
3

Attribute and Object Selection Queries on Objects
with Probabilistic Attributes

RABIA NURAY-TURAN, DMITRI V. KALASHNIKOV, SHARAD MEHROTRA,
and YAMING YU, University of California, Irvine

Modern data processing techniques such as entity resolution, data cleaning, information extraction, and
automated tagging often produce results consisting of objects whose attributes may contain uncertainty.
This uncertainty is frequently captured in the form of a set of multiple mutually exclusive value choices
for each uncertain attribute along with a measure of probability for alternative values. However, the lay
end-user, as well as some end-applications, might not be able to interpret the results if outputted in such
a form. Thus, the question is how to present such results to the user in practice, for example, to support
attribute-value selection and object selection queries the user might be interested in. Specifically, in this
article we study the problem of maximizing the quality of these selection queries on top of such a probabilistic
representation. The quality is measured using the standard and commonly used set-based quality metrics.
We formalize the problem and then develop efficient approaches that provide high-quality answers for these
queries. The comprehensive empirical evaluation over three different domains demonstrates the advantage
of our approach over existing techniques.

Categories and Subject Descriptors: H.2.m [Database Management]: Miscellaneous—Selection queries
on probabilistic data; H.2.4 [Database Management]: Systems—Query processing; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval—Selection process, Retrieval models

General Terms: Algorithms, Experimentation, Measurement, Performance, Reliability

Additional Key Words and Phrases: Attribute value selection, object selection query, result quality,
F-measure, probabilistic data

ACM Reference Format:
Nuray-Turan, R., Kalashnikov, D. V., Mehrotra, S., and Yu, Y. 2012. Attribute and object selection queries
on objects with probabilistic attributes. ACM Trans. Datab. Syst. 37, 1, Article 3 (February 2012), 41 pages.
DOI = 10.1145/2109196.2109199 http://doi.acm.org/10.1145/2109196.2109199

1. INTRODUCTION

The need of modern applications to process and analyze large volumes of raw data,
such as data collected from Web sources, has brought about the creation of a wide
variety of data processing techniques. Many recent approaches have considered using
probabilistic models for such data processing tasks. Examples include information
extraction using conditional random fields [Satpal and Sarawagi 2007], probabilistic
techniques to entity resolution [Kalashnikov and Mehrotra 2006; Wick et al. 2008],
topic models [Asuncion et al. 2008], automated tagging of text [Steyvers et al. 2004],
and of images [Kalashnikov et al. 2011]. Such probabilistic models often result in objects
with probabilistic attributes wherein each attribute is represented as a set of mutually

This work was supported in part by NSF grant CNS-1118114, DARPA grant HR0011-11-C-0017, and a gift
from Google.
Authors’ addresses: R. Nuray-Turan, D. V. Kalashnikov (corresponding author), S. Mehrotra, and Y. Yu,
University of California, Irvine; email: dvk@ics.uci.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 0362-5915/2012/02-ART3 $10.00

DOI 10.1145/2109196.2109199 http://doi.acm.org/10.1145/2109196.2109199

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

3:2 R. Nuray-Turan et al.

exclusive alternatives, each with an explicit estimate of probability of being the true
value of the attribute. Our goal in this article is to explore effective approaches for
attribute and object selection queries over such a probabilistic representation, where
the queries are defined as folows.

(1) Attribute Value Selection. The query is for a given object to list the values of its
attributes. Such a query arises, for instance, when a user browsing through the
image collection is interested in the set of attributes the publisher has associated
with the image, for example, “25th anniversary celebration”.1

(2) Object Selection Query. Given query Q = {q1, . . . , qm} the goal is to select all the
objects whose attributes include query terms {q1, . . . , qm}.

Given this probabilistic representation and the two types of queries of interest, a
natural question is: What should we return as an answer to the end user?

Observe that if the ground-truth values were known for all uncertain attributes,
then the database would have been deterministic and finding the correct ground-truth
answers G to these selection queries would have been straightforward. However, since
the true values are not known, G is also not known, and any algorithm will need to
decide how to choose its answer A, based on the possible values of object attributes and
their probabilities.

One common solution to support these queries is to store the data in a probabilistic
DBMS and then use the DBMS’s functionality to process the queries [Widom 2005;
Antova et al. 2008; Singh et al. 2008; Dalvi and Suciu 2004]. The result of a selection
query is an uncertain relation with tuples associated with the corresponding prob-
abilities of being in the answer. However, from the perspective of the lay end-user,
such a probabilistic output might not always be satisfactory. The main drawback is
that a probabilistic result could be a long and overwhelming list of alternatives with
associated probability values, which the end-user might not know how to interpret.

This drawback has indeed been long realized in previous research. As a result,
various basic mechanisms to convert the probabilistic answer into the corresponding
shorter and/or nonprobabilistic result A have been considered (refer to Section 2.5).
Answer A computed by such techniques might not be equal to the true correct answer
G, since G is unknown. The main challenge is thus to design an approach that com-
putes high-quality results in a computationally efficient manner, where the quality is
measured using some quality metric M(A, G) that reflects the closeness of the result A
to the true answer G.

In this article we propose algorithms that maximize the quality for these two types of
selection queries, where the quality is measured using the standard Fα-measure. Fα is a
commonly used set-based quality metric that we will cover in more detail in Section 2.4.
The proposed solution is based on estimating the expected quality of different answers
and then picking the final answer as the one that maximizes the expected quality. While
we develop our approach for the specific aforementioned probabilistic representation
and queries, our techniques have the potential to benefit probabilistic databases in
general. Specially, the main contributions of this work are as follows.

—A novel algorithm for attribute value selection. The algorithm has linear time com-
plexity O(n), where n is the number of alternative values for a given attribute. The
proposed solution reaches optimal expected quality and outperforms the existing
solutions under the Fα quality metric (Section 3).

—An efficiency optimization technique for attribute selection query (Section 3.4).

1Attributes are essentially used to enhance the user’s experience of the image as in common social networking
Websites such as Facebook.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

Attribute and Object Selection Queries on Objects with Probabilistic Attributes 3:3

—A novel algorithm for object selection query. The algorithm has linear time complexity
O(n), where n is the number of objects whose probability to satisfy the query is in
(0, 1] interval. In empirical studies, the proposed method reaches nearly optimal
expected quality under the Fα quality metric (Section 4).

—Efficiency optimization methods for object selection query (Section 4.7).
—An explanation of how the knowledge of dependencies and correlations in attribute

data, when available, could be exploited to further increase the quality of the output
for object selection queries (Section 4.8).

—Extensive empirical evaluation of the proposed solution (Section 5).

The rest of this article is organized as follows. Preliminary material is covered in
Section 2. Sections 3 and 4 provide solutions to attribute-value and object selection
queries. These solutions are empirically evaluated in Section 5. Then the related work
is covered in Section 6. Finally, Section 7 concludes the article by highlighting the
impact of the proposed approaches and outlining future work directions.

2. PRELIMINARIES

In this section we cover some preliminary basic material needed to understand the
remainder of the article. We first present motivating applications in Section 2.1. We
then introduce our running example in Section 2.2. After that we introduce the notation
and define the problem in Section 2.3. The base quality metrics that will be used in
the article are then covered in Section 2.4. We present the baseline solutions for the
problem in Section 2.5. Finally, we outline our overall approach in Section 2.6.

2.1. Motivating Applications

We motivate the usefulness and applicability of the proposed query answering approach
by drawing upon three data processing techniques that produce data with probabilistic
attributes, which are overviewed next.

Entity Resolution. The first one is an instance of the entity resolution problem known
as fuzzy lookup [Chaudhuri et al. 2003; Kalashnikov and Mehrotra 2006; Nuray-Turan
et al. 2007; Chen et al. 2007]. In the setting of this problem the algorithm is given a
dataset that contains objects with uncertain attributes Odrt and a set of clean objects
Ocln. Each uncertain attribute is a reference to one object from Ocln, but the description
provided by the reference can be ambiguous and match multiple objects from Ocln. The
task is to find for each uncertain reference r the right object O ∈ Ocln that r refers
to. For instance, in a publication database scenario, Odrt can be a publication table
storing, among other publication attributes, uncertain references to authors, such as
“J. Smith”. Set Ocln can be a clean author table storing complete information on all
possible authors. The task can be to determine for each uncertain author reference
which specific author in the author table it refers to. The output of fuzzy lookup is a
set of possible authors along with the corresponding probabilities that the uncertain
attribute refers to these authors [Kalashnikov and Mehrotra 2006; Kalashnikov et al.
2005; Chen et al. 2009].

Information Extraction. Information extraction and slot filling is the second class of
data processing techniques that can use the probabilistic representation, for example,
Ashish et al. [2009] and Satpal and Sarawagi [2007]. For example, the task might be to
extract from a corpus of Webpages information about people mentioned there, including
their affiliations. An extractor would often associate mutually exclusive alternatives
with each possible affiliation along with its confidence in each alternative.2 These
confidences can be converted into the corresponding probabilities.

2If an extractor has to commit to just one value for the affiliation, it would typically pick the top most likely
alternative.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

3:4 R. Nuray-Turan et al.

a1

sun fun peach beach reach tree freethree

0.6 0.4 0.4 0.3

a2

0.3 0.7 0.2

a3

0.1

Fig. 1. Example of uncertain attributes.

Speech Tagging. The third data processing technique that can utilize the probabilistic
representation are various content annotation and speech tagging approaches that em-
ploy speech recognition, for example, Chen et al. [2001] and Kalashnikov et al. [2011].
For instance, most camera devices have built-in microphones and provide mechanisms
to associate images with speech input. The user would take a picture and speak the de-
sired attributes into the device’s microphone. A speech recognizer transcribes the audio
signal into text. This text is used in assigning attributes to the image. Such annotation
approaches have been demonstrated useful in a variety of application settings, includ-
ing reconnaissance and crisis response [Kalashnikov et al. 2011; Desai et al. 2009].
When processing an utterance of a word, a speech recognizer typically associates the
N-best list for the utterance. The N-best list contains up to N mutually exclusive alter-
natives, in the form of text, for the utterance, along with the corresponding confidences.
These confidences are then transformed into the probabilities. For example, for the ut-
terance of a word “fire” the N-best list, where N is 3, might be “flyer”, “fire”, and “fare”
with the probabilities 0.6, 0.3, and 0.1. We will use the image tagging scenario to derive
most of the illustrative examples in this article.

2.2. Running Example

Let us introduce a running example of an object with probabilistic attributes. The
example will be used to better illustrate various concepts covered in the article.

Figure 1 illustrates the probabilistic representation in the context of automated im-
age tagging. It shows an image annotated with three tags that correspond to attributes
a1, a2, and a3. The first tag a1 has two possible options: it can be either sun with prob-
ability 0.6 or fun with probability 0.4. The second tag a2 can be either peach, beach, or
reach with probabilities 0.4, 0.3, and 0.3. The options for the third tag a3 are tree, three,
and free with probabilities 0.7, 0.2, and 0.1, respectively. The ground-truth values for
these attributes are sun, beach, and tree, and they are marked bold in the figure.

Assume that we want to represent the information about image tags in a Trio-like
probabilistic DBMS [Widom 2005]. Then it can be achieved, for instance, by creating
Tags table that would store the association between tags and images, as well as tag
values in the form of 〈Obj ID, Tag ID, Tag Val〉 tuples, as illustrated in Table I.3 Here,
Tag Val is the uncertain attribute that stores multiple mutually exclusive values.

Then, an example of an attribute value selection query where the task is to list all
tags of object with id of 100, would be as follows.

3This is just a simplified example to illustrate attribute and object selection queries. It does not reflect all
the capabilities of modern probabilistic DBMS’s.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

Attribute and Object Selection Queries on Objects with Probabilistic Attributes 3:5

Table I. Tags Table Showing one annotated image

Obj ID Tag ID Tag Val

1 1 sun 0.6; fun 0.4
1 2 peach 0.4; beach 0.3; reach 0.3
1 3 tree 0.7; three 0.2; free 0.1

ai1

Oi
(e.g., image)

v11

p11

v12

p12

v1m1

p1m1

ai2

v21

p21

v22

p22

v2m2

p2m2

aik

vk1

pk1

vk2

pk2

vk,mk

pk,mk

Fig. 2. Uncertain object attributes.

SELECT Tag ID, Tag Val
FROM Tags
WHERE Img ID = 100
ORDER BY Tag ID;

Similarly, an example of object retrieval query, where the goal is to select all objects
that contain tag “sun”, would be as follows.

SELECT DISTINCT Obj ID
FROM Tags
WHERE Tag Val = ’sun’;

To get objects annotated with both “sun” and “beach”, an object retrieval query involves
a join and would be as follows.

SELECT DISTINCT T1.Obj ID
FROM Tags T1, Tags T2
WHERE T1.Obj ID = T2.Obj ID AND
T1.Tag Val = ’sun’ AND
T2.Tag Val = ’beach’;

Notice that these queries address a database problem of finding images that have
certain tags. They are not solving a computer vision problem of finding images that
depict objects described by the query terms. That is, for a query “sun” the task is to
find images that have a tag “sun” and not images that contain sun in them. The latter
is a large area of research, but not the focus of this article.

2.3. Notation and Problem Definition

After applying one of the applications described in Section 2.1, the resulting dataset D
will consist of, among other things, a set of objects O = {O1, O2, . . . , O|O|}. Each object
Oi is annotated with a set of ki attributes {ai1,ai2, . . . , aiki } as shown in Figure 2. The
ground-truth value ga of each attribute a is uncertain and is not known in general.
Instead, each attribute a is given as a random variable that takes value vi ∈ Va with
probability pi ∈ Pa. The option set Va = {v1, v2, . . . , vna} contains mutually exclusive

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

3:6 R. Nuray-Turan et al.

Table II. Notation

Notation Meaning
D the dataset
Oj j-th object in D

O = {O1, O2, . . . , O|O|} the set of all objects in D
a an uncertain attribute of some object
ga the unknown ground truth value of a
vi i-th possible value of a

pi = P(vi = ga) probability that vi is the right choice
V = {v1, v2, . . . , vn} set of possible values of a
P = {p1, p2, . . . , pn} probabilities for V , p1 ≥ · · · ≥ pn

wi ∈ [0, 1] algorithm’s confidence that vi is ga
W = {w1, w2, . . . , wn} confidence vector for a

GQ ground truth answer for query Q
pi = P(Oi ∈ GQ) probability that Oi belongs to GQ

possible values for a and the probability set Pa = {p1, p2, . . . , pna} stores the correspond-
ing probabilities, where pi = P(vi = ga) and

∑
i pi = 1. For notational convenience, for

each attribute a we will renumber the vi ’s such that p1 ≥ p2 ≥ · · · ≥ pna . Together, Va
and Pa encode the probability mass function (pmf) for a, which, unlike g, is known for
each attribute a. The notation is summarized in Table II.

