Domain-Independent Data Cleaning via
Analysis of Entity-Relationship Graph

DMITRI V. KALASHNIKOV and SHARAD MEHROTRA
University of California, Irvine

In this article, we address the problem of reference disambiguation. Specifically, we consider a
situation where entities in the database are referred to using descriptions (e.g., a set of instantiated
attributes). The objective of reference disambiguation is to identify the unique entity to which each
description corresponds. The key difference between the approach we propose (called RELDC) and
the traditional techniques is that RELDC analyzes not only object features but also inter-object
relationships to improve the disambiguation quality. Our extensive experiments over two real data
sets and over synthetic datasets show that analysis of relationships significantly improves quality
of the result.

Categories and Subject Descriptors: H.2.m [Database Management]: Miscellaneous—Data clean-
ing; H.2.8 [Database Management]: Database Applications—Data mining; H.2.5 [Information
Systems]: Heterogeneous Databases; H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms: Algorithms, Design, Experimentation, Performance, Theory

Additional Key Words and Phrases: Connection strength, data cleaning, entity resolution, graph
analysis, reference disambiguation, relationship analysis, RELDC

1. INTRODUCTION

Recent surveys [KDSurvey 2003] show that more than 80% of researchers work-
ing on data mining projects spend more than 40% of their project time on clean-
ing and preparation of data. The data cleaning problem often arises when infor-
mation from heterogeneous sources is merged to create a single database. Many
distinct data cleaning challenges have been identified in the literature: dealing
with missing data [Little and Rubin 1986], handling erroneous data [Maletic

This material is based upon work supported by the National Science Foundation under Award Num-
bers 0331707 and 0331690 and in part by the National Science Foundation under Award Numbers
IIS-0083489 as part of the Knowledge Discovery and Dissemination program. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

Corresponding Author’s addresses: D. V. Kalashnikov, University of California, Irvine, 4300 Calit2
Building, Irvine, CA 92697-2815; email: dvk@ics.uci.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.

© 2006 ACM 0362-5915/06/0600-0716 $5.00

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006, Pages 716-767.

Domain-Independent Data Cleaning . 717

and Marcus 2000], record linkage [Bilenko and Mooney 2003; Jin et al. 2003;
Chaudhuri et al. 2003], and so on. In this article, we address one such chal-
lenge called reference disambiguation, which is also known as “fuzzy match”
[Chaudhuri et al. 2003] and “fuzzy lookup” [Chaudhuri et al. 2005].

The reference disambiguation problem arises when entities in a database
contain references to other entities. If entities were referred to using unique
identifiers, then disambiguating those references would be straightforward.
Instead, frequently, entities are represented using properties/descriptions that
may not uniquely identify them leading to ambiguity. For instance, a database
may store information about two distinct individuals ‘Donald L. White’ and
‘Donald E. White’, both of whom are referred to as ‘D. White’ in another
database. References may also be ambiguous due to differences in the rep-
resentations of the same entity and errors in data entries (e.g., ‘Don White’
misspelled as ‘Don Whitex’). The goal of reference disambiguation is for each
reference to correctly identify the unique entity it refers to.

The reference disambiguation problem is related to the problem of record de-
duplication or record linkage [Jin et al. 2003; Chaudhuri et al. 2003; Bilenko
and Mooney 2003] that often arise when multiple tables (from different data
sources) are merged to create a single table. The causes of record linkage and
reference disambiguation problems are similar; viz., differences in represen-
tations of objects across different data sets, data entry errors, etc. The differ-
ences between the two can be intuitively viewed using the relational termi-
nology as follows: while the record linkage problem consists of determining
when two records are the same, reference disambiguation corresponds to en-
suring that references (i.e., “foreign keys”!) in a database point to the correct
entities.

Given the tight relationship between the two data cleaning tasks and the sim-
ilarity of their causes, existing approaches to record linkage can be adapted for
reference disambiguation. In particular, feature-based similarity (FBS) meth-
ods that analyze similarity of record attribute values (to determine whether
two records are the same) can be used to determine if a particular reference
corresponds to a given entity or not. This article argues that quality of dis-
ambiguation can be significantly improved by exploring additional semantic
information. In particular, we observe that references occur within a context
and define relationships/connections between entities. For instance, ‘D. White’
might be used to refer to an author in the context of a particular publication.
This publication might also refer to different authors, which can be linked to
their affiliated organizations, etc., forming chains of relationships among en-
tities. Such knowledge can be exploited alongside attribute-based similarity
resulting in improved accuracy of disambiguation.

In this article, we propose a domain-independent data cleaning approach
for reference disambiguation, referred to as Relationship-based Data Cleaning
(RELDC), which systematically exploits not only features but also relationships

1We are using the term “foreign key” loosely. Usually, foreign key refers to a unique identifier of
an entity in another table. Instead, foreign key above means the set of properties that serve as a
reference to an entity.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

718 o D. V. Kalashnikov and S. Mehrotra

(A1, ‘Dave White’, ‘Intel’)
(A2, ‘Don White’, ‘CMU’)
(As, ‘Susan Grey’, ‘MIT")
(A4, ‘John Black’, ‘MIT")
(As, ‘Joe Brown’, unknown)
(Ae, ‘Liz Pink’, unknown)

Fig. 1. Author records.

among entities for the purpose of disambiguation. RELDC views the database
as a graph of entities that are linked to each other via relationships. It first
utilizes a feature-based method to identify a set of candidate entities (choices)
for a reference to be disambiguated. Graph theoretic techniques are then used
to discover and analyze relationships that exist between the entity containing
the reference and the set of candidates.

The primary contributions of this article are:

(1) developing a systematic approach to exploiting both attributes as well as
relationships among entities for reference disambiguation,

(2) developing a set of optimizations to achieve an efficient and scalable (to
large graphs) implementation of the approach,

(3) establishing that exploiting relationships can significantly improve the
quality of reference disambiguation by testing the developed approach over
2 real-world data sets as well as synthetic data sets.

A preliminary version of this article appeared in Kalashnikov et al. [2005];
it presents an overview of the approach, without implementation and other de-
tails, required for implementing the approach in practice. The rest of this article
is organized as follows: Section 2 presents a motivational example. In Section 3,
we precisely formulate the problem of reference disambiguation and introduce
notation that will help explain the RELDC approach. Section 4 describes the
ReLDC approach. The empirical results of RELDC are presented in Section 6.
Section 7 contains the related work, and Section 8 concludes the article.

2. MOTIVATION FOR ANALYZING RELATIONSHIPS

In this section, we will use an instance of the “author matching” problem to
illustrate that exploiting relationships among entities can improve the quality
of reference disambiguation. We will also schematically describe one approach
that analyzes relationships in a systematic domain-independent fashion.

Consider a database about authors and publications. Authors are repre-
sented in the database using the attributes (id, authorName, affiliation)
and information about papers is stored in the form (id, title, authorRefl,
authorRef2,..., authorRefN). Consider a toy database consisting of the author
and publication records shown in Figures 1 and 2.

The goal of the author matching problem is to identify for each authorRef in
each paper the correct author it refers to.

We can use existing feature-based similarity (FBS) techniques to compare the
description contained in each authorRef in papers with values in authorName
attribute in authors. This would allow us to resolve almost every authorRef
references in the above example. For instance, such methods would identify

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning . 719

(Py, ‘Databases ...", ‘John Black’, ‘Don White’)
(P, ‘Multimedia ...’ ‘Sue Grey’, ‘D. White’)
(Ps,‘Title3 ..., ‘Dave White’)

(Py, ‘Titled ...7, ‘Don White’, ‘Joe Brown’)

(Ps, ‘Title6 ..., ‘Joe Brown’, ‘Liz Pink’)

(Ps, ‘Title7 ..., ‘Liz Pink’, ‘D. White’)

Fig. 2. Publication records.

that ‘Sue Grey’ reference in Pj refers to As (‘Susan Grey’). The only exception
will be ‘D. White’ references in Py and Pg: ‘D. White’ could match either A;
(‘Dave White’) or Ay (‘Don White’).

Perhaps, we could disambiguate the reference ‘D. White’ in P, and Pg by
exploiting additional attributes. For instance, the titles of papers P; and Py
might be similar while titles of Py and P3 might not, suggesting that ‘D. White’ of
P, isindeed ‘Don White’ of paper P;. We next show that it may still be possible to
disambiguate the references ‘D. White’ in P; and Py by analyzing relationships
among entities even if we are unable to disambiguate the references using title
(or other attributes).

