
Ride: A Resilient IoT Data Exchange Middleware
Leveraging SDN and Edge Cloud Resources

Kyle E. Benson, Guoxi Wang, Nalini Venkatasubramanian

Donald Bren School of Information and Computer Sciences
University of California, Irvine, USA

Email: {kebenson, guoxiw1, nalini}@ics.uci.edu

Young-Jin Kim

Nokia Bell Labs
Murray Hill, NJ, USA

Abstract—Internet of Things (IoT) deployments rely on data
exchange middleware to manage communications between con-
strained devices and cloud resources that provide analytics,
data storage, and serve user applications. In this paper, we
propose the Resilient IoT Data Exchange (Ride) middleware
that enables resilient operation of IoT applications despite
prevalent network failures and congestion. It leverages pro-
grammable Software-Defined Networking (SDN)-enabled infras-
tructure along with both localized edge and cloud services. The
two-phase Ride middleware extends existing publish-subscribe-
oriented IoT data exchanges according to application-specified re-
silience requirements and without IoT device client modifications.
The first phase, Ride-C, improves IoT data collection by gathering
network-awareness via a novel resource-aware adaptive probing
mechanism and dynamically redirecting IoT data flows across
multiple public and local (edge) cloud data exchange connections.
The second phase, Ride-D, uses this information to disseminate
time-critical alerts via an intelligent network-aware resilient
multicast mechanism. Results from our prototype smart campus
testbed implementation, Mininet-based emulated experiments,
and larger-scale simulations show that Ride enables network
awareness for greater cloud connection up-times, timely fail-over
to edge services, and more resilient local alert dissemination.

Keywords-IoT; data exchange; resilience; SDN; multicast; seis-
mic; alerting; pub-sub; failure-detection; edge cloud; fail-over;

I. MOTIVATION

Emerging global efforts in smart cities and communities aim
to leverage the promise of the Internet of Things (IoT) to im-
prove economic and living conditions for all. IoT applications
seamlessly integrate sensors, actuators, communication, and
analytics into our daily lives. Fig. 1 shows how the heavily
event-driven nature of IoT ecosystems leads to a natural
abstraction of their workflows as data producer/consumer
patterns. Sensing devices embedded in the physical space
monitor real-world events and produce data associated with
them. Leveraging data exchange platforms and protocols, they
publish this data for transmission via various communications
networks to interested data consumers. These human users,
actuation devices, or IoT applications/services consume events
for further processing, storage, analysis, taking physical action,
and/or detecting and publishing higher-level events.

Resource-constrained IoT devices and deployments keep
system deployment costs and complexity low by off-loading

much of the logic to the cloud. While recent work aims to
support processing IoT workloads in-network [32], this often
remains infeasible due to e.g. limited device resources or
reliance on proprietary network infrastructure. Instead, thin
IoT client designs leverage cloud-based data exchanges and
event-processing pipelines to generate actionable information
in response to real-world events. However, infrastructure fail-
ures or resource limitations disrupt connectivity with cloud
platforms. Such disruptions commonly occur as general Inter-
net service outages, but are far more impactful in extreme
events such as natural catastrophes or man-made disasters
[11], [40], [5], [12], [44], [4]. Critical applications such as
healthcare and emergency response must continue to operate
meaningfully (at least in a degraded service mode) despite
cloud and connectivity disruptions. Therefore, we propose a
middleware for extending existing IoT data exchanges to more
resiliently collect, process, and disseminate events of critical
interest to humans (e.g. disaster alerts).

Our multiple experiences with real-world IoT deployments
and mission-critical applications [9], [19], [31], [46] further
motivated to us the need for a more resilient IoT data ex-
change. In particular, our recent project, the Safe Community
Awareness and Alerting Network (SCALE) [19], which we
extend with our prototype middleware to use as a test-bed
in this paper, demonstrated the use of inexpensive off-the-
shelf devices leveraging cloud services to improve safety
in personal, home, and community environments. SCALE’s
evolution from a small demonstration project to multiple
deployments spanning several application domains and con-
tinents presented new requirements. IoT deployments lasting
months to years must execute reliably over time, with minimal
administrative intervention, and under changing connectivity
and device conditions. Each participating organization must
manage its independently-evolving deployment according to
its own application domain, system, and policy requirements.
Therefore, such deployments require both cloud and locally-
managed edge computing solutions that capture and leverage
application and network awareness to dynamically configure
the data exchange in support of mission-critical applications.

Our contribution: In this paper, we advocate for a
middleware-based approach to resilient timely data exchange
for mission-critical applications without modifications to con-



Fig. 1: The Ride middleware leverages edge cloud re-
sources (without IoT device modifications) for network and
application-aware resilient data exchange.

strained IoT devices or complete reliance on cloud plat-
forms. We design and develop the Resilient IoT Data Ex-
change (Ride) middleware that gathers network awareness
and application resilience requirements to leverage when it
dynamically responds to evolving network conditions (e.g.
failures, traffic spikes) and critical events (e.g. earthquakes).
Ride’s novelty lies in its integrated cross-layer approach to
enhancing IoT data collection from devices and situational
awareness dissemination to other devices and users (Ride-C
and Ride-D respectively). Ride-C employs a novel resource-
conserving cloud connection monitoring approach. It probes
multiple network overlay paths to the cloud service and, during
deteriorated conditions, re-routes IoT data flows through an
alternative path or to a backup edge service. This allows
seamless operation under both normal and failure conditions.
Ride-D pre-configures disjoint local multicast-based alert dis-
semination paths for edge-mode operation. Its novel path-
selection scheme leverages network state information obtained
from Ride-C and the network itself. By adapting information
flow in the IoT system based on application semantics (i.e.
resilience requirements) and network state, this unified end-to-
end framework bridges semantic gaps between the information
and infrastructure layers. Two key aspects of IoT deployments
drive our design of Ride: edge computing and SDN.

First, we argue that a data exchange solution exploiting
edge infrastructure can enhance localized situational aware-
ness, system outcomes, and event responses (especially in the

absence of stable cloud connectivity). IoT edge computing
further exploits the fact that events generated in the phys-
ical world, as well as consumer interest in them, exhibit
spatiotemporal correlations and locality. For example, users
in the vicinity of an emergency are interested in alerts and
notifications that enable them to take protective action; nearby
actuators (e.g. sirens, elevators) should automatically respond
to the event even in the absence of stable cloud connectivity.