Example 2.3.1. Consider the running example in Figure 1. The dataset D is the
collection of images. The shown image corresponds to some object Oj ∈ D that has three
uncertain attributes a1, a2, and a3. The possible values for attribute a1 are v11 = “sun”
and v12 = “fun”, the corresponding probabilities for these values are p11 = 0.6 and
p12 = 0.4. The ground truth value for a1 is g1 = “sun”. Similarly, for attribute a2 we
have v21 = “peach”, v22 = “beach”, and v23 = “reach”, with probabilities p21 = 0.4,
p22 = 0.3, and p23 = 0.3, and ground truth g2 = “beach”.

Let us consider attribute value selection query on attribute a1 for the running ex-
ample. The possible set-based answers to the query could be A1 = {}, A2 = {sun},
A3 = {fun}, and A4 = {sun, fun}.4 Only one of these answers, A2, is equal to the ground-
truth answer G = {sun}. The remaining answers are either inaccurate (they do not
contain sun) or only partially accurate (they contain wrong answers in addition to
sun). It is possible to use a quality metric M(Ai, G), such as Fα-measure explained in
Section 2.4, for assessing the quality of answers.5 An approach will need to pick one
Ai that it thinks will most likely result in the highest quality. Furthermore, given that
there could be many possible answers, it will need to pick its answer quickly to be
feasible in practice.

The overall goal is to design efficient and high-quality approaches for answering the
two types of selection queries on top of this probabilistic representation. This goal will
be formalized specifically for attribute and object selection queries in Sections 3 and 4,
respectively.

2.4. Base Quality Metrics

We need to be able to assess the goodness of possible answers produced by various
algorithms for attribute and object selection queries. Given that we are dealing with
set-based answers, we can use one of the standard set-based metrics, such as Dice,
Jaccard, or Fα-measure [Baeza-Yates and Riberto-Neto 1999]. We will primarily focus
on Fα metric, commonly used in database literature.

4In Section 3 we will consider a more general answer representation that allows to associate confidences
with each element in the answer set.
5Under Fα , the quality of answer A = {} will always be zero for attribute retrieval, so this answer can be
omitted from consideration.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

Attribute and Object Selection Queries on Objects with Probabilistic Attributes 3:7

Given query Q, let G be the ground-truth answer set for Q, and A be the answer set
produced by an algorithm. Then these generic metrics are defined as [Baeza-Yates and
Riberto-Neto 1999]

Precision(A, Q) = |A⋂
G|

|A| , (1)

Recall(A, Q) = |A⋂
G|

|G| , (2)

Fα(A, Q) = (1 + α) · Precision(A, Q) · Recall(A, Q)
α · Precision(A, Q) + Recall(A, Q)

. (3)

The purpose of precision is to assess the purity of the answer. By its definition,
precision measures the fraction of the correct items in the answer. The purpose of
recall is to assess the completeness of the answer. It measures the fraction of the
correct elements in the answer.

Frequently, a trade-off exists between precision and recall. That is, it is often easy to
get answers with high precision but low recall and vice versa.6 Since it is desirable to get
answers that have both high precision and recall at the same time, these two metrics
are often combined into a single Fα measure as defined in (3). Parameter α controls the
weight of precision. It is set by the domain expert depending on a particular application,
since some applications prefer higher recall over precision, whereas others require the
reverse. One commonly used value of α is 1 where contribution of precision and recall
are equal and the measure is referred to as the F1-measure.

Example 2.4.1. Assume that the correct (ground-truth) answer to query Q is
G = {O1, O2, O5, O6, O9, O10}. Assume that an algorithm computes its answer to Q
as A = {O1, O3, O5, O7, O9}. Then the correct elements in A are A ∩ G = {O1, O5, O9}
and thus the precision of A is 3

5 as only 3 out 5 elements are correct. Similarly, the
recall of A is 3

6 = 1
2 since only 3 out of 6 correct answers are returned in A.

2.5. Basic Solutions

It is possible to use existing techniques to develop basic solutions to the problem of an-
swering attribute and object selection queries on top of the probabilistic representation.
These techniques are reviewed next.

2.5.1. Attribute Selection Techniques. The techniques listed next have prefix Attr- to
highlight the fact that they are applied to attribute values.
Attr-Top-1. For an attribute a, among {v1, v2, . . . , vna} values, the top-1 approach,

picks the top-1 option v1 as having the highest probability p1 of being the correct value
for a. The object Oi is thus annotated with the most likely correct values of its attributes.
This approach can also be used for object selection queries, where Oi is selected when
its top-1 attribute values contain the query terms {q1, q2, . . . , qm}.
Attr-Top-K. Attr-Top-1 approach can be generalized into Attr-Top-K solution,

which picks the top K values from V to be associated with attribute a. If |V | < K
then Attr-Top-K will associate with a all values from V .
Attr-All. An alternative to Attr-Top-1 is the Attr-All approach that associates

with each attribute a all of its possibilities {v1, v2, . . . , vna}. In terms of object selection
queries, Attr-All always leads to the best possible recall since it uses all possible

6For instance, including all elements of the dataset in the answer will lead to the highest possible recall, but
likely at the cost of poor precision.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

3:8 R. Nuray-Turan et al.

values. The precision, however, will suffer, as many irrelevant attributes are associated
with each object Oi, leading to a possible wrongful selection of Oi when these attributes
are used in a query.
Attr-Thr-τ . A thresholding-based approach is the middle ground between

Attr-Top-1 and Attr-All strategies. It employs a prespecified cut-off threshold τ and
associates with each attribute a the subset of {v1, v2, . . . , vna} consisting of v1 and all
the vi ’s such that pi ≥ τ .

2.5.2. Object Selection Techniques. For object queries, one solution is first to fix the
attributes using one of the previous strategies. This essentially will create a deter-
ministic/nonprobabilistic version of the dataset. Then traditional object selection can
be employed. We will refer to these approaches as Attr-Top-1, Attr-Top-K, Attr-All,
Attr-Thr-τ .

We can observe that Attr-Top-1 is an excellent choice for applications that require
to commit to a single value for each uncertain attribute, for both attribute and object
selection queries. However, the important question that we study in this article is
whether higher-quality approaches can be designed for many applications that do not
have such a requirement. For instance, we can notice that this approach may fail to
include in the answer set many relevant objects wherein the ground-truth values of
the attributes happened not to get the highest probability. Thus, the Top-1 approach
might be suboptimal for applications that give preference to high recall.

Another approach is Thr-τ method that selects the objects whose probabilities to
belong to the ground truth exceed the predefined threshold τ . A way to compute these
probabilities will be discussed in Section 4.

Example 2.5.1. Let us consider the example illustrated in Figure 1. The Attr-Top-1
approach will pick sun, peach, and tree as values for tags a1, a2, and a3 and thus it
will incorrectly assign tag a2 whose correct value is beach. The Attr-All approach
will associate all the possibilities with each tag and thus the image will be wrongfully
returned if the query is say Q = { f un}, since fun is one of the possible options for tag
a1. The Threshold approach for τ = 0.4 will pick sun and fun for a1, peach for a2, and
tree for a3 and thus the image also will be wrongfully returned for, say, Q = { f un}.
2.6. Overview of our MoE Approach

Our goal is to efficiently compute answer A to selection queries that would maximize
quality M(A, G), where we fix the quality metric to be the Fα-measure. One of the
challenges is that the ground-truth answer G is unknown to the algorithm beforehand,
so that it cannot measure quality M(A, G) of different answers directly.

The idea of our solution, to which we refer as Maximization of Expectation (MoE),
is to find answer Aopt that would maximize the quality in the expected sense. Let G be
the space of all possible ground-truth answers, and Gi ∈ G be one particular possible
ground truth. Then, for a given answer A we can compute its expected quality.

E(Fα(A)) =
∑
Gi∈G

Fα(A, Gi)P(Gi = G)

Let A be the space of all feasible answers. The best answer then can be chosen as

Aopt = argmax
A∈A

E(Fα(A)).

The intuition is that while Aopt might not be equal to G, it is the best answer to output
given that G could be any of Gi with probabilities P(Gi = G). Computing Aopt, however,
can be quite costly, thus the challenge that needs to be addressed is how to compute
it in an efficient manner. We show that a linear-time algorithm exists for attribute

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

Attribute and Object Selection Queries on Objects with Probabilistic Attributes 3:9

values selection. For object selection queries, we show how these expected values can
be estimated quickly, which leads to an algorithm that reaches high quality and at the
same time has linear time complexity.

3. ATTRIBUTE VALUE SELECTION

In this section we study the problem of attribute value selection. Most of the discussion
will be presented in the context of a single attribute and the corresponding F-measure.
For an object with multiple attributes, the overall F-measure is computed as the aver-
age F-measure over all of the object’s attributes. We start by discussing how to choose
a quality metric and answer format in Section 3.1. We then define the expected quality
measures in Section 3.2. With the help of these measures we show that using the pro-
posed confidence-based representation reduces to the case of set-based answers only,
and prove a theorem for assigning optimal (in the expected sense) values to an at-
tribute in Section 3.3. We then introduce an efficiency optimization of the algorithm in
Section 3.4.

3.1. Choosing Quality Metric and Answer Format

Given attribute a, its V = {v1, v2, . . . , vn} and P = {p1, p2, . . . , pn} and the fact that a
has a single unknown ground-truth value g, the task is to decide how to present the
algorithm’s answer for a to the end user. To do so we first need to choose the output
format to represent such results and then develop a method for measuring the quality
of the outputted answer. We are not aware of any specific prior work that addresses
these questions directly for the problem of attribute selection.

3.1.1. Set-Based Answer Format. For some applications there could be a restriction
placed on the format of the answer that would require that a single value vi from
V be chosen as the answer for attribute a. Then the top-1 approach is the right solu-
tion. However, if there is no such requirement, such as in the image tagging context,
then a subset A of V , consisting of multiple elements, can be outputted as value of a.
This set-based answer format has the benefit of showing to the user a set of elements in
which (s)he can recognize (or be informed of) the correct one. However, this set should
be chosen carefully such that it has the high chance of containing the correct answer
while at the same time it should not overwhelm the user with too many wrong answers.
Specifically, the algorithm can represent its answer A in the form of a confidence vector
B = {b1, b2, . . . , bn}, where binary value bi ∈ {0, 1} is set to bi = 1 if the algorithm
decides to put vi in A, and bi = 0 if vi �∈ A.

Example 3.1.1 Consider a case where attribute a has 12 possible values V =
{v1, v2, . . . , v12}, where p1 = 0.5, p2 = 0.4, and p3 = p4 = · · · = p12 = 0.01. Then
examples of answers and their encodings are as follows.

(1) A1 = {v1} as B1 = {1, 0, 0, . . . , 0},
(2) A2 = {v2} as B1 = {0, 1, 0, . . . , 0},
(3) A1,2 = {v1, v2} as B12 = {1, 1, 0, 0, . . . , 0},
(4) A1,2,4 = {v1, v2, v4} as B124 = {1, 1, 0, 1, 0, 0, . . . , 0}, and
(5) A1,2,...,12 = {v1, v2, . . . , v12} as B1,2,...,12 = {1, 1, . . . , 1}

3.1.2. Set-Based Quality Metric. If the ground-truth answer for attribute a is G = {g},
whereas the algorithm outputs its answer as a set A ⊆ V , we need to define what
the utility U [A, g] of the set-based answer to the user is. While the question of util-
ity, or quality, of answer have been explored for various types of queries in the past
[Baeza-Yates and Riberto-Neto 1999], it has not been actively studied for attribute se-
lection queries, so different solutions are possible. Intuitively we want a utility function
to satisfy the following requirements.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

3:10 R. Nuray-Turan et al.

(1) 0 ≤ U [A, g] ≤ 1. The utility function is normalized to [0,1] interval.
(2) U [A, g] = 0 iff g �∈ A. If answer A does not contain the ground-truth element g then

its utility is zero, otherwise it is above zero.
(3) U [A, g] = 1 iff A = {g}. The utility reaches 1 if and only if the answer is equal to

the ground-truth element g.
(4) 0 < U [A, g] < 1, if g ∈ A and |A| ≥ 2. This follows from (1), (2), and (3).
(5) If g ∈ A1, g ∈ A2, |A1| < |A2| then U [A1, g] > U [A2, g]. If two answers contain

the ground-truth value, but one is shorter, then it should be preferred so as not to
overwhelm the user.

While there could be several ways to chose the utility function, in this article we
study set-based quality metrics. Specifically we will focus on the standard Fα measure
which has been explained in Section 2.4. Other common set-based metrics such as Dice
and Jaccard will satisfy the aforementioned requirements and are expected to prefer
similar results as F1, that is, Fα where α is set to its standard value of 1. Fα measures
how much the outputted answer A ⊆ V is different from the ground-truth answer
G = {g}. More formally, for an answer A encoded with the help of binary confidence
vector B, from Eqs. (1), (2), and (3) we get

Precision(B, a) =
∑n

i=1 dibi∑n
i=1 bi

= bg∑n
i=1 bi

, (4)

Recall(B, a) =
∑n

i=1 dibi

1
=

n∑
i=1

dibi = bg, (5)

Fα(B, a) =
(1 + α) bg∑n

i=1 bi
bg

α
bg∑n
i=1 bi

+ bg
= (1 + α)bg

α + ∑n
i=1 bi

. (6)

Here di is the indicator of the ground-truth value: di = 1 if vi = g and di = 0 if vi �= g.
Variable bg ∈ {0, 1} is the binary weight assigned to the ground-truth value g, that
is, bg = bj s.t. bj = g. It is trivial to check that Fα satisfies all of the aforementioned
requirements.

Example 3.1.2 Consider the case from Example 3.1.1. Assume that the ground-truth
value for a is g = v2. Then

(1) F1(A1) = (1+1)·0
1+1 = 0,

(2) F1(A2) = 1,
(3) F1(A1,2) = (1+1)·1

1+2 = 2
3 ,

(4) F1(A1,2,4) = (1+1)·1
1+3 = 2

4 , and
(5) F1(A1,2,...,12) = (1+1)·1

1+12 = 2
13 .

Observe how F1-measure prefers shorter answers that contain the ground-truth
element v2.

Remark 1. It is interesting to study the connection between F1 and other two
common set-based metrics Jaccard and Dice for our case. Let k = |A|, then from
Eq. (6) we get F1(B) = 2 bg

1+k . For Jaccard we get J(A, G) = |A∩G|
|A∪G| = bg

k . For Dice,

D(A, G) = 2|A∩G|
|G|+|A| = 2 bg

1+k = F1(B). Thus, in this case Dice is identical to F1.

3.1.3. Set-Based Metrics with Confidences. Some users, as well as certain applications, in
addition to set-based answer A for a might also want to see confidences wi be associated

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

Attribute and Object Selection Queries on Objects with Probabilistic Attributes 3:11

with each element vi ∈ A. More generally, the idea of representing an answer with a
binary membership vector B = {b1, b2, . . . , bn} can be generalized to representing the
answer with a confidence vector W = {w1, w2, . . . , wn}, where wi : 0 ≤ wi ≤ 1 is a real-
valued confidence/weight that the algorithm should associate with each possible value
vi ∈ V . This weight should represent the degree of confidence of the algorithm that
vi should be included in the answer set A. Specifically, we will consider the semantics
where wi represents the degree of membership of vi in A. For example, wi = 0 / wi = 0.5
/ wi = 1 means the algorithm associates zero/half/full mass of vi with A.