First, we observe that author ‘Don White’ has co-authored a paper (P;) with
‘John Black’ who is at MIT, while the author ‘Dave White’ does not have any
co-authored papers with authors at MIT. We can use this observation to dis-
ambiguate between the two authors. In particular, since the co-author of ‘D.
White’ in Py is ‘Susan Grey’ of MIT, there is a higher likelihood that the author
‘D. White’ in Py is ‘Don White’. The reason is that the data suggests a connec-
tion between author ‘Don White’ with MIT and an absence of it between ‘Dave
White’ and MIT.

Second, we observe that author ‘Don White’ has co-authored a paper (P4)
with ‘Joe Brown’ who in turn has co-authored a paper with ‘Liz Pink’. In con-
trast, author ‘Dave White’ has not co-authored any papers with either ‘Liz Pink’
or ‘Joe Brown’. Since ‘Liz Pink’ is a co-author of Pg, there is a higher likelihood
that ‘D. White’ in Pg refers to author ‘Don White’ compared to author ‘Dave
White’. The reason is that often co-author networks form groups/clusters of
authors that do related research and may publish with each other. The data
suggests that ‘Don White’, ‘Joe Brown’ and ‘Liz Pink’ are part of the cluster,
while ‘Dave White’ is not.

At first glance, the analysis above (used to disambiguate references that
could not be resolved using conventional feature-based techniques) may seem
domain specific. A general principle emerges if we view the database as a graph
of interconnected entities (modeled as nodes) linked to each other via relation-
ships (modeled as edges). Figure 3 illustrates the entity-relationship graph
corresponding to the toy database consisting of authors and papers records. In
the graph, entities containing references are linked to the entities they refer
to. For instance, since the reference ‘Sue Grey’ in P is unambiguously resolved
to author ‘Susan Grey’, paper P; is connected by an edge to author As. Sim-
ilarly, paper Ps is connected to authors As (‘Joe Brown’) and Ag (‘Liz Pink’).
The ambiguity of the references ‘D. White’ in P, and Ps is captured by linking
papers Py and Pg to both ‘Dave White’ and ‘Don White’ via two “choice nodes”
(labeled ‘1’ and ‘2’ in the figure). These “choice nodes” represent the fact that

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

720 o D. V. Kalashnikov and S. Mehrotra

3] o/
%

’
/

John Black

Fig. 3. Graph for the publications example.

the reference ‘D. White’ refers to either one of the entities linked to the choice
nodes.

Given the graph view of the toy database, the analysis we used to disam-
biguate ‘D. White’ in P, and Pg can be viewed as an application of the following
general principle:

Context Attraction Principle (CAP): If reference r made in the
context of entity x refers to an entity y; whereas the description pro-
vided by r matches multiple entities y1, ¥2,..., ¥j,..., YN, then x
and y; are likely to be more strongly connected to each other via
chains of relationships than x and vy, where ¢ = 1,2,...,N and
¢+

Let us now get back to the toy database. The first observation we
made, regarding disambiguation of ‘D. White’ in P,, corresponds to the
presence of the following path (i.e., relationship chain or connection) be-
tween the nodes ‘Don White’ and Py in the graph: P < ‘Susan Grey' <
‘MIT’ <> ‘John Black’ <> P; <> ‘Don White’. Similarly, the second observation, re-
garding disambiguation of ‘D. White’ in Ps as ‘Don White’, was based on
the presence of the following path: Pg <> ‘Liz Pink’ <> P5 <> ‘Joe Brown’ <> Py <>
‘Don White’. There were no paths between P; and ‘Dave White’ or between Pg
and ‘Dave White’ (if we ignore ‘1’ and ‘2’ nodes). Therefore, after applying the
CAP principle, we concluded that the reference ‘D. White’ in both cases probably
corresponded to the author ‘Don White’. In general, there could have been paths
not only between Py (Pg) and ‘Don White’, but also between Py (Pg) and ‘Dave
White’. In that case, to determine if ‘D. White’ is ‘Don White’ or ‘Dave White’
we should have been able to measure whether ‘Don White’ or ‘Dave White’ is
more strongly connected to Py (Pg).

The generic approach therefore first discovers connections between the entity,
in the context of which the reference appears, and the matching candidates
for that reference. It then measures the connection strength of the discovered
connections in order to give preference to one of the matching candidates. The
above discussion naturally leads to two questions:

(1) Does the context attraction principle hold over real data sets. That is, if
we disambiguate references based on the principle, will the references be
correctly disambiguated?

(2) Can we design a generic solution to exploiting relationships for
disambiguation?

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning

Table I. Notation

Notation Meaning
D the database
X = {x} the set of all entities in D
R ={r} the set of all unresolved references
r a reference
r* the to-be-found entity that r refers to
Xr the context entity of r
S the option set of r
N = |S;| convenience notation for |S,|
Yr1> ¥r2s---» ¥rN | all elements of S,
G=(V,E) the entity-relationship graph for D
e the edge (r, y,,)
Wy the weight of edge e,
L the path length limit parameter
Pr(u,v) the set of all L-short simple u-v paths in G
c(u,v) the connection strength between nodes uz and v in G
Ni (V) the neighborhood of node v of radius % in graph G

721

Of course, the second question is only important if the answer to the first
is positive. However, we cannot really answer the first unless we develop a
general strategy to exploiting relationships for disambiguation and testing it
over real data. We will develop one such general, domain-independent strategy
for exploiting relationships for disambiguation, which we refer to as RELDC
in Section 4. We perform extensive testing of RELDC over both real data from
two different domains as well as synthetic data to establish that exploiting
relationships (as is done by RELDC) significantly improves the data quality.
Before we develop RELDC, we first develop notation and concepts needed to
explain our approach in Section 3.

3. PROBLEM DEFINITION

In this section, we first develop notation and then formally define the problem
of reference disambiguation. The notation is summarized in Table 1.

3.1 References

Let D be the database that contains references that are to be resolved. Let
X = {x} be the set of all entities? in D. Each entity x consists of a set of m
properties {a1, as, ..., a,,} and of a set of n references {ry,ro, ..., r,}. The num-
ber of attributes m and the number of references n in those two sets can be
different for different entities. Each reference r is essentially a description of
some entity and may itself consist of one or more attributes. For instance, in
the example in Section 2, paper entities contain one-attribute authorRef ref-
erences in the form (author name). If, besides author names, author affiliation
were also stored in the paper records, then authorRef references would have
consisted of two attributes (author name, author affiliation). Each reference r

2Here entities have essentially the same meaning as in the standard E/R model.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

722 o D. V. Kalashnikov and S. Mehrotra

maps uniquely into the entity, in the context of which it is made. That entity is
called the context entity of reference r and denoted x,. The set of all references
in the database D will be denoted as R.

3.1.1 Option Set. Each referencer € R semantically refers to a single spe-
cificentity in X called the answer for reference r and denoted *. The description
provided by r may, however, match a set of one or more entities in X. We refer
to this set as the option set of reference r and denote it by S,. The option set
consists of all the entities that r could potentially refer to. Set S, consists of
|S| elements y,1, yr2, ..., ¥rs, called options of reference r:

Sr = {yrla Yr2, ..., yr|s,\}-

We assume S, is given for each r. If it is not given, we assume a feature-based
similarity approach is used to construct S, by choosing all of the candidates
such that FBS similarity between them and r exceed a given threshold. To
simplify notation, we will use N to mean |S, |, that is N = |S,|.

Example 3.1.1 (Notation). Let us consider an example of using notation.
Consider the referencer = ‘John Black’in publication P; illustrated in Figure 2.
Then x, = P, r* = A4, S, = {A4}, and y,1 = A4. If we consider the reference
s = ‘D. White’ in publication P, and assume that in reality it refers to As (i.e.,
‘Don White’), then x; = Ps, s* = Ay, Sy = {Aq, As}, Ys1 = A4, and Ys2 = As.

