 illustrated in Figure 17. Sup-
pose that for both cluster pairs the required number of “merge decisions” is 1, that
is, N12 = 1 and N34 = 1. The approach then computes the number of queries to
submit for both cluster pairs as m12 = 2 and m34 = 2. Further, the expected quality
improvement of both cluster pairs is the same, since for the sake of simplicity we
select the cluster pairs to be identical except the probabilities on the edges. Let
us assume that it is �Q. Then the expected benefit of both cluster pairs is equal,

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



7:18 R. Nuray-Turan et al.

C2C1

c

a

b

C4C3

d

e

f

0.5

0.3

0.3

0.2

Fig. 17. Motivation figure for scaling.

that is, �Q
2 . However, when we look at the probabilities of the edges we observe that

C1, C2 pair is more likely to return “merge decision” than the C3, C4 pair. There-
fore, we will scale the expected benefit of the cluster pairs. As a result, the expected
benefit of C1, C2 cluster pair is no longer �Q, but �Q

2 (0.5 + 0.3) = 0.4�Q. Similarly,
the expected benefit of C3, C4 is �Q

2 (0.3 + 0.2) = 0.25�Q. The approach therefore
submits queries for C1, C2 before C3, C4. Note that if

∑mij
k pk > Nij , then the scaling

factor is 1; see Figure 14 step 4.

Finally, the cluster pairs are ranked according to their benefits. Starting from the
most beneficial cluster pair the approach submits B queries to the search engine, which
includes mij queries for the cluster pair Ci, C j .

Next, we discuss how the direct features-based similarities are combined with the
Web-based merge decisions.

5. LEARNING TO COMBINE DIRECT AND INDIRECT FEATURES

Intuitively, the more information we have about the people mentioned in the Webpage,
the more likely it is that we will be able to correctly distinguish among them. Hence,
in addition to using Web features, we explore a rich and diverse set of direct features
as well. The specific direct feature similarities that we use include: named entity simi-
larity, word N-gram similarity, URL and email similarities, middle-name dissimilarity,
social networking sites dissimilarity. A detailed explanation of these features is pro-
vided in Appendix A.2. In this section we discuss how to combine such features for the
purpose of clustering.

A simple and intuitive way to combine these features in order to compute the overall
similarity s(du, dv) between Webpages du and dv is to use the weighted sum of these
features

s(du, dv) = ∑
fi∈F wi fi(du, dv), (3)

where F is the feature set and wi ∈ [0, 1]. The intuition behind the selection of the
weighted sum approach is that each feature fi has some influence on the similarity
computations and this influence can be captured by associating the weight wi with the
feature value fi.

Now, let us discuss an algorithm that learns the weights −→w = (w1, w2, . . . , w|F|) of
the features in the feature set that maximize the clustering quality. The problem can
be viewed as a multidimensional search problem. Such problems have been studied
extensively in the past, including hill climbing, tabu search, gradient descent, and
simulated annealing algorithms. We use a modification of the Simulated Annealing
(SA) algorithm, since it can find a good approximation to the global optima and is
capable of escaping local optima.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



Exploiting Web Querying for Web People Search 7:19

Fig. 18. Simulated annealing-based training to learn feature importance.

We adapt the original SA as a supervised learning algorithm by replacing the cost
function with the quality function as illustrated in Figure 18. The goal of the SA-based
training algorithm is to find a combination of weights −→w best = (w1, w2, . . . , w|F|) which
maximizes the average clustering quality on the training data. The quality of a weight
vector −→w is computed as alpha-beta sum of FB (the harmonic mean of B-cubed precision
and recall) and the absolute difference of precision (Pr) and recall (R)

Q(−→w ) = αFB(−→w ) + β|Pr(−→w ) − R(−→w )|, (4)

where we set α = 1 and β = −0.5. Formally, the goal of the SA-based training is to find
the weight vector −→w best which maximizes the value of Eq. (4).

Different weight vectors −→w with different relative values of precision and recall could
lead to same optimal or near-optimal FB. Therefore, SA with the quality function in
Eq. (4) will find a good weight vector on the training data, which maximizes the FB value
while minimizing the difference between the precision and recall. For instance, the
algorithm might consider FB = 0.89 for both Pr = R = 0.89 and Pr = 0.99, R = 0.60.
In this case, the algorithm will prefer the first one. This formulation makes the learning
algorithm more robust, such that it can get good results on any datasets with different
characteristics.

The algorithm follows a simple cooling schedule, where the initial temperature T
is set to 1 and cooled by multiplying it by 0.8 after each k iterations. The simulated
annealing algorithms are designed in such a way that occasionally they move to a state
whose quality is worse than that of the current state so that they will be able to escape
local maxima. Thus, the proposed approach follows the strategy of moving to a worse
state if the guessed random number is less than the current temperature. We adapted
the simulated annealing with restarts, such that the approach restarts if the current
quality does not change for N times. At the time of restart the initial weight vector is

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



7:20 R. Nuray-Turan et al.

set to best weight vector found so far and T is initialized to 0.8. To stop the search we
use the limit on the number of iterations.

Another important thing to note is that it is possible that more than one feature
vector with slightly different feature values can lead to the same quality. In such cases,
those feature vectors should all be considered as the best feature vectors. Thus, the
SA algorithm will output all such vectors. These vectors are then used to create a new
weight vector, where each element of the vector is the average of the corresponding
elements in these vectors.

6. CLUSTER REFINEMENT OF SINGLETON CLUSTERS

After correlation clustering is applied, often the result consists of a few large clusters
and several singleton 1-Webpage clusters. Naturally, there can be true and false sin-
gleton clusters. Typically, the Webpage in a false singleton cluster belongs to one of
the larger clusters in the result set. A primary cause of a false singleton cluster is the
lack of sufficient content in the Webpage of the cluster that is related to the namesake
it mentions. Therefore, the direct features such as named entity and n-grams-based
similarities fail to group them with their true clusters. Further, such pages often do
not contain any contextual entities (i.e., person and organization names) that are re-
lated to the mentioned namesake. Thus, the Web co-occurrence queries are not able to
capture the relationships between the Webpages of the same namesake as well. Hence,
it is hard to find enough evidence to create a positive connection between such pages
and the other Webpages about the same namesake using the direct features as well as
the Web-based cooccurrence statistics. In this section, we discuss different strategies
to deal with such pages. We first explain the basic strategies that we can follow to re-
compute the similarities between the singleton Webpages and the remaining Webpages
in Section 6.1. These new similarity values are used to merge the singleton cluster with
another cluster, if the similarity exceeds a certain threshold. The threshold used in the
merging step is learned from past data by applying an interval-based regression model
as discussed in Section 6.2.

6.1. Basic Approaches

In this section, we discuss two basic strategies that one can use to revise the clusters.
The first strategy is to compute the similarity of the Webpage in the singleton cluster to
the remaining clusters by using the tokens extracted from the Webpages. Similarities
can be calculated using TF.IDF-based cosine similarity. The Webpage in the singleton
cluster is merged with another cluster only if the similarity of the Webpage to any
Webpage in that other cluster exceeds a predefined threshold.

However, keyword-level similarities might not be enough to resolve such false single-
ton cluster problems. In such situations, we can use approaches that are more complex.
One such solution is to use the Web to gather additional information about the Web-
page in each singleton cluster. This can be done by creating a special type of query
by following the strategy in Chen et al. [2009a] and Rao et al. [2007]. The suggested
solution iterates over all the 1-page clusters in the resulting clustering of the previous
clustering step. First, a Web query is formulated for each such Webpage by combining
the queried name with the surrounding bigrams. For instance, if the queried name
is “Michael Jordan” and the terms neighboring the name are “legendary career”, the
query will be Q = legendary career ‘‘Michael Jordan’’. Then, these queries are
issued to the search engine and the page profile is generated using the collected snip-
pets and titles. These profiles are then used in similarity computation. Similarities
are calculated using TF.IDF-based cosine similarity. The profiles are compared to each
document in each cluster to find out the maximally similar Webpage. If the maximum

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



Exploiting Web Querying for Web People Search 7:21

a

b

c

d

K

τ

e

f
g

Single threshold

Point regression

Interval regression

h

Fig. 19. Motivating example for interval regression.

similarity value of the page is above a threshold, then that singleton cluster is merged
with the maximally similar cluster.

We have experimented with both of these strategies. Our experiments reveal that
the Web querying approach is only marginally better than the approach that uses
token-based similarities. Therefore, we suggest using the non-Web querying approach,
since it is faster. Both of the preceding strategies rely heavily on the accuracy of the
selected threshold. In the next section, we explain a strategy that uses an interval-
based regression model to compute such threshold per person name.

6.2. Learning the Threshold

The quality of the cluster refinement step depends on being able to choose the right
threshold τ for dataset D being processed. The threshold determines when a given
singleton cluster should be merged with a different cluster. Different strategies to
determine such thresholds are possible. One such strategy is to set the threshold to a
single value that is learned to be optimal for all possible people names. It turns out that
in practice choosing such a single fixed threshold leads to little improvement over the
initial correlation clustering results. For instance, let us assume that there are eight
different names in our dataset. Each person name has a different threshold range that
can merge the singleton clusters with their true clusters, as illustrated in Figure 19. A
single threshold value might not be able to capture all the intervals, therefore it might
lead to suboptimal clusters. Figure 19 shows that the single threshold misses 4 out of 8
intervals. Thus, a more advanced algorithm that chooses a different threshold for each
queried person name might work better.