Second, new networking technologies, such as Software-
Defined Networking (SDN) [3], enable the accurate collection
and maintenance of evolving network conditions in support of
dynamically adapting IoT data exchanges without modifying
constrained devices. The SDN philosophy exposes a logically-
centralized control plane and unified software APIs (e.g.
OpenFlow [3]). This enables the fully-automatable merging of
network-and-application-awareness, derivation of unique com-
munication requirements, and configuration of the underlying
data plane switches. Ride utilizes these SDN APIs to create
and maintain resilient overlays [15]; it treats the public Internet
routes to the cloud, which we typically have no administrative
control over, like virtual SDN links. By configuring the SDN
components in the local edge network (where we do have
control), this approach ensures cloud connectivity through any
available network paths, fail-over to edge backup services
during extreme connectivity challenges, and more resilient
event routing than traditional approaches.

Related work: Techniques to handle end-to-end dependabil-
ity due to infrastructure failures have been designed at different
levels of the system stack. Resilient overlay networks [15]
can account for physical geo-location [9] and route around
failures/congestion at the application layer. The light-weight
IoT protocol the Constrained Application Protocol (CoAP)
[27] retransmits datagrams to overcome UDP’s lack of trans-
port layer reliability. Some systems exploit multiple access
networks for redundancy [16], [31]. At the data and application
layers, we observe a trend towards decentralization through
processing and storing data on edge devices and gateways
(e.g. Apple HomeKit, Nest Weave, and research projects [16],
[43], [26]). Mesh networking solutions [7], [37] avoid the
cloud and enable such approaches via direct communications
between IoT devices. The authors in [34] propose moving
IoT designs beyond the cloud using a distributed replicated
append-only log for IoT data called the Global Data Plane.
This edge approach also potentially improves QoS [50], [45]
and performance over cloud-only architectures.

SDN approaches to resilience include: managing device mo-
bility in distributed controller networks [33], controller place-
ment for reliable operation [24], and leveraging fast fail-over
to quickly recover from failed links using predefined backup
paths [17]. Some techniques also use SDN for network and
application awareness [35], including the PLEROMA system
[29] that, like Ride-D, also supports multicast-based pub-sub.
POSEIDON [39] aims to support different underlying pub-
sub protocols, but it requires software agents running on the
SDN switches. Some works exploring non-resilience aspects
of SDN-based data exchange include real-time QoS guarantees



regarding message timing [22] and leveraging a Value of
Information metric to configure dissemination policies [30].
IoT systems also use SDN to leverage redundant routes for
IoT devices [48] and manage heterogeneous networks [25]

In contrast to many of these works, Ride’s cross-layer
integrated approach leverages both edge and cloud infrastruc-
ture, including SDN services. It specifically targets providing
mission-critical applications with more resilient and resource-
conserving IoT data collection and alert dissemination.

II. OUR APPROACH TO RESILIENT IOT DATA EXCHANGE

Using a driving earthquake alerting and emergency response
scenario, we advocate for the resilient IoT data exchange need
and Ride’s SDN-based edge computing approach to it.

A. A Driving Scenario: Smart Campus Disaster Response

We now present an IoT deployment scenario for earthquake-
detection and emergency response derived from our ongoing
IoT projects and collaborative deployments. We model this
scenario after the Community Seismic Network (CSN) [20].
CSN uses inexpensive accelerometers driven by small IoT
computers (sensor-publishers) to measure ground motion and
capture possible seismic sensed events. Consider a smart
campus (e.g. university, downtown, industrial research park)
instrumented with heterogeneous IoT devices to monitor the
environment (e.g. seismic activity, air quality, occupancy as-
sessment) as well as act on it (e.g. alarms, mobile device
notifications, evacuation and sheltering services). IoT sensor-
publisher devices upload sensed events to a cloud data ex-
change for further analysis, including detecting the location,
scope, and severity of an earthquake. In collaboration with
CSN, we incorporated CSN sensors on the UCI campus for
use in the SCALE platform. This allowed us to study the
challenges to an IoT-based seismic early-warning system that
issues alerts containing situational awareness information to
interested subscribers. Affected individuals can then take pro-
tective action (e.g.“duck-hold-and-cover”) while first respon-
ders assess damage, coordinate efforts, and direct evacuations.

However, earthquake-induced damage can cause communi-
cations disruptions (congestion, failure) and cloud connectivity
instabilities as discussed earlier. This may result in lost or
delayed sensor data captured during and immediately after
an earthquake. The most heavily-impacted regions suffer the
highest data losses but also most need timely reliable alerts
for protecting life and property. Current techniques for dis-
seminating early warnings/notifications/alerts at short notice to
the public, i.e. flash dissemination[23], do not leverage IoT-
based systems. Furthermore, existing efforts to recover from
data exchange/communications failures are typically reactive,
which may take several seconds or even minutes [23]. During
recent hardware maintenance on our local campus data center
we measured similar downtimes of ≈45secs.-5mins.

These reactive fail-over mechanisms include recovery of
network paths, determination of alternate routes [15], and
packet retransmission (e.g. TCP). To improve reliable seismic
data accessibility and alerting during the critical initial seconds

of an earthquake, we therefore advocate Ride’s combined
proactive/reactive approach that leverages all available (i.e.
still-functional) resources, especially those at the edge of the
network. Ride thus extends a traditional IoT data exchange so-
lution to, when configured with appropriate resilience parame-
ters, support the stringent timing requirements of applications
such as an earthquake early-warning system: reliable rapid
sensor data collection, event-detection, and real-time alerting.

B. Ride-enhanced IoT Services for Emergency Response

The geo-correlated nature of seismic events, alert recip-
ients, and related failures in the scenario above illustrates
the need and value of managing and processing IoT data
flows at the edge in a network and application-aware man-
ner. Therefore, we propose Ride-enhanced alerting service
that pre-configures cloud and edge resources to capture and
quickly deliver mission-critical sensed events to the public
cloud service for regional emergency response coordination.
In response to public cloud connectivity issues, it redirects
this data to edge services for rapid and reliable generation of
local awareness until such connectivity is restored. We treat
edge services as logically-centralized, although they can be
physically-distributed. Hence, edge services remain available
during emergencies; future work will coordinate multiple edge
instances to handle service failures.

In designing Ride’s architecture (see Fig. 1), we adopted a
practical approach that considers IoT deployment character-
istics and constraints derived from our previous experiences.
Our primary design philosophy, avoiding modifications to con-
strained IoT devices and associated protocols (e.g. CoAP and
the Message Queue Telemetry Transport Protocol (MQTT)),
led us to implement fail-over functionality using edge services
and SDN rather than e.g. device-chosen broker fail-over due
to timeouts. This also encouraged a protocol-agnostic design
that extends in multiple ways the abilities of traditional
messaging-layer IoT data exchange protocols, thereby easing
adoption by existing deployments. Thanks in part to SDN,
we designed Ride’s technology-agnostic approach to exploit
physical (route) redundancy in ensuring resilient data capture
and delivery. This includes leveraging heterogeneous network-
ing technologies: local wired/wireless, Internet overlays, long-
range wireless such as LoRa/SigFox, and cellular, which is
often congested during earthquakes.