3.2 The Entity-Relationship Graph

ReLDC views the resulting database D as an undirected entity-relationship
graph?® G = (V, E), where V is the set of nodes and E is the set of edges. The
set of nodes V is comprised of the set of regular nodes V,.,; and the set of
choice nodes Vi, that is V. = Vi, U V.. Each regular node corresponds to
some entity x € X. We will use the same notation x for both the entity and
the node that represents x. Choice nodes will be defined shortly. Each edge in
the graph corresponds to a relationship.* Let us note that if entity x; contains
a reference to entity xo, then nodes x; and xo are linked via an edge, since
the reference establishes a relationship between the two entities. For instance,
an authorRef reference from a paper to an author corresponds to the writes
relationship between the author and the paper.

In the graph, the edges have weights and the nodes do not have weights.
Each edge weight is a real number between zero and one. It reflects the degree
of confidence the relationship that corresponds to the edge exists. For instance,
in the context of our author matching example, if we are absolutely confident a
given author is affiliated with a given organization, then we assign the weight

3A standard entity-relationship graph can be visualized as an E/R schema of the database that has
been instantiated with the actual data.

4We concentrate primarily on binary relationships. Multi-way relationships are rare and most
of them can be converted to binary relationships [Garcia-Molina et al. 2002]. Most of the design
models/tools only deal with binary relationships, for instance ODL (Object Definition Language)
supports only binary relationships.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning . 723

Fig. 4. Direct edge.

() Regular nodes

< ‘ Choice nodes

v
1 010y jo suondo

- -
Context entity of 7" Option-edges

Fig. 5. Choice node.

of 1 to the corresponding edge. By default, all edge weights are equal to 1.> We
will use the notation edge label and edge weight interchangeably.

3.2.1 References and Linking. If S, has only one element y,;, then r is
resolved to y.1, and graph G contains an edge between x, and y,; as shown in
Figure 4. This edge is assigned weight 1 to denote that we are confident that r*
is yr1.

If' S, has more than 1 element, then a choice node is created for reference r, as
illustrated in Figure 5, to reflect the fact that »* can be one of y,1, yr2,..., yrn.
Given the direct correspondence between a reference r and its choice node,
we will use the same notation r for both of them. Node r is linked with node
x, via edge (x,,r). Node r is also linked with N nodes y,1, yr2,..., ¥rn, for
each y,;in S,, via edgese,; = (r, y,;) for j =1,2,..., N. Edges e,1,er2,...,e,n
are called the option-edges of choice r. The weights of option-edges are called
option-edge weights or simply option weights. The weight of edge (x,,r) is 1.
Each weight w,; of edge e,; for j = 1,2,..., N is undefined initially. Since
option-edgese,1, e, ..., e,y represent mutually exclusive alternatives, the sum
of their weights should be 1: w,; + wye + --- + w,xy = 1. Option-weights are
different from other edge weights: they are variables the values of which are to
be determined by the disambiguation algorithm, whereas other edge weights
are constants.

5To illustrate when the edge weights can be different from 1, consider the following scenario.
Assume the dataset being processed is originally derived from raw data by some extraction software.
For example, the author affiliations can be derived by crawling the web, retrieving various web
pages perceived to be faculty homepages, extracting what appears to be faculty names and their
affiliations and putting them in the dataset. The extraction software is not always 100% confident
in all the associations among entities it extracts, but might be able to assign the degree of its belief
instead.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

724 o D. V. Kalashnikov and S. Mehrotra

3.3 The Objective of Reference Disambiguation

To resolve reference r means to choose one entity y,; from S, in order to deter-
mine r*. If entity y,; is chosen as the outcome of such a disambiguation, then r
is said to be resolved to y,; or simply resolved. Reference r is said to be resolved
correctly if this y,; is r*. Notice, if S, has just one element y,; (ie.,, N = 1),
then reference r is automatically resolved to y,;. Thus, reference r is said to be
unresolved or uncertain if it is not resolved yet to any y,; and N > 1.

From the graph theoretic perspective, to resolve r means to assign weight 1 to
one edge e,;, where 1 < j < N, and assign weight O to the other N — 1 edges e,
where £ =1,2,..., N;¢ # j. This will indicate the algorithm chooses y,; as r*.

The goal of reference disambiguation is to resolve all references as correctly
as possible, that is, for each referencer € R to correctly identify r*. The accuracy
of reference disambiguation is the fraction of references being resolved that are
resolved correctly.

The alternative goal is for each y,; € S, to associate weight w,; that reflects
the degree of confidence that y,; is r*. For this alternative goal, each edge e,;
should be labeled with such a weight. Those weights can be interpreted later to
achieve the main goal: for each r try to identify only one y,; as r* correctly. We
emphasize this alternative goal since most of our discussion will be devoted to
a method for computing those weights. An interpretation of those weights (in
order to try to identify r*) is a small final step of RELDC. Namely, it achieves
this by picking y,; such that w,; is the largest among w,1, wr, ..., w,n. That is,
the algorithm resolves r to y,; where j : w,j = max,;—19 N Wre.

3.4 Connection Strength and CAP Principle

ReLDC resolves references by employing the context attraction principle pre-
sented in Section 2. We now state the principle more formally. Crucial to the
principle is the notion of the connection strength c(x1,x3) between two enti-
ties x; and xg, which captures how strongly x; and xs are connected to each
other through relationships. Many different approaches can be used to mea-
sure c(x1, x2), they will be discussed in Section 4. Given the concept of c(x1, x2),
we can restate the context attraction principle as follows:

Context Attraction Principle: Let r be a reference and
Yr1, ¥r2, - .-, ¥rN be elements of its option set S, with the correspond-
ing option weights w,1,w;s, ..., w,n. Then, for all j, ¢ € [1, N], if
Cr¢ > ¢y, then it is likely that w,, > w,;, where ¢, = c(x,, y-¢) and
crj = c(%r, Yrj).

Let us remark that, as will be elaborated in Section 4.1.2, not all of the
connection strength models are symmetric, that is, c(u,v) # c(v, u) for some
of them. In the above definition of the CAP, when resolving a reference r, the
connection strength is measured in the direction of from x, to y,;, for any j.

4. Re.DC APPROACH

We now have developed all the concepts and notation needed to explain the
ReLDC approach for reference disambiguation. The input to RELDC is the

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning . 725

N:2

— 00—

Fig. 6. Motivating c(p) formula.

entity-relationship graph G discussed in Section 3. We assume that feature-
based similarity approaches are used in constructing the graph G. The choice
nodes are created only for those references that could not be disambiguated
using only attribute similarity. RELDC will exploit relationships for further dis-
ambiguation and will output a resolved graph G in which each entity is fully
resolved. RELDC disambiguates references using the following four steps:

(1) Compute Connection Strengths. For each reference r € R, compute the con-
nection strength c(x;, y,;) for each y,; € S,. The result is a set of equations
that relate c(x,, y,7) with the option weights w: ¢(x,, ¥,;,) = g./(w). Here, w
is the set of all option weights in the graph G: w = {w,; : for allr, j}.

(2) Determine Equations for Option Weights. Using the equations from Step (1)
and the CAP, determine a set of equations that relate option weights to each
other.

(3) Compute Weights. Solve the set of equations from Step (2).

(4) Resolve References. Interpret the weights computed in Step (3), as well as
attribute-based similarity, to resolve references.

We now discuss the above steps in more detail in the following sections.

4.1 Computing Connection Strength

The concept of connection strength is at the core of the proposed data cleaning
approach. The connection strength c(u, v) between the two nodes u and v should
reflect how strongly these nodes are related to each other via relationships in
the graph G. The value of c¢(u, v) should be computed according to some con-
nection strength model. Below, we first motivate one way for computing c(u, v)
(Section 4.1.1), followed by a discussion of the existing connection strength (c.s.)
models (Section 4.1.2). We will conclude our discussion on c.s. models with one
specific model, called the weight-based model, which is the primary model we
use in our empirical evaluation of RelDC (Section 4.1.3).

4.1.1 Motivating a Way to Compute c(u,v). Many existing measures, such
as the length of the shortest path or the value of the maximum network flow be-
tween nodes u and v, could potentially be used for this purpose. Such measures,
however, have some drawbacks in our context.