To address this problem we will use the fact that in a merging strategy knowing the
number of clusters K in D can help in choosing a better value of threshold τ . Specifically,
if the number of clusters K is large then choosing larger value of the threshold will
tend to increase the number of resulting clusters, which often leads to better clustering
results. Similarly, if K is small, lower values of the threshold often produce better
results.

However, one of the challenges in using this observation is that the number of clus-
ters K is not known beforehand to the algorithm. We can handle this issue by observing
that the value of K could be estimated from the number of clusters |R| that are out-
putted as the result of the initial correlation clustering step. That is, in the cluster
refinement phase, the number of clusters generated by the initial clustering step is
utilized to learn the merging threshold. Observe that this is done per person name (per
dataset D).

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



7:22 R. Nuray-Turan et al.

Approach 1. Let Ki by the true number of clusters for i-th person name in the training
data and let τi be the optimal threshold for that person for merging singleton clusters.
One approach to learn the threshold would be to try to use these τi and Ki values for
all values of i to train a model τ = f (K) on past data, for example, using a regression
method. For instance, for linear regression the task might be formulated as

Minimize
∑

i=1 εi,

subject to τi − εi ≤ β0 + β1Ki + β2K2
i + · · · + βnKn

i ≤ τi + εi.
(5)

Here, f (K) is chosen as a function f (K) = β0 +β1Ki +β2K2
i +· · ·+βnKn

i . The task is to
learn weights β0, β1, . . . , βn such that f (K) approximates as closely as possible values
τi given Ki. Since the system is unlikely to approximate τi ’s exactly, the slack variables
εi ’s are used in the constraints and the goal of the optimization problem is to minimize
the overall slack.

Approach 2. A better approach for choosing the threshold exists that reaches even
higher disambiguation quality. It leverages the observation that for each case i there is
typically a range of values [τ �

i , τh
i ] that leads to optimal or near-optimal results, instead

of a single optimal threshold value τi. This range of values needs to be taken into
account during the training phase. If point regression is used it might learn a curve as
shown in Figure 19, which could get only 3 out of 8 intervals. However, if the intervals
are taken into consideration with the interval regression, it might find a curve that
can capture all the intervals. Consequently, we suggest employing an interval fitting
linear regression model.

Minimize
∑

i=1 εi,

subject to τ �
i − εi ≤ β0 + β1Ki + β2K2

i + · · · + βnKn
i ≤ τh

i + εi.
(6)

The previous optimization problem is a linear programming problem, and linear
programming is known to have efficient solutions. The goal is to learn a combination
of weights β0, β1, . . . , βn such that for each i the predicted value of τ = f (Ki) fits the
best the interval [τ �

i , τh
i ]. Since not all of the predicted values might strictly fall inside

[τ �
i , τh

i ], nonnegative slack of εi is added to the corresponding constraints.
With the interval-based regression model, we learn the βi values from past data

which are then used for the threshold computations τ = f (k) on the test data.

7. POSSIBLE ARCHITECTURES AND THEIR EFFICIENCY

There are several possible ways of implementing a WePS engine, such as client-side,
third-party proxy, or server-side approaches. The solution proposed in this article can
work with any of these architectures.

In a third-party proxy approach, the user query is issued first to a proxy, which in
turn queries a Web search engine and then clusters the returned results. A client-side
solution is similar, except for the software installed on the client acts as the proxy.
The advantage of proxy (and client-side) solutions is that such a strategy can be built
independently of the primary search engine without requiring existing engines to be
modified. However, such flexibility comes at a (potentially high) cost of having to query
search engines to collect the search engine statistics over the Internet during the query
execution.

In a server-side approach the WePS component sits on top of the search engine and
has direct access to its indices as well as to the most recent Web snapshot of the

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



Exploiting Web Querying for Web People Search 7:23

Table I. Comparing Efficiency Costs of Proxy-Based and Server-Side Approaches

Step Proxy-based Server-side
(1) User input Runtime
(2) Web page retrieval Through Internet Direct, without Internet
(3) Preprocessing Runtime Beforehand
(4) Similarity Comp.

(a) Direct Sim. Comp. Runtime
(b) Indir. Sim. Comp. Applying skyline: runtime. Training skyline: beforehand
− Web co-occurrence Through Internet Direct, without Internet
(c) Combining Sim. Applying sim. anneal.: runtime. Training it: beforehand

(5) Clustering
(a) Correlation Clust. Runtime
(b) Cluster Refinement Runtime. Training interval regression: beforehand

(6) Postprocessing Runtime
(7) Visualization Runtime

entire Web, thus avoiding the need to connect to a search engine via the Internet. The
component does the clustering and returns the result to the user. The advantage of such
an approach is that it is likely to be more efficient, as many Webpage preprocessing
steps can be done at the server, before any user query is issued. In addition, Web
querying is done internally instead of querying over the Internet. The disadvantage is
that only a Web search company could realize a server-side solution, or alternatively
a third party should maintain a snapshot of the entire Web, for example, by using
technology similar to that of WebBase developed at Stanford [Cho et al. 2006].

The differences between the proxy-based and server-side solutions with respect to
their efficiency are summarized in Table I. It lists the processing steps of the WePS
system discussed in Section 2 and the corresponding efficiency issues, such as whether
a step is performed during query runtime, or whether it can be done beforehand, that
is, before any query processing starts.

First, it should be noted that in both of these approaches, all of the tuning and train-
ing of the approach, including training: (1) skyline classifier, (2) regression model, and
(3) simulated annealing model is done offline/beforehand, before any query processing.
Therefore, while the training part can be slow, it does not affect the query response
time. Unlike training, applying these three mechanisms is naturally very fast. This is
since the found classification skyline typically consists of less than 100 points, so even
scanning these points without using any auxiliary indexes to classify feature vectors
is very efficient. For the simulated annealing algorithm, once it learns the weights,
computing the overall similarity s(du, dv) by using these weights in Eq. (3) is also fast.
Similarly, to compute the threshold for the cluster refinement, the algorithm simply
needs to input the number of clusters K (which it gets after correlation clustering) into
function τ = f (K) = ∑n

i=0 βi Kn, where n is small, for example, 2, and this computation
is done only once per user query.

Second, unlike the proxy-based approach, the server-side solution avoids sending
certain information over the Internet, and thus can be made much faster. For instance,
it does not need to retrieve the top-K Webpages or collect Web co-occurrence statistics
over the Internet; instead it can process them locally.

Third, the server-side approach can perform the entire preprocessing step before-
hand. This includes various extractions of direct features such as named entity extrac-
tion and building various indexes such as for computing TF. IDF, giving it yet another
advantage in terms of the efficiency over the proxy-based approach.

While the server-side solution has many advantages, a proxy-based solution is also a
viable option. Our current proxy-based implementation has two interfaces: default and
advanced. The default interface is faster but less accurate than the advanced one. It

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



7:24 R. Nuray-Turan et al.

runs the approach using the direct features only, without the Web features, to produce
the initial clusters. If the user, however, is not satisfied with the quality of the initial
clusters, (s)he can use the advanced interface to run the full algorithm, which is slower
but more accurate. As demonstrated empirically in Section 8.2.1, the difference in
clustering quality is especially noticeable for the cases where the quality of the initial
clustering is low. This essentially creates the quality-versus-efficiency trade-off, where
the user runs more expensive queries only for lower-quality cases, for which the gain
due to (slower) Web co-occurrence queries is significant. Our implementation employs
caching of results. Hence, if the results for a user query are already in the cache, they
are simply displayed from the cache without any query recomputation. Caching also
allows incremental processing of the “advanced” query after a “default” query, as the
top-K Webpages are already retrieved and cached after the default query and all the
direct feature information is also precomputed and cached.

We also envision that in addition to having an advanced interface, a proxy-based solu-
tion can have a background-processing mode where the user will be initially presented
with the clusters generated by the default interface, but the system will continue to
refine and update clusters in the background (using Web queries) while the user ex-
plores the initial clusters. That way the cost of Web querying will be partially hidden
from the user.

8. EXPERIMENTAL DESIGN AND RESULTS

This section empirically studies the proposed approach in terms of both quality and
efficiency and compares it to the state-of-the-art techniques on the WePS-2 dataset.

8.1. Experimental Design

8.1.1. Datasets. Since the proposed algorithm is a supervised learning approach, we
use training datasets to learn the parameters for the classifiers and test the effective-
ness of the classifiers with those parameters on the test dataset.

Training datasets. We merge two different datasets to create the training dataset
for the experiments. The first one, WWW05, which is used in Bekkerman and McCallum
[2005] contains 12 different people each with 100 pages. The second one is the trial
and training datasets published for the WePS-1 task [Artiles et al. 2007]. The trial
dataset contains 9 person names with 100 pages, while the training dataset contains
49 different names. The number of pages for the training dataset, however, varies from
2 pages to 400 pages.

Test datasets. We evaluate our approach and compare it to the state-of-the-art tech-
niques on the WePS-2 test dataset which is the current de facto standard for testing
WePS solutions [Artiles et al. 2009]. WePS-2 contains Webpages for 30 person names
where there are 150 Webpages for each person used in the disambiguation.