Similar to the case of set-based answers, we can define the notion of the utility
U ′[A, g] of a confidence-based answer A to the user. Some natural requirements for
U ′[A, g] are similar to those of U [A, g], but now they are formulated in terms of weights.
Let wA = ∑n

i=1 wi be the weight of answer A, then we have the following.

(*) If wi ∈ {0, 1} for all i, then U ′[A, g] ≡ U [A, g]. If the chosen weights happen to be
only 0 or 1, then a confidence-based answer is equivalent to a set-based answer
and U ′[A, g] should behave the same way as U [A, g].

(1′) 0 ≤ U ′[A, g] ≤ 1. The utility function is normalized to the [0,1] interval.
(2′) U ′[A, g] = 0 iff wg = 0. If the weight wg assigned to g in this answer is zero then

the utility of the answer is also zero.
(3′) U ′[A, g] = 1 iff wA = wg = 1. The utility reaches 1 if and only if the ground-truth

element g gets weight of 1 (i.e, wg = 1) and all other elements get weight of zero
(i.e., wA = wg).

(4′) 0 < U ′[A, g] < 1, if wA > wg > 0. Follows from (1′), (2′), and (3′).
(5′) For A1 and A2, if w1

g = w2
g > 0 but wA1 < wA2 then U ′[A1, g] > U ′[A2, g]. If two

answers assign the same positive weight to g (i.e., w1
g = w2

g > 0), but one answer
assigns less weight to incorrect elements (and thus, wA1 < wA2) then the utility of
that answer is larger.

While there could be various metrics that satisfy these conditions, we will use
weighted versions of the F-measure, which is a harmonic mean of weighted precision
and recall. These metrics substitute boolean bi ’s with real valued weights wi ’s.

Precision(W, a) = wg∑n
i=1 wi

, Recall(W, a) = wg, Fα(W, a) = (1 + α)wg

α + ∑n
i=1 wi

(7)

Here, similar to bg, variable wg is the weight assigned to the ground-truth value g, that
is wg = w j such that v j = g. Similar metrics have been used in the context of infor-
mation extraction, speech segmentation, and information retrieval to measure quality
when the degree of membership of an element to a set is expressed as a real value
[Carroll and Briscoe 2002; Martı́n-Bautista et al. 2000; Ziolko et al. 2007; Ravindra
et al. 2004].

Observe that using confidence vectors provides great flexibility for an algorithm to
output its answers. If the algorithm is not fully confident in whether some value vi
should be in the answer set for attribute a, it can output its confidence weight wi that
is less than 1, such as wi = 0.8. The metrics provided in Eq. (7) are capable of factoring
in confidences, as they encourage the algorithm to give greater weight to the right
option and discourage it from doing so to the wrong options.

Example 3.1.3. Let us consider some of the possible answers.

(1) Av1:1,v2:1 with W = {1, 1, 0, 0, . . . , 0}, is where v1 and v2 are fully included in the
answer; given it is identical to A1,2 earlier.

(2) Av1:0.5,v2:0.4 with W = {0.5, 0.4, 0, 0, . . . , 0} is where only v1 and v2 are in the answer
and w1 = p1 and w2 = p2.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

3:12 R. Nuray-Turan et al.

(3) Av1: 5
9 ,v2: 4

9
with W = { 5

9 , 4
9 , 0, 0, . . . , 0} is where only v1 and v2 are in the answer and

w1, w2 are “normalized” probabilities w1 = p1
p1+p2

= 5
9 and w2 = p2

p1+p2
= 4

9 , chosen
such that they are proportional to p1 and p2 and w1 + w2 = 1.

(4) A1,2,...,12 with W = {0.5, 0.4, 0.01, 0.01, . . . , 0.01} is the answer with all the elements
from V and where wi = pi for i = 1, 2, . . . , 12. It represents the case where the
weights are set to the corresponding probabilities.

Then we have the following.

(1) F1(Av1:1,v2:1) = F1(A1,2) = 2
3 ≈ 0.67,

(2) F1(Av1:0.5,v2:0.4) = (1+1)·0.4
1+0.9 ≈ 0.42,

(3) F1(Av1: 5
9 ,v2: 4

9
) = (1+1)· 4

9
1+1 ≈ 0.44, and

(4) F1(A1,2,...,12) = (1+1)·0.4
1+1 = 0.4.

Observe that the weighted F1-measure prefers the first answer Av1:1,v2:1: it is short
and places high confidence of 1 into the correct element v2. The second and third
answers are also short, but the placed confidences in the right element v2 are much
lower, so these answers are scored lower by F1. While the combined weight of elements
in the fourth answer is only 1, unlike the first answer, it places much lower confidence
in v2 so its score is also lower.

Remark 2. Let us compare weighted versions of F1, Jaccard, and Dice for our case.
From Eq. (7) we have F1(A) = 2wg

1+wA
. For Jaccard and Dice we have J(A, G) = wg

wA
and

D(A, G) = 2wg

1+wA
= F1(A). Hence, in this case Dice is equivalent to F1 and all the proofs

in this article will hold if Fα is replaced with Dice.

For weighted set-based metrics the overall task thus becomes of finding the optimal
combination of weights W that maximizes the user’s quality metric. In the next sections
we will prove a base theorem that if the user chooses the weighted Fα defined in Eq. (7)
as the quality metric, then it is sufficient to consider only binary weights as described
in Section 3.1.2. Hence, there will be no need to “interpret” real-valued confidences by
the end user, as each vi ∈ V is either fully included, or not, in the answer. We will also
show how to construct the optimal (in the expected sense) answers for attribute value
selection queries.

3.2. Expected Measures

Since the weighted Fα measure in Eq. (7) is a generalization of the Fα measure in Eq. (6),
in the subsequent discussion we will focus on the more general case of weighted Fα.
To answer the question of which set of weights W = {w1, w2, . . . , wn} the algorithm
should choose, for given V and P, to maximize the quality of answer, let us define the
expected versions of precision, recall, and Fα. Observe that in Eq. (7) weight wg can be
one of w1, w2, . . . , wn with the corresponding probabilities of p1, p2, . . . , pn. Therefore,
from Eq. (7) for a given answer W the expected value of precision is computed as the
probabilistic average.

E(Precision(W, a)) =
∑n

i=1 piwi∑n
i=1 wi

(8)

Similarly, the expected recall is

E(Recall(W, a)) =
n∑

i=1

piwi. (9)

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

Attribute and Object Selection Queries on Objects with Probabilistic Attributes 3:13

And, the expected value of Fα is

E(Fα(W, a)) = (1 + α)
∑n

i=1 piwi

α + ∑n
i=1 wi

. (10)

Example 3.2.1. For the binary case from Example 3.1.2 we have the following.

(1) E(F1(A1)) = (1+1)·0.5·1
1+1 = 0.5,

(2) E(F1(A2)) = (1+1)·0.4·1
1+1 = 0.4,

(3) E(F1(A1,2)) = (1+1)(0.5·1+0.4·1)
1+2 = 0.6,

(4) E(F1(A1,2,4)) = (1+1)(0.5·1+0.4·1+0.01·1)
1+3 = 0.455, and

(5) E(F1(A1,2,...,12)) = (1+1)·(0.5+0.4+···0.01)
1+12 = 2

13 ≈ 0.15.

Among these answers expected Fα prefers A1,2. This is not surprising since A1,2 is short
and has the high chance of 0.9 to include the correct answer, though it will always have
either 1 or 2 incorrect elements. While answer A1,2,...,12 has 100% chance of including
the correct element, it is long, and the remaining 11 elements are incorrect. Let us now
consider confidence-based Fα from Example 3.1.3.

(1) E(F1(Av1:1,v2:1)) = E(F1(A1,2)) = 0.6,
(2) E(F1(Av1:0.5,v2:0.4)) = (1+1)(0.5·0.5+0.4·0.4)

1+0.9 ≈ 0.43,

(3) E(F1(Av1: 5
9 ,v2: 4

9
)) = (1+1)(0.5· 5

9 +0.4· 4
9)

1+1 ≈ 0.46, and

(4) E(F1(A1,2,...,12)) = (1+1)(0.5·0.5+0.4·0.4+0.01·0.01+···0.01·0.01)
1+1 = 0.411.

We can see that expected F1 prefers A1,2 answer in this case. Answer A1,2,...,12 gets a
lower score than A1,2, as its combined weight is 1, but it associates lower confidence
with the most likely correct elements v1 and v2.

3.3. Maximizing Expectation

Let us compute the optimal combination of weights W = {w1, w2, . . . , wn} that the
algorithm should choose in order to maximize the expected value of Fα defined by
Eq. (10). First, we will need to prove an auxiliary lemma. We note that there are
multiple different ways to prove the subsequent lemmas and theorems, and we have
chosen proofs that we thought would appeal to most of the readers.

LEMMA 1. Let a be an attribute with V = {v1, v2, . . . , vn} and P = {p1, p2, . . . , pn},
where p1 ≥ p2 ≥ · · · ≥ pn > 0. Then, there exists an optimal answer W = {w1, w2, . . . , wn}
that maximizes Fα such that 1 ≥ w1 ≥ w2 ≥ · · · ≥ wn ≥ 0.

PROOF. To prove it, it is sufficient to show that if, for any answer W , there exist
wi, w j ∈ W , where i < j, such that wi < w j then by swapping the values of wi and w j
the expected Fα can only increase or remain unchanged.

Since wi < w j thus w j can be represented as w j = wi + �w, where �w > 0 is
some real positive value. Since pi ≥ pj thus pi can be represented as pi = pj + �p,
where �p ≥ 0 is some nonnegative real value. Observe that exchanging values of
wi and w j will not change the denominator of α + ∑n

i=1 wi in Eq. (10). However, the
numerator (1 + α)

∑n
i=1 piwi will increase. Specifically, the part piwi + pjw j will now

become pjwi + piw j . Thus, before it used to be piwi + pjw j = (pj +�p)wi + pj(wi +�w) =
pjwi + �pwi + pjwi + pj�w. Now it becomes pjwi + piw j = pjwi + (pj + �p)(wi + �w) =
pjwi + pjwi + pj�w + �pwi + �p�w. Therefore it has increased by �p�w ≥ 0. Hence
such a swap will either increase E(Fα(W, a)) or leave it unchanged.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

3:14 R. Nuray-Turan et al.

The next theorem explains the Maximization of Expectation (MoE) strategy7 for
computing an optimal answer that maximizes E(Fα(W, a)).

THEOREM 1. For an attribute aj with V = {v1, v2, . . . , vn} and P = {p1, p2, . . . , pn},
where p1 ≥ p2 ≥ · · · ≥ pn > 0, the expected Fα will be maximized by choosing weights
W such that wi = 1 for i = 1, 2, . . . , k and wi = 0 for i = k + 1, k + 2, . . . , n and where
k = argmaxk

(1+α)
∑k

i=1 pi

α+k .

PROOF. This theorem states that there is an optimal answer that will consist of k
values of 1 trailed by n − k values of 0.

W = {1, 1, . . . , 1︸ ︷︷ ︸
k

, 0, 0, . . . , 0︸ ︷︷ ︸
n−k

} (11)

To prove it observe that from Lemma 1 we know there exists an optimal answer W
such that 1 ≥ w1 ≥ w2 ≥ · · · ≥ wn ≥ 0. If this answer is w1 = w2 = · · · = wn = 1 then it
does conform to (11). If there exist at least one value among w1, w2, . . . , wn that is not
equal to 1, then we can always represent W as

W = {1, 1, . . . , 1︸ ︷︷ ︸
j−1

, w j, w j+1, . . . , wn} (12)

where w j is the first value that is not equal to 1. If w j = 0, then from Lemma 1 it
follows that w j = w j+1 = · · · = wn = 0 and therefore (11) holds for that case as well.

Let us now consider the remaining case where 0 < w j < 1 and where replacing w j
with 0 (or 1) will lead to a nonoptimal answer. We will prove by contradiction that such
a case cannot exist.

Let Fj be the expected F value for weights W . Let F0 be the expected F value for the
case where w j is replaced by 0 and F1 where w j is replaced by 1. Then, given that Fj is
the optimal value of F, whereas F0 is not, it should follow that

Fj − F0 > 0. (13)

We will now show that from Fj > F0 it will follow that F1 > Fj , which contradicts that
Fj is the optimal value. To demonstrate that, let us compute which conditions must
hold to satisfy (13). If we rename

∑n
i=1 piwi as a and α+∑n

i=1 wi as b, then from Eq. (10)
we have

Fj = (1 + α)
a
b
, (14)

F0 = (1 + α)
a − pjw j

b − w j
, (15)

F1 = (1 + α)
a + pj(1 − w j)
b + (1 − w j)

. (16)

Then

Fj − F0 = (1 + α)
a(b − w j) − (a − pjw j)b

b(b − w j)

= (1 + α)
w j(pjb − a)
b(b − w j)

.

(17)

7We have chosen MoE as the name for the strategy, and not ME or EM, in order to avoid potential confusion,
since ME and EM are acronyms for other well-established algorithms.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

Attribute and Object Selection Queries on Objects with Probabilistic Attributes 3:15

Thus, for (13) to hold it must follow that

pjb − a > 0. (18)

But, on the other hand, then

F1 − Fj = (1 + α)
ab + bpj(1 − w j) − ab − a(1 − w j)

(b + (1 − w j))b

= (1 + α)
bpj − bpjw j − a + aw j

(b + (1 − w j))b

= (1 + α)
(bpj − a)(1 − w j)
(b + (1 − w j))b

> 0.

(19)

That is, F1 > Fj and thus Fj cannot be an optimal value, which contradicts that W was
an optimal answer.

From equation Eq. (10) we can compute the expected F value for answer (11) as
E(Fα(W, a)) = (1+α)

∑k
i=1 pi

α+k . While the preceding discussion does not specify how to com-

pute the optimal value of k, it can be determined by choosing k = argmaxk
(1+α)

∑k
i=1 pi

α+k .

It is easy to see that the previous solution has linear time complexity of O(n).

Example 3.3.1. Consider the setup of Example 3.1.1. If we set α = 1 then the values
of (1+α)

∑k
i=1 pi

α+k for k = 1, 2, . . . , 12 are: (1) 0.5, (2) 0.6, (3) 0.455, (4) 0.368, (5) 0.31, (6)
≈ 0.27, (7) 0.2375, (8) 0.21(3), (9) 0.194, (10) 0.17(81), (11) 0.165, and (12) ≈ 0.15. Since
0.6 is the highest value, the algorithm will pick A1,2 = {v1, v2} as its answer.

Example 3.3.2. We now know that Attr-MoE will pick A1,2 = {v1, v2} as its answer
for the setup of Example 3.1.1 where the ground truth was g = v2. Let us see which
answers will be chosen by different baseline algorithms from Section 2.5. Attr-Top-1
will pick A = {v1}. Without knowing the actual ground truth, this answer is not a bad
pick since v1 has the 50% chance of being the correct answer, and in fact it was a close
second choice according to expected F1. But since g = v2 the answer does not include
the correct element. Attr-All will pick all 12 elements A = {v1, v2, . . . , v12} only one of
which, v2, is the correct answer. Attr-Thr-τ depends on the value of τ , for example,
for τ = 0.45 it will return the same answer as Attr-Top-1, for τ = 0.10 it will return
answer as Attr-MoE, for τ = 0 it will return the same answer as Attr-All. The situation
for Attr-Top-K is similar.