For instance, consider the example in Figure 6 which illustrates a subgraph
of G. The subgraph contains two paths between nodes v and v: p, =u<a <v
and pp = u < b < v. In this example, node b connects multiple nodes, not just

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

726 o D. V. Kalashnikov and S. Mehrotra

N

[John Smith P1 Alan White |

Fig. 7. Example for author matching.

u and v, whereas node a connects only u and v. If this subgraph is a part of an
author-publication graph, for example, as illustrated in Figure 7, then nodes u
and v may correspond to two authors, node a to a specific publication, and node
b to a university which connects numerous authors. Intuitively, we expect that
the connection strength between u and v via a is stronger than the connection
strength between u and v via b: Since b connects many nodes, it is not surprising
we can also connect # and v via b, whereas the connection via a is unique to u
and v. Let ¢(p,) and ¢(pp) denote the connection strength via paths p, and py.
Then, based on our intuition, we should require that c(p,) > c(pp).

Let us observe that measures such as path length and maximum network
flow do not capture the fact that c(p,) > c¢(pp). That is, the path length of p,
and pp is 2. The maximum network flow via p, is 1 and via pp is 1 as well
[Cormen et al. 2001], provided the weight of all edges in Figure 6 is 1. Next, we
cover several existing connection strength models, most of which will return for
the case in Figure 6 that c(p,) > c¢(pp), as we desire. To measure c(u, v), several
of those models try to send a ‘flow’ in the graph G from the node u and then
analyze which fraction of this flow reaches v. This fraction then determines the
value of c(u, v).

4.1.2 Existing Connection Strength Models. Recently, there has been a
spike of interest by various research communities in the measures directly
related to the c(u,v) measure. Below we summarize several principal mod-
els. The reader who is primarily interested in the actual model employed by
ReLDC, might skip this section and proceed directly to Section 4.1.3 covering
the weight-based model.

To measure c(u, v) between nodes u and v, a connection strength model can
take many factors into account: the paths in G between u and v, how they
overlap, how they connect to the rest of G, the degree of nodes on those paths,
the types of relationships that constitute those paths and so on. The existing
models, and the two models proposed in this article, analyze only some of those
factors. Nevertheless, we will show that even those models can be employed
quite effectively by RELDC.

4.1.2.1 Diffusion Kernels. The area of kernel-based pattern analysis
[Shawe-Taylor and Cristianni 2004] studies ‘diffusion kernels on graph nodes’,
which are closely related to c.s. models. They are defined as follows.

A base similarity graph G = (S, E) for a dataset S is considered. The vertices
in the graph are the data items in S. The undirected edges in this graph are

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning . 727

labeled with a ‘base’ similarity 7(x, y) measure. That measure is also denoted
as 11(X,y), because only the direct links (of size 1) between nodes are utilized
to derive this similarity. The base similarity matrix B = B; is then defined as
the matrix whose elements Byy, indexed by data items, are computed as Byy =
7(X,y) = 11(X, y). Next, the concept of base similarity is naturally extended to
path of arbitrary length k. To define 1, (x, y), the set of all paths P,’:y of length %
between the data items x and y is considered. The similarity is defined as the
sum over all these paths of the products of the base similarities of their edges:

%
7(X,y) = Z l_[T1(Xi—1,Xi)

(x1X3..Xp)€ PE, i=1

Given such 7;(x, y) measure, the corresponding similarity matrix By, is defined.
It can be shown that B, = B*. The idea behind this process is to enhance the
base similarity by those indirect similarities. For example, the base similarity
B; can be enhanced with similarity B, for example, by considering a combina-
tion of the two matrices: B; + Bs. The idea generalizes to more then two ma-
trices. For instance, by observing that in practice the relevance of longer paths
should decay, a decay factor A is used, resulting in the so-called exponential dif-
fusion kernel: K =) ;7 %)\kBk = exp(AB). The von Neumann diffusion kernel
is defined similarly: K = 3 ;> A*B* = (I— 2B)~!. The elements of the matrix
K exactly define what we refer to as the connection strength: c(x,y) = Kyy.
While connection strength between nodes in a graph can be computed using
diffusion kernels, it is of limited utility in our setting since the procedure in
Shawe-Taylor and Cristianni [2004] cannot be directly applied in graphs with
choice nodes.

4.1.2.2 Relevant Importance in Graphs. A natural way to compute the con-
nection strength c(u, v) between node u and v is to compute it as the probability
of reaching node v from node u via random walks in graph G. Each step of
the random walk is done according to certain probability derived from edge
labels. Such problems have been studied for graphs in the previous work under
Markovian assumptions. For example, White and Smyth [2003] study the re-
lated problem of computing the relative importance of a given set of nodes with
respect to the set of “root” nodes by generalizing the PageRank algorithm [Brin
and Page 1998]. Their primary approach views such a graph as a Markov chain
where nodes represent states of the Markov chain and probabilities are deter-
mined by edge labels. White and Smyth [2003] also evaluate different models
and compare them with the PageRank-based model.

The problem of computing c(u, v) can be postulated as computing the rele-
vant importance of node u with respect to the root node v. The procedural part
of the PageRank-based algorithm in White and Smyth [2003], however, cannot
be employed directly in our approach. The main reason is that the Markovian
assumptions do not hold for our graphs. For example, consider two paths G <> F
and D < F in Figure 8. In that figure, F' is a choice node and BF and FD are
its mutually exclusive option-edges. In general, we can continue G <> F' path
by following F' <> B link; however, we cannot continue D <> F' path by following

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

728 o D. V. Kalashnikov and S. Mehrotra

Source Path: A,B,C,D,E Destination

Fig. 8. Sample graph.

the same F <> B link. Thus, the decision of whether we can follow F' < B link
is determined by the past links on the path. This violates the Markovian as-
sumption, since a Markov chain is a random process, which has the property
that, conditional on its present value, the future is independent of the past.

4.1.2.3 Electric Circuit Analogy. Faloutsos et al. [2004] consider a model
for computing c(u, v). They view the graph as an electric circuit consisting of
resistors, and compute c(u, v) as the amount of electric current that goes from
u to v. One of the primary contributions of that article is the optimizations that
scale their approach to large graphs.

4.1.3 Weight-Based Model. This section covers one of the c.s. models, which
we will use to empirically evaluate RELDC in Section 6. We refer to this model as
the weigh-based model (WM). WM is a simplification of the probabilistic model
(PM), covered in the electronic appendix. PM model is more involved than WM
model and will be a significant diversion from our main objective of explaining
ReLDC. PM computes c(u, v) as the probability of reaching the node u starting
from the node v in the graph G. Like the model proposed in White and Smyth
[2003], WM and PM are also random walk-based models.

WM computes c(u, v) as the sum of the connection strengths of each simple
path between nodes u and v. The connection strength c(p) of each path p from
u to v is computed as the probability of following path p in graph G. In WM,
computation of c(u, v) consists of two phases. The first phase discovers connec-
tions (paths) between u and v. The second phase measures the strength in the
connections discovered by the first phase.

Phase I: Path Discovering. In general, there can be many connections between
nodes u and v in G. Intuitively, many of those (e.g., very long ones) are not very
important. To capture most important connections while still being efficient,
instead of discovering all paths, the algorithm discovers only the set of all L-
short simple paths Pr,(u, v) between nodes u and v in graph G. A path is L-short
ifits length is no greater than parameter L. A path is simple if it does not contain
duplicate nodes.

Complications due to choice nodes. Not all of the discovered paths are con-
sidered when computing c(x;,, y,;) to resolve reference r: some of them are il-
legal paths, which are ignored by the algorithm. Let e,1,e,9,...,e,ny be the
option-edges associated with the reference r. When resolving r, RELDC tries do

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning . 729

‘ [) Regular nodes - Choice nodes

Fig. 9. Graph.

edge E]()

Fig. 10. Computing c(p) of path p = vy < -+ < v;,. Only possible-to-follow edges are shown.

determine weights of these edges via connections that exist in the remainder of
the graph not including those edges. To achieve this, RELDC actually discovers
paths not in graph G, but in G, = G —r, as illustrated in Figure 9. That is,
G, is graph G with node r removed. Also, in general, paths considered when
computing c(x,, y,;) may contain option-edges of some choice nodes. If a path p
contains an option-edge ey of some choice node s, it should not contain another
option-edge ez, where ¢ # j, of the same choice node s, because edges e;; and
es¢ are mutually exclusive.