8.1.2. Tools. Stanford’s Named Entity Recognizer [Stanford NER 2012] is utilized to
extract named entities from Webpages. The co-occurrence statistics are collected using
Yahoo! and BOSS! APIs. We extracted text and hyperlinks from the Webpages using
Java’s HTMLParser. Emails and hyperlinks in the text are extracted using a simple
rule-based extractor.

To test significance of the improvements achieved by the proposed approach we use a
standard statistical significance test, namely paired two-tailed t-test. We use the t-test
to measure if the means of two different evaluations are different. If the computed
p-value is below some threshold (typically 0.10, 0.05, or 0.01) the difference is declared
to be statistically significant for that threshold value.

8.1.3. Versions of the Proposed Method. We compare different versions of the proposed
method with other techniques. These versions are as follows.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



Exploiting Web Querying for Web People Search 7:25

Fig. 20. Comparing different systems. Different versions of the proposed approach are shown as shaded
bars.

(1) Basic version which only utilizes the direct features.
(2) ERWeb version which uses all the direct features of Basic and the Web querying

(Web), so it is Basic+Web.
(3) ERWeb+CR version is the ERWeb which in addition applies the Cluster Refinement(CR)

to improve on the singleton clusters.

8.1.4. Quality Measures. We use FB measure which is currently known to be the best
metric to use for the WePS problem [Artiles et al. 2009]. FB is the harmonic mean of
B-cubed Precision and B-cubed Recall [Bagga and Baldwin 1998]. B-cubed measures
are based on computing the precision and recall of each item in the collection. The item
precision measures how many items in the same cluster belong to the category of that
item. Symmetrically, item recall measures how many items from its category are in the
same cluster with this item. We use the WePS-2 version of the B-Cubed F-measure as
explained in Artiles et al. [2009].

8.2. Experimental Results

8.2.1. Effectiveness of the Overall Approach. We first compare the quality of the proposed
approach with the other systems. The best system participated in WePS-2 competition
was PolyUHK (82%). EOS11 [Liu et al. 2011], CIKM09, GRAPE, and SIGIR10 are
the techniques that have been published after the competitions and that used this
benchmark dataset to report the effectiveness of their methods. As Figure 20 shows,
the ERWeb+CR (88%) and ERWeb (87%) approaches outperform all of the previous systems.
In addition the Basic (83%) approach also gets better-quality results than the systems
participating in the WePS-2 competition. The improvement of ERWeb+CR over ERWeb
and Basic is statistically significant at p-values of 0.09 and 0.0007, respectively.7 The
statistical significance over the other methods cannot be measured using the t-test,
since for most of these methods only average FB has been reported, whereas the t-test
requires knowing FB values per each of the 30 person names in the dataset.

Table II presents the detailed FB values for ERWeb without the cluster refinement.
Table III is similar, but shows the result on another dataset that has been used in
GRAPE’09. The results are sorted in ascending order on FB values of Basic. The table
also demonstrates the improvement over Basic achieved due to using the Web co-
occurrence features. Notice that the largest improvements, shown in bold, tend to
occur for the cases where Basic does not reach very good quality. Similarly, the smallest
improvements are found for the cases where the quality of Basic is already high. Based

7These p-values mean with 91% and 99.93% chance ERWeb+CR is better than ERWeb and Basic.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



7:26 R. Nuray-Turan et al.

Table II. Detailed FB Values for ERWeb Without Cluster Refinement, Sorted on Basic Values

Person ERWeb (no CR) Improvement Basic Skyline DTC

Franz Masereel 0.64 0.18 0.46 0.05 0.47
Bertram Brooker 0.81 0.19 0.62 0.21 0.75
Nicholas Maw 0.84 0.21 0.63 0.69 0.88
Amanda Lentz 0.7 0.01 0.69 0.40 0.61
Judith Schwartz 0.8 0.11 0.69 0.51 0.41
Herb Ritts 0.84 0.11 0.73 0.55 0.88
Jonathan Shaw 0.79 0.02 0.77 0.55 0.40
Hao Zhang 0.79 0.01 0.78 0.55 0.45
David Tua 0.92 0.12 0.8 0.52 0.98
Louis Lowe 0.85 0.05 0.8 0.48 0.43
David Weir 0.8 −0.01 0.81 0.62 0.49
James Patterson 0.92 0.09 0.83 0.86 0.91
Sharon Cummings 0.86 0.03 0.83 0.53 0.63
Tamer Elsayed 0.87 0.04 0.83 0.30 0.54
Jason Hart 0.88 0.04 0.84 0.80 0.74
Tom Linton 0.89 0.04 0.85 0.73 0.79
Benjamin Snyder 0.94 0.07 0.87 0.71 0.81
Emily Bender 0.92 0.05 0.87 0.47 0.50
Hui Fang 0.86 −0.02 0.88 0.63 0.66
Rita Sher 0.9 0.02 0.88 0.46 0.66
Gideon Mann 0.96 0.06 0.9 0.31 0.70
Mike Robertson 0.88 −0.02 0.9 0.73 0.42
Ivan Titov 0.94 0.02 0.92 0.37 0.71
Otis Lee 0.95 0.03 0.92 0.63 0.54
Susan Jones 0.88 −0.04 0.92 0.81 0.40
Cheng Niu 0.92 −0.02 0.94 0.46 0.86
Janelle Lee 0.95 0.01 0.94 0.76 0.92
Mirella Lapata 0.99 0.05 0.94 0.74 0.98
Theodore Smith 0.95 −0.01 0.96 0.89 0.82
Helen Thomas 0.99 0.02 0.97 0.92 0.97
Average 0.874 0.048 0.826 0.57 0.68

Table III. Results on the GRAPE’09 Dataset, Sorted on Basic Values

Person ERWeb (no CR) Improvement Basic GRAPE’09

Lynn Voss 0.75 0.20 0.55 0.60
Steve Hardt 0.64 0.05 0.59 0.45
Samuel Baker 0.89 0.22 0.67 0.70
Fernando Pereira 0.71 0.00 0.71 0.79
David Mulford 0.80 0.08 0.72 0.73
William Cohen 0.85 0.07 0.78 0.85
Andrew Ng 0.86 0.07 0.79 0.84
Bill Mark 0.83 0.04 0.79 0.74
Mary Johnson 0.86 0.07 0.79 0.81
Lisa Harris 0.83 0.03 0.80 0.75
Nancy Thompson 0.86 0.03 0.83 0.96
Sarah Wilson 0.78 −0.05 0.83 0.77
Tom Mitchell 0.82 −0.02 0.84 0.86
Ann Hill 0.85 0.00 0.85 0.90
Andrew Mccallum 0.94 0.08 0.86 0.87
David Israel 0.81 −0.05 0.86 0.68
Adam Cheyer 0.86 −0.05 0.91 0.81
Helen Miller 0.90 −0.03 0.93 0.92
Christine King 0.89 −0.05 0.94 0.91
Brenda Clark 0.95 −0.01 0.96 0.94
Leslie Kaelbling 0.98 0.00 0.98 0.95
Average 0.84 0.03 0.81 0.80

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



Exploiting Web Querying for Web People Search 7:27

Table IV. Web Feature Classification
Using Different Classifiers

Approach FB measure
ERWeb with DTC 0.85
ERWeb with SVM 0.85
ERWeb with Skyline 0.87

Table V. Effect of Different Direct Features and Web Co-Occurrence
Statistics

Model Direct Features Only(FB) +Web (FB)
NE 0.76 0.82 (+6%)
NE+NG 0.82 0.86 (+4%)
NE+NG+MI 0.82 0.86 (+4%)
NE+NG+MI+HY 0.83 0.87 (+4%)
NE+NG+MI+HY+EM 0.83 0.87 (+4%)

on these observations, our prototype implementation has two interfaces: default and
advanced. The default interface employs a Basic algorithm, which does not use Web
queries and thus is more efficient. If the user, however, is not satisfied with the clusters
returned by the default interface (which is likely to happen when the quality results
of Basic are low), the user has the option of using the advanced interface, which will
issue (slower) Web queries to improve the results’ quality (and if the results of Basic
are low, the user might see a major quality improvement).

Table III also compares ERWeb to GRAPE’09. The improvement of ERWeb over GRAPE’09
is statistically significant for p-value of 0.05.

8.2.2. ERWeb vs. Using a Classifier. The last two columns of Table II study what will
happen if a classifier is employed to analyze all the features that are used by ERWeb,
instead of using the proposed ERWeb itself for that analysis. The table plots results for
the Skyline classifier and Decision Tree Classifier (DTC).8 The table shows that both
of these classifiers are unable to reach reasonable quality on their own, and a better
approach such as ERWeb should be used instead.

8.2.3. Skyline-Based Classifier vs. Standard Classifiers in ERWeb. In this experiment, we
compare the effectiveness of ERWeb with the proposed skyline-based classifier to ERWeb
with two different widely used classifiers: Support Vector Machines (SVM) and Decision
Tree Classifier (DTC). Both of these classifiers are used to measure the similarity of a
given Webpage pair and their Web co-occurrence vectors. The decisions obtained with
the classifiers are then incorporated into the simulated-annealing-based classifier as
Web-based evidence.

