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Abstract—

In this paper, we explore a new form of dissemination that arises in distributed, mission-critical applications called Flash Dissemination.
This involves the rapid dissemination of rich information to a large number of recipients in a very short period of time. A key characteristic
of Flash Dissemination is its unpredictability (e.g., natural hazards), but when invoked it must harness all possible resources to ensure
timely delivery of information. Additionally, it must scale to a large number of recipients and perform efficiently in highly heterogeneous
(data, network) and failure prone environments. We investigate a peer-based approach based on the simple principle of transferring
dissemination load to information receivers using foundations from broadcast networks, gossip theory and random networks. Gossip-
based protocols are well known for being stateless, scalable and fault-tolerant; however, their performance degrades as content
size increases, because of the propagation of redundant gossip messages. In this paper, we propose CREW (Concurrent Random
Expanding Walkers), a smart gossip protocol designed to maximize the speed of dissemination by transmitting data only as needed,
and by exploiting both intra and inter node concurrency. CREW is designed to support both content and network heterogeneity and
deal with transmission failures without sacrificing dissemination speed. We implemented CREW on top of a scalable middleware
environment that allows for deployment across several platforms and developed optimizations without compromising on the stateless
nature of CREW. We evaluated CREW empirically and compared it to optimized implementations of popular gossip and peer-based
systems. Our experiments show that CREW significantly outperforms both traditional gossip and current large content dissemination

systems while sustaining its performance in the presence of network errors.

Index Terms—Gossip, Broadcast, Peer-to-Peer, Fault Resilience, Autonomic Adaptation, Middleware

1 INTRODUCTION

Dissemination consists of the transmission of a data object
from a source to a group of intended recipients. In this paper,
we deal with a particularly useful (and often ignored) form of
dissemination that arises in time-critical applications called
Flash Dissemination. Such a scenario consists of a rapid
dissemination of varying amounts of information to a large
number of recipients in a very short period of time. We moti-
vate flash dissemination through examples from the emergency
management domain. Consider “Shake-Cast”, a service from
the Advanced National Seismic System' which aims to provide
accurate and timely information about seismic events. Sensor
data about the earthquake is collected in real-time and then
processed to generate a “Shake-Map”: this is a GIS file that
can be ‘layered’ on a city map, for example, to assess which
structures might be most affected. This information is sent
to various subscribers, e.g., city, county and state emergency
management organizations, for immediate assessment of the
impact of the earthquake and to support triaging, co-ordination
and resource allocation decisions. This information may also
be regionally disseminated instantaneously to participating or-
ganizations including non-governmental agencies (Red Cross)
and private entities (utility companies, hospitals, schools, etc.)
hence resulting in a potentially large number (tens of thou-
sands) of subscribers. Subscribers register a machine ahead
of time to receive the information; such machines may use
widely different networks (T1, DSL, Microwave, etc).
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In such a setting, speedy delivery of information is critical
because this will enable more informed and timely decision
making resulting in better response. A flash dissemination
scenario entails the following characteristics:

e Unpredictability: The dissemination events (e.g. dis-
asters) are unpredictable, so the time when flash dis-
semination will be needed cannot be known. A flash
dissemination system, must therefore be ready to work
well at very short notice and cannot be scheduled or
optimized in advance. Furthermore, the availability of
infrastructure upon which to disseminate may be un-
predictable. The disaster at hand may be responsible
for many unpredictable faults, e.g., severing optic fibers,
destroying hard disks, power outages, etc.

e Scalability: The number of end receivers may vary from
thousands to hundreds of thousands depending upon the
nature of flash dissemination and the receivers that must
be contacted.

o Network and Content Heterogeneity: When end receivers
are geographically distributed, heterogeneity in the net-
work, in terms of latency, is natural. Added to this,
different receivers may possess different capabilities in
bandwidth leading to additional heterogeneity. Content
Heterogeneity arises since rich information such as pic-
tures, small voice/video clips, GIS files etc. range in size
from hundreds of KB to a couple of MB.

A naive solution for the problem of flash dissemination
would be to dedicate substantial resources (e.g., large network
pipes and fast servers) on a continuous basis. Such a solution
is not cost-effective because these resources will be wasted
except in the infrequent and unpredictable event of a disaster.
A more pragmatic solution can be achieved, if we recast
the dissemination problem to a peer-based setting, where
recipients participate in the dissemination process. The basic
idea is to tap the resources of the end receivers and shift
dissemination load to the set of clients organized as a large
Peer-To-Peer (P2P) dissemination system.



Dissemination systems today are tailored to two ends of a
spectrum: dissemination of small events and dissemination of
large (possibly streaming) content. For small data, the focus
is usually on low-latency delivery of data in the range of
tens of kilobytes; for example, updates in a multiplayer online
game [18] or delivery of early warning messages [33]. It is
not obvious how these systems would scale with larger size
because they don’t exploit high-bandwidth nodes: conversely,
such nodes are exploited in large content delivery systems,
which can thus sustain high throughput, and are able to deliver
content of the order of hundreds of MB to GB. Again, it
is not entirely obvious if large content delivery systems can
achieve very fast dissemination for medium amounts of data.
Additionally, these systems are designed assuming ‘normal’
network and host behavior, e.g., a constant rate of faults
(‘churn’ rate [22], [26]).

Gossip-based broadcast systems, however, are designed to
accommodate unpredictable faults. But most gossip systems
do not usually take into account variation in node bandwidths.
For small amounts of data, this is usually not much of a
concern. However, for medium and large content, the overhead
due to the redundant messages makes traditional gossip based
approaches considerably slower.

Our goal in building CREW (for Concurrent Random Ex-
panding Walkers) is to take the best of both worlds — fast
dissemination of content over heterogeneous networks and
under unpredictable conditions. CREW is a new, fully de-
centralized, gossip-based protocol, designed from the ground
up, with a focus on reducing the data overhead and on
increasing both system wide and within node concurrency. We
implemented CREW using a scalable middleware platform and
added optimizations without compromising its stateless nature.
Increased concurrency and reduced overhead allows CREW
to disseminate data extremely fast and to scale in terms of
both network and content size. Additionally, CREW adapts
to network heterogeneity while degrading gracefully in the
presence of heterogeneous packet losses.

The primary contributions of this paper are:

1) Design, implementation and evaluation of CREW, a
decentralized, stateless, gossip-based protocol for fast
dissemination of rich information. CREW is almost
twice as fast as current, optimized dissemination systems
(such as BitTorrent and Bullet) for flash dissemination
and imposes around 400% less data overhead than
traditional gossip.

2) A thorough and systematic evaluation of CREW as
well as various dissemination systems demonstrating the
effectiveness of CREW for flash dissemination.

3) A gossip protocol that has a deterministic termination
property and autonomically adjusts to fault rates at
runtime.

4) A new approach to gossip sampling service using ran-
dom walks on overlays. This approach reduces data
overhead of gossip messages and provides for near real-
time view management.

The rest of the paper is as follows. In Sec-2 we outline the
rationale for the CREW protocol. In Sec-3 we describe the
basic of CREW protocol and its extension for heterogeneous
network. The discussion of fault tolerance is described in Sec-
4. We analyze CREW in terms of latency and overhead in
Sec-5. Implementation of CREW is described in Sec-6 and
we evaluate its real world performance in Sec-7. Finally, we
conclude in Sec-8

2 RATIONALE FOR CREW

At an abstract level, flash dissemination is the canonical
broadcast problem in networks — how to distribute data, split
into M chunks, from one source to /N other receivers, as fast
as possible. This problem was originally studied in the context
of routers [11] and has been revisited in the P2P context [12].
The optimal solution to the problem is composed of two main
steps: (1) Getting one chunk to each peer as fast as possible
and then, (2) Optimally partitioning the peers into equal sets
of givers and receivers, until all peers have all chunks. We
name the first phase as the Ramp-up Phase and the second
phase as the Sustained Throughput Phase. The optimal number
of time-steps for dissemination of M chunks to N nodes is
Log(N)+2M — 1 [11], [12].