Phase II: Measuring Connection Strength. In general, each L-short simple
path p can be viewed as a sequence of m nodes vy <> vg <> - -+ <>v,,, Where m <
L+1, asillustrated in Figure 10. This figure shows that from a node v;, wherei =
1,2,...,m—1,itis possible-to-follow® n; + 1 edges, labeled a;o, a;1, . . . , @in,. WM
computes the connection strength of path p as the probability Pr of following
path p: c(p) = Pr. Probability Pris computed as the product of two probabilities:
Pr = PriPry, where Pr; is the probability that path p exists and Pry is the
probability of following path p given that p exists.

Probability that Path Exists. First, path p should exist and thus each edge
on this path should exist. WM computes the probability Pr; that p exist as the
product of probabilities that each edge on path p exists: Pry = ajoagy X - -- X
am-10- That is, WM assumes that each edge E;(exists independently from edge
E . where ¢ #1i.

New Labels, Given Path Exists. If we assume that p exists, then situa-
tion will look like that illustrated in Figure 11. In that figure, all edges are

61t is not possible to follow the edges, following which would make the path not simple.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

730 U D. V. Kalashnikov and S. Mehrotra

edge E]{)

Fig. 11. Computing c(p): new labels under assumption that p exists.

labeled with new weights a;;, derived from the old weights a;; under the as-
sumption that path p exists. For example, a;, = 1 for all i, because each
edge E; exists if path p exists. For each aij where j # 0 it holds that ei-
ther alfj = a;j, or alfj = 0. To understand why alfj can be zero, consider path
p1 = ‘Don White’ <> Py <> Joe <> P5 <> Liz <> Pg < ‘2’ <> ‘Dave White’ in Figure 3
as an example. If we assume p; exists, then edge (‘2’, ‘Dave White’) must exist
and consequently edge (‘2’, ‘Don White’) does not exist. Thus, if path p; ex-
ists, the weight of edge (‘2’, ‘Don White’) is zero. That is why in general either
aj; = ajj, 0T, if the corresponding edge E;; cannot exist under assumption that
path p exists, then alfj =0.

General Walk Model. Before we present the way WM computes probability
Pry of following path p given that p exists, let us discuss the general walk model
utilized by WM when computing c(u, v). Each path starts from u. Assume WM
at some intermediate stage of a walk observes a path p, = u ~ x. Ifx = v, then
px is a legitimate u-v path and the walk stops. If x # v and the length of the
path p is L, then the walk stops since L is the path length limit. Otherwise,
WM examines the incident edges of x, specifically those that ‘can be followed’,
such that if an edge is followed the new path will remain simple (will not have
duplicate edges). If there are no such edges, than this walk reached a ‘dead-end’
and the walk stops. Otherwise, WM chooses one edge to follow and continues the
path p, by following this edge to some new node y, suchthat p, =u~x — y.
Then, the above procedure is repeated for p,.

Probability of Following Path. Next, WM computes probability Pry of fol-
lowing path p given that p exists as the product of probabilities of following
each edge on p. In WM, the probability of following an edge is proportional to
the weight of the edge. For example, the probability of following edge E1¢ in
Figure 11 is: L

Total Formula. The connection strength of path p is computed as c¢(p) =
PriPry. The final formula for ¢(p) is:

m—1

al
c(p) = 10 —. (1)
g 1+a,+a,+- - +a;

mn;

The total connection strength between nodes u and v is computed as the sum
of connection strengths of paths in Pr(u, v):

c(u,v) = Z c(p). (2)
pePr(u,v)

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning . 731

<— ———————————— » (Dave White }----=--
s

[MIT | Don White

Fig. 12. Computing c1; = ¢(Py, Dave) in the graph G, = G — ‘1",
Measure c(u, v) is the probability of reaching v from u by following only L-short
simple paths, such that the probability of following an edge is proportional to
the weight of the edge.

Example 4.1.1. Let us demonstrate WM formulae on the example in
Figure 6. WM measures c(p,) and c(pp) as the probabilities of following paths
Ppa and pyp, respectively. WM computes those probabilities as follows. For path
Pa, We start from u, we go to a with probability % at which point we have no
choice but to go to v, so the probability of following p, is % For path p;, we start
from u. Next, we have a choice to go to a or b with probabilities of %, and we
choose to follow (u, b) edge. From node b, we can go to any of the N — 1 nodes
(cannot go back to u) but we go specifically to v. Therefore, the probability of
reaching v via path py is m Let us observe that % when N > 2

2(N 1
and thus WM captures that ¢(p,) > c(pp).

4.1.3.1 Connection Strengths in Toy Database. Let us compute connection
strengths c11, c19, €21, cog for the toy database illustrated in Figure 3. Those
connection strength are defined as:

c11 = c(Py, ‘Dave White’)
c12 = c(Py, ‘Don White’)
c91 = c(Pg, ‘Dave White’) (3)
cog = c(Pg, ‘Don White’).

Later, those connection strengths will be used to compute option weights w1,
Wiz, Wa1, Wa3.

Consider first computing c11 =c(Ps, ‘Dave White’) in the context of disam-
biguating ‘D. White’ reference in Ps. Recall, for that reference choice node ‘1’
has been created. The first step is to remove choice ‘1’ from consideration.
The resulting graph G, =G — ‘1’ is shown in Figure 12. The next step is to
discover all L-short simple paths in graph G, between Py and ‘Dave White’.
Let us set L = oo, then there is only one such path: p; = P <> Susan <
MIT < John <> Py <> Don <> Py <> Joe <> P5s <> Liz < Pg < ‘2 <> Dave White.
The discovered connection is too long to be meaningful in practice, but we
will consider it for pedagogical reasons. To compute c(p1) we first compute the
probability Prq that path p; exists. Path p; exists if and only if edge between
2" and ‘Dave White’ exists, so Pr; = we;. Now we assume that p; exists and
compute the probability Pre of following p; given that p; exists on the graph
shown in Figure 13. That probability is Pro = % Thus, c(p1) = PriPry = 5.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

732 o D. V. Kalashnikov and S. Mehrotra

John Black

Fig. 13. Computing c1; = ¢(Pg, Dave) under the assumption that path P; ~» ‘Dave White’ exists.
Since edge ‘2’ <> ‘Dave’ exists, thus edge 2’ <> ‘Don’ does not exist.

The same result can be obtained by directly applying Equation (1). After
computing c1g, co1, and cgg in a similar fashion we have:

c11 = =c(p1)

ci2 =1 = c(Py< Susan < MIT <« John < P; <> ‘Don White’) @
co1 = Gt
Cog9 = 1

Notice, the toy database is small and MIT connects only two authors. In
practice, MIT would connect many authors and thus connections via MIT will
be weak.

4.2 Determining Equations for Option-Edge Weights

Given the connection strength measures c(x,, y,;) for each unresolved refer-
ence r and its options y,1, y,e, ..., ¥rN, We can use the context attraction prin-
ciple to determine the relationships between the weights associated with the
option-edges in the graph G. Note that the context attraction principle does not
contain any specific strategy on how to relate weights to connection strengths.
Any strategy that assigns weight such that, if ¢,, > ¢,j, then w,, > w,; is ap-
propriate, where ¢, = c(x,, y,¢) and ¢,; = c(x,, ¥,;). In particular, we use the
strategy where weights w,1, wyg, ..., w,y are proportional to the correspond-
ing connection strengths: w,ic,, = wy.c,;. Using this strategy and given that
wr +wr2+ - +wrny =1, the weight w,, for j =1,2,..., N, is computed as:

Cyy .
Wy = ?mﬁ ?f(cn +cer2+ -+ en) > 05)
N if(cci+co+---+cn)=0.
For instance, for the toy database we have:
w11 = c11/(e11 + c12) = %2/ (1 + %)
wig = c1z/(c11 + c12) = 1/(1 + %) ©)

wa1 = 021/(021 +022) = %/(1 + %)

wog = caz/(ca1 + c22) = 1/(1 + “).

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning . 733

4.3 Determining All Weights by Solving Equations

Given a system of equations, relating option-edge weights as derived in
Section 4.2, our goal next is to determine values for the option-edge weights
that satisfy the equations.

4.3.1 Solving Equations for Toy Database. Before we discuss how such
equations can be solved in general, let us first solve Egs. (6) for the toy example.
Those equations, given an additional constraint 0 < w1, w1, we1, wee < 1, have
a unique solution wi; = 0, wis = 1, we; = 0, wee = 1. Once we have computed
the weights, RELDC will interpret these weights to resolve the references. In
the toy example, the above computed weights will lead RELDC to resolve ‘D.
White’ in both Py and Pg to ‘Don White’, since w1s > w11 and wes > way.