As shown in Table IV, the proposed skyline-based classifier outperforms both of the
classifiers, as it is a specialized classifier that takes into account the dominance in data
and tunes itself to the given quality metric, FB in this case. The improvement over
DTC and SVM is statistically significant at p-value of 0.08. It should be noted that in
the initial version of this work [Kalashnikov et al. 2008b] the improvement was 8%
over SVM and 7% over DTC, but the overall quality was lower due to not using many
features.

8.2.4. Effectiveness of Features. Table V studies the effect of various direct features on
the quality of clustering. The table studies two cases: (1) direct features only and (2) the
same direct features plus indirect (Web co-occurrence) feature. The direct features are

8Experiments with some other classifiers, such as SVM, have been conducted as well and results were similar
to those of DTC.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



7:28 R. Nuray-Turan et al.

Table VI. Acronyms for Features

Notation Meaning
NE Named Entities based similarity
NG N-gram based similarity
MI Middle Name Initial based dis-similarity
HY Hyperlinks based similarity
EM Emails based similarity

Table VII. Effect of Cluster Refinement on the Algorithm With and Without
Web Features

Model No Cluster Refinement (FB) With Cluster Refinement (FB)
Basic 0.83 0.86 (+3%)
ERWeb 0.87 0.88 (+1%)

Table VIII. Comparing Results With and Without Cluster Refinement

Query ERWeb (P/R/FB) ERWeb+CR (P/R/FB) False Singletons
(Before/After)

Amanda Lentz 0.77/0.65/0.70 0.77/0.65/0.70 6/6
Bertram Brooker 1.00/0.69/0.81 1.00/0.83/0.90 11/2
David Tua 1.00/0.84/0.92 1.00/0.98/0.99 7/0
Franz Masereel 0.98/0.47/0.64 0.98/0.55/0.71 16/7
Herb Ritts 1.00/0.73/0.84 1.00/0.78/0.88 7/4
Nicholas Maw 1.00/0.81/0.90 0.96/0.88/0.92 8/1
James Patterson 0.96/0.88/0.92 0.94/0.95/0.94 5/0
Theodore Smith 0.95/0.95/0.95 0.95/0.95/0.95 3/3
Tom Linton 0.97/0.83/0.89 0.91/0.87/0.89 6/2
Overall 0.93/0.83/0.87 0.92/0.85/0.88 170/121

Significant improvement is shown for the names with many wrong singleton clusters.

referred by their aliases presented in Table VI. As expected, higher quality is reached
as more direct features are used.

A simulated annealing-based classifier is trained to learn the best weights for each
combination of the features on the training data as explained in Section 5. As expected,
Table V illustrates that the Web querying always improves the quality over the direct
features. As more direct features are utilized the quality of the clustering also increases
or stays the same and the improvement with the Web querying is still significant.
However, the effectiveness of the Web querying decreases from 6% to 4% as more direct
features are utilized.

8.2.5. Cluster Refinement Experiments. In this section, we study cluster refinement ap-
proach in detail.

Table VII illustrates the overall quality of the proposed approach with and without
the cluster refinement phase. The improvement achieved by using the cluster refine-
ment is more visible over the Basic approach (3%) compared to ERWeb that utilizes Web
co-occurrence statistics (1%).

Table VIII illustrates the detailed quality results and the number of false singleton
clusters before and after the cluster refinement approach is applied for a set of person
names. On average (for 30 people) the recall value increased by 2%, while the precision
decreased only by 1%, leading to 1% improvement (statistically significant for p = 0.05).
“Bertram Brooker”, “David Tua”, “Franz Masereel”, “Herb Ritts”, and “Nicholas Maw”
datasets contain mainly one person, therefore there were many wrong singleton-1-page
clusters in the output of the ERWeb and the improvement for these cases is very large
(i.e., 4.8% on average). On the other hand, for the remaining cases, the approach does
not change the overall clustering much since singleton-1-page clusters are rare for
them.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



Exploiting Web Querying for Web People Search 7:29

Table IX. Single Query End-to-End Running Time (in seconds) in a Proxy-Based Approach

Name Downl. NE Extr. Sim.Cmp. WebQry Clust. Total
Amanda Lentz 4.82 3.89 9.91 12.72 2.23 33.57
Benjamin Snyder 5.65 7.35 11.78 14.47 2.32 41.57
Bertram Brooker 7.87 4.09 10.91 12.01 2.15 37.02
Cheng Niu 8.25 8.29 15.60 29.59 1.59 63.33
David Tua 6.55 8.48 11.34 55.85 1.61 83.83
David Weir 8.76 1.33 7.43 33.60 2.61 53.74
Emily Bender 8.06 0.97 2.21 28.40 2.12 41.76
Franz Masereel 6.74 2.22 5.33 45.03 2.49 61.82
Gideon Mann 6.44 1.70 6.49 13.86 2.30 30.79
Hao Zhang 5.38 6.62 6.53 27.24 2.45 48.21
Helen Thomas 11.99 3.24 5.46 54.19 2.52 77.42
Herb Ritts 7.59 7.37 9.84 38.90 2.56 66.26
Hui Fang 5.58 3.31 5.40 31.21 2.14 47.64
Ivan Titov 5.40 0.46 4.97 25.21 2.34 38.37
James Patterson 6.60 4.02 8.67 28.43 3.49 51.21
Janelle Lee 5.98 5.38 6.49 28.50 2.35 48.70
Jason Hart 8.31 7.09 5.17 31.08 1.31 52.97
Jonathan Shaw 6.12 6.18 6.16 46.89 2.48 67.83
Judith Schwartz 6.29 7.77 8.56 64.22 1.30 88.15
Louis Lowe 5.64 3.36 9.32 55.19 1.80 75.32
Mike Robertson 7.17 8.08 8.86 25.90 1.89 51.89
Mirella Lapata 5.32 1.47 10.80 40.11 2.12 59.83
Nicolas Maw 6.89 3.61 9.96 59.76 2.86 83.07
Otis Lee 5.59 8.01 7.61 27.95 2.49 51.66
Rita Fisher 7.09 1.52 8.32 23.20 1.25 41.39
Sharon Cummings 5.99 2.27 6.73 26.03 1.50 42.51
Susan Jones 11.24 0.75 6.59 24.80 2.98 46.35
Tamer Elsayed 5.91 2.12 6.45 21.94 2.49 38.89
Theodore Smith 5.01 3.81 9.62 29.42 3.09 50.96
Tom Linton 5.44 2.32 8.03 58.23 2.80 76.82
Median 6.37 3.71 7.82 28.96 2.33 51.43
Average 6.78 4.22 8.01 33.64 2.26 54.98

8.2.6. End-to-End Query Running Time. As discussed in Section 7, we have developed a
research prototype of a fully functioning WePS system that implements the proposed
solution using the proxy-based architecture. It provides a Web interface for the user
to enter a WePS query, performs disambiguation, and outputs the results back to the
user. In this experiment we test our system by taking the 30 names from the WePS
dataset and use our system to disambiguate among the top-100 Webpages returned
by Yahoo! for these names. Table IX reports the overall end-to-end time (in seconds) it
takes to process each query, as well as the median and average times. For instance, it
shows that it takes 4.82 sec to query Yahoo! with name “Amanda Lentz” and download
the top-100 returned Webpages. Then it takes 3.89 sec to extract named entities off
these Webpages, 9.91 sec to compute the direct similarities, 12.72 sec to collect Web
co-occurrence statistics, and 2.23 sec for clustering including cluster refinement, or
33.57 sec in total.

It should be noted that, in our system, the downloading and NE extraction phases are
pipelined. Webpages are downloaded in parallel, some faster some slower, depending
on the Web server where they are located. As soon as a Webpage is downloaded, it is put
into the NE extraction queue to be processed. The download time in the table shows
the time to download the last page. The NE extraction time is the time to download all
the pages and extract entities from them, minus the time to download the last page.
We use a third-party extractor SNER, developed by Stanford. This tool is implemented
in Java (and not, say, C++), meaning potentially even the same NE extractor can be
made faster in practice by using C++.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



7:30 R. Nuray-Turan et al.

Table X. Estimated Single Query End-to-End Running Time (in seconds) in a Server-Side
Approach

Name Downl. NE Extr. Sim.Cmp. WebQry Clust. Total
Amanda Lentz 0.20 0.00 9.91 3.18 2.23 15.52
Benjamin Snyder 0.20 0.00 11.78 3.62 2.32 17.93
Bertram Brooker 0.20 0.00 10.91 3.00 2.15 16.26

...
...

...
...

...
...

...
Tom Linton 0.20 0.00 8.03 14.56 2.80 25.59
Median 0.20 0.00 7.82 7.24 2.33 17.68
Average 0.20 0.00 8.01 8.41 2.26 18.88

We can see that the average similarity computation time is 8 sec. Should that be
required, we have a few reasons to believe this result can be easily improved in a
real nonprototype WePS system. First, at present WePS researchers have focused on
achieving high quality of their techniques, treating efficiency as a secondary issue. In
our case, more efficient versions of some of the algorithms can be designed as well.
Second, we have used Java, which is known not very efficient, to implement our pro-
totype system since many third-party tools we employ use the Java API, including
Google/Yahoo! Search API, Yahoo! BOSS API, SNER. Trivially recoding the same algo-
rithms in C++, while making them interface with the Java APIs, should improve the
efficiency. Third, that part of the code is currently running as a single thread and can
be improved by developing parallel versions of the algorithm.