The optimal solution assumes homogeneous network band-
width and latency between nodes. Introducing heterogene-
ity immediately makes the problem NP-hard [16]. Different
heuristics and data structures have been used to tackle hetero-
geneous bandwidth nodes, along with special P2P overlays
explicitly designed for dealing with heterogeneity [29]. A
bandwidth optimized tree seems a logical data structure to use;
high-bandwidth nodes are placed near the root and support
many children nodes. A forest based approach extends this
idea even further so that leaf nodes can not only be receivers
but also data givers. Splitstream [10] is one such sophisticated
approach that uses a Distributed Hash Table (DHT) overlay
to construct a bandwidth optimal forest. However, both trees
and forests suffer from scalability problems in the presence of
faults.

Mesh based approaches relax the rigid overlay structure and
provide for better fault tolerance by constructing multiple paths
between nodes. Additionally, mesh-based approaches seem to
provide higher throughput than tree based approaches [20],
[30], [24], [34]. BitTorrent [1], the current de facto protocol
for distributing large content is also a mesh-based system.
The popular nature of BitTorrent has led many researchers to
examine it from a more theoretical perspective [7], [26] and
show why BitTorrent works so well in practice in distributing
large content. These systems are tailored for delivering large
content to a large number of receivers. When the content is
large, the sustained throughput phase clearly overshadows the
ramp-up phase. When content to be disseminated is relatively
small (hundreds of KBs to couple of MBs) and the number
of receivers still large, then the ramp up phase contributes
significantly to the total dissemination time. Additionally,
delivering large content can easily extend into hours, providing
ample time for system reconfiguration and fine-tuning. By
contrast, in the case of flash dissemination, the time available
for exploiting high-bandwidth nodes is significantly less.

During disasters systems and networks become unstable
and unpredictable; therefore, a primary objective is to achieve
dissemination in less-than-perfect network conditions. Gos-
sip [15] based broadcast protocols are an almost perfect
fit for this scenario. They trade redundancy for scalability
and simplicity. Gossip-based broadcast is extremely effective
and scalable for various dissemination scenarios. However,
they suffer from various deficiencies when applied to flash
dissemination. We revisit a well known gossip based broadcast
protocol and examine these deficiencies in more detail.

2.1 Gossip Based Broadcast Revisited

In gossip based broadcast, every node that receives a message,
buffers it, and then forwards it (i.e. gossips it) a certain number



of times, each time to a randomly selected subset of processes
[27]. In effect, most gossip protocols, for e.g. Ipbcast [25],
are implemented as ‘push-based’” mechanisms. The number
of processes to push to is also usually fixed and is known
as fanout. A fanout of 3-5 is usually sufficient, with normal
Internet packet loss rate, to guarantee reliable delivery of a
message to all nodes in the system. Selecting random nodes
(also known as the sampling service[14]) to push to, is a core
challenge. Each node selects random nodes from its current
‘view’ (a local cache of addresses of other nodes). In Ipbcast, a
node maintains a ‘partial view’ of the system which consists of
addresses of L other random nodes. This view is then attached
and forwarded in each gossip message so that information
about nodes that join/leave the system is updated, over time,
in all nodes. A receiving node, then combines its own view
with the view contained in the gossip message. To keep view
size scalable various intelligent policies are used to truncate
the view back to a constant size. The Ipbcast is an elegant and
simple gossip-based broadcast system that achieves scalability
and fast delivery of events: for N nodes in a system, it takes
Log(N) time to deliver the message to all nodes, with high
probability of events. However, two factors impede the use
of Ipbcast for fast delivery of medium and large size content:
high data overhead leading to slow dissemination and lack of
adaptation to heterogeneity.

Data Overhead and Dissemination Time:

The fanout of gossip directly impacts the dissemination time,
detrimentally. Consider content of a certain size to be dissem-
inated among NN nodes. Let it take M unit of time to send the
content fully between two nodes using their full bandwidth
(Assume all nodes have equal bandwidth). Sending content
as one gossip message would then require O(M * Log(N))
time. Ideally, if we split the content into M chunks, and if
the fanout is K ,the time bound can be O(M + Logk (N))
and the number of disseminated chunks can not be lower
than K (M + Logk (N)). The fanout, therefore, directly affects
the best case completion time, with a larger fanout invariably
leading to high data overhead. Apart from the data overhead
due to sending redundant messages, each message also carries
the ‘view’, adding further to the overhead and increasing the
dissemination time. The longer dissemination time due to the
large overhead was also shown empirically in [20].

Lack of Adaptation to Heterogeneity:

Fixed fanout in nodes makes gossip not easily adaptable
to heterogeneity in bandwidth. For example, how to assign
more data transfer work to high-bandwidth nodes and how
to prevent low bandwidth ones from getting overwhelmed.
Additionally, if gossip is implemented over UDP, as is natural
to do, congestion at the network layer must also be taken
into consideration [9]. In [27], the authors examine the issue
of adaptation and congestion control. However, they adapt to
congestion at the level of application level buffers and not
directly at the network level. Estimating and exploiting band-
width is a more involved problem as we describe in Sec-3.2.2.
Another drawback of having fixed fanout is lack of adaptation
to dynamic fault rates. During flash dissemination, it is hard to
predict beforehand the network conditions and fault rates. In
this case, a fixed fanout introduces an unappealing tradeoff —
too large a fanout would imply extremely slow dissemination
whereas a small fanout would lead to some node not getting
the information at all.

3 THE CREW PRoTocoL: MAKING GOSSIP
FAST

Our goal is to maintain the inherent stateless, scalable and
fault-resilient properties of gossip while achieving (1) fast
dissemination (2) over heterogeneous networks.

We devise a metadata based pull approach as a fundamental
building block to achieve these two goals. This design dramati-
cally reduces the amount of redundant data sent in the network
thereby making dissemination very fast. Further it allows to
exploit high bandwidth nodes to do more work aiding in faster
dissemination while safeguarding low bandwidth nodes from
becoming overwhelmed.

To make this new system work, we also needed to design
a scalable and low overhead random sampling service. We
describe this new substrate in Sec-3.3.

3.1 Reducing Redundant Messages

As noted in Sec-2, the basic bottleneck of gossip is the
overhead of redundant gossip messages. To tackle this, we
use a metadata-based pull mechanism to give nodes “content
awareness”. Nodes use the metadata to pull only messages that
they do not have.

The original content is divided into multiple chunks and
each chunk is assigned a unique chunk-id>. The list of all
chunk-ids is termed as metadata®. Metadata information about
the chunks (and their ids) are known by all nodes before they
start gossiping (we will describe how this is achieved in Sec-
3.3). Next, we invert the “fanout push” logic of traditional
gossip into a “pull-based” mechanism. A pull-initiator node
sends out the list of the ids of the chunks that it has already
received to a target node, selected uniformly at random. The
target node then sends, one chunk at random, that the initiator
does not have. If the target node has no “missing” chunks,
it sends an error message. Thus, nodes never pull duplicate
chunks. This basic protocol is described in Fig-1. Once a
node receives all chunks that are listed in the metadata, it
immediately stops gossiping. Thus, CREW has a deterministic
termination-delivery property — when all nodes terminate (stop
gossiping), all nodes have all chunks. This is unlike push-
based gossip that guarantees only probabilistic delivery at
termination.

3.2 Extending CREW for Heterogeneous Networks

Wide area networks are seldom homogeneous. There is vary-
ing latency and nodes have varying bandwidths, sometimes
in the order of magnitudes. For example, inter-node latency
can vary between 2 - 700 milliseconds and bandwidth can
vary from 64Kbps to 10Mbps. This raises both challenges and
opportunities. In particular, (1) How to reduce the detrimental
effects of high latency? (2) How can high bandwidth nodes
be exploited? and (3) How to adapt high bandwidth nodes, at
runtime, from overwhelming (and congesting) low bandwidth
nodes? We explore these questions and propose additions to
the basic CREW protocol to tackle these issues.