Note Ride’s generic design applies in other emergency
response scenarios (e.g. tsunamis, wide-spread fires, terrorist
attacks, etc.) to maintain time-and-mission-critical services
during wide-area infrastructure failures, albeit with slightly
less-stringent resilience requirements. Therefore, we treat
application-specific analysis techniques (e.g. earthquake anal-
ysis) as black boxes. We focus instead on the following
two-step process of resiliently collecting sensed events and
disseminating alerts (Ride-C and Ride-D) that jointly enables
a unified resilient framework while separating concerns.

Ride Data Collection (Ride-C) configures resilient IoT
publisher-to-data exchange event collection flows. It tracks
and adapts to local or cloud failures and determines whether



further processing should occur at the cloud or edge. Our
approach captures network state awareness and embeds it in
the IoT workflow using an SDN controller’s APIs to manage
physical (or virtual) SDN-enabled switches. Ride-C creates
and manages resilient overlays: multiple Internet paths from
local gateway routers to the cloud that administrators typically
have no direct control over. We treat each overlay path as a
virtual SDN link and refer to it as a Cloud Data Path (CDP).
To avoid complicating and burdening resource-constrained IoT
devices, Ride-C monitors the cloud connection itself from the
edge by probing each CDP (i.e. similar to ping). We use a
custom UDP datagram containing a sequence number and
timestamp for the probe rather than ICMP echo requests since
service providers’ firewalls often block ICMP packets. This
further enables directly detecting a cloud service process’s
status as it may have crashed while the cloud server VM
still replies to ICMP requests. The probe travels through its
assigned CDP to a simple cloud echo server and then back to
the Ride-C service. There a control loop analyzes the probes’
Round-Trip Time (RTT) to gather network metrics (e.g. link
latency, packet loss) and determine if a particular CDP should
be avoided due to failure or congestion. Upon detecting such
problems, Ride-C responds by failing over to an alternative
cloud path or redirecting to edge services transparently to
IoT devices. For simplicity, we assume a first feasible path
policy using a strict ordering of CDP preferences to maintain
cloud connectivity when possible. We leave out of scope the
complex question of determining CDP preferences in terms
of: cost, network administrator policies, the interplay of mul-
tiple applications simultaneously vying for resources, etc. Our
novel adaptive active network probing technique minimizes
overhead while accounting for application-specified resilience
requirements (e.g. failure detection time). Directly querying
the SDN switches’ packet counters to calculate packet loss
rate could not provide this level of control and configurability.
Nor could it detect but gracefully account for changes in the
CDP’s underlying physical routes as evidenced by a significant
change in latency or jitter.

Ride Data Dissemination (Ride-D) uses an unmodified
cloud data exchange when possible or resilience-enhanced
edge alerting during periods of cloud connection instability
(i.e. Ride-C redirected sensed events to the backup edge ser-
vice). SDN enables Ride-D’s novel network-aware multicast-
based group communication mechanism for reliable alerting.
Before a failure/congestion event, it configures the SDN data
plane with multiple pre-constructed Maximally-Disjoint Mul-
ticast Trees (MDMTs) (see Fig. 2b). At alert time, Ride-D
leverages up-to-date local network awareness embedded in
the data exchange workflow by Ride-C to intelligently choose
from these multiple component-diverse physical path choices.
Because of the time-critical nature of alerts, it must quickly
select the ideal MDMT and therefore avoids online querying
of the SDN control or data planes. Similar to a few other
recent systems [29], [6], Ride-D utilizes the logically cen-
tralized control plane and programmable data plane of SDN
in conjunction with a pub-sub broker to translate the pub-

sub paradigm into network-level multicast. However, it does
so to enable resilience in a manner transparent to the client
IoT devices and requiring only a thin middleware layer at
the edge server application. The only data exchange protocol
requirement for Ride-D is network-layer multicast support;
§IV discusses supporting different protocols. We chose to
use network-level multicast rather than an application-layer
reliable multicast mechanism in order to improve resource
efficiency (i.e. minimal packet duplication and bandwidth
usage). In edge environments infrastructure cost constraints
(e.g. bandwidth and thin IoT device clients) and challenges
introduced by temporary emergency scenarios may prohibit
purely-unicast-based alerting. Furthermore, maintaining alter-
native paths for each alert subscriber, as opposed to each
alert group, increases system state and overhead (e.g. data
structures, SDN flow tables, and maintenance thereof).

C. Ride Workflow

Ride’s workflow executes at the network edge in three
phases (see Fig. 2a): 1) a priori host registration and network
configuration; 2) on-line network state analysis and mainte-
nance; 3) event-time failure-detection, adaptation, and alerting.

First, Ride registers and configures the participating hosts
and network components. It exposes an API (e.g. as an SDN
controller northbound API) for the Ride-enabled edge service
to register: 1) its application resilience requirements and the
available CDPs with Ride-C; 2) its time-critical alert topic
(e.g. “seismic-alert”) and the desired resilience level (number
of MDMTs) with Ride-D. Each IoT subscriber/publisher sends
a normal subscription/advertisement message that the SDN
data plane forwards to both the unmodified pub-sub broker
and the Ride edge service. Working with the SDN controller’s
APIs, Ride processes this information to set up resilient data
collection and alert dissemination routes from/to the relevant
publishers/subscribers as detailed in §III. This includes con-
figuring SDN switches (be they physical hardware or software
implementations) for Ride-C’s CDP probing/monitoring mech-
anism, its publication collection routes, and Ride-D’s MDMTs.

Second, Ride maintains these configurations in the online
phase: it recalculates routes and updates flow rules in response
to network dynamics e.g. topology changes, evolving traffic
patterns, handling (un)subscribe requests from clients, etc. It
monitors the CDPs for potential failures and gathers network
state awareness during data collection as described in §III-A.

Third, Ride adapts to failure events to maintain service
availability. Upon detecting a CDP failure, Ride-C redirects
cloud data exchange traffic through a different CDP if one is
still available or to the edge server if not. In the latter case,
address translation allows constrained IoT hosts to remain
unaware of this change and seemingly continue publishing data
to the cloud network address (i.e. IPv4). The SDN switches
translate this destination address from that of the cloud server
to the edge’s, route data packets to the edge, and translate the
source address of replies back from the edge server address to
that of the cloud seamlessly. When the CDP recovers, Ride-C
reverts this redirection and return to normal cloud operation.