4.3.2 General Case. Ingeneral case, Egs.(1),(2), and (5), define each option
weight as a function of other option weights w,; = f,.;(w):

wyj = fri(w) (for allr, j) (7)

0<wy;<1 (forallr,j).

The exact function for w,; is determined by Egs. (1), (2), and (5), and by the
paths that exists between x, and y,; in G. In practice, often f,;,(w) is constant
leading to the equation of the form w,; = const.

The goal is to solve System (7). System (7) might be over-constrained and
thus might not have an exact solution. Thus, we add slack to it by transforming
each equation w,; = f;(w)into f;(W)—&, < w,; < f;(W)+&,. Here, &, is a slack
variable that can take on any real nonnegative value. The problem transforms
into solving the nonlinear programming problem (NLP) where the objective is
to minimize the sum of all &;:

Constraints:

(W) = & <wyj < frj(w)+§; (for allr, j)

0O<w,;<1 (for allr, j))
0<¢g, (for allr, j)

Objective: Minimize Z,’ &

System (8) always has a solution. To show that, it is sufficient to prove that
there is at least one solution that satisfies the constraints of System (8). Let us
prove that by constructing such a solution. Notice, functions f,,(w) (for all r, j)
are such that 0 < f.;(w) < 1,if 0 < w, < 1 (for all s, £). Thus, the following
combination: w,; = 0 and &; = 1 (for all r, j) is a solution that satisfies the
constraints of System (8), though it does not satisfy the objective in general.
The goal, of course, is to find a better solution that minimizes }, ; &;. The
pseudocode for the above procedure will be discussed in Section 5.1.1.

4.3.3 Iterative Solution. The straightforward approach to solving the re-
sulting NLP problem (8) is to use one of the off-the-shelf math solver such as

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

734 o D. V. Kalashnikov and S. Mehrotra

SNOPT. Such solvers, however, do not scale to large problem sizes that we en-
counter in data cleaning as will be discussed in Section 6. We therefore exploit a
simple iterative approach, which is outlined below. Note, however, other meth-
ods can be devised to solve (8) as well, for example, in Kalashnikov and Mehrotra
[2005], we sketch another approximate algorithm for solving (8), which first
computes bounding intervals for all option weights w,;’s and then employs tech-
niques from Cheng et al. [2003a, 2003b, 2004]. That method is more involved
than the iterative solution, which we will present next. The pseudocode for the
iterative method is given in Figure 15 in Section 5.1.2.

The iterative method first iterates over each reference r € R and assigns
initial weights of ﬁ to each w,;. It then starts its major iterations in which it
first computes c(x;, y,;) for all r, j using Eq. (2). After c(x,, y,;)’s are computed,
they are used to compute w,; for all r, j using Eq. (5). Note that the values of
w,j for all r, j will change from S% to new values. The algorithm performs sev-
eral major iterations until the weights converge (the resulting changes across
iterations are negligible) or the algorithm is explicitly stopped.

Let us perform an iteration of the iterative method for the example above.
First

1 1
w11 = W12 = E and W1 = W92 = 5
Next,
1
11 =, 012 = 1,c01 = 2= 1.
Finally,
1 4 1 4
wi1 = g, Wiz = 5, Wwa1 = g,wzz = g

If we stop the algorithm at this point and interpret w,;’s, then the RELDC’s
answer will be identical to that of the exact solution: ‘D. White’ is ‘Don White’.

Note that the above-described iterative procedure computes only an approx-
imate solution for the system whereas the solver finds the exact solution. Let us
refer to iterative implementation of RELDC as IT-RELDC and denote the imple-
mentation that uses a solver as SL-RELDC. For both ITRELDC and SL-RELDC,
after the weights are computed, those weights are interpreted to produce the
final result, as discussed in Section 3.3. It turned out that the accuracy of I
RELDC (with a small number of iterations, such as 10-20) and of SL-RELDC
is practically identical. This is because even though the iterative method does
not find the exact weights, the weights computed by the iterative algorithm
are close enough to those computed using a solver. Thus, when the weights are
interpreted, both methods obtain similar results.

4.4 Resolving References by Interpreting Weights

When resolving references r and deciding which entity among y,1, y,o,..., ¥rN
from S, is r*, RELDC chooses such y,; that w, is the largest among
Wr1, Wy, - .., WrN . Notice, to resolve r we could have also combined w,; weights
with feature-based similarities FBS(x,, y,;) (e.g., as a weighted sum), but we do

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning . 735

NAIVE-SL-RELDC()
1 if GR-RELDC then
2 INITIALIZE(W)

3 foreachreR

4

5

Gr—G—r
for j — 1 to |S,| do
6 Pr(xr,yrj) — ALL-PATHS(G,, 21, yrj, L)
7 EQ[c(xr,yrj)] — EQ-CON-STRENGTH(W, PL(Zr, yrj))
8 delete Pr(x,,yr;) //free storage
9 for eachr e R
10 for j — 1 to |S,| do
11 EQ[wrj] — EQ-ASSIGN-WEIGHT(j, ¢(xr, Yr1), - - ., c(Tr, Yr|s,|))

12 S <« PREPARE-FOR-SOLVER(all EQ[w.;])
13w < SOLVE-USING-SOLVER(S)
14 INTERPRET(W)

INITIALIZE(W)
1 for eachr € R
2 for j — 1 to |S,| do
3

Wrj < 57

Fig. 14. Naive-St-ReLDC.

not study that approach in this paper. Once the interpretation of the weights
is done, the main disambiguation goal is achieved, and the outcome of the dis-
ambiguation can be used to create a regular database.

5. IMPLEMENTATIONS

In this section, we discuss several implementations of RELDC, which are crucial
to scale the approach to large datasets.

5.1 lterative and Solver Implementations of RELDC

The NLP problem in Eq. (8) can be solved iteratively or using a solver. In this
section we present pseudocode for naive implementations of SL-RELDC and It
ReLDC. In the subsequent sections, we discuss optimizations of these naive
implementations.

5.1.1 Solver. Figure 14 shows an outline of SL-RELDC, which we have dis-
cussed in Section 4. In lines 1-2, if the greedy implementation of ArLL-PATHS
is used (see Section 5.3), the algorithm initializes weights. Initial values of
option weights w,1, wye, ..., w,ny of each choice node r are assigned such that
Wrl=Wpg ="+ =WpN = % and w,1 +w,o+---+w,y = 1. Lines 3-9 correspond
to creating equations for connection strengths c(x,, y,;) (for all r, j) described
in Section 4.1: each c(x;, y,;) is derived based on the simple paths that exist
between nodes for x, and y,; in the graph. Lines 10-13 correspond to the proce-
dure from Section 4.2 that constructs the equations for option weighs w,; (for all
r, j). Then, in Line 14, the algorithm takes the NLP problem shown in Eq. (8)
and creates its representation S suitable for the solver. Next, the solver takes
the input S, solves the problem, and outputs the resulting weights. As the final
steps, all the references are resolved by interpreting those weights.

5.1.2 Iterative. The pseudocode in Figure 15 formalizes the INRELDC pro-
cedure described in Section 4.3. I-RELDC first initializes weights. Then, it

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

736 U D. V. Kalashnikov and S. Mehrotra

NATVE-IT-RELDC(Niter)
1 INITIALIZE(W)
2 MAIN-LooP(W, Niter)
3 INTERPRET(w)

MAIN-LOOP(W, Niter)
1 for /1 to Ny do
for each r € R
G, —G-r
for j — 1 to |S,| do
Pr(®r.yrj) — ALL-PATHS(G,, 27, Yrj, L)
(@, yrj) < CON-STRENGTH(W, PL(Zr, Yrj))
delete Pr(x.,yr;) //free storage
8 for each r € R
9 for j — 1 to |S,| do
10 wyj < ASSIGN-WEIGHT(, ¢(xr, Yr1), - - -, (X, Yr|s,|))

DT W N

-3

Fig. 15. Naive-IrRELDC.

iterates recomputing new values for c(x,, y,;) and w,; (for all r, j). Finally, all
the references are resolved by interpreting the weights.