3.2.1 Latency Amortization

In the basic CREW protocol, a node waits for the current
pull to finish before starting on the next one. When a node
initiates a pull message to another random node, it must wait

2. A discussion on optimal chunk size can be found in [11]

3. similar in concept to a “.torrent” file in BitTorrent that has the metadata
for the actual file



INITIALIZE:
RecvdChunksIds < {0}
RecvdChunks < {0}
ChunksToGet < {ci.id, c2.id, ...cpr.id}
BEGIN
1) While |ChunksToGet| > 0
Node X < get next random node
Chunk ck < RPC* (X, GossipPull, RecvdChunksIds)

4) RecvdChunks < RecvdChunks U ck

5) RecvdChunkslds < RecvdChunkslIds U ck.id
6) ChunksToGet < ChunksToGet — ck.id

END

Fig. 1. Basic CREW Protocol

a. A generic Remote Procedure Call of type (RemoteNode, RemoteMethod,
Parameters)

at least for Round Trip Time (RTT), between the two nodes,
before hearing back any reply (error or chunk reception). If the
RTT between two nodes is 500ms, for example, then nothing
useful happens for almost half a second. During this time, a
node “wastes” its bandwidth entirely. If the reply was an error
message, the node has to start again. Moreover, to preserve
the gossip-nature of CREW, there is no straightforward way
to amortize this long setup time — a node moves away to
another random node after a pull. In other protocols (such as
BitTorrent, Bullet, SplitStream, etc.), connections once open,
are used to transfer multiple chunks. Changing CREW to do
multiple transfers with one node would be against the basic
gossip model. This, therefore, seems like a fundamental clash
between theory and practice — sticking to pull-based gossip
would make CREW extremely slow in any network where
nodes had large latencies.

However, high latency cost can be amortized in another
way — not by transacting multiple chunks with a node, but by
transacting single chunks with multiple nodes, concurrently.
We call this the concurrent pull optimization. CREW pro-
tocol enhanced to deal with concurrency is shown in Fig-2.
Doing concurrent pulls naively, however, may result in a node
receiving duplicate chunks. For example, two gossip pulls
initiated by concurrent pulls at the same time, may download
the same chunk. To prevent this, we split the gossip step into
two phases. In the first phase an “intent to pull” message is
sent to the target node (Fig-2 Line 5). The target node replies
with the chunk-id of the chunk, which it would have actually
given back had this been basic CREW. The received id is then
compared to check if some other concurrent pull is already
trying to get this chunk. If not, the chunk is really pulled in
the second phase (Fig-2 Lines 7-14).

Since nodes are contacted at random, some of the contacted
nodes have low latency while others may have high latency.
Chunk transfers from lower-latency nodes can overlap with
the setup to higher-latency nodes — thereby masking the setup
cost. The problem is then deciding what would be a good
concurrency factor. Too low a factor might result in under-
utilized bandwidth and too high a factor results in bandwidth
being unnecessarily split across many transactions, thus de-
laying all the transactions and increasing the dissemination
time. Additionally, we would like the concurrency factor to
be autonomic and dynamically adaptive at runtime. To achieve
this, a node keeps track of its “spare bandwidth”. Whenever
spare bandwidth exists, a node immediately starts a new pull
(Fig-2, line-2).

BEGIN

1)  While |ChunksToGet| > 0
While Spare bandwidth exists

3) Node X < get next random node

4) Do Concurrently With Main Thread:

5) Chunkld id <— RPC(X, IntentToPull, RecvdChunkslIds)
6) Acquire Mutex Lock

7 If (id € RecvdChunkslIds)

8) Release Mutex Lock

9) Else

10) RecvdChunkslds + RecvdChunkslIds U id
11) ChunksToGet + ChunksToGet — id

12) Release Mutex Lock

13) Chunk ck < RPC (X, GetChunk, id)

14) RecvdChunks < RecvdChunks U ck

END

Fig. 2. CREW Protocol Loop for heterogeneous Networks

3.2.2 Bandwidth Estimation

Estimating the spare bandwidth of a node is not trivial, with
the very notion of bandwidth being tricky to define precisely.
Specially, in the 1-to-many case, what is the maximum band-
width of a node, say A, with respect to a target set of nodes,
N? For example, a node may have 100Mbps bandwidth to
its local area router but only 200Kbps bandwidth to another
faraway router. If the target set of nodes all fall behind the
faraway router, then the node’s maximum bandwidth (w.r.t. to
target set) can only be less than 200Kbps. If we extend this
example to multiple nodes being behind multiple routers, then
estimation of maximum bandwidth becomes a combinatorial
problem. The maximum bandwidth of a node, A, can then be
defined as the maximum throughput achieved by communicat-
ing simultaneously with some subset of nodes in N. A way
to do this would be to compute all possible subsets of N and
then test which subset gives the maximum bandwidth.

Current systems, like BitTorrent and Bullet’ use heuristics
to calculate a node’s maximum bandwidth. For example, in
BitTorrent, a node connects at random, to a subset of the
target nodes and measures the bandwidth. At regular intervals,
a new node is chosen, usually at random, and a connection
is opened to it. If the bandwidth increases, then one of the
old connections which had the least bandwidth is dropped.
In general, the idea is for each node to slowly calculate and
evolve towards the subset of nodes that give it its maximum
bandwidth. When the content to be disseminated is large, there
is significant time for nodes to stabilize and maximize their
bandwidth utilization. In flash dissemination, the content is
usually small and hence there is relatively little time to evolve
to maximum utilization. The gossip nature of CREW, however,
allows us to leverage the fast moving connection setup to
estimate maximum bandwidth rapidly.

In CREW, each node starts with an initial value of zero as
its maximum bandwidth. Two pull connections are allowed
to progress concurrently at any time, irrespective of spare
bandwidth. The initial maximum bandwidth is estimated from
the first two pulls. After this, with every new connection
that is opened (for either initiating a pull or transferring
a chunk), the maximum bandwidth estimate is updated, if
current bandwidth utilization exceeds the current maximum
bandwidth estimate. This simple scheme is highly effective
in estimating the maximum bandwidth of a node rapidly.
Once maximum bandwidth is calculated, calculating spare
bandwidth is straightforward. Nodes also use the estimate of
maximum bandwidth to also decide whether to allow other
peers to download chunks from them. If a peer is using up all
its bandwidth, then it’ll return an error message for all pull



INITIALIZE:
CurrNode < random neighbor
Tries < 0
BEGIN
1)  While (TRUE)
2) Boolean accept < RPC (CurrNode, Accept AsNeigh, T'ries)
3) If (accept)
4) Break Loop
5) CurrNode < RPC (CurrNode, Get RandomN eighbor)
6) + + T'ries

Fig. 3. Bounce Protocol

requests. This is used by the puller node to estimate global
congestion as we explain next.

3.2.3 Congestion Adaptation

If a low bandwidth node is already at its peak bandwidth
utilization, then it rejects any new pull requests, irrespective of
whether it has missing chunks or not. In the pathological case
where most nodes have no spare bandwidth, we would like
nodes with spare capacity not to contact these “busy” nodes.
If nodes with spare bandwidth try to do pulls, they end up
generating redundant data (in the form of pull requests) and
slowing down the dissemination process. The gossip nature of
CREW, however, allows us to elegantly tackle this problem.
When a node makes a pull, the target node estimates if it has
spare bandwidth. If not, it replies back with a special error
message, saying that it is “busy”. If the initiator hears many
such “busy” messages in a short period of time, then it can be
fairly certain that most nodes are near capacity (and can then
take appropriate action like backing off). This is due to the
uniform random property of gossip. The replies from the target
nodes are representative of the replies of a random sample
from the total population. Thus, if most nodes in the random
sample are busy, then most nodes in the total population will
also be busy.

