
1.10 Development Solutions for Automotive Embedded Systems – Methods and Tools

Development Solutions for
Automotive Embedded Systems

Methods and Tools

Objectives and Requirements

Each development aims at creating a new function or enhancing
an existing function of the vehicle. The functions are all functional
features of the vehicle in this context. The user of the vehicle
utilizes these functions; they represent a value or benefit for him.
The technical implementation of a function, whether it is, in the
end, a mechanical, hydraulic, electrical or electronic system in the
vehicle, is of secondary importance.

Electronic components – in combination with mechanical,
electrical or hydraulic components – offer many advantages in
technical implementation, such as regarding the reliability that
can be achieved, the weight, the required package space, and
costs. That is why, like almost no other technology, electronics is
today the key technology in many innovations in automobile
construction. Almost all vehicle functions nowadays are
controlled or monitored electronically. The constant leaps
forward in electronics hardware technology and performance
permit numerous new and increasingly powerful functions to be
realized by software.

The increasing number of these software functions, their
interconnection, increasing reliability and safety requirements,
the rising number of vehicle variants, and varying lifecycles for
software, hardware and vehicle represent requirements and
constraints that have a considerable impact on the development
of software for the electronic systems of a vehicle.

Mastering the resulting complexity is a challenge for vehicle
manufacturers and suppliers. Safe handling of software and
electronic systems must be ensured by appropriate measures
during development. The methods supported by ETAS tools and
software components presented in this catalog contribute to this
goal. Powertrain, chassis and body are the main applications in
this area.

Model-Based Development of Vehicle

Functions

Inter-discipline cooperation in development (e.g., between
powertrain and electronics development) requires a common and
overall understanding of the problem. For example, when
designing control functions for the vehicle, the reliability and
safety requirements – as well as aspects of implementation by
software in embedded systems – need to be viewed as a whole.

The basis for this common-function understanding can be a
graphical function model covering all system components.
Therefore, model-based design methods with notations such as
block diagrams or state machines for data and behavior
descriptions are increasingly replacing software specifications in
text form.

This modeling of software functions offers additional
advantages. If the specification model is formal, i.e. unambiguous
and with no room for interpretation, the specification can be
executed on a computer in a simulation and can be
“experienced” in the vehicle by means of rapid prototyping.

Using methods for automatic code generation, the specified
function models can be transformed in software components for
electronic control units (ECU). This may require that the function
models be extended using the necessary optimization measures
regarding the required product properties of the electronic
system.

In the next step, lab vehicles simulate the environment of
control units, thereby enabling the testing of the control units in
the lab. Compared to bench tests and vehicle tests, this allows to
achieve a greater degree of flexibility and easier reproducibility of
test cases.

The calibration of software functions of electronic systems
encompasses the vehicle-specific adjustment of the parameters of
these functions that are implemented, e.g., in the form of
characteristic values, curves or maps. This adjustment can often
be performed rather late in the development process, frequently
only directly in the vehicle with running systems, and must be
supported by appropriate methods and tools.

1.11Development Solutions for Automotive Embedded Systems – Methods and Tools

D
ev

el
op

m
en

t
So

lu
tio

ns
 f

or

 A
ut

om
ot

iv
e

Em
be

dd
ed

 S
ys

te
m

s

Generally, the development methods shown in Figure 1.1 can be
distinguished in this model-based development process for
software functions.

This procedure can also be used for developing functional and
control unit networks. This adds, however, two degrees of free-
dom, such as:

• combinations of modeled, virtual and realized functions, and

• combinations of modeled, virtual and realized technical
components.

A consistent distinction between an abstract view of functions
and a concrete view of their technical realization would therefore
be beneficial.

Such an abstract and concrete view can be extended to all
components of the vehicle, the driver, and the environment. The
abstract view is called here logical system architecture (shown
in gray in the figures), while the concrete view of the
implementation is called technical system architecture (shown
in white in the figures). The procedure described by the control
functions can be applied in general – for example, for monitoring
and diagnostic functions, as well.

Software Architecture and Standardized

Software Components

Approaches for standardizing the software architecture for
micro-controllers used in control units have been successfully
introduced. They differentiate, e.g., between the “actual”
software functions of the application software and a platform
software that is partially dependent on the hardware (Figure 1.2).

A layer of the platform software (Hardware Abstraction Layer,
HAL) combines the software components covering the hardware-
related aspects of the I/O devices of a micro-controller. As shown
in the illustration, the description excludes the I/O devices
necessary for communicating with other systems via buses from
this “hardware abstraction layer”. The bus drivers required for
this area are discussed separately.

The platform software also includes upper-layer software
components that are required for the communication with other
control units in the network or for the communication with
diagnostic testers.

Examples of standardized software components are real-time
operating systems and the communication and network
management according to OSEK (2), or diagnostic protocols
according to ISO (3, 4). The software components provide
standardized interfaces for the application software (Application
Programming Interfaces, API). This allows the platform software
to be standardized for various applications. The functions of the
application software can be largely developed independent of the
hardware.

Model of Software Functions

Methods of a Model-Based Development of Software Functions

Implementation of Software Functions Driver, Vehicle & Environment

Model of Driver, Vehicle & Environment

5

Logical
System
Architecture

Technical
System
Architecture

3

1

2

4

1 Modeling and simulation of software functions as well as of the vehicle, the driver and the
 environment

2 Rapid prototyping of software functions in the real vehicle

3 Design and implementation of software functions

4 Integration and test of software functions with lab vehicles and test benches

5 Test and calibration of software functions in the vehicle

f 3

SG 1

Bus

SG 2

SG 3

f 1 f 2

f 4

Figure 1.1

Software Architecture for Microcontrollers and Standardized Software Components

A
p

p
licatio

n
 So

ftw
are

Platfo
rm

 So
ftw

are

Legend: I /O

API

Function
f 3

Function
f 1

Function
f 2

Flash Loader

Diagnostic Protocol ISO

Interaction Layer
OSEK-COM

Network
Management
OSEK-NM

Network Layer ISO

Bus Driver

Operating System
OSEK OS ...

Hardware
Abstraction
Layer
(HAL)

Figure 1.2