The average clustering time is 2.3 sec. It can also be improved by the aforementioned
techniques. Most of these 2.3 sec is due to the cluster refinement phase and the time
to perform correlation clustering is negligible compared to 2.3 sec.

The Web co-occurrence part of the algorithm takes 33.64 sec on average. This is the
time needed for the third-party Web service (Yahoo! BOSS) to process these queries.
This part will be difficult to optimize further in a proxy-based solution, unless more
aggressive query pruning techniques are implemented (or unless the proxy-based one
maintains a WebBase-like Internet index [Cho et al. 2006]), which is beyond the scope
of this article.

The Web querying part, however, can obviously be faster if a server-side approach
is used. Table X tries to conservatively estimate what will happen to the execution
time in a server-side solution. It makes the assumption that the time needed by the
Web co-occurrence part can be made to be 25% of what is reported in Table IX. In a
server-side approach, there will not be a need to download the top-K Webpages, but
there will be a need to locate them. Hence, we set the download time to 0.2 sec based on
the fact that currently it takes Google 
 0.2 sec on average to return results to these
queries. The similarity computation part will be faster than is reported in this table,
as extraction of direct features can be decoupled from similarity computations and be
made offline/beforehand as well.

8.2.7. Effectiveness of the Web-Querying Optimization. In this section, we study the qual-
ity of the proposed efficiency optimization. We compare the ERWeb-QB solution from
Section 4 with four baseline approaches.

(1) RND (Random). This strategy selects a random edge to query, ignoring the Epromise
edge set. Since it does not spend computing resources to carefully choose edges, it
quickly floods the system with many queries.

(2) MW (Max-Weight). This strategy selects the Webpage pair based on their initial
direct similarity, also ignoring Epromise. The intuition behind using this model is
that querying more similar pages (according to their direct features) is more likely
to return “merge decisions”.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



Exploiting Web Querying for Web People Search 7:31

 0.875
 0.87

 0.865
 0.86

 0.855
 0.85

 0.845
 0.84

 0.835
 0.83

 0.825
 0.82

 0  50(7%)  100(14%)  150(21%)  200(28%)  250(35%)

F
B

Number of Batches

ERWeb
ERWeb-QB

ERWeb-MW
ERWeb-RND

RND
MW

Basic

Fig. 21. Number of queries vs. quality on WePS-2 dataset.

(3) ERWeb-RND. This strategy also selects a random edge, but now from the Epromise set.
(4) ERWeb-MW. This is like WM, but selects edges from the Epromise set.

We first study how effective our strategy is in terms of just separating edges into
“maybe” edges, that have higher potential for improving the results when queried,
from the remaining edges that have lower potential. For that we compute the |E|−|Emaybe|

|E|
ratio that corresponds to the fraction of saved queries just due to this strategy, where
E is the set of all edges in the graph. We observe that if there are only a few initial
clusters then this ratio is typically 30–40%.

Figure 21 compares the proposed ERWeb-QB strategy with the baseline approaches
based on the number of queries submitted versus the quality improvement. The figure
demonstrates that the approaches that utilize the maybe-edges can reach higher qual-
ity with a smaller number of queries (only 12%–19% of the original queries) compared
to the MW and RND methods that do not distinguish maybe-edges. ERWeb-QB reaches the
highest FB quality of 0.87 slightly ahead of the ERWeb-MWwhich is followed by ERWeb-RND.
At 12% point where ERWeb-QB first reaches the highest quality, the difference with the
other techniques is statistically significant at p-values of 0.01.

Figure 22 illustrates the change in the quality with respect to the time for the
ERWeb-QB and ERWeb-QB+CR approaches. In these experiments, we submitted 15 batches
(a batch consists of eight queries corresponding to a Webpage pair) of queries at each
iteration, since Yahoo! Boss engine recently has imposed stricter limits on the concur-
rent query submission. Previously we were able to submit 100 queries at a time, and
the algorithm was 6 times faster than what is shown in this figure. We observe that
the proposed approach is more efficient than its original, since it can get high-quality
clusters in less than two minutes by submitting only around 12% of the queries. The
results demonstrate that the proposed approach reaches higher-quality results with
less number of queries at the price of longer processing time.

8.3. Discussion on the Experiments

The experimental evaluations showed that the proposed approach outperform the
state-of-the art solutions in terms of quality but at the price of increased response
time due to Web querying. Further, Web querying has significant impact on the quality
of the approach. However, this response time overhead is expected to be negligible if
the approach is implemented as a server-side solution.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



7:32 R. Nuray-Turan et al.

 0.88
 0.875

 0.87
 0.865

 0.86
 0.855

 0.85
 0.845

 0.84
 0.835

 0.83
 20  40  60  80  100  120  140  160  180

F
B

Time in seconds

Basic
ERWeb-QB

ERWeb-QB+CR

Fig. 22. Quality change as time increases for the proposed strategy.

9. RELATED WORK

The Web people search task is related to the problems of entity resolution and Word
Sense Disambiguation (WSD). Entity resolution aims to resolve the references to the
real-world objects in structured datasets, whereas WePS’s objective is to associate the
Webpages to the namesake they mention, hence it works on free and semistructured
text. On the other hand, WSD aims to resolve the senses of terms in the documents, so
the solutions usually work on free text as in WePS. To resolve ambiguity of terms, WSD
approaches usually use an available list of senses presented as dictionaries, ontologies,
etc. Hence, for a given term, the number of alternatives and their characteristics is
known. For WePS task, however, the number of real-world entities and their char-
acteristics are not known beforehand. That is, WePS is a clustering while WSD is a
classification task.

In this section we first review the related work in Web people search (Section 9.1).
After that we discuss the approaches that use external knowledge-bases for related
tasks such as entity resolution (Section 9.2). We then highlight the new contributions
of this article over its conference version (Section 9.3).

9.1. Web People Search

WePS has recently received significant attention from academia. Over the last few
years, there have been three different WePS competitions. The first one was held in
Sem-Eval 2007 [Artiles et al. 2007]. Sixteen different teams from different universi-
ties have participated in the task. The participating systems utilized named entities,
tokens, URLs, etc., that exist in the documents for disambiguation. Named Entities
(NE)-based single-link clustering was the one of the top three systems [Elmacioglu
et al. 2007b], so NEs play an important role for this collection.

The second competition had eighteen different participants [Artiles et al. 2009]. In
contrast to the WePS-1 competition, named entities did not play an important role
in this dataset, as algorithms that do not depend on NEs performed better. The last
WePS competition was held in 2010. This competition contained 300 person names and
200 Web documents for each name. However, ground-truth data for this dataset is still
not publicly available, making it impossible to use for testing to nonparticipants.

WePS algorithms can be classified along multiple dimensions including type of fea-
tures they exploit, as well as the clustering algorithms they use. As discussed previ-
ously, some algorithms rely only on the direct features, while others are capable of

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



Exploiting Web Querying for Web People Search 7:33

utilizing more data (i.e., external features) collected through a knowledge-base such as
the Web or ontologies.

There are many different approaches that exploit direct features for clustering of
Webpages for the purpose of WePS such as Wan et al. [2005], Artiles et al. [2005, 2007,
2009], Elmacioglu et al. [2007b], Jiang et al. [2009], Ono et al. [2008], Balog et al. [2009],
Chen and Martin [2007], Iria et al. [2007], Li et al. [2005], and Yoshida et al. [2010].
Balog et al. [2009] analyzes the effect of direct textual features with different clustering
algorithms such as k-means, agglomerative hierarchical cluster, probabilistic latent
semantic indexing, while Elmacioglu et al. [2007b] analyzes the effect of different
features if the single link clustering is used. Kalashnikov et al. [2008a], Jiang et al.
[2009], and Iria et al. [2007], on the other hand, utilize the direct features with graph-
based disambiguation algorithms. The work in Li et al. [2005] clusters documents
based on the entity (person, organization, and location) names and can be applied to
the disambiguation of semistructured documents, such as Webpages. The primary new
contribution of that paper is the development of a document generation model that
explains, for a given document, how entities of various types (other person names,
locations, and organizations) are “sprinkled” onto the document. The work in Yoshida
et al. [2010] uses a two-stage clustering to improve the quality of WePS. In the first
stage some strong features such as named entities, compound keywords, and URLs
are utilized for disambiguation. The first stage creates high-precision clusters, and in
order to improve the recall of the clusters in the second stage they apply bootstrapping
with single keywords. The main difference with the approach proposed in that paper
and ours is that we utilize external knowledge-bases in both stages of the clustering,
while they do not consider the external knowledge at all.

Bagga and Baldwin [1998] used a vector space model with the keywords in the text for
the person name disambiguation in documents, while Niu et al. [2004] used information
extraction along with the words in the document to do the disambiguation. Mann and
Yarowsky [2003] used extracted biographic data for disambiguation. If one can extract
biographic data, then it can help disambiguation, however, most of the Webpages do
not contain biographic information about people at all. Thus relying exclusively on
the bibliographic information will not work on the Web domain. Similarly, the same
people might be present on the Web in documents with different topics. Accordingly
an approach that relies only on the topic information will also fail to group all of the
Webpages of the same namesake.