More generally, the reply message from the target node may
contain any local state and the initiator can quickly glean
global state information from these individual replies. For
example, if the target node gets a pull request and it does
not have any available chunks to transfer, it replies with a “no
chunks available” message. If the initiator node hears many
of this message, it notices that there are not enough number
of chunks globally and starts employing exponential backoff
delays between pulling requests in order to reduce the number
of meaningless pulling requests which causing “no chunks
available” message as responses. According to this, while all
nodes start off trying to pull from few source nodes, they
will quickly reduce their rate of pulling (due to exponential
backoff) and CREW can prevent from being congested with
meaningless pulling requests.

Pull replies are therefore, a powerful mechanism that can
be used to estimate global properties about the system.

3.3 Bounce: A Low Cost Overlay for Scalable Sam-
pling Service

CREW is a gossip protocol and thus needs a random sampling
and view management service. In traditional gossip protocols,
the view management is done by sending a partial view
from one node to another. Each node uses the partial views
coming in to decide what partial view it should maintain.
The partial view is then used to implement random sampling.
Also, traditionally, the view is sent as metadata in each data
transmission message, which is the additional overhead.

AcceptAsNeigh(T'ries)

Output: Boolean: Node accepted as neighbor or not

BEGIN

1) ProbAccept = BounceFormula (sel f.degree, Tries)
2) dice = Rand (0, 1)

3) If ProbAccept > dice

4) return True
5) return False
END

Fig. 4. Accept Logic of Bounce

In CREW, when dissemination starts, nodes broadcast the
metadata about data chunks to other nodes in its partial view.
Since the metadata is very small, nodes get the metadata very
fast (see Sec-7.2.1) and start many concurrent pulls. Many of
these pulls do not yield any data chunks to transfer so nodes
have to look out for more nodes to pull from. Further, high
bandwidth nodes need to pull from many more nodes than low
bandwidth nodes. Keeping a fixed partial view in each node
thus becomes another source of bottleneck in CREW. What is
needed is a scalable, low-overhead, view management service
that is able to provide as many random peers as a node needs
to keep its dissemination going at full speed.

We therefore designed a fully new, but simple, view man-
agement and random sampling service. Our sampling service is
based on the theory of random walks on overlays. [13] showed
that the nodes visited during a random walk of X steps on an
expander network, is an approximation of a random subset of
size X (with a larger X leading to a better approximation).
Finding the next random node to gossip with, can now be
as trivial as getting the next random node in a random walk.
The overhead for each gossip is now one extra node address.
The target node returns the address of one of its random
neighbor, in the pull reply message. Thus, the overhead is one
instead of “view size” for each gossip message. In CREW, we
maintain an explicit overlay among the nodes (using open TCP
connections) for doing the random walk. Next, we describe
how we construct and maintain this overlay in a decentralized
stateless manner.

An ideal overlay for random walks is an expander overlay
([21], [13]). However, in these overlays, a node must keep
explicit state information about its neighbors (for e.g., which
Hamiltonian cycle [21] the neighbor belongs to and whether
it is a predecessor or successor). This runs counter-intuitive
to the stateless nature of gossip. Therefore, we designed a
new decentralized protocol, Bounce, that creates a sparse, low-
cluster [17] and small-diameter overlay. Additionally, Bounce
requires only small number of message exchanges to add a
new node and the average number of messages required to
build the Bounce overlay grows sub-linearly with the network
size.

In Bounce, to acquire a new neighbor, a node does a random
walk on the overlay asking nodes if they will accept a new
neighbor (the walking node). If yes, a new neighbor link is
formed between the walking node and the acceptor node. Else,
the walking node continues with its random walk until some
other node accepts it as its neighbor. The walking node keeps
track of how many times it has been ‘rejected’ so far. This
parameter (called Tries) is used by acceptor nodes (along with
their own degree) to decide whether to accept the walking
node or not. The crux of the problem here is to prevent some
nodes from acquiring too many neighbors while also keeping
the number of retries (rejections) low. The exact protocol is



shown in Fig-3 and Fig-4. The “Bounce Formula” of the accept
method that we use is:

ProbAccept = + rand(0,1) x Log(Tries)

sel f.degree

The probability of acceptance is therefore directly propor-
tional to the number of rejects and inversely proportional to
a node’s degree. The value of the probability is in [0, 1] and
values over 1 set to 1. Simulations showed that for constructing
a 10,000-node network, with each node having at least 4
neighbor links, a node required, on average, 2.820 messages
to acquire a neighbor link. The clustering coefficient of the
constructed overlay network was reasonably low (0.074) to be
a good expander network as defined in [17].

4 FAULT TOLERANCE IN CREW

The pull based gossip approach of CREW has surprising new
fault tolerant properties but at the same time introduces new
points of failure. In this section we analyze the new fault
tolerant properties and show how the various points of failure
can be elegantly tackled.

4.1 New Fault Tolerant Properties

The pull logic of CREW completely eliminates the need
for deciding optimum fanout. A node does as many pulls
as necessary to get all chunks. If faults occur when it is
pulling, it just pulls more number times. This simple mecha-
nism therefore leads to an elegant, autonomic fault-tolerance
property — depending upon the fault rate, nodes do less or
more pulls, automatically. The simplicity of this property is
hard to overstate.

CREW also benefits from a near real-time view manage-
ment property. The “view” of a node in CREW, is its list
of neighbors. If a particular node dies due to a fault, its
neighbors recognize it’s death (due to the distributed health-
check mechanism where each node randomly pings one of it’s
neighbors to see whether it is alive) and remove it from their
neighbor-list. Once all neighbors remove the node from their
neighbor lists, no more random walks are forwarded to the
dead node. In essence, the dead node has vanished from all
nodes’ view. Thus, using random walks in overlay for view
management allows for near real-time updates to views of all
nodes.

In the next sub sections, we re-analyze the fault tolerance of
CREW since it is no longer a simple fire-and-forget protocol.
The main challenges include (1) guaranteeing that all nodes
get the metadata and that the view-management and sampling
service is robust to (2) node failures (including node churn),
(3) network partitions and (4) packet losses.

4.2 Metadata Fault Tolerance

Metadata is initially broadcast on the overlay. When a node
gets the metadata for the first time, it forwards the metadata
to all of its neighbors, except the one from which it was
received. This ensures that all nodes get the metadata. But what
happens if a node fails to get the metadata in the first place?
This can happen if the underlying network of a node goes
down at the point of broadcast and then becomes functional
again later. In this case, if the node reconnects back into the
overlay, then it will hear some pull messages from other nodes.
Pull messages contain a metadata identifier. If a node sees an
unknown metadata identifier, it can then, explicitly pull for
this metadata, before pulling for the chunks.

4.3 Overlay Fault Tolerance

The Bounce protocol constructs and maintains the overlay
network. As long as the overlay is connected and has good
properties (low diameter and low clustering co-efficient),
CREW can perform efficiently. We add the following two
tweaks to the bounce protocol to enable it to deal with node
churn and underlying network partitions.

1) Bootstrap Nodes We assume a small set of well known
bootstrap nodes. When a node wants to join the overlay,
it has to first contact one of these bootstrap nodes,
selected randomly. The bootstrap nodes maintain a fully
connected overlay graph of themselves.

2) Neighbor Dropping Periodically, a node checks if it has
more than the threshold number of neighbors. If so, it
drops all it’s neighbors with a probability of 1 — k/n,
where k is the threshold and n is the current number of
neighbors. Setting k to 4 is usually reasonable. With this
policy, the more neighbors a node has, the more likely
it will start fresh. This policy eagerly introduces churn
in the overlay network in order to expedite the healing
process from severe network partitioning.

4.3.1 Handling node churn

The overlay network, first and foremost, needs to be resilient
to nodes failing. Nodes failing should not result in the overlay
network getting partitioned (the view management breaks in
this case) and secondly, the properties of the overlay that allow
the random sampling service should be preserved (low diame-
ter and low clustering co-efficient). In this section we evaluate
how the Bounce protocol maintains these characteristics under
churn.