5.1.3 Bottleneck of RELDC. To optimize RELDC for performance we need
to understand where it spends most of its computation time. The most computa-
tionally expensive part of both ITRELDC and SL-RELDC is ALL-PaTHS procedure,
which discovers connections between two nodes in the graph. For certain combi-
nations of parameters, SOrvE-USING-SOLVER procedure, which invokes the solver
to solve the NLP problem, can be expensive as well. However, that procedure is
performed by a third party solver, hence there is little possibility of optimizing
it. Therefore, all of the optimizations presented in this section target ALL-PaTHS
procedure.

5.2 Constraining the Problem

This section lists several optimizations that improve the efficiency of RELDC by
constraining/simplifying the problem.

Limiting Paths Length. ALL-PaTHS algorithm can be specified to look only for
paths of length no greater than a parameter L. This optimization is based on
the premise that longer paths tend to have smaller connection strengths while
ReLDC will need to spend more time to discover those paths.

Weight Cut-Off Threshold. This optimization can be applied after a few it-
erations of INRELDC. When resolving reference r, see Figure 5, IrRELDC can
use a threshold to prune several y,/’s from S,. If the current value of w,; is too
small compared to w,, for £ = 1,2,...,N;£ # j, then RELDC will assume y,;
cannot be r* and will remove y,; from S,. The threshold is computed per each
reference r as O‘\S_lm where o (0 < « < 1) is a real number (a fixed parameter).”
This optimization improves the efficiency since if y,; is removed from S,, then
ItRELDC will not recompute Pr(x,, y,), c(x,, ¥,j), and w,; any longer.

Restricting Path Types. The analyst can specify path types of interest (or for
exclusion) explicitly.® For example, the analyst can specify that only paths of

"The typical choices for « in our experiments are 0.0 (i.e., the optimization is not used), 0.2 and 0.3.
8This optimization has not been used in our experiments.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning . 737

Dr-ALL-PATHS(G, u, v, L)

1 A<D // the answer set
2 Push(S,u)

3 while NotEmpty(S) do

4 p — Pop(S)

5 if LastNode(p) = v then

6 A=Au{p}

7 else if Length(p) < L then
8 Dr-EXPAND-PATH(p, S)
9 return A

Dr-EXPAND-PATH(p, S)

1 @ « LastNode(p)

2 for eachzeV :(x,2)€ Edo
3 if ISLEGAL(p < z) then

4 Push(S,p < z)

Fig. 16. Dr-ALL-ParHs.

3R-ALL-PATHS(G, u, v, L)
1 A0 // the answer sct
2 Insert(Q,u,1)
3 while NotEmpty(Q) and
STOPCONDITION(.) = false do

4 p — Get(Q)

5 if LastNode(p) = v then

6 A=AuU{p}

7 else if Length(p) < L then
8 GR-EXPAND-PATH(p, Q)

9 return A

GR-EXPAND-PATH(p, Q)

1 a < LastNode(p)

2 for eachz€V: (z,2) € Edo
3 if ISLEGAL(p < z) then

4 Insert(Q,p < z,c(p < 2))

Fig. 17. Gr-ALL-PaTHs.

type Ty <> Ty <> T4 <> T are of interest, where T}’s are node types. Some of such
rules are easy to specify, however it is clear that for a generic framework here
should be some method (e.g., a language) for an analyst to specify rules that are
more complicated. Our ongoing work addresses the problem of such a language
[Seid and Mehrotra 2006].

5.3 Depth-First and Greedy Versions of ALL-PATHs

ReLDC utilizes ALL-PATHS procedure to discover all L-short simple paths be-
tween two nodes. We have considered two approaches for implementing ALL-
Patus algorithm: the depth-first (DF-ALL-PaTHS) and greedy (GR-ALL-PATHS) pro-
vided in Figures 16 and 17 respectively.?

The reason for having those two implementations is as follows. The Dr-
ALL-PaTHS is a good choice if skipping of paths is not allowed: we shall show
that in this case Dr-ALL-PATHS is better in terms of time and space complexity
than its greedy counterpart. However, GR-ALL-PATHS is a better option if one is

9All of the optimizations mentioned in this article can be applied to both of these approaches.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

738 U D. V. Kalashnikov and S. Mehrotra

interested in fine-tuning the accuracy vs. performance trade-off by restricting
the running time of the ALL-PaTHs algorithm. The reason for this is as follows.
If Dr-ALL-PaTHs is stopped abruptly in the middle of its execution, then cer-
tain important paths can still be not discovered. To address this drawback,
GR-ALL-PATHS discovers the most important paths first and least important
last.

5.3.1 Depth-First and Greedy Algorithms. As can be seen from Figures 16
and 17, the depth-first and greedy algorithms are quite similar. The difference
between them is that Dr-ALL-PaTHs utilizes a stack to account for intermediate
paths while Gr-ALL-PATHS utilizes a priority queue. The key in this queue is
the connection strengths of intermediate paths. Also, GR-ALL-PATHS stops if the
stop conditions are met (Line 3 in Figure 17) even if not all paths have been
examined yet, whereas Dr-ALL-PaTHS discovers all paths without skipping any
paths.

Both algorithms look for u ~» v paths and start with the intermediate path
consisting of just the source node u (Line 2). They iterate until no intermediate
paths are left under consideration (Line 3). The algorithms extract the next
intermediate path p to consider (from the stack or queue) (Line 4). If p is
a u ~ v path, then p is added to the answer set A and algorithm proceeds
to Line 3 (Lines 5-6). If p is not a u ~ v path and the length of p is less
than L, then the ExraAND-PaTH procedure is called for path p (Lines 7-8). The
ExpanD-PaTH procedure first determines the last node x of the intermediate path
p = u~ x. It then analyzes each direct neighbor z of node x and if path p <z
is a legal paths, then it inserts this path into the stack (or queue) for further
consideration.

The StorConDITION() procedure in Line 3 of GR-ALL-PaTHS algorithm allows to
fine-tune when to stop the greedy algorithm. Using this procedure, it is possible
to restrict the execution time and space required by GrR-ALL-PaTHs. For example,
GR-ALL-PATHS can limit the total number of times Line 4 is executed (the number
of intermediate paths examined), the total number of times Line 8 is executed,
the maximum number of paths in A and so on. GR-ALL-PATHS achieves that by
maintaining auxiliary statistic (count) variables that account for the number
of times Line 4 is executed so far and other parameters. Then SToPCoNDITION()
simply check whether those statistic variables still satisfy the predefined con-
straints, and if not, GR-ALL-PaTHS will stop looking for new paths and it will
output the paths discovered so far as its result. Thus, GR-ALL-PATHS discovers
most important paths first and least important paths last and can be stopped
at a certain point whereas Dr-ALL-PaTHS discovers all paths.

5.3.2 Paths Storage. When looking for all L-short simple u-v paths, ALL-
PaTHS maintains several intermediate paths. To store paths compactly and ef-
ficiently, it uses a data structure called a paths storage. Dr-ALL-PaTHS and GR-
ALL-PaTHS procedures actually operates with pointers to paths while the paths
themselves are stored in the paths storage.

Each path is stored as a list, in reverse order. The paths storage is organized
as a set of overlapping lists as follows. Since all of the paths start from u, many

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning . 739

pr=u<1
pr=u<+ 12
p3=u<—1-<2<3
pa=u<—1-—24

Fig. 18. Example of paths.

li=1->u
lo=2—-1->u
l3=3-2->1->u
lp=4—-2—-1->u

Fig. 19. Separate lists for paths.

lh=1->mu
b =21
b3 =3 = lo
by =4 — 45

Fig. 20. The paths storage.

of them share common prefix. This gives an opportunity to save space. For
example, to store paths shown in Figure 18, it is not necessary to keep four
separate lists shown in Figure 19 of lengths 2, 3, 4, and 4, respectively. It is
more efficient to store them as shown in Figure 20 where the combined length
of the lists is just 8 nodes (versus 13 nodes when keeping separate lists). This
storage is also efficient because the algorithm always knows where to find the
right prefix in the storage—it does not need to scan the paths storage to find
the right prefix. This is because when the algorithm creates a new intermediate
path p < z, the following holds:

(1) pis the prefix of p <z
(2) pis already stored in the path storage
(3) the algorithm knows the pointer to p at this point

5.3.3 Comparing Complexity of Greedy and Depth-First Implementations.
Let us analyze complexity of the depth-first and greedy implementations of ALL-
Patns procedure. The Dr-ALL-Patas and GR-ALL-PaTHS procedures in Figures 16
and 17 are conceptually different only in Lines 2 and 3 of ALL-PaTHs and in
Line 4 of Expanp-Patas. The StopConDITION procedure in Line 3 allows to fine-
tune when to stop the greedy algorithm and determines the complexity of Gr-
ReLDC. But we will analyze only the differences in complexity which arise due
to DF-RELDC using a stack and Gr-RELDC using a priority queue. That is, we
will assume SToPCONDITION always returns false.