Techniques that only use only direct features are limited for a variety of reasons.
First, usually in a Webpage, the amount of information referring to the person of in-
terest varies from a few sentences to the whole content of the Webpage. Second, the
Webpages are usually very noisy and cover a wide range of topics. Lastly, different
Webpages often contain different portions of the related context (e.g., topics, entities)
to the individual of interest. Such limitation of using direct features-based similarity
in WePS is recognized and several solutions to address the problem have been pro-
posed recently. One such solution is to exploit external resources for the purpose of
disambiguation.

Approaches that exploit the external resources use either some knowledge-base such
as Wikipedia [Han and Zhao 2009, 2010], Web directories [Kalashnikov et al. 2008a;
Vu et al. 2008], or the Web content [Bekkerman and McCallum 2005; Chen et al. 2009a;
Rao et al. 2007]. The approaches in Chen et al. [2009a; Rao et al. [2007] utilize the Web
search engine results by collecting snippets, titles, and URLs. In addition, the work in
Chen et al. [2009a] uses Google’s 1TB n-grams dataset to compute the importance of
keywords and bigrams. The approach of Bekkerman and McCallum [2005] is based on
exploiting the link structure of pages on the Web, with the hypotheses that Webpages
belonging to the same real person are more likely to be linked together. Further, the

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



7:34 R. Nuray-Turan et al.

approach uses Google’s index, with Web queries to compute IDF of each term (referred
as Google IDF), which indeed might also be very expensive given the size of vocabulary.

9.2. Techniques that Exploit External Sources for Other Related Tasks

Recently, researchers have started to use external databases, such as ontology and Web
search engine indexes in order to improve the classification and clustering qualities in
different domains [Bollegala et al. 2007; Kanani et al. 2007; Elmacioglu et al. 2007a;
Gabrilovich and Markovitch 2007]. For example, querying the Web and utilizing the
search results are used for Word Sense Disambiguation (WSD) [Bollegala et al. 2007]
and record linkage in publications domain [Elmacioglu et al. 2007a; Kanani et al.
2007]. However, the number of queries to a search engine is a bottleneck in all of these
approaches. Hence, the study in Kanani et al. [2007] tries to solve the problem in
the case of limited resources. The suggested algorithm increased the accuracy of data
cleaning while keeping the number of queries to a search engine minimal. Similarly
the approach in Elmacioglu et al. [2007a] uses the Web as a knowledge-base for data
cleaning. The study proposed a way to formulate queries and used some standard
measures like TF.IDF similarity to compute the similarity of two different references
to an entity. The work in Elmacioglu et al. [2007a] is a complementary work to the one
in Kanani et al. [2007].

In Bollegala et al. [2007] the authors proposed to use the co-occurrence counts to
compute the semantic relatedness of words and cluster the words accordingly. The
authors used Web-based similarity measures like WebJaccard, WebDice, and so on.
These measures are utilized as features for the SVM-based trainer along with a set
of-token-based features, where the trainer learns the probability of two terms being
the same.

9.3. Contributions over the Conference Version of the Article

In this article, we study an approach that utilizes the external data sources with the aim
of increasing the quality of the Web people search. Our study differs from the others in
the way that it formulates the queries and utilizes the Web search results. This article
is an extended version of our initial study [Kalashnikov et al. 2008a; Nuray-Turan
et al. 2009] and the new contributions are as follows.

(1) In this article, we discuss an efficient version of the proposed approach which
decreases the number of queries submitted to the search engine as well as the time
to answer the query.

(2) In Kalashnikov et al. [2008a], only the named entity-based features were utilized
as direct features; however, in this article we use significantly richer set of direct
features and propose a simulated annealing-based mechanism to combine these
features effectively for the purpose of WePS.

(3) The preliminary version of this article uses the single-link clustering algorithm;
however, in this article we use correlation clustering, resulting in a higher cluster-
ing quality.

(4) We further proposed a new cluster refinement strategy for resolving the singleton
cluster problem.

Some of our past entity resolution work is also related, but not directly applicable
and uses different methodologies [Kalashnikov and Mehrotra 2006; Chen et al. 2007,
2005, 2008b; Kalashnikov et al. 2007, 2005; Nuray-Turan et al. 2007; Chen et al. 2009;
Nuray-Turan et al. 2011].

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



Exploiting Web Querying for Web People Search 7:35

Named-Entity-Filtering(D,m)
1 for each webpage d ∈ D
2 P ← Clean-PeopleNE-Set (P)
3 Pd ← Pick-M-PeopleNEs (P, d,m)
4 O ← Clean-OrgNE-Set (O)
5 Od ← Pick-M-OrgNEs(O, d,m)
6 return {Pd,Od}

Fig. 23. Named entity filtering.

10. CONCLUSIONS AND FUTURE WORK

This article proposes a novel Web people search approach that uses the Web as an
external data source to achieve higher-quality clustering results. The proposed solu-
tion is based on collecting co-occurrence statistics from the Web. A new skyline-based
classifier has been developed to classify these Web-based co-occurrence features. This
new ad hoc classifier takes into account the dominance that exits in the feature space
and greedily fine-tunes itself to any given quality measure. The article employs a
simulation-annealing-based method to learn the importance of the direct and indirect
features in order to combine them into the overall similarity value. A novel cluster
refinement algorithm has been developed to handle singleton 1-page clusters. An al-
gorithmic solution has been designed that improves the efficiency of the algorithm by
reducing the overall number of queries sent to collect Web co-occurrence statistics. All
these qualities combined allow the proposed approach to outperform other state-of-the-
art techniques.

The proposed solution has been implemented as a research prototype system using
the middleware architecture. Building the system has made us realize several new
interesting problems. Some of these problems include: the summarization of clusters
for generating proper cluster sketches, incrementally retrieving additional relevant
pages for the selected namesake beyond top-K, identifying the automatically generated
Webpages such as CiteseerX pages, which inherently contain ambiguous data. For
instance, identifying auto-generated pages and treating them separately from the other
pages decreases the mistakes made in the clustering process. In the future, we plan to
tackle some of these problems.

APPENDIXES

A.1. Filtering For Web Queries

The pseudocode in Figure 23 demonstrates the filtering step applied on the named
entities extracted off the top-K Webpages, which is done by using a set of filters. The
idea is that NEs will be utilized by the Web querying component. However, certain
types of NEs are too ambiguous for that purpose, in which case they are filtered out
from further consideration in Web query generation. Given that the goal is to minimize
the number of queries to the Web search engine, the filters are specifically designed
not to use any extra queries.

Filter 1. We have found locations to be too ambiguous to be used as context queries
for a few reasons. First of all the locations mentioned in the Webpages might be too
general such that many namesakes might be mentioned in the context of this location.
Second, even though we can identify the generality of the locations and use the ones
that are more specific in queries, it is hard associate each namesake with just one
location. For instance, although the CMU professor “Tom Mitchell” lives in Pittsburgh,
he travels around the U.S. and give talks. Therefore it is easy to associate him say for
instance with “Irvine, CA” assuming that he visited UC Irvine to give a talk, where

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



7:36 R. Nuray-Turan et al.

there is another “Tom Mitchell” who is “Vice Chancellor of University Advancement and
President of the University of California, Irvine Foundation.” For instance, when the
query “Tom Mitchell” AND “Irvine” AND “Pittsburgh” is submitted to Google, it returns
97,700 Webpages. Therefore, the algorithm does not use location information as one of
the contextual entities in Web query generation; however, the location information is
utilized in other similarity features including TF.IDF-based similarity of the Webpages.
Moreover, NE extractors sometimes wrongly extract the location names as organization
names. This also creates the same problem mentioned before. Thus, to eliminate the
ambiguity, the preprocessing step filters out the locations extracted as organizations.
It does so by performing a lookup in a locally stored gazetteer with the organization
name as the query. If there is a matching location in the gazetteer, then the organization
name is simply filtered out and not considered in the Web query generation step.

Filter 2. The second filter deals with the NEs that consist of one-word person names,
such as “John”. Such NEs are highly ambiguous since they can appear in the context
of many namesakes on the Web. Consequently, the algorithm prunes away the NEs
consisting of one-word names. This filter works by performing a lookup into the dataset
that stores first names.

Filter 3. Similarly, the third filter handles NEs that are common English words.
For example, word “defense” might be extracted from a Webpage as an organization by
the extraction software. However, it is a commonly used word which can appear in the
context of many namesakes. To detect common words the algorithm selects the most
frequent 5000 terms from Wikipedia9 as common English words. If an NE is a common
English word, it is filtered out.

Filter 4. Suppose that we are disambiguating Webpages for “Jack Smith”. It is not
rare to find out that two or more distinct “Jack Smith” namesakes are related to two
distinct namesakes “John Smith”. These two Jacks might, for example, be relatives
of the two Johns. Thus, “John Smith” cannot serve as a good context to identify a
particular “Jack Smith” namesake. To capture this intuition, the algorithm filters out
people NEs whose last name is the same as the last name specified in the original
query.