We implemented an event-driven simulator to mimic each
node performing Bounce. Then, we assigned on/off times for
a node based on an exponential distribution [32][35]. The
average times are 100 and 200 time units for on and off,
respectively. With this setting, around 2% of total number of
nodes in the overlay are changed every time unit. When a
node joins the system, its on-time is assigned and it contacts
one of pre-selected bootstrap nodes to initiate the Bounce
protocol. Each node follows the Bounce protocol to pick up
to M neighbors (threshold number of neighbors). We set M
to be 4, used 10 bootstrap nodes and simulated 10000 nodes
overall.

Fig-5(a) shows CDF of node degree captured at various time
snapshots. The degree distribution is extremely consistent over
time and one can hardly differentiate the CDF lines for the
various snapshots. We then plot the diameter and clustering
coefficient values at different points in time in Fig-5(b). While
the diameter varies a bit over time (due to the the neighbor-
dropping tweak), the clustering co-efficient stays very stable.
This confirms our belief that even under node churn, Bounce
can maintain very good overlay characteristics.

4.3.2 Handling Network Partitions

During disasters, it is quite possible that the underlying
network itself is partitioned. When this happens, nodes in each
partition remove their neighbors from the other partition. Thus
the underlying partition manifests itself as an overlay partition.

The interesting part is when the underlying partition heals.
We would like the overlay to merge back fast. The combination
of Bounce along with the two tweaks makes this possible. We
examine in detail one particular partition scenario and simulate
what happens in it. We then generalize this to any partition
scenario.
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Fig. 5. Results of overlay fault tolerance of Bounce protocol

Equal Partition: In this case, the underlying network
partitions which results in the overlay splitting into two equal
partitions. The bootstrap nodes are divided as well among
the partitions. A short while after the underlay partitions,
nodes detect that they have lost all their neighbors from
the other partition. On average, each node loses half of its
neighbors. The node then makes up for the loss of neighbors
by using Bounce. After a while each node gets back at least
the threshold number of neighbors. However now all neighbors
are from the same underlying partition.

Let’s call these partitions P1 and P2. We ran a simulation
to show the effect of the partition and what happens when the
underlay heals. Let the underlay partition occur at T-100 and
let it heal back at T-210. Fig-5(c) shows the timeline of what
happens. We plot only the scenario from P1’s point of view
(since the partition is symmetric, the same is happening on P2
as well). The each line shows the average number of neighbors
in each partition. The line with circles shows the number of
P2 neighbors that P1 nodes have. From T-100 to T-210 this
is zero (due to the underlay partition). The line with squares
shows the number of P1 neighbors that P1 nodes have. From
T-210 onwards, the line with circles trends upwards and the
line with squares trends downwards, showing that nodes in P1
are getting more neighbors in P2. Around T-300, the overlay
partition has healed.

So what makes the overlay heal? Due to tweak-2, nodes in
P1 are dropping neighbors and trying to get more neighbors.
During the underlay partition, they only get neighbors inside
P1. However, as soon as the underlay heals, the bootstrap
nodes form a fully connected graph of themselves. When
this happens, nodes that are starting fresh (due to dropping
all neighbors) contact one of the bootstrap nodes and have a
chance to get a neighbor from the other partition. As neighbor-
dropping continues, nodes from across the partitions start to
diffuse into the other side. Over time, the overlay becomes
fully intermixed. As a double check, we measured the diameter
and clustering co-efficient at T-500 and there wasn’t any
noticeable difference from before the partition.

Generalization: Assume there are two partitions (not
equal) and that the bootstrap nodes are divided unequally
among the partitions (one partition could have zero bootstrap
nodes). In the partition that has zero bootstrap nodes, when a
node drops all it’s neighbors, it won’t be able to get any more
neighbors. It has to then wait until the partition heals and it is
able to contact the bootstrap nodes. Apart from this one detail,
when the partition merges, the two partitions merge exactly
like in the scenario above. Further, this can also be generalized
to multiple partitions. Merging can always be thought of as

(b) Diameter and Clustering Coefficient mea-

Time

(c) Healing process of Bounce protocol

merging of two partitions until all partitions are merged.

4.4 Dealing With Network Packet Loss

Content-aware pulling in CREW introduces a fault tolerance
challenge that is absent in push-based gossip. The list of
chunk-ids that a node sends to the target pull node may get
lost, in which case the target node will never reply back. Addi-
tionally, if chunks are sent as smaller data packets, then, even if
one data packet is lost, the entire chunk is “corrupted”. When
packet loss rate increases, the performance of CREW can
degrade exponentially fast. This challenge can be addressed
by using an underlying transport protocol that does packet loss
detection and recovery. Thus, we use TCP as the underlying
transport for all inter-node communication in CREW. TCP pro-
vides an efficient ACK-based recovery and retransmit protocol.
Using a ACK-based retransmit approach (such as TCP) instead
of a naive fire-and-forget policy, allows CREW’s performance
to degrade linearly, instead of exponentially, as a function of
packet loss rate[23]. Thus, using TCP not only alleviates this
weakness, but also provides other important benefits — such as
automatic congestion control at the network level. Using TCP,
however, introduces other challenges such as higher setup cost
(due to 3-way handshake) and dealing with slow-starts. These
are addressed by the concurrency extensions (as described in
Sec-3.2) and the optimizations in CREW implementation (Sec-
6).

5 CREW ANALYSIS

We analyze CREW with a simplified model in which all
nodes have equal bandwidth and latency. Let the content to
be disseminated be divided into M chunks, each of which,
if transferred between two nodes using their full bandwidth,
takes 1 unit of time. Let the total number of nodes be N.
Assume that at time 7Tg, all nodes have received information on
the list of chunks to get and start their gossip loops. We model
CREW as progressing in synchronous time steps and analyze
the time complexity in terms of the time steps. Assume that
each time step can be further sub-divided into three smaller
time steps:

SubStep 1: Each node chooses another node, uniformly at
random, and sends it its list of received chunks.

SubStep 2: Each node chooses to honor, uniformly at
random, only one request. Other requests are rejected.

SubStep 3: A node sends out a chunk, if possible.

After the 1% time step, a node may have multiple ‘in-
coming’ requests from other nodes. Additionally, it has one
‘outgoing’ request. Therefore in the 2"? sub-step, a node



chooses at random from all the incoming requests and the
single outgoing request. If a node, say u requests node v, then
in the 3" time step, it simply waits to hear from v. On the
other v may have decided to honor some other request, in
which case u will not get any data in the 3"¢ sub-step. Only
if v also chooses w and if v has some chunk that « does not
have, will u get anything in the 3"¢ sub-step. We also assume
that the 2"¢ sub-step is long enough to let u receive all the
incoming requests. Additionally, we assume that the 3"¢ sub-
step is the one that takes the longest time. If a node does
not get (or give) anything in the 3" sub-step, it still waits
the amount of time that it would have taken had it sent out
a chunk. In effect, nodes are fully synchronized at each step
and also at each sub-step.

Dissemination Time: To model CREW, we started with
an approximate, analytical model. We assumed that for the
first M steps, the seeder picks one node at random and injects
it with a chunk (thus giving out all M chunks in M time).
Thereafter, we used an approximate expected analysis to model
the number of chunks possessed by each node, at each time
step. This analysis led us to the following theorem:

Theorem 5.1: Let a content be split into M chunks and
disseminated into a network of NV peers. The expected average
number of chunks in a peer is Nj1 = Nj+3(1—(1— 5% (1—
)M with Ng = 4L where k is the number of time steps
after all M chunks have been injected by the root into the
network.

Proof: In the first phase of operation, the root injects the
M chunks, one after the other, choosing at each step another
peer uniformly at random. Hence, this phase takes M time
steps. At the beginning of the second phase, all M chunks
are in the network and each node has on average Ny = %
chunks. This is a slight underestimate of the true Ny, which
would also include the average number of chunks sent from
peers, other than the root, during the first phase. We use %
for convenience; in reality, CREW will have a slightly better
head start.