For a stack, Pusu and Popr procedure take O(1) time. If n is the size of a
priority queue, each GeT and INSERT procedures take O(lg n) time [Cormen et al.
2001]. Therefore, it takes O(1) time to process Lines 4-8 of Dr-ALL-PaTHS and
it takes O(lg n) to process the same Lines 4-8 of Dr-ALL-PaTHS where n is the
current size of the priority queue. Also it take O(degree(x)) time to execute Dr-
ExpanD-PaATH procedure and it takes O(degree(x) - 1g (n + degree(x)) to execute
Gr-ExpanD-PATH procedure.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

740 o D. V. Kalashnikov and S. Mehrotra

Fig. 21. Neighborhood.

Thus, if the goal is to discover all L-short simple paths without skipping any
paths, then the Dr-ALL-PATHS is expected to show better results than Gr-ALL-
Patus. However, since the greedy version discovers the most important path
first, it is a better choice in terms of the ‘accuracy versus performance’ trade-off
than its depth-first counterpart. Therefore, the greedy version is expected to be
better if the execution time of the algorithm needs to be constrained.

5.4 NBH Optimization

The NBH optimization is the most important performance optimization pre-
sented in this article. It consistently achieves 1-2 orders of magnitude perfor-
mance improvement under variety of conditions. The neighborhood N (v) of
node v of radius % is the set of all the nodes that are reachable from v via at
most £ edges. Each member of the set is tagged with ‘the minimum distance
to v’ information. That is, for graph G = (V, E) the neighborhood of node v of
radius k is defined as the following set of pairs: N,(v) = {(u,d) :u €V, d =
MinDist(u,v), d < k).

Let us recall that, when resolving reference r, the algorithm invokes ALL-
Paras algorithm N times, in order to compute Pr(x;,, y,;) for j = 1,2,..., N,
see Figure 5. These computations can be optimized by (a) computing neighbor-
hood N (x,) once per each distinct x,; (b) discovering paths not from x, to y,;
but in reverse order: from y,; to x,; and (c) exploiting N3 (x,) to prune certain
intermediate paths as explained below.

When resolving references of entity x,, the algorithm first computes the
neighborhood N (x;,) of x, of radius k, where & < L, see Figure 21. The neigh-
borhood is computed only once per each distinct x, and discarded after x, is
processed. There are two factors responsible for the speedup achieved by the
NBH optimization:

(1) ArL-PatuS(1, v), with the NBH optimization, first requires building N (v)
and only then applying NBH-optimized ArL-Patus-NBH(u, v, M}, (w)). Nev-
ertheless, the computational cost of building A (v) and then executing ALL-
Parus-NBH(u, v, M, (v)) is less than the cost of the nonoptimized version of
AvLL-PatHS(1, V).

(2) The neighborhood A} (x,) is built once per each distinct x, when processing
yr1. Then, it is reused when processing y,s, ..., y,n. After that, N (x,) is
discarded to save space, since it is not needed any longer.

AvL-PaTHS procedure shown in Figures 16 and 17 should be modified to be
used with NBH. First, it should be able to accept an additional input parameter

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Domain-Independent Data Cleaning . 741

PRUNE-PATH-NBH (p, Nk (v))

1 m « Length(p) // here p = u~> z

if (m + k) < L and kgt = k then
return false // do not prune

2« LastNode(p)

if 2 ¢ Ni.(v) then
return true // prune

d « GET-MIN-D1ST(2, N} (v))

8 if (m+d) < L then

9 return false // do not prune

10 return true // prune

DU W N

-

Fig. 22. Prune-PatH-NBH().

N (v). Second, Line 7 should be changed from

7 else if Length(p) < L then
to
7 else if Length(p) < L and PrRUNE-PATH-NBH(p, NV, (v)) = false then

This will allow pruning certain paths using the NBH optimization. The PRUNE-
Patu-NBH(p, N (v)) procedure is provided in Figure 22. It takes advantage of
N (v) to decide whether a given intermediate path p = v ~ x can be pruned.
First, it determines the length m of path p. If m is such that (m + k) < L, then
it cannot prune p, so it returns false. However, if (m + k) > L, then x must be
inside A}, (v). If it is not inside, then path p is pruned, because there cannot be
an L-short path u % x %2 v for any path py : x % v. If x is inside N} (v), then
the procedure retrieves from N (v) the minimum distance d from x to v. This
distance d should be such that (m + d) < L: otherwise path p is pruned.

The NBH optimization can be improved further. Let us first define the ac-
tual radius of neighborhood N (v): kot = maxy. d)en,w) MinDist(u, v). While
usually kq; = &, sometimes'® k,; < k. The latter happens when nodes from
the neighborhood of v and their incident edges form a cluster which is not con-
nected to the rest of the graph or when this cluster is the whole graph. In this
situation N, (v) = Ny(v) for any £ = Ruer, Raer + 1, . . ., 00. In other words, when
kot < k, we know the neighborhood of v of radius £ = co. Regarding PRUNE-
Patu-NBH, this means that all intermediate nodes must always be inside the
according neighborhood. This further improvement is reflected in Line 2 of the
Prune-PatH-NBH procedure in Figure 22.

5.5 Storing Discovered Paths Explicitly

Once the paths are discovered on the first iteration of ITRELDC, they can be
exploited for speeding up the subsequent iterations when those paths need to be
rediscovered again. One solution would be to store such paths explicitly. After
paths are stored, the subsequent iterations do not rediscover them, but rather
work with the stored paths. Next, we present several techniques that reduce
the storage overhead of storing paths explicitly.

5.5.1 Path Compression. We store paths because we need to recompute
the connection strengths of those paths (on subsequent iterations), which can

0Naturally, the greater the % the more frequently this is likely to occur.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

742 o D. V. Kalashnikov and S. Mehrotra

change as weights of option-edges change. One way of compressing path in-
formation is to find fixed-weight paths. Fixed-weight paths are paths the con-
nection strength of which will not change because it does not depend on any
other system variables that can change. Rather than storing a path itself, it is
more efficient to store the (fixed) connection strength of that path, which, in
turn, can be aggregated with other fixed connection strengths. For WM model,
a path connection strength is guaranteed to be fixed if none of the intermediate
or source nodes on the path are incident to an option-edge (the weight of which
might change).

5.5.2 Storing Graph Instead of Paths. Instead of storing paths one by one,
it is more space efficient to store the connection subgraphs. The set of all L-short
simple paths Pr(u, v) between nodes u and v defines the connection subgraph
G(u,v) between u and v. Storing G(u, v) is more efficient because in Pz (u, v)
some of the nodes can be repeated several times, whereas in G(u, v) each node
occurs only once. Notice, when we store Pr(u, v) or G(u, v), we store only nodes:
edges need not be stored since they can be restored from the original graph G.
There is a price to pay for storing only G(u, v): the paths need to be rediscovered.
However, this rediscovering happens in a small subgraph G(u, v) instead of the
whole graph G.

5.6 Miscellaneous Implementation Issues

5.6.1 Compatibility of Implementations. In general, it is possible to com-
bine various implementations and optimizations of RELDC. For example, there
can be an implementation of RELDC that combines ITRELDC, DF-ALL-PATHS,
NBH, and the optimization that stores paths. However, certain implementa-
tions and optimizations are mutually exclusive. They are as follows:

(1) Im=RELDC vs. SL-RELDC
(2) DrF-RELDC vs. GR-RELDC
(3) SL-ReLDC and Storing Paths.

Let us note that there are some compatibility issues of GR-RELDC with SL-
ReLDC. Notice, GR-RELDC computes the connection strengths of intermediate
paths. Consequently, it must know weights of certain edges and, in general,
it must know weights of option-edges. Th