A.2. Direct Features

A.2.1. Named-Entity-Based Similarity. Named entities include person, organization, and
location names extracted using a named entity recognizer. For each Webpage di in D,
initially all the named entities in them are extracted, then these named entities are
tokenized and stop-words are removed. These tokens (terms) are then used to create
document vectors for each di. Each term is weighted using a standard TF.IDF weigh-
ing scheme, where the importance (weight) of a term is computed by multiplying its
frequency in the document with its Inverse Document Frequency (IDF). IDF measures
how common a word is in the document collection. These feature vectors are used to cal-
culate pairwise similarities of the documents, where the similarity function is selected
as the cosine similarity.

For example, Webpage di might mention one publication of Tom Mitchel with his
colleagues. Another Webpage dj might mention another publication of the same Tom
Mitchel and almost the same list of coauthors, but on a completely different topic.
Hence, TF/IDF similarity computed on all of the keywords might not find sufficient
evidence that the two Webpages are the same. However, the similarity of the extracted
named entities can capture the relatedness of the Webpages.

9http://www.wikipedia.org.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



Exploiting Web Querying for Web People Search 7:37

A.2.2. Middle Name Initial Dissimilarity. It is used as evidence to identify likely different
namesakes. First, for each Webpage in the collection full names are extracted using a
set of rules. If any of the names (extracted from a Webpage) contain a middle name,
then that name is assigned as the “full name” related to that Webpage. Then, the
middle names of all pages are compared. For any two Webpages, if they both contain
a middle name and it is different10, this information is used as strong dissimilarity
evidence and the similarity graph is updated accordingly.

For example, one Webpage might contain multiple references to “Tom A. Mitchell”,
while another Webpage would contain mentions of “Tom B. Mitchell”. Since the middle
initials do not match, this can serve as evidence that the two Webpages are about two
different Tom Mitchells.

A.2.3. Hyperlinks-Based Similarity. Hyperlinks-based similarity is used to capture the
fact that Webpages related to one of the namesakes often link to each other. First,
the hyperlinks in each page are extracted. Then, for each pair of Webpages di and dj , the
approach checks if there is a link from one page to the other. Two pages are more likely
to corefer if there is a direct link from one to the other. For example, a USC Webpage
describing a talk of Tom Mitchel at USC might contain a link to his homepage at CMU,
suggesting that the two Webpages are talking about the same Tom Mitchel. Similarly,
Tom Mitchel from his CMU’s homepage might provide a link to his talk at USC.

On the other hand, if there are no links between two Webpages, but there is a link
from di (or dj) to another page in the same URL path as dj(or di), then it is more
likely that both di and dj corefer. For instance, suppose for a query “Tom Mitchel” the
top-K results contains homepages of Tom Mitchel of CMU (www.cs.cmu.edu/∼tom) and
Andrew McCallum (www.cs.umass.edu/∼mccallum). While these two homepages might
not contain links to each other, the homepage of Tom Mitchel might refer to datasets
available on McCallum’s homepage (www.cs.umass.edu/∼mccallum/data.html). Notice
how this URL contains in it the www.cs.umass.edu/∼mccallum part, linking the two
homepages. Hence, such evidence is also used as positive evidence for merging.

A.2.4. Email-Based Similarity. Based on the intuition that any two Webpages that con-
tain the same email address are probably about the same namesake, the approach
derives another similarity feature for each Webpage pair. However, some emails might
be too general to be used as evidence, such as webmaster@xyz.com. Thus, the approach
uses a set of rules to identify such emails, and filters them from the Webpages. Con-
sequently, from the remaining emails, for each pair of Webpages, the method checks
if they share the same email address. If such an email is found then email-based
similarity is used in similarity computations and graph is updated accordingly.

A.2.5. Social-Networking-Sites-Based Dissimilarity. When computing the similarity of two
Webpages, the algorithm checks the similarity of their domains. If both Webpages are
from the same domain and the domain is known as a social networking Website, then it
is more likely that the two individuals mentioned in these Webpages are two different
individuals. Thus, using this observation the algorithm uses the social networking site
similarity as negative evidence. The list of social networking sites is collected from
Wikipedia.

A.2.6. Word-Level N-Grams Similarity. As its name implies, word-level N-grams similarity
computes the similarity of the two pages du and dv using common n-grams in those
pages. This feature is selected due to the observation that the longer the n-gram
the more important it is in the similarity computations. N-grams capture the topical

10We have implemented an ad hoc function for comparing middle names. It, for instance, knows that “Andrew”
and “A.”, could be the same even though the spelling is different.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



7:38 R. Nuray-Turan et al.

Ci Cj

p1

p2

p3

p4

pn

(a) cluster pair with probabilities on the edges (b) cluster pair where all probabilities are 1

C2k C2k+1

p1=1

p2=1

p3=1

p4=1

pwk=1

Fig. 24. Query selection problem.

similarity of du and dv, which is measured by the number of longest common n-grams
in du and dv. In our implementations, we extracted n-grams of size 2 to 6. Each word in
an n-gram is stemmed and if there is a stop-word in the n-gram it is removed from it.
In SA training explained in Section 5, five different weights are learned for the n-gram
feature, one for each n, where n = 2, 3, 4, 5, 6.

To illustrate the usefulness of n-grams, suppose that a USC Webpage contains a long
list of all the recent talks of its visitors in the form of the name of each visitor and
the title of his/her talk. Assume that one of the many entries is a talk by Tom Mitchel
with the 6-word title that matches the title of one of his recent publications. Assume
that the homepage of Tom Mitchel, among many other things, mentions this recent
publication as well. In this scenario, TF/IDF on keywords, or even named entities, is
unlikely to help, because these small matching entries (for the title of the paper and
talk) will be lost in the abundance of other information in these Webpages. But even in
the absence of any other linking information, the matching 6-gram might be positive
evidence that the two Webpages corefer to the same Tom Mitchel, especially if the
URLs of the two Webpages do not overlap. This is since the likelihood that 6 random
words would appear in the same 6-gram sequence in two different Webpages for two
different namesakes is low.

A.3. Complexity of the Query Selection Problem

Under simplified assumptions, we can view the query selection problem as follows; see
Figure 24(a). Let Ci, C j be a cluster pair under consideration and �Qij be the expected
quality improvement if these clusters are grouped together. Let Eij be the inter-cluster
edges between Ci, C j and Gij be the to-be-chosen subset of Eij that corresponds to
the queries that will be issued to the search engine. Given the probabilities on the
edges of Gij we can compute probability P(Ci, C j merged|Gij) that Ci, C j getting merged
given the results of Gij . We can compute the expected benefit for Ci, C j given Gij as
�Qij · P(Ci, C j merged|Gij). Now our objective is to select a subset of queries such that
the total expected benefit of the selected queries is maximized and the total number
of queries does not exceed the limit L, where L is the total number of queries we can
submit in n iterations (i.e., L = n·B). Therefore, our goal can be formulated as a solution
to the following optimization problem.

Maximize Z = ∑
Gij

�QijP(Ci, C j merged|Gij),

subject to
∑

Gij
|Gij | ≤ L.

(7)

We can prove the following.

THEOREM 1. Finding a subset of no more than L queries that maximize the expected
benefit is NP-hard.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



Exploiting Web Querying for Web People Search 7:39

PROOF. By reduction from the 0-1 knapsack problem. Recall, in 0-1 knapsack prob-
lem there are n objects o1, o2, . . . , on. Each object oi has integer benefit vi and integer
weight wi. The task is to pack the knapsack such that the benefit is maximized while
the overall weight does not exceed the maximum weight of W [Kellerer et al. 2004].
That is

Maximize Z = ∑n
k=1 vkxk,

subject to
∑n

k=1 wkxk ≤ W,

xk ∈ {0, 1}, k = 1, 2, . . . , n.

(8)

The 0-1 knapsack problem can be mapped, in polynomial time, into an instance
of our problem, as illustrated in Figure 24(b). For each object ok a pair of clusters
C2k, C2k+1 is created. They are then connected via exactly wk edges, where each edge
has probability 1. The expected quality improvement �Q2k,2k+1 by merging these two
clusters is set to �Q2k,2k+1 = vk. The parameter N2k,2k+1 that corresponds to the min-
imum number of merge decisions needed to merge C2k, C2k+1 is set to N2k,2k+1 = wk.
That way, P(C2k, C2k+1 merged|G2k,2k+1) = 1 only if all edges in E2k,2k+1 are chosen for
querying, that is, when |G2k,2k+1| = wk. Otherwise, when |G2k,2k+1| < wk it follows that
P(C2k, C2k+1 merged|G2k,2k+1) = 0. Parameter L is set to L = W . Clearly, given the
one-to-one mapping, if this instance of the problem has a polynomial solution then
0-1 knapsack problem has a polynomial solution and vice versa. Thus the problem is
NP-hard.

ACKNOWLEDGMENTS

We would like to thank Raghu Ramakrishnan, Rahul Hampole, and Nagesh Pobbathi of Yahoo! for making
Yahoo! BOSS system11 available for large-scale experimentation. Their help has resulted in a significant
improvement in the quality of our publication.

REFERENCES

ARTILES, J., GONZALO, J., AND SEKINE, S. 2007. The SemEval-2007 WePS evaluation: Establishing a benchmark
for the web people search task. In Proceedings of SemEval-2007 Workshop.