At each time step, a peer p will contact another peer ¢
uniformly at random. Independent of this operation, p and
q will decide whether to act as sender or receiver during
the step. A connection can now be established along the
directed edge (¢,p) if and only if ¢ decides to act as a
sender (probability %) and p decides to act as a receiver (again
probability ). Therefore with probability § the two nodes
will pick “compatible” roles and edge (q,p) will be “active”
in this time step. Since there are N nodes who contact some
other node in each step, on an average % connections will be
established in each time step.

Additionally, a successful transfer will take place if the
receiver lacks a chunk that the sender possesses. The receiver
will not be able to receive a particular chunk from the sender
if either (i) the sender lacks it (probability 1 — %, or (ii)
the sender has it, but so does the receiver (probability %2
So, a particular chunk will not be receivable with probability
1 - S 4 %2 = 1- 8 —%) The two peers will
not be able to effect a transfer if all M chunks are thus
not receivable, hence with probability (1 — 4 (1 — &&))M,
Conversely, they will succeed in performing a transfer with
probability 1 —(1— %(1 - %))M . Thus, the expected number
of transfers will be:
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The average number of chunks in each node will increase
T
by 5, so:

1 N, Ni v
N, =N, +-(1-(1—-——(1-—
The initial condition for this recurrence is Ny = % as
previously derived. O

This recurrence relation has no closed form solution and
hard to analyze. Therefore, we decided to build a simulator
for the simplified model of CREW (where the seeder does not
play any special part in the first M steps, as in Theorem-5.1).

The simulator simulates the simplified CREW protocol for
given N and M values. The output is the number of time
steps needed for all nodes to have all chunks. Due to the
random nature of CREW, the time steps (even for fixed M
and N values) vary over different iterations. Therefore, for
each combination of M and N, we ran 50 runs. The results
are shown in Fig-6. The X-axis is logarithmic and represents
the number of nodes (V). The Y-axis is the total time steps
for N nodes to receive all M chunks. We tested for different
values of M and these are plotted in the same graph. Each
data point represents the average value of these 50 runs along
with the standard deviation. We also plot 6 curves that best fit
the data points.

We tried a wide variety of sample functions to test their
‘fit’ to the data; among others we tried O(M + log N) and
O(M xlog N). However, as Fig-6 shows, a x (M + log N *
log M) is a very good fit. The reduced Chi-square for each of
the fitted lines is less than 0.1 (indicating an extremely good
fit). The value of a for each of the fitted lines decreases quite
slowly (with logarithmic increase in M) indicating that this is
both a conservative and good approximation. For other sample
functions, the reduced Chi-square was either quite large or a
increased with M. Thus, we believe that the dissemination
time for CREW can be modeled as O(M + log N x log M).
This is suboptimal with respect to the optimal solution of
O(M +logN). However, the constant factor for CREW seems
to be low (around 5). Additionally, the suboptimality of CREW
increases only logarithmically with number of chunks (or
file size). For low number of chunks, the difference between
CREW and an optimal solution would be quite small.

Data Overhead: In CREW, no duplicate chunks are ever
sent out. Hence, the overhead is entirely due to nodes sending
out the list of chunk-ids; let this list be called the Hand-
shakeMessage. If we assume that all nodes perform pulls
until all nodes get the entire content (a worst case scenario),
then the total data sent out in CREW is: TimeSteps * N x
Size(HandshakeMessage)+N*M#Size(Chunk). Further,
let’s define data overhead as (sent—min)/min where sent is
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the total data sent into the network and min is the minimum
amount of data that needs to be sent out (by any scheme).
It is easy to see that min is N % M (all nodes have to get
M chunks). For simplicity and without loss of generality, let
size of the chunk be 1 and the size of handshake be A (some
fraction of the chunk size).

The overhead in CREW can now be calculated as:

kxhx (M +1logN xlogM)*x N
NxMx1
log N * log M )
M

The overhead, therefore, increases (sublinearly) with net-
work size and decreases with increasing content size. This
is because, when the content is made bigger, the sustained
throughput phase is much longer and the overhead in this
phase is much smaller (nodes are not wasting their pulls).

Overhead =

=kxhx(1+

6 CREW: IMPLEMENTATION

Our goal was to design and implement CREW so that it would
perform well in real world heterogeneous networks. The de-
sign and implementation was an iterative process with valuable
insights provided by the Modelnet testbed (we describe the
testbed setup in Sec-7). In building the actual system, our
overriding philosophy was to make the system as modular
and easy to maintain as possible. Rather than developing it
from scratch, we choose an Object-based middleware, ICE [3],
as our fundamental software platform. As we’ll describe, this
choice considerably eased and simplified our implementa-
tion. Additionally, developing CREW using ICE allows us
to leverage all the benefits of a cross-platform middleware
platform. We have Java and C++ versions of CREW running
on Windows XP, Linux and FreeBSD.

CREW is implemented as a set of interacting modules, as
shown in Fig-7. We provide a brief overview of these modules
and then describe them in detail. The actual CREW protocol is
executed by the Pull/Push threads. A Pull/Push thread uses var-
ious supporting modules. The Bandwidth Manager calculates
and estimates spare bandwidth on a node and the Pull thread
uses this to figure out if it should do more concurrent pulls.
The Random Walker is responsible for traversing the overlay
and collecting random nodes to gossip with. The Random
Walker is in turn dependent upon the Neighbor Manager which
makes sure that a node is always connected into the overlay.
We now describe the modules in greater detail.

Pull Manager: The Pull manager is initialized as soon
as Metadata is received through a neighbor and remains
alive until all chunks (for particular content) are collected.
Depending upon spare bandwidth (information that is got from
the Bandwidth Manager), the pull manager initiates gossip
pulls.

Push Manager: Similar to the pull manager, we also
developed a Push Manager in which a node pushes chunks to
other nodes (again after executing a handshake to make sure
that duplicate chunks are not transferred). In networks where
high-bandwidth nodes exist, we would expect these nodes to
complete faster than low bandwidth nodes. To exploit these
nodes, we introduced the ‘push’ mechanism in CREW. After a
node finishes pulling all chunks, it switches to a Push mode. In
this mode, a node randomly visits other nodes and enquires if
the target node needs any chunk. If so, a chunk is pushed to the
target node. A problem with the push protocol, as compared
to the pull protocol, is the termination criterion — when does
a node decide to stop pushing? We implement termination
in a probabilistic way. The probability that a node will stop
pushing is directly proportional to the number of consecutive
‘rejects’ that a node encounters. A reject is an error in the
handshake which indicates that the node visited does not need
and chunks from the visiting node. In our implementation,
we use the following formula to calculate the probability of
stopping: Prob(stop) = 1 — mjﬁ,rejects > 1. Usually, a
push walk stops after it hears four consecutive rejects. rejects
is reset to 1 as soon as a valid chunk-id is received in the push
random walk.

Bandwidth Manager: ICE provides facilities for statistic
gathering, one of which includes the bytes transferred in/out
through the middleware. We use this to calculate the current
bandwidth usage, on every epoch of 300 milliseconds. Maxi-
mum and spare bandwidth calculation is done as described in
Sec-3.2.2.

Random Walker: By implementing Random Walker as
a separate module, we abstracted out the sampling service
functionality. This allowed us to make an interesting optimiza-
tion that is fully transparent to the pull thread. The Random
Walker visits a certain number of nodes ahead of time and
maintains open connections to them in a data structure called
the Node Lookahead Buffer (NLB). When the pull thread
asks for the next random node, the Random Walker returns
one open connection from the NLB (and removes it from
the NLB). Having a connection already open saves on TCP
connection setup time. During a random walk on the overlay,
if there are any network failures or timeouts, the Random
Walker resets back to a random neighbor and continues.
Connection management is crucial for CREW since many
connections are opened and ‘discarded’ (not needed) rapidly.
The underlying middleware takes care of cleaning up un-used
sockets. Thus, CREW does not need to worry about managing
socket connections explicitly.