We should realize that while in the preceding instance of the problem Attr-MoE
performs well, there could be a different instance where some basic technique will
outperform Attr-MoE. For example, if the ground truth were g = v1 instead of g = v2,
then Attr-Top-1 would perform better on that particular instance, as its answer A =
{v1} would match the ground truth exactly. However, when the quality is measured
as the average over many queries, Attr-MoE will outperform the baseline techniques
since it is optimal in the expected sense. We can also note that the proposed Attr-MoE
approach is essentially equivalent to Attr-Thr-τ and Attr-Top-K methods described in
Section 2.5, but where τ and K are decided automatically per uncertain attribute based
on the given α and pmf’s being observed. However, observe that there is a semantic
difference between varying α in Fα and the value of the threshold. Namely, the analyst
would typically know beforehand how to set α (e.g., α = 1), but not how to set the
threshold.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

3:16 R. Nuray-Turan et al.

3.4. Efficiency Optimization

The next lemma addresses the efficiency aspect of the problem by allowing to avoid
making n computations of (1+α)

∑k
i=1 pi

α+k = (1 + α)Gk to determine optimal k.

LEMMA 2. Once function Gk =
∑k

i=1 pi

α+k , where p1 ≥ p2 ≥ · · · ≥ pn > 0, starts decreasing
for some k, it continues to monotonically decrease for k + 1, k + 2, . . . , n.

PROOF. Let us rename
∑k

i=1 pi as a and α + k as b. Then Gk = a
b , Gk+1 = a+pk+1

b+1 , and
Gk+2 = a+pk+1+pk+2

b+2 . We will show that from Gk+1 < Gk it follows Gk+2 < Gk+1. Observe
that

(Gk+1 < Gk) ⇐⇒ (pk+1b < a) (20)
(Gk+2 < Gk+1) ⇐⇒ (pk+2(b + 1) < pk+1 + a). (21)

From Ineq. (20) it follows that pk+1(b + 1) < pk+1 + a. Given that, pk+2 ≤ pk+1, it holds
that pk+2(b + 1) ≤ pk+1(b + 1) < pk+1 + a. Thus from (20) follows (21).

From Lemma 2 it follows that to find the optimal value of Gk it is sufficient to find
k for which Gk starts to decrease and if there is no such k it means Gn is the optimal
value. This will allow to find the E(Fα(W, a)), since it is equal to (1 + α)Gk at optimal
k. Given that Gk can be computed very effectively incrementally from Gk−1, this means
for smaller values of n the search for k can stop as soon as the first decrease happens.

Example 3.4.1. Consider Example 3.3. We can observe that the value of (1+α)
∑k

i=1 pi

α+k
drops from 0.6 to 0.455 as k changes from 2 to 3 and then continues to monotonically
decrease. Hence, the algorithm does not need to scan all 12 items; it can stop after first
3 steps.

4. OBJECT SELECTION QUERY

Given an object selection query Q the goal is for each object Oi ∈ O to decide whether
it should be chosen for Q and put in the answer set A, such that the result quality
Fα(A, Q), defined by Eq. (3), is maximized. Let GQ be the ground-truth answer for
query Q, where GQ is not known to the algorithm beforehand. Then the goal of the
algorithm can be viewed as that of finding answer A that is as close to GQ as possible.

4.1. Query-Unaware Strategy: Attribute-MoE

The object selection task can be accomplished by the Attribute-MoE algorithm. It would
first choose attribute values for each object Oi ∈ O as described in Section 3, with the
same value of α for Fα. Object Oi will be included in the answer set if it satisfies
the query Q based on the chosen values for the attributes. While the Attribute-MoE
strategy optimizes the quality of attribute value selection (as opposed to the desired
quality of object selection) nevertheless intuitively it should lead to good results. Thus,
it can be used as a baseline strategy to compare with.

The Attribute-MoE strategy is a query-unaware strategy as it does not take into
account the actual query Q and the relevant frequencies of various attribute values
vi j for all i and j across the objects. Notice, for instance, that if an attribute value
vi j is infrequent among objects in O then for query Q = vi j , whose goal is to get all
objects that have an attribute with value vi j , the cardinality of A and G in Eqs. (1), (2),
and (3) will be small. Therefore, given the interactions of A and G in these formulas,
an incorrect assignment of an infrequent attribute will lead to much greater impact
on Fα compared to that of a frequent attribute. Hence, we will develop a query-driven
strategy, which we will refer to as the Maximization of Expectation (MoE) strategy for
object selection.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

Attribute and Object Selection Queries on Objects with Probabilistic Attributes 3:17

4.2. Object Probability

The algorithms for object selection that we will discuss in the subsequent sections
are based on computing for each object Oi ∈ OQ its probability pi = P(Oi ∈ GQ|Q,D)
to belong to the ground-truth answer GQ for query Q, given query Q and dataset D.
For notational convenience we will refer to P(Oi ∈ GQ|Q,D) simply as P(Oi ∈ GQ). In
this section we consider how this probability can be computed under the assumption
that there is no dependence among attributes of an object. In Section 4.8 we will
demonstrate how the knowledge of dependencies in data, when available, can help us
to further improve the quality of the result set.

As an example of computing pi = P(Oi ∈ GQ), let us start by considering single-term
queries. The task of a single-term query Q = q is to get all objects whose attributes
include q as a value. For instance, for an image database this would mean selecting all
the images whose tags include q. For this query, probability P(Oi ∈ GQ) is equivalent to
the probability that at least one of the attributes of Oi has value q. If object Oi has only
one attribute a then P(Oi ∈ GQ) = P(a = q). If Oi has multiple attributes a1, a2, . . . , ak
that contain q as one of their possibilities, then

P(Oi ∈ GQ) = 1 − P(Oi �∈ A)
= 1 − P(a1 �= q, a2 �= q, . . . , ak �= q)

= 1 −
k∏

j=1

(1 − P(aj = q)).
(22)

For instance, for the example illustrated in Figure 1 and query Q = sun, we have
P(Oi ∈ GQ) = 1 − (1 − 0.6) × (1 − 0) × (1 − 0) = 0.6.

By and large, methods for computing probability P(Oi ∈ GQ) have been extensively
studied in the literature, especially for Boolean queries [Sarma et al. 2008]. In Sec-
tion 4.7 we will explain how this probability can be computed efficiently for conjunctive
and disjunctive queries in the context of the probabilistic representation being used.

To explain the subsequent solutions, it is useful to separate objects in O into three
nonoverlapping categories with respect to pi.

(1) Decided as Negative. This is a set of objects guaranteed not to be in GQ. That is,
O0 = {Oi ∈ O : pi = 0} and thus for each Oi ∈ O0 it follows Oi �∈ GQ.

(2) Decided as Positive. This is a set of objects guaranteed to be in GQ. That is, O1 =
{Oi ∈ O : pi = 1} and thus for each Oi ∈ O1 it follows Oi ∈ GQ.

(3) Undecided. This is the remaining category that contain objects that might or might
not belong to GQ. That is, Op = {Oi ∈ O : 0 < pi < 1}.

Naturally, it holds that O = O0 ∪O1 ∪Op, O0 ∩O1 = ∅, O0 ∩Op = ∅, and O1 ∩Op = ∅.
Thus GQ, and consequently each feasible answer A, consists of elements from O1 and
a subset of elements from Op. Thus we define the candidate object set for query Q as
OQ = O1 ∪ Op. Let us sort objects in OQ = O1 ∪ Op based on their pi and then rename
all objects in OQ as O1, O2, . . . , On such that p1 ≥ p2 ≥ · · · ≥ pn > 0 and where n = |OQ|.

4.3. Optimal Solution

We now will discuss two solutions to the problem of object selection that are optimal
with respect to the expected quality. One is the exponential enumeration and the other
one is a polynomial algorithm.

4.3.1. Exponential Enumeration. The overall strategy of the exponential optimal solution
is to enumerate over each feasible answer A and find one that maximizes the expected

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

3:18 R. Nuray-Turan et al.

F measure for the given query Q. That is, the goal is to find

Aopt = argmax
A

E(Fα(A, Q)). (23)

Here, each answer A is a subset of OQ and Aopt is the optimal answer in the expected
sense. To compute the expected Fα measure the algorithm will enumerate over all po-
tential ground-truth answers GQ, which are subsets of OQ. For each GQ it will compute
the F-measure value under assumption that it is the ground truth. The expected F-
measure will be the probabilistic average of these values. Naturally, this brute-force
solution has an exponential computational cost and thus is infeasible in practice. Hence,
the question arises whether a polynomial algorithm exists for computing Aopt.

4.3.2. Special Case of Empty-Set Answer. Let us consider computing E(Fα(A, Q)) for the
case where the answer contains no elements, that is, A = {} and k = 0 where k = |A|.
The formulas for this special case will be different from those of the generic case where
k ≥ 1. This will allow us to focus only on the generic case in the subsequent discussion.
When k = 0, precision of A is always computed as 1, since the answer does not contain
incorrect elements. The value of recall of A is computed as 1 only if the cardinality of
the ground-truth set is zero, |G| = 0, since A correctly represents all of the elements
from G. That way, when G = ∅ and the answer is A = ∅, the answer is correct and thus
Fα(A) = 1. If, however, |G| ≥ 1, then recall of A0 is zero, since it does not return any of
the correct elements of G. Given that the probability that |G| = 0 can be computed as∏n

i=1(1 − pi), for k = 0 we have

E(Precision(A, Q)) = 1, (24)

E(Recall(A, Q)) =
n∏

i=1

(1 − pi), (25)

E(Fα(A, Q)) =
n∏

i=1

(1 − pi). (26)

4.3.3. Polynomial Solution. Now we will show a polynomial-time algorithm for comput-
ing the optimal answer Aopt defined in (23). It will be based on Li and Deshpande [2009],
where the authors solve the problem of finding a consensus world for an and/xor tree
probabilistic representation under the Jaccard similarity metric.

Similar to Li and Deshpande [2009], for any feasible answer A, where |A| ≥ 1, let us
define a generating polynomial P(x, y).

P(x, y) =
∏

i:Oi∈A

((1 − pi) + pix)
∏

i:Oi �∈A

((1 − pi) + pi y) (27)

After computing the product, the polynomial will have the form

P(x, y) =
∑

i j

cij xi y j, (28)

where x and y are variables and cij are the coefficients. By construction, these coef-
ficients correspond to the combined probability of all the ground-truth answers such
that their size is i + j and they have exactly i elements from A and j elements not from

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

Attribute and Object Selection Queries on Objects with Probabilistic Attributes 3:19

A. Such cases correspond to precision of i
k, where k = |A|, recall8 of i

i+ j , and

Fα(A, Q) = mij = (1 + α)i
α(i + j) + k

. (29)

Consequently, E(Fα(A, Q)) for answer can be computed as

E(Fα(A, Q)) =
∑

i j

cijmij, (30)

or, equivalently

E(Fα(A, Q)) =
∑

i j

cij
(1 + α)i

α(i + j) + k
. (31)

We will now prove an auxiliary lemma that will allow us to enumerate only over a
set of n + 1 possible answers, instead of 2n, in order to choose Aopt.

LEMMA 3. For any pair of objects Oi ∈ Aopt and Oj �∈ Aopt it holds that pi ≥ pj.

PROOF. Assume that there exists A1 = Aopt such that Oi ∈ A1, Oj �∈ A1 and it holds
that pi < pj . Let A2 = A ∪ {Oj} \ {Oi}. Let P1(x, y) and P2(x, y) be the generating
polynomials for A1 and A2. Then we can use these polynomials as in Eq. (30) to encode
E(Fα(A1, Q)) and E(Fα(A2, Q)). Their difference E(Fα(A1, Q))−E(Fα(A2, Q)) will simplify
to

∑
i j aij(mi, j+1 − mi+1, j), where aij ≥ 0 are certain coefficients. Given the definition of

mij in Eq. (29), it follows that mi, j+1 −mi+1, j < 0 for any i, j ≥ 0 and thus E(Fα(A1, Q)) <
E(Fα(A2, Q)) and A1 cannot be the optimal answer.

Recall that OQ is the candidate set of objects where objects are sorted based on their
probabilities, such that p1 ≥ p2 ≥ · · · ,≥ pn > 0. We can construct answer Ak of size
|Ak| = k by choosing k first objects of OQ such that as Ak = {O1, O2, . . . , Ok}. From
Lemma 3 it follows that Aopt is one of these Ak for k = 0, 1, . . . , n. Consequently, to
determine Aopt, the algorithm can iterate over Ak and use (26) and (31) to compute Aopt.

Discussion. Let us compute the computational complexity of this solution. The al-
gorithm iterates over Ak answers for k = 0, 1, . . . , n and for each Ak it computes the
generating polynomial. The best algorithm we are aware of for computing the coeffi-
cients of this polynomial is based on using FFTs and has O(n2 log n) complexity [Moenck
1976]. Therefore, the overall complexity of the algorithm is O(n3 log n). Thus, we have
proven that the optimal answer can be determined in polynomial time.

However, given that n is large in practice9, neither exponential nor the above poly-
nomial algorithm are feasible when n can be large. There is a potential direction10 that
could reduce the cost of the polynomial solution to O(n2 log2 n), but even that complex-
ity is still impractical. Hence, we do not pursue solutions that find the exact optimum
answer any further.

In the next section we propose a new object selection algorithm that has O(n) time
complexity while at the same time reaching almost the same result quality as the afore-
mentioned two algorithms. The proposed algorithm is based on estimating the expected
values quickly, instead of spending computational resources to get their exact values.

8If i + j = 0 recall is always 1, as all elements are always recalled.
9We have routinely observed n ≥ 10, 000 in our data.
10It might be possible to prove an analog of Lemma 2 for this case. It would state that once you observe the
first case where E(Fα(Ak, Q)) > E(Fα(Ak+1, Q)), it should follow that starting from that k function E(Fα(Ak, Q))
will monotonically decrease with the increase of k. If so, then it would be possible to use a binary search
among Ak, instead of a linear scan, changing one n factor into log n.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

3:20 R. Nuray-Turan et al.

4.4. Basic-MoE Algorithm

From the previous section we know that the algorithm needs to pick one of the Ak
answers, where k = 0, 1, . . . , n. Thus, the goal of finding Aopt can be viewed as that of
finding the right value of k. To design an efficient solution in this section we propose the
Basic-MoE algorithm. Instead of computing the exact value of E(Fα(Ak, Q)), Basic-MoE
estimates it by first using Taylor series expansion to approximate Fα(Ak, Q) and then
computing the expected value of the approximation.

Let Vi ∼ Bernoulli(pi) be a Bernoulli random variable such that

Vi =
{

1 if Oi ∈ G;
0 if Oi �∈ G.