(a) Ride’s workflow consists of three phases shown here as differently-shaded regions starting at the top.

(b) Maximally-Disjoint Multi-
cast Trees (MDMTs) example
based on [8]’s red-blue tree al-
gorithm.

Fig. 2: Ride’s resilient IoT data exchange workflow and diverse multicast tree-based alert dissemination.

During fail-over to edge services, Ride-D enables network-
aware alert dissemination at the edge. It selects the best of
its pre-configured MDMTs, thereby improving resilience to
local failures and conserving limited network resources. Alert
packets are sent to a network address (e.g. IPv4) assigned to
the selected MDMT. SDN data plane switches forward pack-
ets matching that address along the computed dissemination
routes. We also use address translation here to avoid requiring
complicated multicast configuration and software support on
constrained IoT subscribers. The last hop SDN switch trans-
lates the packets’ destination address into that of the subscriber
so that the alert appears as a unicast message from the server.
While our current implementation (see §IV) uses OpenFlow’s
[3] flow rules for packet forwarding/address translation and
group tables for multicast, the Ride paradigm could utilize
alternative SDN technologies, addressing schemes other than
IPv4, and even incorporate non-SDN switches using tunneling.

III. RIDE ALGORITHMS

This section details, in the context of its aforementioned
three-phase workflow, Ride’s novel techniques for network
and application-aware resilient event collection from IoT pub-
lishers and dissemination of critical alerts to locally-interested
users and actuating IoT subscribers.

Refer to the following notation for the algorithms outlined
here. Ride models the network topology as an undirected
graph G(V,E) with vertices (network switches, routers, and
hosts) V (G) connected by links E(G). A route traversing
link e incurs a weighted cost we (e.g. bandwidth, power
consumption, routing table entries). We denote the set of
sensor-publishers as P , the subscribers interested in receiving
alerts as S, the cloud service as c ∈ V , the Ride-enabled edge
service as r ∈ V , and the MDMTs as a set T where k = |T |

and ∀Ti ∈ T, {r} ∪ S ⊂ Ti ⊆ G. We model the CDPs as
a set of virtual links D = {e ∈ E(G) : e = (c, y)} for the
Internet-connected gateways y ∈ V (G).

A. Ride-C – Data Collection in Ride

Configuring resilient data collection: Ride-C first selects
the primary CDP and configures resilient data collection
routes through it. In IoT alerting systems, multiple co-located
sensors may generate and send similar sensed events to the
server during an emergency. Therefore, we consider a data
collection approach for preferring that at least some of these
publications can be used for emergency event-detection rather
than emphasizing collecting all of them. We compare two
policies for building routes and associated flow rules from
each registered publisher p ∈ P to the assigned gateway router
y: 1) shortest path finds the absolute shortest path (in terms
of we) between p and y; 2) diverse path finds maximally-
disjoint paths (i.e. they share a minimum number of common
nodes/links) from each p ∈ P to y, although it prefers shorter
ones when considering equally-disjoint paths. This method
exploits topological redundancy in the network to increase
the reliability of IoT data collection due to multiple sensed
events traversing the same failed link being less likely. The
traditional disjoint paths problem formulation minimizes the
total number of edges/vertices shared by several of k different
paths between a source and destination. Because it is NP-
Complete for k > 2 [10], we instead generate our diverse
paths using the polynomial-time minimum cost flow-based
algorithm proposed in [36]. It reformulates the problem to
minimize shareability: the sum over all edges of the total
number of paths (minus one) using that edge. Because this
algorithm finds multiple paths between two vertices, Ride-C
first adapts G by adding a new virtual node vd and edges



between each p ∈ P and vd, using vd as the new source node
for [36]’s algorithm.

Ride-C then configures the CDP monitoring mechanism
(see Alg. 1) for each registered CDP. To optimize resource
consumption, it minimizes probing frequency overhead while
meeting the application-specified requirements of 1) maximum
detection time TD and 2) failure/congestion-detection false
positive rate upper bound, RFP .

Ride-C initializes this process with a learning phase in
which it analyzes the CDP’s steady-state condition to calculate
the proper adaptive probing parameters: interval I and timeout
To. In this phase, it sends a new probe as soon as it receives
the last reply or times out after TD. Upon gathering enough
acknowledgements, it calculates the CDP’s packet loss rate
Pl and average RTT, RTTa. We define the requested false
positive rate RFP = (Pl)

N as the probability of N consecutive
packet losses. Given these parameters, Ride-C calculates the
minimum number of sample probes NB = dlogPl

RFP e it
needs to collect before marking a CDP congested or failed.
It then concludes the initialization phase by setting the initial
probe interval to: I = TD

dlogPl
RFP e .

On-line maintenance of network state awareness: As
shown in Alg. 1, Ride-C continues updating its resource-
conscious application-aware parameters in the steady-state. It
revises the CDP’s estimated RTT, RTTa, using an exponential
moving average method with a smoothing factor of 0.8, which
we chose based on TCP’s round-trip time estimation [49].
Ride-C sets the probe’s timeout To = 2 ∗ RTTa to ensure
it meets the TD requirement. Upon receiving probe acknowl-
edgements or timeout events, it updates the CDP’s packet
loss rate and then probing interval as before. Ride-C detects
possible failure or congestion as evidenced by NB consecutive
timeouts or significantly increased latency: RTTa > I . It
cannot detect failures and mark a CDP unavailable within
TD while satisfying RFP if RTTa > I due to not collecting
enough samples within TD.

During edge mode operation, Ride-C continues CDP moni-

Algorithm 1: Ride-C Probing and Adaptation

1 while True // On-line Adaptive Probing
2 Send a probe on CDP
3 if the acknowledgement is received within To then
4 Update sliding window with new RTT

5 else
6 Update sliding window with packet loss indicator

7 Pl, RTTa ←− Calculate new metrics in W
8 if RTTa > I or last NB elements in W are all

packet loss indicators then
9 return UNAVAILABLE

10 else
11 NB ← dlogPl

RFP e, I ← TD

NB
, To ← 2 ∗RTTa

12 Wait I

toring but also estimates the currently-functional local network
topology from sensed events collected at the edge. Rather than
(or in addition to) waiting for control plane updates derived
from link-level failure detection in the network data plane,
it leverages its own data plane activity for an online link
state estimation technique. This complements existing network
resilience techniques (e.g. packet retransmission) within a
distinctly IoT setting by leveraging application-awareness for
a time-critical collect-and-disseminate data exchange solu-
tion. Ride-C matches recently-collected events with its pre-
configured sensor-publisher routes. It adds each of these routes
to a graph data structure called the Successfully Traversed
Topology (STT ) that it continually maintains to represent
the network components recently (within ≈ 2sec.) verified
as functional. Note that these STT node/link states are non-
definitive estimates of the current state: presence in the STT
could indicate a recently-functional but now-failed component,
while absence could have no significance. By embedding this
estimation in edge service-bound data flows as incremental
updates to the shared STT , this cooperative method enables
Ride-D to leverage Ride-C’s network state awareness to im-
prove resilient local alert dissemination as described later.