Neighbor Manager: The Neighbor Manager is primarily
responsible for neighbor fault detection and recovery. The
Neighbor Manager periodically (1 second) ‘pings’ one neigh-
bor selected at random from the neighbor list. In CREW, each
node maintains a neighbor list of size five. If a neighbor fails
to respond to the ping, and if the number of neighbors are
below five, then the Neighbor Manager initiates the Bounce
protocol. The Bounce protocol itself involves a random walk
on the overlay. The Neighbor Manager thus uses the Random
Walker to get random nodes to try and acquire as neighbors.
The open connections in the NLB further speeds up the tryouts
and the recovery phase.

7 PERFORMANCE EVALUATION

7.1 Experimental Framework

In our experiments, we test CREW in terms of (1) How fast it
can disseminate information to a set of receivers over spread



across a wide area network, (2) How it scales with increasing
system size and increasing content size, (3) What is its data
overhead, (4) How well it adapts and exploits heterogeneity
in the networks and (5) How gracefully it scales in presence
of heterogeneous network errors.

To measure these factors, and be confident that the results
would be a good indication of what one could expect in a real
deployment, we setup a testbed using Modelnet [6], which
is a real-time network traffic shaper and provides an ideal
base to test various systems without modifying them. Further,
Modelnet allows for customized setup of various network
topologies. Using Modelnet, we compare CREW with actual
optimized implementations of BitTorrent, Bullet, SplitStream
and Asynchronous TCP Gossip under different conditions.
Next, we describe our experimental testbed and the network
topologies that we used.

7.1.1 Testbed

The testbed consists of a FreeBSD machine as an emulator
and four Debian Linux hosts. All machines support Gigabit
ethernet interfaces and are connected by a dedicated Gigabit
router. The emulator is a dual processor 2.6Ghz machine with
2GB of RAM while the hosts are single processor machines
running at 2.8Ghz with 500MB of RAM. The emulator
machine runs a custom FreeBSD Kernel configured with a
system clock running at 1000Hz (as required by Modelnet).
The hosts run Linux with a customized 2.6 version kernel *.
The hosts support Java version 1.5, Python version 2.3.5 and
GCC version 3.3.5. All hosts are synchronized to within two
milliseconds through NTP (Network Time Protocol).

To model the vagaries of the underlying Internet, we used
the Inet [4] topology generator tool to generate Internet
router topologies of 5000 routers. Inet generates topologies
on a XY plane which Modelnet then uses to emulate inter-
router (and hence inter-node) latencies. Bandwidth constraints
and network packet loss rates are specified separately in
Modelnet. Primarily, we used two main network topologies:
(1) a homogeneous network where all end nodes have equal
bandwidth of 200Kbps and (2) a heterogeneous network with
end nodes at three levels of bandwidth: 200Kbps, 800Kbps and
3200Kbps. Additionally, we generated homogeneous networks
with varying packet loss rates, from 1% to 20%. For all
network topologies, however, the latency between nodes is
always heterogeneous, as dictated by the router backbone
generated by Inet.

Our choice of bandwidths for nodes requires some expla-
nation since the testbed imposes certain restrictions. First, the
maximum bandwidth generated in the testbed cannot exceed 1
Gbps (bottleneck of emulator NIC card and router). Second, to
keep the emulator from being overloaded, we did not want to
generate data at such a rate that the emulator CPU usage went
above 10%. Third, while Modelnet provides for running many
virtual nodes in one physical host, we did not want to create
so many processes that the swap space was being used. Under
these constraints, we would still like to simulate reasonable
bandwidth assumptions.

7.1.2 Comparison Systems

Our choice of comparison systems is not to exhaustively
compare CREW to all dissemination systems but to compare
it to well-known ‘“sample points” in the application-layer

4. This version supports NPTL (New Posix Threading Library), to effi-
ciently support multiple threads.

10

broadcast/multicast systems space. The primary motivation is
to test if CREW, and hence a gossip-based approach, can
perform comparably to optimized overlay dissemination sys-
tems. BitTorrent is the current defacto system for distributing
large content in the Internet today. Moreover, it is a fully
mesh-based system. Bullet is a hybrid tree/mesh system, while
SplitStream is primarily a tree/forest based system (for content
delivery paths). To compare these various systems, we ran
actual implementations of them over Modelnet. It should be
noted that some of the comparison systems are not designed
for fixed size content delivery. However, for these systems,
we have given optimistic interpretation of how they would
disseminate fixed size content. Specifics of the comparison
systems are given below.

BitTorrent: We downloaded and used the python source
code for BitTorrent version 4.0.2. We changed the source
code so that we could instrument the total bytes that were
sent/received by a BitTorrent client.

Bullet: For bullet, we used the source code of Macedon
version-1.2.1 [5]. This version did not contain Bullet'[19],
an optimized system designed explicitly for large content
distribution. Bullet is inherently a streaming protocol. To
compare it to other content dissemination systems, we made
a minor change to the source code of the appmacedon driver
file. During streaming, a Bullet node logs the time when it first
receives data, to the time when it receives data that corresponds
to a particular file/content size. This is a simplification because
there is no explicit logic in each node to get ‘missing data’.
This simplification is representative of the best case scenario
if Bullet were used for dissemination content.

SplitStream: The Macedon framework provides built-in
support for various P2P protocols, including SplitStream. We
used the same appmacedon driver as before but changed the
underlying protocol to SplitStream.

Asynchronous TCP Gossip: We also developed a sophis-
ticated Gossip system based on Ipbcast. Our primary goal was
to test the dissemination speed and hence we removed the
sampling service logic of Ipbcast, replacing it with an “ideal”
sampling service. Each node is supplied with the list of all
other nodes and thus does not need to send its view. Therefore,
the overhead from sampling service is zero and is a best case
scenario. Gossip is implemented asynchronously with each
node sending every unique gossip message, as soon as it gets
it, to 4 other nodes. Further, we send the gossip message
via TCP due to the problems of congestion with UDP. A
sophisticated communication substrate was also designed for
sending the gossip messages. Each node maintains a thread-
pool (of size 10) to send gossip messages. Many gossip
messages can therefore overlap, if necessary, for increased
concurrency. We added error handling as well. A gossip send
is tried multiple (4) times (with increasing backoff time), in
case the receiver is currently overwhelmed. This was designed
as a primitive means of congestion control. Our goal was to
take the basic idea of Ipbcast and then implement concurrency,
heterogeneity and congestion adaptation into it.

7.1.3 Testing Methodology and Metrics

Each of our experimental runs consists of one “server” and
multiple peers. The server is a node in that particular system
that initially has all the content. A test starts when the first peer
receives the first piece of content and the test ends when all
peers have all the content. The different nature of the systems
introduces slight variations to the tests. Before a test starts, we
want all nodes to be “up” and already started. In BitTorrent,
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the .torrent file (metadata) is already present in each node.
We start the seeder last in a BitTorrent run so that there is
no node startup latency. When the seeder enters the system,
all nodes have already formed the BitTorrent mesh. For Bullet
and SplitStream, we wait 30 seconds before streaming, so that
any optimization that they need to perform can take place.
For CREW, we introduce the “server” last. Unlike BitTorrent,
though, a run in CREW includes the metadata broadcast time
as well. The server is always a 200Kbps node, irrespective of
the network topology. We run each experiment five times and
plot the average value of the five runs. In our experiments, we
measure three major metrics:

Complete Dissemination Time (or Completion Time in
short). Completion time is the amount of time from when the
dissemination process is started at the seeder until all (100%
of) the nodes in the network receive all the content.

Dissemination Coverage Speed (or Coverage Speed in
short). Coverage speed captures how fast data dissemination
proceeds over the network. It indicates how many nodes have
received all the content at a certain point of time.