(32)

Let us define two Bernoulli sums

Xk =
k∑

i=1

Vi, Yk =
n∑

i=k+1

Vi. (33)

Variable Xk corresponds to the number of ground-truth elements in the answer Ak,
whereas Yk corresponds to the number of the ground-truth elements that are not part
of Ak. It holds that

μXk = E(Xk) =
k∑

i=1

pi, μYk = E(Yk) =
n∑

i=k+1

pi (34)

σ 2
Xk

=
k∑

i=1

(1 − pi)pi, σ 2
Yk

=
n∑

i=k+1

(1 − pi)pi. (35)

For specific values of Xk and Yk, the corresponding precision, recall, and Fα become

Precision(Ak, Q) = Xk

k
, (36)

Recall(Ak, Q) = Xk

Xk + Yk
, (37)

Fα(Ak, Q) = (1 + α)
Xk

αXk + αYk + k
. (38)

Therefore,

E(Fα(Ak, Q)) = (1 + α)E
(

Xk

αXk + αYk + k

)
. (39)

Consider function f (x, y) defined as

f (x, y) = x
αx + αy + k

. (40)

Its first-order expansion of Taylor series for f (x, y) about the point (a, b) is

f (x, y) ≈ f (a, b) + (x − a) fx(a, b) + (y − b) fy(a, b). (41)

If we set a = μXk and b = μYk and then take the expectation of both sides, we get

E(f (x, y)) ≈ f (μXk, μYk). (42)

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

Attribute and Object Selection Queries on Objects with Probabilistic Attributes 3:21

0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

k

E
F

EF1
EF2
EF3
True EF

Fig. 3. Comparing E(Fα(Ak, Q)) to Êi(Fα(Ak, Q)).

Given that f (μXk, μYk) = μXk
α(μXk+μYk)+k , from Eq. (39) we have

E(Fα(Ak, Q)) ≈ Ê(Fα(Ak, Q)) =
= (1 + α)

μXk

α(μXk + μYk) + k
=

= (1 + α)
∑k

i=1 pi

α
∑n

i=1 pi + k
.

(43)

Here, Ê(·) refers to approximation of E(·). Similarly, by using the second-order Taylor
expansion and then taking the expectation of both sides, we get

E(f (x, y)) ≈ f (μXk, μYk) + σ 2
Xk

2
fxx(μXk, μYk) + σ 2

Yk

2
fyy(μXk, μYk). (44)

From Eq. (44), we can get the corresponding second-order approximation Ê2(Fα(Ak, Q))
of E(Fα(Ak, Q)). We can repeat the same process for the third-order approximation
Ê3(Fα(Ak, Q)).

The best value for k is then chosen as the one that maximizes the approximation of
E(Fα(Ak, Q)). The special case of k = 0 is solved exactly, by using Eq. (26).

Example 4.4.1. Let n = 20, α = 1, and pi ∼ U [0, 1]. Figure 3 compares E(Fα(Ak, Q))
to Êi(Fα(Ak, Q)) for i = 1, 2, 3 for various values of k. As we can see all the curves
are very close to each other. The maximum deviation from E(Fα(Ak, Q)) is only:
maxi,k |E(Fα(Ak, Q)) − Êi(Fα(Ak, Q))| = 0.0085.

Computational complexity. We can see that if the hash-sort is utilized to order
the probabilities pi, then the proposed strategy has linear time complexity O(n) for
the cases of first- and second-order Taylor approximation. This is since as we go from
testing Ak to testing Ak+1 the new moments μXk+1 , σ

2
Xk+1

, etc., can be recomputed from the
previous ones μXk, σ 2

Xk
incrementally in O(1) time. We also have determined empirically

that the results for the first-, second-, and third- order Taylor approximations are very
close to each other in practice and that all of them very closely approximate the true
E(Fα(Ak, Q)) value. Hence, we focus primarily on the first-order approximation given
by Eq. (43), since it is the fastest to compute.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

3:22 R. Nuray-Turan et al.

4.5. Hard Error Bound on Basic-MoE

It should be noted that while Taylor approximations used by the Basic-MoE algorithm
tend to find high-quality answers, these answers are not always equal to Aopt as ex-
plained by the following lemma.

LEMMA 4. Answers found by Basic-MoE are not always equal to Aopt.

PROOF. Assume that OQ = {O1, O2}, p1 = 0.50, p2 = 0.26 and that the first-order Taylor
expansion is utilized. Suppose that α in Fα is set as α = 1. Then, Basic-MoE will choose
A1 = {O1} as its answer. However, the optimal answer is A2 = {O1, O2}.

Nevertheless, in general the first-order Taylor expansion leads to highly accurate
results, especially for large values of n and consequently large values of μ = μXk + μYk,
as stated by the following theorem.

THEOREM 2. For fixed 0 < α < 1 suppose k ≥ 1 and μXk + μYk → ∞. Then

E(Fα(Ak, Q)) − Ê1(Fα(Ak, Q)) → 0.

In other words, as long as μXk +μYk is sufficiently large, the approximate expectation
of Fα(Ak, Q) will become arbitrarily close to the actual expectation. Recall that for the
special case of k = 0 the error of Basic-MoE is zero, since it treats that case separately
and finds the exact value of E(Fα(A0, Q)). This theorem considers only k ≥ 1.

PROOF OF THEOREM 2. Simple algebra using Eqs. (39) and (43) yields∣∣E(Fα(Ak, Q)) − Ê1(Fα(Ak, Q))
∣∣

1 + α
= ∣∣E(b1 Z1 − b2 Z2)

∣∣
≤ b1|EZ1| + b2|EZ2|,

where we denote

b1 = αμYk + k
αμ + k

, Z1 = Xk − μXk

α(Xk + Yk) + k
,

b2 = αμXk

αμ + k
, Z2 = Yk − μYk

α(Xk + Yk) + k
,

and μ = μXk + μYk. Note that

EZ1 = E

[
Z1 − Xk − μXk

αμ + k

]
= α

αμ + k
EW1,

with

W1 = (Xk − μXk)(μ − Xk − Yk)
α(Xk + Yk) + k

.

For any constant t > 0 we have

|EW1| ≤ E|W1| = E
(|W1|1Xk+Yk>t

) + E
(|W1|1Xk+Yk≤t

)
,

where 1(·) denotes the indicator function. Moreover,

E
(|W1|1Xk+Yk>t

) ≤ E
∣∣(Xk − μXk)(μ − Xk − Yk)

∣∣
αt + k

≤
√

E(Xk − μXk)2E(μ − Xk − Yk)2

αt + k

≤
√

μXkμ

αt + k
≤ μ

αt + k
.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

Attribute and Object Selection Queries on Objects with Probabilistic Attributes 3:23

Note that it holds |W1| ≤ |μ − Xk − Yk|max(Xk,μXk)
α(Xk+Yk)+k ≤ max(α−1, μ/k)|μ − Xk − Yk|. Hence,

if t < μ then

E
(|W1|1Xk+Yk≤t

) ≤ max
(

1
α

,
μ

k

)
μP(Xk + Yk ≤ t)

≤ max
(

1
α

,
μ

k

)
μe−(μ−t)2/(2μ),

where the second step uses the well-known Chernoff inequality for Bernoulli sums.
Choosing t = μ/2 and combining the two bounds, we get

E|W1| ≤ μ

αμ/2 + k
+ max

(
1
α

,
μ

k

)
μe−μ/8,

which is further bounded by a constant that depends only on α. Hence EZ1 =
α

αμ+kEW1 → 0 as μ → ∞.
Similarly, letting

W2 = (Yk − μYk)(μ − Xk − Yk)
α(Xk + Yk) + k

,

we have

EZ2 = α

αμ + k
EW2.

By the same argument, we obtain

E|W2| ≤ μ

αμ/2 + k
+ max

(
1
α

,
μ

k

)
μe−μ/8,

and hence EZ2 → 0 as μ → ∞.
Finally, since b1 + b2 = 1, we have b1|EZ1| + b2|EZ2| → 0, as μ → ∞, thus proving

the claim.
Remark. The proof implies the following error bound.∣∣E(Fα(Ak, Q)) − Ê1(Fα(Ak, Q))

∣∣ ≤ (1 + α)α
αμ + k

[
μ

αμ/2 + k
+ max

(
1
α

,
μ

k

)
μe−μ/8

]

Example 4.5.1. Let k = �n/2�, α = 1, and pi ∼ U [0, 1]. Figure 4 plots the hard error
bound derived by Theorem 2 as a function of n. We can see that as n increases the
bound decreases rapidly. Note that this is a bound on error and the actual error is less.

4.6. Full-MoE Algorithm

Given Lemma 4 and Theorem 2, a higher-quality solution than Basic-MoE could be
designed by making several observations. Observe that when n is not very large, it
is possible to compute the true expected optimal answer Aopt, for example, by using
the exact polynomial algorithm. This has allowed us to empirically determine that, in
practice, when n < 12, Ak found by Basic-MoE is equal to the optimal answer Aopt in
approximately 90% of the cases. Furthermore, in roughly 99% of the cases, the optimal
answer is either Ak, or its direct neighbors Ak−1 and Ak+1. Another important obser-
vation is based on measuring the average difference between Fα(Aopt) and Fα(Ak) as a
function of n. We have observed that this difference shrinks rapidly from approximately
14% for the cases where n < 3, to less than 1% for n ≥ 6. Therefore, in terms of quality,
Basic-MoE tends to perform similar to the expected optimal solution for the case where
n is large, while its performance is somewhat lower for smaller values of n.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

3:24 R. Nuray-Turan et al.

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

n

E
rr

or
 B

ou
nd

Fig. 4. Hard error bound on Ê1(Fα(Ak, Q)).

Based on these observations, we propose a hybrid approach, which we refer to as
MoE. Since enumerations are very fast for small problem sizes, MoE uses the ground-
truth enumeration approach discussed in Section 4.3 to choose one among Ak answers
for the cases where n ≤ τenum, where we set threshold value τenum = 3. It employs smart
enumeration for the cases where τenum < n ≤ τsmart, where we set τsmart = 6. The smart
enumeration algorithm first determines k using Eq. (43) of Basic-MoE. But unlike
Basic-MoE, smart enumeration then uses the enumeration algorithm to compute the
true (nonestimated) expected Fα values for answers Ak−1, Ak, and Ak+1. Among the three
answers it picks the one that maximizes the true expected Fα. That way, the smart enu-
meration is faster than full enumeration, but at the same time it is more accurate than
Basic-MoE. Finally, the algorithm utilizes Basic-MoE for the cases where n > τsmart.
As the result, the Fα quality of the resulting hybrid algorithm is nearly equal to that
of the full enumeration. In terms of computational complexity, since the enumeration
algorithm is only applied to cases where n is limited, it remains linear O(n).

4.7. Efficiency Optimizations

The Basic-MoE part of the MoE strategy has two natural levels where its performance
can be optimized further. The first (higher) level optimizes the sequential scan among
Ak answers. The second (lower) level optimizes the computations of pi ’s, which can be
expensive for certain types of queries.

4.7.1. Higher-Level Optimization

LEMMA 5. Once Ê(Fα(Ak, Q)) starts decreasing for some k it continues to decrease
monotonically for k + 1, k + 2, . . . , n. Thus, it is not necessary to scan all of the k =
1, 2, . . . , n values. Instead, one can stop once the first decrease is detected.

PROOF. The statement immediately follows from Lemma 2 by observing that that
Ê(Fα (Ak,Q))

1+α
has the functional form of

∑k
i=1 pi

α1+k where α1 = α
∑n

i=1 pi.

If a sequential scan is performed, then naturally we do not need to recompute the
entire

∑k
i=1 pi for each k when computing Ê(Fα(Ak, Q)). Instead notice that Ê(Fα(Ak,Q))

(1+α) =
ak

b+k where ak = ∑k
i=1 pi and b = α

∑n
i=1 pi. Thus, to detect the first decrease we simply

need to compute b once and compute ak+1 = ak + pk+1 incrementally on each iteration.
Once the decrease of ak

b+k is detected, we can get Ê(Fα(Ak, Q)) by multiplying that value
of ak

b+k once by (1 + α). Hence, Ê(Fα(Ak, Q)) for a given k can be recomputed efficiently in
an incremental fashion from the information stored on the previous (k−1)-th iteration.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

Attribute and Object Selection Queries on Objects with Probabilistic Attributes 3:25

4.7.2. Lower-Level Optimization. This optimization level deals with optimizing the com-
putation of pi = P(Oi ∈ GQ). In general such a probability can be computed by state-of-
the-art probabilistic databases for an arbitrary Boolean query and other query types,
provided the probabilistic content is initially stored in such a database [Widom 2005;
Sarma et al. 2008]. However, for completeness, in this section we present efficient al-
gorithms for computing probability P(Oi ∈ GQ) for conjunctive and disjunctive queries
on the specific probabilistic representation being used.

Disjunctive (OR) queries. The objective of a disjunctive query Q = q1 ∨ q2 ∨ · · · ∨ qn
is to get each object Oi ∈ O whose attribute values ai1, ai2, . . . , aiki include at least one
of the values qi, for i = 1, 2, . . . , n. Database indexes could be used very effectively to
locate the objects that might qualify. For each such object the probability P(Oi ∈ GQ) is
then can be computed as

P(Oi ∈ GQ) = 1 −
ki∏

j=1

(
1 −

n∑
i=1

P(aj = qi)

)
. (45)

Computing P(Oi ∈ GQ) as in (45) can be done by a linear scan11 of all possible values
of each attribute of Oi. Thus, this type of query could be answered very efficiently.

Conjunctive (AND) queries. The goal of a conjunctive query Q = q1∧q2∧· · ·∧qn is to get
each object Oi ∈ O whose attribute values a1, a2, . . . , am include all of the q1, q2, . . . , qn.
For each object Oi we need to determine the probability P(Oi ∈ GQ) of Oi to belong to
the answer set A of Q.

Linear cost solution. For conjunctive query Q = q1 ∧ q2 ∧ · · · ∧ qn it often holds that
the number of its terms n is limited (bounded by a constant)12, as large n will result in
a very high query selectivity and no objects will be returned as the result of a query.

THEOREM 3. For query Q = q1 ∧ q2 ∧ · · · ∧ qn, if the number of query terms n is
bounded by a constant, then P(Oi ∈ GQ) can be computed in O(m) time, where m is the
number of attributes of object Oi.

PROOF. To prove that, we will use a generating polynomial that will be constructed
by multiplying certain terms. A term

Ti = (pi1q1 + pi2q2 + · · · + pinqn + pi(n+1))

is constructed per each attribute ai. Here, qi ’s are variables and pij ’s are coefficients.
Coefficients are defined as pij = P(qj = gi) for i = 1, 2, . . . , n and pi(n+1) = 1 − ∑

j pij ,
which could be trivially determined from the possible values of ai and their correspond-
ing probabilities. When multiplying Ti ’s, we will be interested in terms in the form of
c·qi1

1 qi2
2 · · · qin

n . Here c denotes the coefficient and i j ∈ {0, 1} encodes whether qj is present
or not. For instance, 0.5q0

1q1
2q1

3 encodes 0.5q2q3. When multiplying c1 · qi1
1 qi2

2 · · · qin
n by

c2 · q j1
1 q j2

2 · · · q jn
n the result is defined as

c1 · qi1
1 qi2

2 · · · qin
n × c2 · q j1

1 q j2
2 · · · q jn

n = c1 · c2 · qi1∨ j1
1 · · · qin∨ jn

n .