Active fail-over adaptation: Ride-C responds to a CDP
disruption by triggering a fail-over mechanism. It determines:
1) what fail-over actions to perform upon CDP state changes
and 2) what flows to generate and push to the SDN-enabled
switches for implementing these actions in the physical net-
work. If another CDP remains available, Ride-C redirects IoT
data collection through it by adapting the SDN data plane as
described in the initialization phase. In the case that all the
CDPs are marked unavailable, Ride-C will redirect sensed
events from publishers to the edge server. It builds these
redirection routes and their associated flow rules using the
same policies as for CDP redirection, except with the edge
server r as the destination instead of a gateway switch y.
After this fail-over, Ride operates in edge mode and leverages
Ride-D for resilient local alert dissemination.

B. Ride-D – Data Dissemination in Ride

Configuring MDMTs a priori: For resilient (i.e. to failures
and congestion) alerting, Ride-D configures the k MDMTs T
to share a minimal number of edges/vertices as shown in Fig.
2b. Determining even a single minimum-cost multicast tree
is NP-Hard and referred to as the Steiner tree problem [41].
Hence, we compare several heuristic-based algorithms to pre-
construct the k MDMTs based on network state information.

We briefly describe the MDMT-construction algorithms
below and invite the reader to find more details in the
respective references and performance comparisons in §V-D:
• steiner approximates the Steiner trees using the somewhat

naı̈ve method described in [41] that finds the minimum span-
ning tree of the metric closure subgraph. Each iteration finds
one MDMT and increases the used edges’ weights (by either
doubling the weight or adding the max weight of all edges)
to disincentivize their use in the next iteration.

Runtime complexity: O(|S|(|E|+ |V | log |V |)).



• diverse-paths iteratively adds each subscriber s ∈ S to
the MDMTs, ordered by the minimum-path distance from r.
Each iteration generates k maximally-disjoint paths from r to s
using the same diverse path-finding algorithm [10] as Ride-C’s
diverse path routing policy. It selectively adds each path to one
of the k MDMTs with which it has maximal overlap, thereby
maintaining lower total cost paths.

Runtime complexity: O(k(|E| log k + |V | log |V |)).
• red-blue incorporates the concept of red-blue trees shown

in Fig. 2b that finds k = 2 edge-disjoint directed spanning
trees in polynomial time [14], [8]. We adopt the SkeletonList
data structure and algorithm proposed in [8], which red-blue
colors every edge. This more efficiently handles topology
updates as opposed to faster (O(|V |+|E|) algorithms [14] that
must be fully re-computed after topology updates since they
color just those in the spanning trees. This coloring partitions
G into two maximally-disjoint directed acyclic graphs (DAGs)
that we recursively apply the procedure on (for k > 2; k a
positive power of 2) to greedily further subdivide the graph.

Runtime complexity: O(k|V | · |E|).
On-line MDMT maintenance: Ride-D modifies MDMTs in

response to network topology/state and subscription updates.
Note that we leave the challenge of minimizing MDMT
modifications (i.e. to reduce overhead from forwarding plane
changes) as out of scope. We instead focus our contributions
on intelligent MDMT-selection as described next.

Event-time failure response: Alg. 2 details Ride-D’s alert-
ing mechanism. We now describe how it’s network state and
failure-aware MDMT-selection policies leverage our novel
link-state estimation technique (STT ) to determine each Ti’s
suitability for delivering the alert despite recent failures. We
empirically compare these policies later in §V-D. Note that
the policies’ objective functions break ties randomly.
• min-missing-links selects the MDMT having the fewest

links not present in STT . This policy therefore aims to avoid
failed links as possibly indicated by their absence from the
STT . It also prefers smaller trees, which it uses to break ties.

Objective function: −|{e ∈ E(Ti), e /∈ E(STT )}|
• max-overlap-links selects the MDMT sharing the highest

proportion of its links in common with STT , thereby decreas-
ing the likelihood of failures along the MDMT. Note that we
scale by |Ti| (i.e. calculate a proportion rather than a discrete
total of overlapping links) to alleviate a preference for larger
trees. Due to Steiner trees spanning a subset of the graph (each
MDMT contains possibly different non-terminal nodes), it
differs slightly from min-missing-links because of this scaling.
These policies also make different selections because of the
STT ’s inherent uncertainty mentioned previously: preferring
known good links vs. avoiding potentially bad ones.

Objective function:
|{e : e ∈ E(Ti), e ∈ E(STT )}|

|E(Ti)|
• max-reachable-subscribers considers complete paths

rather than individual links. It selects the MDMT that can
reach the most subscribers assuming only the links in STT
are up. Again, the STT ’s uncertainty means this assumption
may lead this policy astray.

Objective function: |{s ∈ S : PathExists(STT ∩ Ti, r, s)}|
• max-link-importance combines the STT -uncertainty-

avoidance of max-overlap-links with the complete path con-
sideration of max-reachable-subscribers. It selects the MDMT
whose intersection with STT has the highest total link impor-
tance (i.e. the number of paths from the root to the subscribers
that traverse that link). Note that an implementation should
pre-compute each edge’s importance, which takes O(|Ti|), to
improve run-time performance. Also note that we scale the
objective function by the total possible link importance to
avoid preferring larger trees. Furthermore, an implementation
could easily incorporate the notion of heterogeneous priority
for different subscribers by assigning different importance
values to their respective links.

Objective function:∑
e∈(E(Ti)∩E(STT )) |{s ∈ S : e ∈ GetPath(Ti, r, s)}|∑

e∈E(Ti)
|{s ∈ S : e ∈ GetPath(Ti, r, s)}|

While we omit the formal proof, each metric essentially
computes the intersection of Ti and STT in linear time.
Although they use this result differently, each implementation
has a runtime complexity of O(k(|Ti|+ |STT|).