ARTILES, J., GONZALO, J., AND SEKINE, S. 2009. Weps 2 evaluation campaign: Overview of the web people search
clustering task. In Proceedings of the Web People Search Evaluation Workshop (WePS’09).

ARTILES, J., GONZALO, J., AND VERDEJO, F. 2005. A testbed for people searching strategies in the WWW. In
Proceedings of the ACM SIGIR Conference.

BAGGA, A. AND BALDWIN, B. 1998. Entity-Based cross-document coreferencing using the vector space model.
In Proceedings of the International Conference on Computational Linguistics.

BALOG, K., AZZOPARDI, L., AND RIJKE, M. 2009. Resolving person names in web people search. In Weaving
Services and People on the World Wide Web, 301–323.

BANSAL, N., BLUM, A., AND CHAWLA, S. 2004. Correlation clustering. Mach. Learn. 56, 1.
BEKKERMAN, R. AND MCCALLUM, A. 2005. Disambiguating web appearances of people in a social network. In

Proceedings of the International Conference on World Wide Web (WWW).
BOLLEGALA, D., MATSUO, Y., AND ISHIZUKA, M. 2007. Measuring semantic similarity between words using web

search engines. In Proceedings of the International Conference on World Wide Web (WWW).
BORZSONYI, S., KOSSMANN, D., STOCKER, K., AND PASSAU, U. 2001. The skyline operator. In Proceedings of the

International Conference on Data Engineering (ICDE). 421–430.

11Yahoo! Search BOSS is a commercial service that provides developers access to various information
sources such as Web, image and news search for a low per-query fee. It supports advanced capabil-
ities to run complex queries on such data sources. More information regarding BOSS is available at
http://developer.yahoo.com/search/boss/.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



7:40 R. Nuray-Turan et al.

CHEN, S., KALASHNIKOV, D. V., AND MEHROTRA, S. 2007. Adaptive graphical approach to entity resolution. In
Proceedings of the ACM IEEE Joint Conference on Digital Libraries (JCDL).

CHEN, Y., LEE, S. Y. M., AND HUANG, C.-R. 2009a. Polyuhk: A robust information extraction system for web
personal names. In Proceedings of the Web People Search Evaluation Workshop (WePS 2009).

CHEN, Y. AND MARTIN, J. H. 2007. Cu-Comsem: Exploring rich features for unsupervised web personal name
disambiguation. In Proceedings of the SemEval-2007 Workshop.

CHEN, Z., KALASHNIKOV, D. V., AND MEHROTRA, S. 2005. Exploiting relationships for object consolidation. In Pro-
ceedings of the International ACM SIGMOD Workshop on Information Quality in Information Systems
(IQIS).

CHEN, Z. S., KALASHNIKOV, D. V., AND MEHROTRA, S. 2009b. Exploiting context analysis for combining multiple
entity resolution systems. In Proceedings of the ACM SIGMOD Conference.

CHO, J., GARCIA-MOLINA, H., HAVELIWALA, T., LAM, W., PAEPCKE, A., RAGHAVAN, S., AND WESLEY, G. 2006. Stanford
webbase components and applications. In ACM Trans. Internet Technol.

ELMACIOGLU, E., KAN, M.-Y., LEE, D., AND ZHANG, Y. 2007a. Web based linkage. In Proceedings of the WIDM07
Conference.

ELMACIOGLU, E., TAN, Y. F., YAN, S., KAN, M.-Y., AND LEE, D. 2007b. Psnus: Web people name disambiguation
by simple clustering with rich features. In Proceedings of the SemEval Conference.

GABRILOVICH, E. AND MARKOVITCH, S. 2007. Computing semantic relatedness using wikipedia-based explicit
semantic analysis. In Proceedings of the IJCAI Conference.

GONG, J. AND OARD, D. 2009. Determine the entity number in hierarchical clustering for web personal name
disambiguation. In Proceedings of the Web People Search Evaluation Workshop (WePS).

GUHA, R. AND GARG, A. 2004. Disambiguating people in search. Tech. rep., Stanford University.
HAN, X. AND ZHAO, J. 2009. Named entity disambiguation by leveraging wikipedia semantic knowledge. In

Proceedings of the CIKM Conference.
HAN, X. AND ZHAO, J. 2010. Structural semantic relatedness: A knowledge-based method to named entity

disambiguation. In Proceedings of the Annual Meeting of the ACL.
HIRSCH, J. 2005. An index to quantify an individual’s scientific research output. Proc. Nat. Acad. Sci. 102, 46,

16569.
IRIA, J., XIA, L., AND ZHANG, Z. 2007. Wit: Web people search disambiguation using random walks. In Proceed-

ings of the SemEval-2007 Workshop.
JIANG, L., WANG, J., AN, N., WANG, S., ZHAN, J., AND LI, L. 2009. Grape: A graph-based framework for disam-

biguating people appearances in web search. In Proceedings of the ICDM Conference.
KALASHNIKOV, D. V., CHEN, Z., MEHROTRA, S., AND NURAY, R. 2008a. Web people search via connection analysis.

IEEE Trans. Knowl. Data Engin. 20, 11.
KALASHNIKOV, D. V. AND MEHROTRA, S. 2006. Domain-independent data cleaning via analysis of entity-

relationship graph. ACM Trans. Datab. Syst. 31, 2, 716–767.
KALASHNIKOV, D. V., MEHROTRA, S., CHEN, S., NURAY, R., AND ASHISH, N. 2007. Disambiguation algorithm for

people search on the web. In Proceedings of the IEEE 23rd International Conference on Data Engineering
(ICDE).

KALASHNIKOV, D. V., MEHROTRA, S., AND CHEN, Z. 2005. Exploiting relationships for domain-independent data
cleaning. In Proceedings of the SIAM International Conference on Data Mining (Data Mining).

KALASHNIKOV, D. V., NURAY-TURAN, R., AND MEHROTRA, S. 2008b. Towards breaking the quality curse. A web-
querying approach to Web People Search. In Proceedings of the SIGIR Conference.

KANANI, P., MCCALLUM, A., AND PAL, C. 2007. Improving author coreference by resource-bounded information
gathering from the web. In Proceedings of the IJCAI Conference.

KELLERER, H., PFERSCHY, U., AND PISINGER, D. 2004. Knapsack Problems. Springer.
KOSSMANN, D., RAMSAK, F., AND ROST, S. 2002. Shooting stars in the sky: An online algorithm for skyline

queries. In Proceedings of the VLDB Conference.
LERMAN, I. C. 1970. Les Bases de la Classification Automatique. Gauthier-Villars.
LI, X., MORIE, P., AND ROTH, D. 2005. Semantic integration in text: From ambiguous names to identifiable

entities. AI Mag. 45–68.
LIU, Z., LU, Q., AND XU, J. 2011. High performance clustering for web person name disambiguation using topic

capturing. In Proceedings of the International Workshop on Entity-Oriented Search (EOS).
MANN, G. S. AND YAROWSKY, D. 2003. Unsupervised personal name disambiguation. In Proceedings of the ACL

Conference.
NIU, C., LI, W., AND SRIHARI, R. K. 2004. Weakly supervised learning for cross-document person name disam-

biguation supported by information extraction. In Proceedings of the Conference ACL.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.



Exploiting Web Querying for Web People Search 7:41

NURAY-TURAN, R., CHEN, Z., KALASHNIKOV, D. V., AND MEHROTRA, S. 2009. Exploiting Web querying for Web
People Search in WePS2. In Proceedings of the 2nd Web People Search Evaluation Workshop (WePS).

NURAY-TURAN, R., KALASHNIKOV, D. V., AND MEHROTRA, S. 2007. Self-tuning in graph-based reference disam-
biguation. In Proceedings of the DASFAA Conference.

NURAY-TURAN, R., KALASHNIKOV, D. V., MEHROTRA, S., AND YU, Y. 2011. Attribute and object selection queries on
objects with probabilistic attributes. ACM Trans. Datab. Syst. 36, 4.

ONO, S., SATO, I., YOSHIDA, M., AND NAKAGAWA, H. 2008. Person name disambiguation in web pages using social
network, compound words and latent topics. In Proceedings of the PAKDD Conference. 260–271.

RAO, D., GARERA, N., AND YAROWSKY, D. 2007. Jhu1 : An unsupervised approach to person name disambiguation
using web snippets. In Proceedings of the SemEval-2007 Workshop.

SEARCH ENGINE WATCH. 2006. Searches per day. http://searchenginewatch.com/2156461.
STANFORD NER. Stanford ner. http://nlp.stanford.edu/ner/index.shtml.
VU, Q., TAKASU, A., AND ADACHI, J. 2008. Improving the performance of personal name disambiguation using

web directories. Inf. Process. Manag. 44, 4, 1546–1561.
WAN, X., GAO, J., LI, M., AND DING, B. 2005. Person resolution in person search results: Webhawk. In Proceed-

ings of the CIKM Conference.
YOSHIDA, M., IKEDA, M., ONO, S., SATO, I., AND NAKAGAWA, H. 2010. Person name disambiguation by bootstrap-

ping. In Proceedings of the SIGIR Conference.

Received February 2011; revised July 2011; accepted October 2011

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 7, Publication date: February 2012.