For instance, 0.5q1q3 × 0.2q1q2 = 0.1q1q2q3. Then by multiplying all terms Ti we will
get a polynomial.

P = T1T2 · · · Tm =
∑

i1,i2,...,in

ci1,i2,...,inq
i1
1 qi2

2 · · · qin
n (46)

11Observe that since the number of alternatives per each attribute is typically small, replacing this scan of a
tiny array with lookup in a hash table, or similar types of further optimizations, does not lead to a significant
improvement.
12For instance, currently Google does not allow more than 32 query terms in its search queries.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

3:26 R. Nuray-Turan et al.

Process-AND-Query-MoE(Q)
1 OQ ← Get-Matches-Via-Index(Q)
2 for each Oi ∈ OQ do
3 � ← Get-Placement-Case(Q,Oi)

4 if � �= unknown then
5 pi ← Get-Placement-Prob(Q,Oi, �)
6 else
7 pi ← Get-Polynom-Prob(Q,Oi)
8 if pi = 0 then

9 OQ ← OQ \ {Oi}
10 if OQ = ∅ then
11 return ∅

12 HashSort-And-Rename-Objects(OQ)

13 E0 ← Get-Exp-F-ZeroK(OQ)
14 n ← |OQ|
15 if n ≤ τenum then
16 (A,E) ← Get-Exp-F-Enum(OQ)

17 else if τenum < n ≤ τsmart then
18 (A,E) ← Get-Exp-F-Smart-Enum(OQ)
19 else
20 (A,E) ← Get-Exp-F-Basic-MoE(OQ)

21 if E0 > E then
22 return ∅
23 else
24 return A

Fig. 5. Processing AND query by MoE.

It is easy to see that the coefficient c1,1,...,1 that corresponds to q1q2 . . . qn will contain
the desired probability that the object contains all of q1 ∧ q2 ∧ · · · ∧ qn terms. Observe
that we can compute the generating polynomial by multiplying terms Ti sequentially
one by one. At each step k we will get a polynomial Pk in the form of

Pk = T1T2 · · · Tk =
∑

i1,i2,...,in

c(k)
i1,i2,...,inq

i1
1 qi2

2 · · · qin
n

that needs to be multiplied by the next term Tk+1. Observe that the number of terms
of Pk cannot exceed 2n and it does not depend on m. The number of terms in Tk+1
cannot exceed n+ 1. This means at each step k, when computing Pk+1 as Pk × Tk+1 the
algorithm will do a limited number of operations that does not depend on m. Given that
the overall number of steps is m− 1, the complexity of the algorithm is O(m).

4.7.2.1. Practical Solution for AND Queries. Interestingly, in practice this seemingly
challenging query can be often answered very efficiently, often without using the gener-
ating polynomial, as explained next. The pseudocode for the algorithm is illustrated in
Figure 5.

Indexing. First, indexing techniques again are used to select the set of qualifying
objects OQ that contain all of the queried terms. Conjunctive queries are naturally
very selective and fewer objects will qualify with the increase of the number of query
terms n.

Placement case-based optimizations. Let us consider various placement cases that
arise with respect to the placement of query terms q1, q2, . . . , qn in object attributes
a1, a2, . . . , am. It turns out that the most frequent placement case that holds for the
majority of objects in OQ is when:

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

Attribute and Object Selection Queries on Objects with Probabilistic Attributes 3:27

—each query term qj is present exactly once in Oi, and
—each attribute ak contains no more than one query term.

Let akj be the attribute of Oi wherein qj is present where j = 1, 2, . . . , n. Then for this
most frequent case P(Oi ∈ GQ) is simply P(Oi ∈ GQ) = ∏n

j=1 P(akj = qj).
Furthermore, for the majority of the remaining placement cases, it holds that while

certain query terms can be present more than once in Oi, no single attribute ak of
Oi contains two or more distinct query terms. That is, each ak of Oi contains at most
one query term. In these cases the exact formula for P(Oi ∈ GQ) can be derived in a
straightforward manner.

In the cases that do not belong to the aforesaid categories, some of the attributes of
Oi will contain at least two distinct query terms. Even then significant optimizations
are possible. First, we can identify the top-K (e.g., K = 10) most frequent remaining
placement cases with respect to how query terms q1, q2, . . . , qm are placed inside at-
tributes a1, a2, an. We then can precompute the right P(Oi ∈ GQ) formulas for them, so
when these cases are discovered later on, the right formulas are immediately applied.
The remaining (very rare) cases can be handled by the preceding O(m) solution.

In Section 5 we will empirically evaluate the approaches proposed in this article and
show their significant advantage over currently used techniques.

4.8. Handling Dependencies in Data

In this section we demonstrate an example of how the proposed object selection frame-
work, when provided with additional knowledge of the dependencies in data, can lever-
age this knowledge to further improve the quality of the result set.

Recall that the proposed object selection algorithm can be viewed as a two-stage
process. The first stage determines for each object Oi its probability pi = P(Oi ∈
GQ|Q,D) to belong to the ground-truth answer set GQ of query Q. The second stage
uses these probabilities to compute the final answer Ak. Given the knowledge of certain
dependencies, it is frequently possible to improve the first stage of the algorithm by
computing probability pi more accurately, thus resulting in higher-quality answers. The
way to do that depends on the nature of the captured dependencies and the application
domain. In this section we will show how to accomplish that for the speech image
tagging scenario described in Section 2.1 by using a supervised learning framework.
Similar to Zadrozny and Elkan [2001], Zadrozny and Elkan [2002], Niculescu-Mizil
and Caruana [2005], and Zhang and Yang [2004], we will train a classifier to generate
the desired probabilities. Given a feature vector fi for object Oi and query Q, the
classifier will predict whether Oi belongs to GQ. Many modern classifiers, in addition
to their binary yes/no (“+”/“−”) decision of whether object Oi is in GQ, also output the
probability that their decision is correct, which can be transformed into the desired
probability pi = P(Oi ∈ GQ|Q,D). The question thus becomes how to choose features fi
for Oi with respect to Q.

2-term queries. To understand the general idea of the approach, let us first consider
an example of a 2-term conjunctive query Q = q1 ∧ q2. Assume that object Oi is a
potential candidate for this query because its attribute a1 contains q1 as one of the
possible values v11, v12, . . . , v1n, and its attribute a2 contains q2 among v21, v22, . . . , v2n.
Suppose that v1k = q1, v2� = q2, and the ground-truth values for a1 and a2 are g1 and
g2. Then under the assumption of tag independence pi will be computed as pi = P(Oi ∈
GQ|Q,D) = p1k p2�, where p1k and p2� are the probabilities associated with v1k and v2�,
respectively.

However, in an image dataset the knowledge of correlations among tags can help to
compute P(Oi ∈ GQ|Q,D) more accurately. Let Dtrain be the past corpus of images where
the value of all tags are known exactly and there are no uncertain attributes. Let c(q1)

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

3:28 R. Nuray-Turan et al.

be the number of images in Dtrain annotated with tag q1 and c(q1, q2) be the number of
images annotated with both q1 and q2. Let c12 = c(q1, q2). For each (v′, v′′) pair, where
v′ ∈ {v11, v12, . . . , v1n} and v′′ ∈ {v21, v22, . . . , v2n}, we can also compute c(v′, v′′) count.
Let c1 be the highest observed c(v′, v′′) count, c2 and c3 be the top-2 and top-3 counts.
The intuition is that the higher c(v′, v′′) is, the higher the chance is that (v′, v′′) is the
ground-truth pair (g1, g2). Therefore, (c1 − c12, c2 − c12, c3 − c12) features are indicative
of how far is (q1, q2) pair from the top-3 pairs in terms of co-occurrences and thus how
likely this pair is equal to (g1, g2).

Another important factor to consider is that, for given two terms q1 and q2, it is very
rare that a speech recognizer (ASR) will suggest both of them as the possible values
of N-best lists for the same image, unless q1 and q2 are both the ground-truth tags for
that image. Consequently, when c12 = c(q1, q2) is large, the candidate set Op consists
mostly of “+” objects that satisfy query Q and very few “−” objects that do not satisfy
it. Thus, c12 is a strong feature in determining P(Oi ∈ GQ|Q,D).

The probabilities p1k and p2� assigned by the ASR for q1 and q2 in Oi, as well as their
differences with the top probabilities p11 and p21 of a1 and a2, can also be taken into
account. The resulting feature vector fi for Oi regarding Q is

fi = (p1k, p2�, p11 − p1k, p21 − p2�, c12, c1 − c12, c2 − c12, c3 − c12).

Another generic way to select feature vector is

fi = (pq, ptop − pq, c12, c1 − c12, c2 − c12, c3 − c12),

where pq = p1k p2� and ptop = p11 p21 correspond to the probabilities of q1, q2 pair and
the top pair, computed under the independence assumption.

By training a classifier on a validation set Dval while using training set Dtrain for
computing co-occurrence counts, we can apply the classifier on the test data Dtest to
compute pi = P(Oi ∈ GQ|Q,D). As we will see in Section 5, the resulting probabil-
ities are much more accurate compared to those computed under the independence
assumption, leading to significantly higher quality of answers.

1-term queries. A similar approach applies to 1-term queries in the form of Q = q1
when Oi contains at least two uncertain attributes. If one attribute contains q1, then
we consider the attribute right after it, or right before it if the latter does not exist. For
instance, if Oi.a1 contains q1, we then will consider Oi.a2. Among the possible values
v21, v22, . . . , v2n of Oi.a2, we will find v2� that maximizes the co-occurrence with q1, that
is, v2� = argmax� c(q1, v2�). The idea is that if q1 is the ground-truth for a1, then v2� is
most likely to be the ground truth for a2. We then compute c12 = c(q1, v2�), and like
for 2-term queries, we find c1, c2, and c3 as the top-1, top-2, and top-3 of c(v′, v′′), for
all pairs v′ ∈ {v11, v12, . . . , v1n} and v′′ ∈ {v21, v22, . . . , v2n}. Using the same intuition,
features (c1 − c12, c2 − c12, c3 − c12) are indicative of how likely it is that q1 = g1 and
v2� = g2 and thus how likely Oi ∈ GQ is. By applying similar logic as for 2-term queries,
the final feature vector is chosen as

fi = (p1k, p11 − p1k, c(q1), c1 − c12, c2 − c12, c3 − c12),

where, as before, k is such that v1k = q1.
m-term queries. Given an m-term query Q = q1 ∧ q2 ∧ · · · ∧ qm a similar approach

could be applied by changing raw correlations c(q1, q2, . . . , qm) into score s(q1, q2, . . . , qm).
This change is needed since for larger values of m it becomes a challenge to compute
nontrivial statistics where c(q1, q2, . . . , qm) �= 0. Instead, a scoring function can compute
s(q1, q2, . . . , qm) as the sum of pairwise correlations c(qi, qj) for all distinct pairs of qi
and qj , or it can compute it as the probability to observe an image whose annotation
includes q1, q2, . . . , qm tags. Different ways for efficient computation of these scores
have been discussed in Kalashnikov et al. [2011]. Assume without loss of generality

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

Attribute and Object Selection Queries on Objects with Probabilistic Attributes 3:29

that q1 ∈ a1, q2 ∈ a2, . . . , qm ∈ am. Let us name the probabilities assigned by ASR as
pqi = P(qi = gi). Let pq = pq1 pq2 × . . . × pqm, which is the probability that Oi ∈ GQ under
the assumption of independence. Let ptop = p11 p21 × · · · × pm1, which is the probability
of the top combination according to the ASR. Then the feature vector fi is chosen as

fi = (pq, ptop − pq, s1m, s1 − s1m, s2 − s1m, s3 − s1m).

Here, s1m = s(q1, q2, . . . , qm) plays the same role as c12 for 2-term queries, and s1, s2, s3
are the top 3 combinations according to the scoring function s(· · ·), which also could be
found efficiently using the branch-and-bound method proposed in Kalashnikov et al.
[2011].

5. EXPERIMENTAL RESULTS

In this section we empirically study our algorithms for the two types of selection
queries. We show that the proposed MoE solutions outperform the existing techniques
in terms of quality. We also demonstrate that the efficiency of the proposed approaches
is comparable to that of the baseline techniques.

5.1. Experimental Setup

5.1.1. Datasets. We have used both synthetic and real datasets in our experiments.
Synthetic datasets are employed since they allow us to manually control the level of
uncertainty in data and study its effect on various techniques.

—SynData. This simple synthetic dataset has 10K objects, where the average number
of attributes per object is 4.5. The total number of distinct possible attribute values
is 1000. We generate 5 different versions of this dataset. A version is generated by
choosing the number of alternatives N = |V | each uncertain attribute can have. Here,
the 5 versions correspond to N of 2, 4, 8, 16, 32. After choosing N, the probabilities
p1, p2, . . . , pN for N options of an uncertain attribute are assigned by first generating
N random numbers r1, r2, . . . , rN, where ri is drawn from uniform distribution in
[0, 1]. Probability pi is then computed as pi = ri∑N

i=1 ri
. The interval method is then

used to decide which option i is the ground-truth value for this uncertain attribute.
The interval method divides the [0, 1] interval into N intervals of length p1, p2, ..., pN.
It then generates a random number in [0, 1] and observes into which interval i it
falls. The ground truth is then assigned to the i-th option. This ensures that each
option i can be the ground truth with probability of pi.

—PubData. PubData is a real dataset derived from two public-domain sources: Cite-
Seer and HPSearch. It is a publication dataset that describes authors and their
publications. It consists of 11.7K publications and 14.6K authors. The objects in it
are publications and attributes are references to authors in these publications, which
can be ambiguous, for example, J. Smith. The references are resolved using the entity
resolution method from Kalashnikov and Mehrotra [2006], described in Section 2.1.
It generates the list of alternatives for each attribute as well as their probabilities.

—MovData. This is also a real dataset. It is generated from the Stanford’s Movie
Dataset and contains, among other things, 11.5K movies and 22.1K directors. The
objects in it are movies, and the attributes are references to directors in these
movies, which can be uncertain. The alternatives for attributes and the corresponding
probabilities are provided by the entity resolution method [Kalashnikov and Mehro-
tra 2006] as well.

—ImgData. This semi-real dataset imitates a large corpus of images annotated with
tags using a speech interface, as explained in Section 2.1. It has 304.9K real images
with 8.4K distinct tags from a popular image hosting Website Flickr. Each image has
13.7 tags on average. Since the dataset is large, it is infeasible to speak all tags and

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

3:30 R. Nuray-Turan et al.

then apply a speech recognizer to generate tag alternatives and the corresponding
probabilities. Instead, they are generated synthetically by adapting the methodol-
ogy from Hernandez and Stolfo [1995] and Menestrina et al. [2006]. Specifically, for
each tag its alternative is generated using the Soundex-hash tables. Then N prob-
abilities are generated. First, the highest p1 is drawn from a Poisson distribution
with certain mean and standard deviation. This simulates a speech recognizer being
more certain about one alternative. The remaining N −1 probabilities are created by
generating N − 1 random numbers in the (0, 1] interval and then normalizing them
such that they add up to 1 − p1. The ground truth is assigned by using the interval
method.