IV. PROTOTYPE IMPLEMENTATION

To demonstrate Ride’s improvement to an IoT data ex-
change’s resilience, we developed a prototype implementation
and proof-of-concept testbed in our lab. We implemented the
core Ride algorithms and integrated them with our SCALE
[19] IoT middleware to use as the edge alerting service. This
complete prototype implements the proposed architecture (Fig.
1) by leveraging RESTful CoAP APIs to manage the workflow
describe in §II-C, Fig. 2a. We invite the reader to try out Ride
and find more details than we could fit below in our source
code repository: https://github.com/KyleBenson/ride.

Our multi-sensing multi-network SCALE devices run an
asynchronous Python framework that derives sensed events
from abstract feeds of physical sensor readings, detected
higher-level events, events received from networked devices,
etc. It publishes them internally for storage, use by other

Algorithm 2: Ride-D network-aware multicast alerting
algorithms for the configuration and alerting phases.

1 Function ConfigureMDMTs(S, topic, r, k, G, algorithm)
2 T ← BuildMDMTs(algorithm, G, S, r, k)
3 for Ti ∈ T do
4 addresses← InstallMulticastTreeFlowRules(Ti)

5 RegisterMDMTs(T , topic, addresses)

6 Function SendAlert(msg, topic)
7 Metric← MDMT selection policy objective function
8 S ← GetSubscribers(topic)
9 for Ti ∈ GetMDMTs(topic) do

10 Mi ← Metric(S,GetRoot(Ti), Ti,GetSTT())

11 M∗, T ∗ ← max {(Mi, Ti) : i ∈ [1..|M |]}
12 SendMulticast(MakeAlert(msg, topic),GetAddress(T ∗))

https://github.com/KyleBenson/ride


SCALE apps, or forwarding to interested devices. The earliest
Ride prototype forwarded events to a cloud MQTT broker.
If unavailable, Ride redirected these data flows to an edge
MQTT broker, which required the client’s network stack
to detect a change in the underlying TCP state machine
and re-connect with the new broker. The latest prototype
described below instead prefers the UDP datagram-based
protocol CoAP, integrated via CoAPthon [28], in order to
support connection-less RESTful interactions for constrained
IoT devices. This interaction style simplifies OpenFlow-based
redirection of sensor-publishers to alternative CDPs or edge
services and also enables Ride-D multicast alerting. We also
aim to incorporate an extension to the UDP-based MQTT-
SN [42], which is designed for low-power devices e.g. sen-
sor networks. We demonstrated (in a limited lab setting)
the possibility to apply Ride’s address translation techniques
on MQTT-SN for edge redirection of data collection and
multicast-based alert dissemination. However, most MQTT-SN
implementations use different topic IDs for each subscriber,
which prohibits our multicast-based alerting. Hence, we leave
exploring this avenue for future work.

Fig. 3a depicts our lab’s real-world testbed that we used
in our initial proof-of-concept. Unmodified SCALE devices
publish environmental sensed events to an MQTT [47] broker
for visualization via our web-based dashboard or further pro-
cessing by an analytics service. The SCALE devices associate
with a Wi-Fi AP connected to the pictured switch, which
routes data to either the edge or cloud broker instances. An
ONOS [18] SDN controller connected to the SDN switch’s
management port controls its forwarding plane routing using
the OpenFlow [3] protocol. We simulated a broken link by
unplugging the Ethernet cable connecting the switch to our
campus network. Fig. 3b shows the observed throughput of
IoT data measured at the cloud broker stop after this network
outage and pick up a few seconds later at the edge broker. Soon
after reconnecting the Ethernet cable, we see the primary CDP
recover as evidenced by the cloud broker throughput.

For our more comprehensive experimental setup (§V) based
on the seismic alerting scenario, SCALE client devices run
3 different mock seismic alerting applications modeled after
CSN: 1) a publisher to upload seismic sensed events at a pre-
defined time; 2) an alerting service (running on both cloud
and edge servers) to aggregate these readings (i.e. detect an
earthquake) over a two-second period and publish a seismic
alert; 3) a subscriber that records the results of these alerts
(i.e. when they were received, which seismic readings were
captured in them) for measuring performance.

We implemented Ride’s logic on the edge server as modular
Ride-C and Ride-D Python middleware services. We devel-
oped an SDN controller REST API adaptation layer that re-
quests an updated topology from the SDN controller. Ride then
runs path-finding and multicast tree-building algorithms on
the network topology using the popular NetworkX [38] graph
algorithms library. It builds publisher routes and MDMTs,
convert them into OpenFlow flow rules, and install these rules
in the SDN data plane via the controller’s REST API. This

(a) Our experimental testbed setup.

(b) Results from our initial cable-pulling experiment.

Fig. 3: A prototype of Ride in our physical lab test-bed.

approach enabled more rapid prototyping, modular testing, and
flexibility than targeting a single SDN controller platform.

Ride-C pre-configures data collection routes from each
registered sensor-publisher to the cloud service. While we use
static flow rules for these routes to improve STT accuracy,
Ride could also support dynamic routes by having the SDN
switch at each hop tag packets in a manner similar to [21].
Ride-C spawns a local threaded client and simple cloud-based
UDP echo server to monitor each registered CDP as described
in §III-A. In response to congestion or failures, it re-routes IoT
traffic through another available CDP or to the edge server
(using address translation flow rules) until a CDP recovers.

During normal cloud operation, the seismic alerting service
simply publishes alerts to each subscriber using unicast. After
fail-over to the Ride-D-enabled edge service, it receives and
processes sensed events originally addressed to the cloud.
When issuing an alert, it uses the shared STT graph to select
the best available MDMT and send the singular alert packet
to the subscribers using the associated multicast address.

V. EXPERIMENTAL EVALUATION

This section evaluates Ride using our prototype implemen-
tation. We describe the experimental setup (including synthetic
network topology), overall results from our experiments, and
finally delve deeper into the parameters that affect Ride’s
individual algorithms’ performance.

A. Experimental Setup

Due to practical limitations (i.e. limited number of physical
SDN switches and the difficulty of creating repeatable failure
scenarios in a real network), we implement larger-scale ex-
periments with Mininet [1]. This emulation environment uses
Open vSwitch (OVS) [2] to create a virtual network topology
of SDN-enabled switches (in a real Linux networking stack)
with realistic delays, bandwidth limits, and link loss rates. It



connects these switches together as well as to virtual hosts,
which run our aforementioned Ride-enabled SCALE seismic
clients. OVS switches connect via the SDN southbound proto-
col OpenFlow [3] to the distributed SDN controller platform
ONOS [18] running on the same machine.