5.1.2. Baseline Techniques. We will refer to the attribute and object selection approaches
proposed in Sections 3 and 4 as Attr-MoE and MoE respectively. We will compare them
to Attr-Top-1, Attr-Top-K, Attr-All, Attr-Thr-τ , and Thr-τ baseline techniques ex-
plained in Section 2.5. These baselines cover a wide spectrum of existing techniques
in terms of quality, as most of the existing approaches are variants of these methods.
Many recent state-of-the-art strategies instead focus on optimizing the efficiency (and
not the quality) aspect of the problem. For example, there are many techniques for effi-
cient computations for various top-K and threshold scenarios [Re et al. 2007; Cormode
et al. 2009; Zhang and Chomicki 2009].

5.2. Setting Threshold and Alpha

For threshold-based solutions, an important question is to how to set the threshold in
our unsupervised settings. This is a nontrivial task since the chosen threshold should
lead to high-quality results in terms of Fα for both the given dataset and given α. In the
plots in this section, Attr-Thr-τ is the approach where the threshold τ is set manually
by the domain analyst. Specifically, we set the value of τ to 0.1, 0.25, and 0.5, which are
the values that lead to very high Fα ’s in our tests. However, we will observe that while
setting, for instance, τ = 0.1 leads to excellent Fα results for certain combinations of
dataset and α, at the same time τ of 0.1 leads to poor results for other combinations. The
purpose of including Attr-Thr-τ is to demonstrate how threshold-based techniques are
expected to behave in practice, in our unsupervised settings.

As we have explained earlier, parameter α in Fα is also set manually by the domain
analyst. It depends on the nature of the application as some applications prefer recall
over precision and others prefer the reverse. We will study the performance of various
techniques across different values of α.

5.2.1. Query Workload. For attribute value selection, we report average Fα when disam-
biguating all uncertain attributes in the dataset. For single-term object selection, the
queries are all of the possible ground-truth tags. Other workloads have been studied
extensively as well, but they often result in similar plots and thus they are omitted. For
multi-term queries, we test on a query mix consisting of 1-, 2- and 3-term queries in
equal proportion. Since the conjunctive queries are very selective, picking completely
random and unrelated query terms too often results in a query that returns an empty
set. Thus, to make queries more meaningful, when selecting terms for the 2- and 3-term
queries we pick terms whose co-occurrence count (computed on the past ground-truth
data) is greater than zero.

5.2.2. Measurements. We measure and report the quality achieved by various tech-
niques using the true Fα measure. The expected F measure is used by the algorithms
only internally and it is not reported. For both attribute and object selection, since we
compare a large number of techniques, special care should be taken to avoid very dense
graphs with many overlapping curves. Hence, we plot the results in the form of bar

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

Attribute and Object Selection Queries on Objects with Probabilistic Attributes 3:31

Fig. 6. Attribute selection on SynData.

charts that show the improvement/gain achieved by the MoE strategy over the other
techniques in terms of Fα. Let x be the Fα obtained by MoE and y be the Fα of any other
method Y . Then the gain of MoE over Y is computed as (x − y).

To check the statistical significance of our results we have used the two-tailed paired
t-test. We have found that in rare cases, especially when |x−y| < 0.01, the improvement
was not statistically significant. Therefore, to focus on only statistically significant
results, we plot the improvement as zero when it is not statistically significant.

In the experiments we also indicate the average query execution time, which is
computed per query and reported in ns or ms, where 1 ms = 10−3 sec and 1 ns =
10−9 sec.

5.3. Attribute Value Selection

Figure 6 demonstrates the quality improvement by the proposed Attr-MoE method over
the baseline techniques on the 5 different versions of SynData, for α = 1. For threshold-
based approaches, we have determined that for our real datasets the most competitive
values of the threshold were 0.10 and 0.25. Hence, in our experiments we will fo-
cus primarily on Attr-Thr-0.1 and Attr-Thr-0.25. Figure 6 shows that improvement
over all the methods is bounded by 10%. The smallest improvement is observed over
the Attr-Thr-0.25 method, when the number of options per attribute N is small. As
the number of options increases, the improvement over the Attr-Thr-0.25 becomes
visible and reaches nearly 7%. However, for N = 8 and N = 16 , the Attr-Thr-0.1
technique becomes better than Attr-Thr-0.25, and similarly the Attr-Top-2 model is
better than the Attr-Top-1 model when the number of options is large.

Figures 7(a), (b), and (c) plot quality improvements achieved by the proposed
Attr-MoE strategy over baseline methods, on PubData, MovData, and ImgData, re-
spectively. The graphs exhibit several important trends which are explained next.

The first trend is that the proposed MoE-based strategy never performs worse than the
baseline techniques, across the board, frequently outperforming baselines by a visible
margin. This was also a trend in all of the other experiments. This is as anticipated,
since MoE is optimal in the expected sense.

The second trend is that, as α is varied from 2−7 to 27, Attr-All strategy goes from
showing one of the worst results to demonstrating the best results. This is also expected.
Attr-All always reaches the highest possible recall since it outputs all of the options
as its result. Thus, when α = 27, recall is preferred over precision and Attr-All shows
excellent results. Attr-All, however, reaches one of the worst precisions, since it always
includes many wrong elements in the answer. This explains its poor performance for
α = 2−7 where preference is given to precision.

The third trend is that Attr-Top-1 tends to behave opposite to Attr-All, as it demon-
strates excellent results for α = 2−7, but poor results for α = 27. This is because

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

3:32 R. Nuray-Turan et al.

Fig. 7. Attribute selection. Quality across α.

Table III. Fα Values Reached by Attr-MoE

Dataset α = 2−7 α = 2−1 α = 1 α = 2 α = 27

PubData 0.849 0.865 0.878 0.896 0.989
MovData 0.697 0.715 0.738 0.774 0.975
ImgData 0.536 0.558 0.597 0.660 0.984

Attr-Top-1 tend to get the worst recall, since it always chooses only one element. Thus
it shows poor results when α = 27 and recall is preferred over precision. It, however,
shows more reasonable results when α = 2−7 and thus recall is practically ignored.
Table III shows the absolute Fα values reached by Attr-MoE on these datasets.

Another important observation from Figures 6 and 7 is that threshold-based tech-
niques show competitive results. However, no single threshold value works the best
across the board. For instance, setting threshold τ to 0.25 would be an excellent choice
for MovData when α = 1. However, this value does not work as well for some of the

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

Attribute and Object Selection Queries on Objects with Probabilistic Attributes 3:33

Fig. 8. Object selection on SynData.

other datasets (e.g., PubData) for α = 1, where τ = 0.10 is a better choice. The value
τ = 0.25 does not also work for the same MovData, but when α = 27. The same holds
for τ = 0.10, as it is an excellent choice for, say, PubData where α = 1. Nevertheless,
it is not the best technique for many other datasets for α = 1 (e.g., ImgData). Thus,
setting the right value of the threshold is a challenge.

Notice that the proposed MoE solution is similar to threshold-based strategy, but
where the threshold is decided automatically by the algorithm per attribute, based on
the given pmf’s of the attribute and α. Thus, MoE gains its advantage by automatically
self-adapting to the underlying conditions.

Efficiency. In terms of the efficiency, the proposed Attr-MoE strategy takes 452 ns, 382
ns, and 531 ns per query on average for α = 2−7, 1, and 27, respectively. Attr-Top-1 and
Attr-All are independent of α in terms of the efficiency and they take 380 ns, 518 ns,
and 398 ns on average. Thus, the advantage of Attr-MoE in terms of higher quality does
not come at the price of much lower efficiency.

5.4. Object Selection Queries

We study single-term queries in Section 5.4.1 and multiterm queries in Section 5.4.2.

5.4.1. Single-Term Queries. Figure 8 shows the quality improvement achieved by the
MoE approach for object selection on the five different versions of the SynData. The
proposed Attr-MoE and MoE strategies show comparable results and largely dominate
other techniques. Both types of thresholding approaches, Attr-Thr and Thr, demon-
strate good results, however, no single value of threshold works the best. Instead,
τ = 0.10 works the best for smaller values of N, whereas τ = 0.25 is better for larger
values of N.

Figures 9(a), (b), and (c) plot the quality gain of MoE over various techniques as a
function of parameter α in Fα for PubData, MovData, and ImgData. They show very
similar main trends that are also similar to those of the attribute selection graphs
from the previous section, largely for the same reasons. For instance, since the MoE
strategy tends to get answers that are nearly the same as those of the optimal expected
solution, it never gets the results that are worse than the baselines. Attr-All tends
to show good results for α = 27, but poor results for α = 2−7, and the reverse is the
case for Attr-Top-1. Threshold-based solutions also show competitive results, but no
single threshold value works the best, as setting the threshold to a good value for some
dataset will lead to a poor value for another one. This is the case even if the value of α
is restricted to, say, α = 1 only. Thus it is a challenge to set a good threshold value in
unsupervised settings, for any dataset and any α.

One interesting observation is that while Attr-Top-1 is used very often in practice,
in this case it cannot reach reasonable quality compared to the rest of the techniques
for a wide range of α!

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

3:34 R. Nuray-Turan et al.

Fig. 9. Object selection. Quality across α.

Figure 9(d) plots the results of object selection queries for ImgData where depen-
dencies in data are taken into account using the approach described in Section 4.8.
MoE-No-Corr corresponds to the MoE approach under the assumption of tag indepen-
dence. In that figure the performance of MoE-No-Corr tends to be comparable or slightly
better than that of the competing strategies. However, by leveraging the knowledge of
dependencies, MoE achieves significantly better results compared to all of the competing
approaches.

Efficiency. In terms of the execution time, it takes 15.7 ms, 22.7 ms, and 28.7 ms
on average per query for the proposed MoE strategy on ImgData for α = 2−7, 1, and
27, respectively. For the Movies dataset these numbers are 5.4 ms, 6.2 ms, and 6.5 ms.
On the other hand, it takes 17 ms and 9 ms for Attr-All and Attr-Top-1 strategies
and α = 1 on ImgData. For the Movies dataset these numbers are 2.7 ms, 1.7 ms,
and 2.1 ms. As we can see the fastest one is Attr-Top-1, but it also gets much worse
results in terms of quality. As expected, due to the required additional calculations, the

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

Attribute and Object Selection Queries on Objects with Probabilistic Attributes 3:35

Fig. 10. Multiterm queries.

performance of MoE is slower compared to the baseline strategies. However, it is quite
reasonable if high-quality results are preferred.

5.4.2. Multiterm Queries. Figures 10(a) through (d) study the performance of conjunc-
tive and disjunctive multiterm object selection queries on ImgData and PubData. The

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

3:36 R. Nuray-Turan et al.

mixture of 1/2/3-term queries is used for ImgData and a mixture of 1/2-term queries is
used for PubData.

For these queries we can see that the relative stand of various strategies is quite
similar to that of single-term queries. The proposed MoE strategy outperforms the rest
of the techniques while Attr-Thr-0.1 and Attr-All also tend to perform well.

One trend that we observed is that the relative gain of MoE becomes less compared
with the singe-term case. For instance, since we are using a common workload of
relatively popular combination of tags, for the ImgData this translates into answer
sets where the number of “+” elements in the candidate sets outnumber the number
of “−” elements. Thus, any technique that gives preference to recall, like Attr-All or
Attr-Thr-0.1, will get quite accurate results, whereas techniques that prefer precision,
like Attr-Top-1, will show poor results. We have also considered different synthetic
workloads where the “−” elements outweigh “+” elements, and in that case Attr-Top-1
significantly outperforms Attr-All (plots not shown for brevity) but MoE still remains
the best strategy.

Another observation that we have made is that for certain datasets, for example,
ImgData, the computations under the assumption of attribute independence do not
work well and the dependencies should be modeled in data (as described in Section 4.8)
to get high-quality results; see for example Figures 9(d) and 10(c).

Efficiency. It takes 16.1 ms, 23.1 ms, and 25.1 ms on average for MoE for conjunctive
queries for α = 2−7, 1, and 27, respectively, per query. For disjunctive queries these
numbers are 29.5 ms, 104.9 ms, and 108.2 ms. On the other hand, it takes 9ms and
5.9ms on average for conjunctive queries and α = 1 for Attr-All and Attr-Top-1,
respectively. For disjunctive queries these numbers are 96.9 ms and 67.8 ms. As we
can see, even though conjunctive queries might require enumeration, they are faster
than disjunctive queries since they are much more selective. The fastest one is the
Attr-Top-1 strategy, which gets higher efficiency at the cost of the worst quality results.
The relative performance of the proposed MoE strategy is quite reasonable, if high-
quality results are desired.

5.5. Miscellaneous Experiments

5.5.1. Stability and Robustness. In this experiment we analyze the stability and robust-
ness of the proposed MoE strategies with respect to the noise in the provided probabil-
ities. This experiment simulates the situation where the underlying data processing
techniques do not provide adequate probabilities and no further action is taken to cor-
rect or improve these probabilities.13 Specifically, let p1, p2, . . . , pn be the probabilities
associated with the n options of an attribute. We add noise to these probabilities by first
generating a random distribution r1, r2, . . . , rn using the same process as for generating
probabilities for the ImgData. We then mix the two distributions ai = (1 − γ)pi + γ ri
and then normalize ai ’s such that

∑n
i=1 ai = 1. We then use ai ’s instead of pi ’s as the

new (noisy) probabilities associated with the n options. That way, as we vary γ from 0 to
1, the original probability distribution gradually transforms into a completely random
distribution. This procedure is applied to each uncertain attribute. Figures 11 and 12
plot the F1-measure for attribute and object selection on the Publication dataset as γ is
varied in the [0, 1] interval. We can see that the results of the proposed MoE technique
are quite robust. For attribute value selection, as γ increases the MoE technique initially
dominates the other techniques but then becomes slightly worse. Nevertheless, overall
it is quite stable as the quality does not drop drastically. The All techniques does not
use probabilities (as long as there are no zero probabilities) so its curve is flat. For

13There are many existing supervised learning techniques that allow to adjust probabilities that contain
some noise.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

Attribute and Object Selection Queries on Objects with Probabilistic Attributes 3:37

Fig. 11. Noisy prob.: attribute value selection on PubData.

Fig. 12. Noisy prob.: object selection on PubData.

object selection, MoE largely dominates the other techniques; this has been the case in
our other object selection experiments as well. As we can see, a small disturbance in
probabilities does not lead to a significant change in relative stand of various methods,
but a large amount of noise could do that. Hence, overall the MoE strategy is quite
robust and stable.

As it can be seen from the figures, in a complete noise environment, most of the
methods still have F1 = 0.7 and F1 = 0.4 for object and attribute value selection
respectively. Such high-quality F1 values are achieved in a complete noise environment,
because for each attribute there are only a few “options” and none of the options is
assigned with a zero (or unusually skewed) probabilities by the random method.