To lend a realistic setting to our experiments, we wrote
a script to randomly generate a synthetic campus network
topology, inspired by our university’s network, with realistic
link characteristics (e.g. bandwidth, latency). Fig. 4 shows its
hierarchical structure that represents buildings as individual
routers, each serving multiple end-hosts and 2-connected to a
full mesh of four core routers. A few buildings (e.g. two for the
same department) connect directly together. The distinguishing
smart features of our synthetic campus topology are: 1) edge
server(s) (i.e. data centers) connected with two core routers
and 2) multiple cloud CDPs comprised of higher-latency links
between a public cloud data center node and Internet gateway
routers that each connect with two core routers.

(a) Smart campus network structure.
(b) Synthetically generated
smart campus topology.

Fig. 4: The network topologies used in our experiments.

We use a custom Python-based scenario configuration
framework that: 1) reads a synthetic network topology file; 2)
constructs it using Mininet; 3) randomly selects and configures
hosts as sensor-publishers and/or alert subscribers; 4) executes
the experiment by applying a network failure model at pre-
determined times; 5) and records results to determine Ride’s
performance. As indicated by the event flow captured in Fig.
5, the publishers constantly upload generic IoT traffic (ẽvery
100ms) as well as a seismic sensed event at each of the
following failure model steps: 1) after 20 simulated seconds,
disabling the primary CDP to represent a distant earthquake
and demonstrate Ride-C fail-over; 2) disabling the remaining
CDP 20 seconds later, which demonstrates fail-over to the
edge and Ride-D-based alerting; 3) disabling nodes/links in the
local campus network with a configurable uniformly random
probability that represents the geospatially-uniform shaking
experienced within a local campus region during a nearby
earthquake; 4) 20 seconds later, the primary CDP recovers
to demonstrate Ride-C’s return to normal (cloud) operation.

Our framework initializes the experiment with the fol-

lowing configuration parameters: the number of publish-
ers/subscribers, the local failure model’s uniform probability,
the campus topology file (described below), Ride’s algo-
rithm/policy parameters (e.g. k, TD, etc.), and the number
of experiment runs. For each run, it chooses the group of
publishers and subscribers uniformly at random from the avail-
able end-hosts (overlap allowed). To better compare multiple
experimental treatments, we can optionally maintain the same
sequence of publisher/subscriber/failure/routing configurations
through the use of random number generator seeds.

We calculate three main metrics to assess Ride’s perfor-
mance: 1) reachability, an approximation of alerting service
availability, is the portion of subscribers that successfully
receive alerts; 2) latency is the delay from when a publisher
creates a seismic sensed event until a subscriber first receives
an alert derived from it. 3) overhead is either the number of
probe packets (Ride-C) or total link cost of a route (Ride-D).
We use these metrics to compare Ride with two non-Ride con-
figurations: 1) when k = 0 the edge service uses unicast-based
alert dissemination over the shortest paths; 2) we calculate an
oracle upper bound on reachability by a) removing the failed
nodes and links from the topology originally read from a file
to create the Mininet network and b) calculating the percent
of subscribers reachable from the edge/cloud servers in the
remaining topology.

B. Ride Evaluation in a Seismic Alerting Scenario

This section uses the above scenario to demonstrate Ride’s
ability to monitor and adapt network state for resilient event
collection and timely alert dissemination despite failures. The
example run in Fig. 5 shows CDP failures as visible gaps
in data collection and spikes in alert dissemination. Note that
Ride-C quickly fails over to an alternative CDP in the first gap
and successfully delivers alerts quicker and more completely
than later alerts that must contend with local network failures.
After the local failures, Ride enters edge-mode operation
(orange section in middle) and Ride-D disseminates seismic
alerts rather than the cloud’s basic unicast approach. Note
the increase in alert latency over time (green dots trending
upwards) due to CoAP’s reliable transmission mechanism.
It times out after 2-3 seconds of not receiving an acknowl-
edgement and re-sends the seismic event (publisher-to-broker)
or alert (broker-to-subscriber). This can lead to increasing
event collection and dissemination over time as evidenced by
the red/green and yellow bars, respectively, appearing several
seconds after the initial event. Note that we discard alerts
delivered > 10secs. after the event as they have limited use
in seismic early-warning. When returning to cloud operation,
we note the lack of event collection gap as the edge continues
receiving events until cloud redirection completes.

Our emulated experiments validate the benefit of exploiting
SDN-enabled edge resources for resilience in such settings.
With a cloud-only approach, the data exchange would expe-
rience complete failure during the middle segment. Instead,
it only misses a few seconds worth of data collection and
alert dissemination. This loss, especially during fail-over to



the edge, indicates needed improvements to the SDN-enabled
fail-over mechanism. Even with Mininet’s zero-latency control
plane configuration, the time required to adapt the data plane
by installing flow rules drastically impacts both reachability
and timeliness. Hence, we are exploring additional strategies
such as pre-installation of partial re-routing paths.

Fig. 6a shows the performance of event collection and alert
dissemination for varying failure probability. We see that for
very high failure rates, further network redundancy is needed.
The disjoint publisher routing algorithm seems to improve
alert dissemination slightly by producing a more complete
STT . We plan to investigate this further in future work. To
further explore and improve Ride configurations, the following
two sections isolate the Ride-C and Ride-D mechanisms.

C. Ride-C Performance & Parameter Space Evaluation

We setup experiments to evaluate Ride-C’s failure-
detection-and-correction time and overhead (# probe packets)
under varying parameters (e.g. the application-specified re-
quirement TD). Fig. 6b shows how Ride-C always meets the
required TD, which closely matches the observed failure detec-
tion time (linear trend). It also shows the trade-off between TD

and the probing overhead, which decreases significantly as TD

increases from 1 second to 3 seconds. This suggests that if an
application can tolerate a few more seconds of failure detection
time, it can lower the probing overhead significantly. We also
compared the two different routing policies (shortest/disjoint)
given in §III-A, but found that they perform almost identically
as shown in Fig. 6a. Clearly the known hard problem of
diverse path routing presents an area ripe for improvement
as previously discussed.

We also compared the Ride-C failure-detector’s perfor-
mance with two other failure detectors from [15] and [13].
Both of the detectors are based on a PULL style method with
which the detector sends probes to a target and decides its live-
ness based on replies. The Resilient Overlay Networks (RON)
[15] failure detector sends the probes with long intervals in
its normal state. After a probe timeout, it sends subsequent
probes with a shorter interval. If all these fast-transmitted
probes timeout, the RON reports a failure event.