5.5.2. Effect of Optimizations. For attribute value selection, the “stopping early” opti-
mization described by Lemma 2 in Section 3.4 results in 39%, 10%, and 19% im-
provement of the average query response time for PubData, MovData, and ImgData
datasets, respectively. For object selection, a similar optimization described by Lemma 5
in Section 4.7.1 results in 5%, 2%, and 9% improvement. When adding the probability
computation optimizations from Section 4.7.2, the overall improvements for conjunc-
tive queries are 8%, 4%, and 47%. The improvement is greater for ImgData, since
each image can be annotated with the same tag multiple times. This results in more
cases that require time-consuming enumerations. Thus, the probability computation
optimization helps significantly more by being able to handle these time-consuming
cases efficiently.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

3:38 R. Nuray-Turan et al.

5.6. Discussion of Results

As expected, the proposed MoE-based strategy outperforms the competing techniques
under various scenarios. The threshold-based methods were in the second place, achiev-
ing competitive results on some of the datasets. Interestingly, widely used Top-K and
especially commonly applied Top-1-based methods did not perform as well in this con-
text, with Top-1 frequently showing significantly worse results! Both threshold- and
Top-K-based techniques require the domain analyst to set the right parameter values,
while the proposed MoE approaches do not need any supervision at all. The proposed
approach is also quite robust and does not show drastic drop in accuracy if the asso-
ciated probabilities are noisy. In terms of the execution time, the performance of the
proposed MoE techniques is acceptable when compared to other strategies. Thus MoE is
a preferred solution when higher-quality results are desirable.

6. RELATED WORK

There is very significant amount of related work, especially on probabilistic databases
[Widom 2005; Antova et al. 2008; Singh et al. 2008; Dalvi and Suciu 2004; Cheng et al.
2003, 2007; Kalashnikov et al. 2006; Ma et al. 2008]. Here we summarize only some of
the related research problems.

One of the well-studied related problems is that of top-K retrieval in probabilistic
databases. There, one of the goals is to efficiently compute the top-K answers for a
given K, without computing the exact probability for each object to be in the answer
set [Soliman et al. 2007; Re et al. 2007; Zhang and Chomicki 2009; Cormode et al.
2009], since these computations can be expensive. However, the primary focus of our
work is the quality, and not the efficiency, angle of the problem. There is also a large
number of efforts on top-K retrieval on deterministic databases [Theobald et al. 2004;
Chang and Hwang 2002; Chaudhuri et al. 2004]. However, the scope of our work is
quite different from that.

Another related problem is that of automatic keyword selection for indexing. There,
the goal is to select the best keywords that define the document, because the adequacy
of the indexing determines the quality of the system in responding to the user queries.
All the keywords in the document can be used for indexing, but in that case although the
indexing is exhaustive, it is not specific. Thus it leads to high recall, but low precision
[Harter 1975; Bookstein and Swanson 1975].

Kraft [1973] formulated the relevance between documents and queries using decision
theory. For every possible keyword a decision is made whether that keyword is relevant
to the given document. Hence, the relevance has mutually exclusive alternatives and
decision theory can be used for that. Using decision theory and 2-Poisson processes,
Harter [1975] proposed an algorithm to define a measure for indexability by minimizing
the cost, where cost is defined as user satisfaction. The algorithm is built upon the study
in Bookstein and Swanson [1975], and aims to optimize the expected precision for each
expected recall level. It uses the probability ranking principle explained in Robertson
[1977], which states that for the optimum performance on a given query a document
retrieval system should rank the documents in order of their probability of relevance
to the query. The main difference between this algorithm and ours is that we optimize
the query results using the expected Fα.

In Nottelmann and Fuhr [2012], similar expected precision and recall measures are
used to decide which resource to select for further querying. Three different methods
are proposed for estimating retrieval quality in resource selection. In Takenobu et al.
[2002], similar effectiveness measures are used for index term selection, when the
ground truth for the queries is known. The algorithm first ranks the terms using scores
and uses certain term effectiveness measures to decide when to stop adding index

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

Attribute and Object Selection Queries on Objects with Probabilistic Attributes 3:39

terms. Two different term effectiveness measures are defined and used: term precision
and term F-measure. A cut-off value for term selection can be determined when the
index term added to the query maximizes the quality measure: either precision or F-
measure. The keywords are selected for document indexing via a supervised learning
method.

Work by Li and Deshpande has been developed concurrently with ours, and studies
the problem of finding answers that are optimal, in the expected sense under Jaccard
and other quality metrics, on top of the probabilistic And/Xor tree representation, for
example, Li and Deshpande [2009]. They propose a theoretically elegant algorithm that
could be applied to the problem of object selection after the probabilities P(Oi ∈ GQ) are
computed. That algorithm can be adapted to handle the Fα measure, but has O(n3 log n)
complexity, and thus is infeasible in our problem settings since n can be large. In this
article we propose an algorithm that, instead of spending computational resources
on computing the expected values exactly, estimates these values quickly, resulting
in a linear-time complexity algorithm that reaches virtually the same quality as the
nonestimate-based solution.

7. CONCLUSIONS AND FUTURE WORK

In this article we studied the problem of maximizing the quality of selection queries on
probabilistically annotated content. Two types of queries have been studied: attribute
value and object selection queries. Several algorithms for answering such queries have
been proposed. We have demonstrated that the proposed solutions significantly out-
perform known techniques across variety of datasets and scenarios. As future work,
we plan to develop similar techniques for different types of queries in the context of
generic probabilistic databases.

REFERENCES

ANTOVA, L., JANSEN, T., KOCH, C., AND OLTEANU, D. 2008. Fast and simple relational processing of uncertain
data. In Proceedings of the International Conference on Data Engineering (ICDE).

ASHISH, N., MEHROTA, S., AND PIRZADEH, P. 2009. XAR: An integrated framework for free text information
extraction. In Proceedings of the IEEE CSIE Conference.

ASUNCION, A., SMYTH, P., AND WELLING, M. 2008. Asynchronous distributed learning of topic models. In Pro-
ceedings of the NIPS Conference.

BAEZA-YATES, R. AND RIBERTO-NETO, B. 1999. Modern Information Retrieval. Addison-Wesley.
BOOKSTEIN, A. AND R.SWANSON, D. 1975. A decision theoretic foundation for indexing. J. Amer. Soc. Inf. Sci.
CARROLL, J. AND BRISCOE, T. 2002. High precision extraction of grammatical relations. In Proceedings of the

COLING Conference.
CHANG, K. AND HWANG, S. 2002. Minimal probing: supporting expensive predicates for top-k queries. In

Proceedings of the ACM SIGMOD Conference on Management of Data.
CHAUDHURI, S., GANJAM, K., GANTI, V., AND MOTWANI, R. 2003. Robust and efficient fuzzy match for online data

cleaning. In Proceedings of the ACM SIGMOD Conference on Management of Data.
CHAUDHURI, S., GRAVANO, L., AND MARIAN, A. 2004. Optimizing top-k selection queries over multimedia reposi-

tories. Trans. Knowl. Data Engin. 16, 8.
CHEN, J., TAN, T., AND MULHEM, P. 2001. A method for photograph indexing using speech annotation. In

Proceedings of the IEEE Pacific Rim Conference on Multimedia.
CHEN, S., KALASHNIKOV, D. V., AND MEHROTRA, S. 2007. Adaptive graphical approach to entity resolution. In

Proceedings of the ACM IEEE Joint Conference on Digital Libraries (JCDL’07).
CHEN, Z. S., KALASHNIKOV, D. V., AND MEHROTRA, S. 2009. Exploiting context analysis for combining multiple

entity resolution systems. In Proceedings of the ACM SIGMOD International Conference on Management
of Data.

CHENG, R., KALASHNIKOV, D. V., AND PRABHAKAR, S. 2003. Evaluating probabilistic queries over imprecise data.
In Proceedings of the ACM SIGMOD International Conference on Management of Data.

CHENG, R., KALASHNIKOV, D. V., AND PRABHAKAR, S. 2007. Evaluation of probabilistic queries over imprecise
data in constantly-evolving environments. Inf. Syst. J. 32, 1, 104–130.

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

3:40 R. Nuray-Turan et al.

CORMODE, G., LI, F., AND YI, K. 2009. Semantics of ranking queries for probabilistic data and expected ranks.
In Proceedings of the International Conference on Data Engineering (ICDE).

DALVI, N. AND SUCIU, D. 2004. Efficient query evaluation on probabilistic databases. In Proceedings of the
International Conference on Very Large Databases (VLDB).

DESAI, C., KALASHNIKOV, D. V., MEHROTRA, S., AND VENKATASUBRAMANIAN, N. 2009. Using semantics for speech
annotation of images. In Proceedings of the 25th IEEE International Conference on Data Engineering
(ICDE’09).

HARTER, S. 1975. A probabilistic apporach to automatic keyword indexing: Part II, An algorithm for proba-
bilistic indexing. J. Amer. Soc. Inf. Sci.

HERNANDEZ, M. AND STOLFO, S. 1995. The merge/purge problem for large databases. In Proceedings of the ACM
SIGMOD Conference on Management of Data.

KALASHNIKOV, D. V., MA, Y., MEHROTRA, S., AND HARIHARAN, R. 2006. Index for fast retrieval of uncertain spatial
point data. In Proceedings of the International Symposium on Advances in Geographic Information
Systems.

KALASHNIKOV, D. V. AND MEHROTRA, S. 2006. Domain-independent data cleaning via analysis of entity-
relationship graph. ACM Trans. Datab. Syst. 31, 2, 716–767.

KALASHNIKOV, D. V., MEHROTRA, S., AND CHEN, Z. 2005. Exploiting relationships for domain-independent data
cleaning. In Proceedings of the SIAM International Conference on Data Mining (SIAM Data Mining’05).

KALASHNIKOV, D. V., MEHROTRA, S., XU, J., AND VENKATASUBRAMANIAN, N. 2011. A semantics-based approach for
speech annotation of images. IEEE Trans. Knowl. Data Engin. 23, 9, 1373–1387.

KRAFT, D. 1973. A decision theory view of the information retrieval situation: An operations research ap-
proach. J. Amer. Soc. Inf. Sci.

LI, J. AND DESHPANDE, A. 2009. Consensus answers for queries over probabilistic databases. In Proceedings of
the Conference on Principles of Database Systems (PODS).

MA, Y., KALASHNIKOV, D. V., AND MEHROTRA, S. 2008. Towards managing uncertain spatial information for
situational awareness applications. IEEE Trans. Knowl. Data Engin. 20, 10.

MARTÍN-BAUTISTA, M. J., SÁNCHEZ, D., MIRANDA, M. A. V., AND LARSEN, H. L. 2000. Measuring effectiveness in
fuzzy information retrieval. In Proceedings of the FQAS Conference.

MENESTRINA, D., BENJELLOUN, O., AND GARCIA-MOLINA, H. 2006. Generic entity resolution with data confidences.
In Proceedings of the CleanDB Conference.

MOENCK, R. T. 1976. Practical fast polynomial multiplication. In Proceedings of the ACM ISSAC Conference.
NICULESCU-MIZIL, A. AND CARUANA, R. 2005. Predicting good probabilities with supervised learning. In Pro-

ceedings of the International Conference on Machine Learning (ICML).
NOTTELMANN, H. AND FUHR. Evaluating different methods of estimating retrieval quality for resource selection.

In Proceedings of the SIGIR’03 Conference.
NURAY-TURAN, R., KALASHNIKOV, D. V., AND MEHROTRA, S. 2007. Self-tuning in graph-based reference disam-

biguation. In Proceedings of the 12th International Conference on Database Systems for Advanced Ap-
plications.

RAVINDRA, G., BALAKRISHNAN, N., AND RAMAKRISHNAN, K. R. 2004. Automatic evaluation of extract summaries
using fuzzy f-score measure. In 5th International Conference on Knowledge Based Computer Systems.

RE, C., DALVI, N. N., AND SUCIU, D. 2007. Efficient top-k query evaluation on probabilistic data. In Proceedings
of the International Conference on Data Engineering (ICDE).

ROBERTSON, S. E. 1977. The probability ranking principle in IR. In Reading Information.
SARMA, A. D., THEOBALD, M., AND WIDOM, J. 2008. Exploiting lineage for confidence computation in uncertain

and probabilistic databases. In Proceedings of the International Conference on Data Engineering (ICDE).
SATPAL, S. AND SARAWAGI, S. 2007. Domain adaptation of conditional probability models via feature subsetting.

In Proceedings of the PKDD Conference.
SINGH, S., MAYFIELD, C., MITTAL, S., PRABHAKAR, S., HAMBRUSCH, S. E., AND SHAH, R. 2008. The orion uncertain

data management system. In Proceedings of the COMAD Conference. 273–276.
SOLIMAN, M. A., ILYAS, I. F., AND CHENG, K. C.-C. 2007. Top-k query processing in uncertain databases. In

Proceedings of the International Conference on Data Engineering (ICDE).
STEYVERS, M., SMYTH, P., ROSEN-ZVI, M., AND GRIFFITHS, T. L. 2004. Probabilistic author-topic models for infor-

mation discovery. In Proceedings of the KDD Conference. 306–315.
TAKENOBU, T., KENJI, K., HIRONORI, O., AND HOZUMI, T. 2002. Selecting effective index terms using a decision

tree. J. Natural Lang. Engin. 8, 3.
THEOBALD, M., WEIKUM, G., AND SCHENKEL, R. 2004. Top-k query evaluation with probabilistic guarantees. In

Proceedings of the International Conference on Very Large Databases (VLDB).

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

Attribute and Object Selection Queries on Objects with Probabilistic Attributes 3:41

WICK, M. L., ROHANIMANESH, K., SCHULTZ, K., AND MCCALLUM, A. 2008. A unified approach for schema matching,
coreference and canonicalization. In Proceedings of the KDD Conference.

WIDOM, J. 2005. Trio: A system for integrated management of data, accuracy, and lineage. In Proceedings of
the CIDR Conference. 262–276.

ZADROZNY, B. AND ELKAN, C. 2001. Obtaining calibrated probability estimates from decision trees and naive
bayesian classifiers. In Proceedings of the International Conference on Machine Learning (ICML). 609–
616.

ZADROZNY, B. AND ELKAN, C. 2002. Transforming classifier scores into accurate multiclass probability estimates.
In Proceedings of the SIGKDD Conference.

ZHANG, J. AND YANG, Y. 2004. Probabilistic score estimation with piecewise logistic regression. In Proceedings
of the International Conference on Machine Learning (ICML).

ZHANG, X. AND CHOMICKI, J. 2009. Semantics and evaluation of top-k queries in probabilistic databases.
http://arxiv.org/pdf/0811.2250.pdf.

ZIOLKO, B., MANANDHAR, S., AND WILSON, R. 2007. Fuzzy recall and precision for speech segmentation evalua-
tion. In Proceedings of the 3rd Language and Technology Conference.

Received December 2010; revised June 2011; accepted September 2011

ACM Transactions on Database Systems, Vol. 37, No. 1, Article 3, Publication date: February 2012.