The B-AFD failure detector proposed in [13] is an adaptive
version of the RON detector. It takes QoS requirements
like maximum detection time, mistake recurrence time, and
mistake duration to dynamically reduce the probing overhead.
We ran experiments with all three failure detectors several
times to compare their performance. To make them detect the
failure at a certain time, we set maximum detection time TD

for Ride-C and B-AFD to (1,2,3,4,5) seconds. Since RON has
no TD parameter, we manually configured its parameters to
achieve a similar failure detection time. Fig. 6c compares their
actual failure detection time and probing overhead. It shows
that Ride-C and B-AFD detect the failure with much lower
overhead while still satisfying the TD requirement. Compared
with B-AFD, Ride-C tends to detect the failure with lower
overhead but slightly longer detection time.

D. Ride-D Scalability & Parameter Space Evaluation

To evaluate Ride-D’s ability to resiliently disseminate alerts
in larger settings and different configurations, we isolated
the Ride-D phase of our experiments with a larger topology.
However, scaling issues (Mininets performance degrades with
> 100 end-hosts and > 30 switches) necessitated a simulation
framework version. It uses Python’s NetworkX [38] graph
algorithms library to manipulate the topology and directly
calculate the subscribers’ reachability (given a single alert
transmission attempt) for each constructed MDMT in the face
of earthquake-induced failures.

We vary the aforementioned parameters with default values
of: 200 publishers, 400 subscribers, failure probability=0.1,
a 200-building topology file, k=4, the red-blue MDMT-
construction algorithm, the Ride-C diverse publisher-routing
policy, and 100 runs. For each MDMT-selection policy, we
calculate the STT based on which publishers are still con-
nected to the edge via their Ride-C-assigned routes, execute
the policy, and record the reachability of its choice. We also
record the minimum, maximum, and mean reachability of all
k MDMTs as worst, best, and random selection policy results.

Fig. 7a compares the different MDMT-construction algo-
rithms. While the random MDMT choice performs worse than
the unicast configuration, the best MDMT choice results prove
how an intelligent MDMT-selection policy can effectively
support resilient multicast-based alerting. Without enough
information (i.e. STT accuracy), however, unicast should be
preferred since MDMT-selection would be as good as random.
We note that red-blue outperforms the other algorithms for
smaller k and that k > 4 provides insignificant improvement,
hence our recommended default of k = 4 MDMTs. We also
recommend not using steiner for k ∈ 2, 4. By varying the
failure probability parameter for each algorithm (Fig. 6a shows
the results for red-blue), we found significant reachability
improvements for lower values (0.05-0.35). Beyond that (not
pictured), they converge towards oracle, indicating that no
strategy could address such high failure rates.

Fig. 7b compares the MDMT-selection policies for red-blue
(the other construction algorithms produced similar results).
It validates Ride-D’s network-aware approach of choosing
the best MDMT based on Ride-derived network state; all
of our policies perform better than unicast and random
MDMT choice. However, our recommended policy max-link-
importance achieves the highest average reachability for k >
2. This is likely due to its hybrid approach that considers both
individual links and complete paths. For k = 2, the policy
does not seem to matter and so the simplest should suffice.

Fig. 7c shows Ride-D’s improvement in overhead over tradi-
tional unicast alerting. These results show unicast maintaining
a constant link cost per subscriber successfully alerted whereas
Ride-D incurs less incremental cost per subscriber thanks to
multicast’s data transmission efficiency. We also note from
Fig. 7c that the number of subscribers vs. publishers has no
effect on reachability. Similarly, the campus network topol-
ogy’s size and number of redundant connections (not pictured



Fig. 5: Ride’s failure adaptations during an example execution of our seismic alerting scenario.

(a) Varying network failure probability
shows setting collection routes using dis-
joint method improves alerts’ delivery rate

(b) Varying Maximum Detection Time
TD showcases Ride-C’s resource-
conserving adaptive probing.

(c) Comparing failure detector (FD) overhead
of Ride-C and two related works.

Fig. 6: Ride-C Performance & Parameter Space Evaluation

(a) Comparing MDMT-construction algo-
rithms shows careful MDMT-selection per-
forms better than unicast.

(b) For k > 2, the max-link-importance
MDMT-selection policy performs best (red-
blue construction algorithm).

(c) Multicast-based dissemination improves
overhead vs. unicast while reachability re-
mains unaffected by increased # subscribers.

Fig. 7: Varying k (# MDMTs) and number of subscribers showcases Ride-D’s resource-conscious resilient alert dissemination.

to save space) appears to have little effect on reachability.

VI. CONCLUDING REMARKS

This paper demonstrated Ride, an SDN-enabled edge
service middleware for network and application-aware re-
silient IoT data exchange. Ride facilitates network-awareness
by monitoring network conditions and adapting to fail-
ures/congestion in public cloud IoT data flows for event
collection. In the event of cloud unavailability, it also en-
ables resilient emergency alert dissemination to interested
users and IoT devices by intelligently selecting from mul-
tiple redundant multicast-based topic distribution trees. We
framed our discussion in the context of an IoT-based seismic
monitoring and alerting application running both in the cloud

and at the edge for resilience to earthquake-induced net-
work failures/congestion. Our prototype implementation and
emulation/simulation-based results indicate Ride’s efficacy.

While our approach does slightly increase overall system
complexity, it does so mainly at the edge deployment. The
Ride middleware extends existing IoT data exchanges without
modifying them, IoT devices, or cloud services. The regis-
tration process enables independently using Ride with only
the most-critical IoT services. Administrators must determine
which services require such enhancement and their desired
level of resilience. Real-time critical apps require lower TD

(e.g. < 1sec.) whereas those that tolerate some delay but
must remain operable can use higher values. Less-critical apps
that tolerate some alerting loss can use k = 2, whereas we



recommend k = 4 for our seismic scenario. Furthermore,
adaptive probing intervals and multicast actually conserve
network resources as shown in §V. Hence, administrators must
weigh the benefits of this conservation with the increased
deployment complexity.

Moving forward, we plan to expand Ride by: improving data
collection using multiple CDPs simultaneously, improving
data dissemination via wireless ad-hoc networks and selective
unicast, securing data transmission using tunneling (e.g. IPsec)
for collection and secure multicast (e.g. DTLS-based multicast
[51]) for dissemination, and considering different application
scenarios. Our work represents a step in the direction of
supporting plug-and-play operation in future dynamic IoT-
based applications through flexible, efficient, reliable, and
timely methods for information exchange.
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