Dissemination Data Overhead Percentage (or Data Over-
head in short). Data overhead measures the average extra data
bytes that are transmitted at each node for dissemination. It is
defined as:

__ (total_data_bytes_transmitted
Data_Overhead = ( i modes < file size — — 1) x 100

7.2 Experimental Results

The experimental results are presented in several aspects:
network size scalability, content size scalability, adaptability
to both bandwidth heterogeneity and lossy links. Unless oth-
erwise specified, the default settings for the experiments are
(1) homogeneous networks, (2) 1% upper loss rate, (3) 100K
content size and (4) 60 nodes. We use an optimized version
of CREW when comparing with other systems. At the end of

tent Size

the section, we present results that show why we selected this
particular version of CREW.

7.2.1 Network Size Scalability

We first analyze the time and data overhead to disseminate
a 100K file among an increasing number of recipients. A
homogeneous network with each node at 200Kbps is used and
the total number of recipients is varied. As Fig-8(a) shows,
when the number of recipients is greater than 10, CREW dis-
seminates faster than all the other systems; and for 60 nodes,
CREW is almost twice as fast the next best system, BitTorrent.
CREW therefore achieves extremely rapid dissemination. As
previously stated (Sec-3), metadata propagation is extremely
fast and initiates all nodes almost simultaneously into the
dissemination process (CREW ;g1 4 line in Fig-8(a)).

TCPGossip also scales well, with dissemination time close
to that of BitTorrent. Bullet and SplitStream, however, seem
to scale poorly and rather erratically. To examine why this
was so, we plotted the dissemination spread of the various
systems, as shown in Fig-8(b) where the completion times of
60 nodes for a particular run of the 5 systems are plotted.
As an example, in SplitStream, after 100 seconds, around 38
nodes have received all the disseminated content. In Bullet,
it takes a very long time for the last fraction of nodes to get
all the data; a worst case is plotted in Fig-8(c). We conjecture
that Bullet and SplitStream take longer to stabilize and involve
all nodes in the dissemination process. While disseminating
large content, this is masked but becomes apparent when
disseminating small amounts of data. Fig-8(b) also shows that
at any given point of time, nodes in CREW get the content
faster than any of the other systems. The fast ramp-up speed of
CREW and significant concurrency contribute to its superior
performance.

Fig-8(d) plots the comparison of data overhead with varying
number of nodes for BitTorrent and CREW. TCPGossip incurs
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a constant 300% data overhead (due to the fanout of 4), and
hence is not plotted. For Bullet and SplitStream, the API
provided did not allow us to instrument data transmitted and
received and hence we were unable to measure their overhead.
Hence, they have not been plotted either. As Fig-8(d) shows,
the overhead for CREW is much lesser than that of BitTorrent
(and both are orders of magnitude less than TCPGossip).
Additionally, the overhead in CREW seems to grow more
slowly than that of BitTorrent, with increasing network size.

7.2.2 Content Size Scalability

In Fig-9, we examine the time and the data overhead to
disseminate content of varying size, from 25K to 800K, among
60 peers with homogeneous bandwidth. The dissemination
time increases almost linearly for all systems. However, the
different systems display interesting and characteristic behav-
ior depending upon the content to be disseminated. TCPGossip
does extremely fast dissemination when the content is small
(as seen in Fig-9(b)) but the time for complete dissemination
increases more rapidly than other systems, when content size
increases. Thus, it takes the longest time to disseminate 800K.
This is characteristic and shows why gossip-based protocols
are well suited for fast dissemination of small content but un-
suitable for large content. SplitStream has the highest dissem-
ination time for small content but scales extremely well. The
remaining three systems (CREW, BitTorrent and Bullet) all
exhibit similar behavior — suggesting that CREW may in fact
perform quite well with very large content too. Fig-9(c) shows
CREW'’s data overhead in disseminating different content size
compared to BitTorrent. Both CREW and BitTorrent use less
extra data to disseminate larger content with data overhead of
BitTorrent decreasing more than that of CREW.

7.2.3 Adaptation to Heterogeneous Networks

We now evaluate how well the different systems are able
to adapt to and exploit varying node bandwidths. In this
experiment we maintained a constant ratio of high-bandwidth
nodes to low bandwidth nodes; for every 4 nodes of 200Kbps,
there is a high-bandwidth node of 800Kbps. Thus, while
testing the dissemination time for 40 nodes, there are 32 low-
bandwidth nodes and 8 high-bandwidth nodes. Additionally,
when there are more than 45 nodes present, we introduce an
even higher-bandwidth node, that of 3200Kbps. We manually
changed the homogeneous network topology file of Modelnet
to generate this heterogeneous network. The network latencies
are the same as the homogeneous network. The dissemination
time of the various systems in heterogeneous network are
plotted in Fig-10(a). The spread times are shown in Fig-10(b).
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CREW, Bullet and SplitStream are all able to exploit
heterogeneity to achieve faster dissemination time (as the
comparisons show in Figs-10(c)(d)). However, BitTorrent
seems unable to exploit heterogeneous bandwidths and the
dissemination time is not reduced as compared to that in
a homogeneous network. This is probably due to the small
content size and BitTorrent nodes do not get enough time to
form a good mesh. The time for BitTorrent to ramp-up to
a good mesh therefore seems to affect its ability to exploit
heterogeneity fast enough. Also, TCPGossip performs worse
in a heterogeneous network as compared to a homogeneous
network. We conjecture that this is due to the combination
of fixed fanout and the low-bandwidth nodes. High-bandwidth
nodes cannot use its bandwidth effectively and low-bandwidth
nodes become bottleneck of the dissemination process to make
the dissemination time longer.

7.2.4 Adaptability to Network Faults

We now analyze the effect of packet loss rate on dissemination
time. Our aim is to emulate an unpredictable network whose
fault rate is not known in advance. To emulate this, we
generated various topologies with Modelnet by specifying
lower and upper bound packet drop rates. For example, by
specifying an upper loss rate of 5% and a lower loss rate of
0%, Modelnet assigns a packet loss rate at random from O-
5% to each of the 5000 routers. The packet loss between any
two end nodes is therefore different and heterogeneous. We
generated 6 different topologies with upper loss rates varying
from 1% to 20% and lower loss rates fixed at 0%. The 20%
loss rate topology is particularly pathological and extremely
heterogeneous in terms of the packet loss rates. The throughput
of the systems are plotted in Fig-11.

CREW uses TCP for all its communication and intuitively
its performance must degrad sharply as the packet loss in-
creases. However, as can be seen in Fig-11(a), the degradation,
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in reality, is graceful. The concurrency in CREW is an
extremely powerful mechanism that prevents rapid degradation
of throughput under unstable network conditions. The degra-
dation, however, still seems sharper as compared to BitTorrent.
This is true if one considers 100% completion time of all peers.
If the actual finish times of the various peers are compared, as
in Fig-11(b), it is clear that most peers using CREW actually
finish much faster than those in BitTorrent. It is the “tail”,
the last 10-15 peers, that actually make the total completion
time for CREW longer. These peers are the ones that connect
over very lossy network links and when they try to download
chunks, they often “timeout” resulting in slow and repeated
downloads. This is not an inherent property of CREW but an
artifact of our implementation. We implement all RPC calls
with a timeout. If an RPC doesn’t complete in a particular
time period, it is cancelled irrespective of whether data is
still being exchanged. We are currently working to resolve
this ‘bug’. Fig-11(b) also shows that the peers over less lossy
links are not penalized as much because of other lossy peers.
In contrast, all nodes in BitTorrent are affected by lossy nodes
resulting even in ‘good’ nodes finishing later.

7.2.5 CREW Specific Optimizations

We evaluate the performance of various variations of CREW
to analyze what works best. In particular, we want to evaluate
whether concurrent pull optimization (in Sec-3.2) is a good
feature, whether Push+Pull exploits heterogeneity better and
finally, study the effect of chunk size on dissemination time.

Fig-12(a) plots the dissemination time for two variations of
CREW: CREWpr (Fig-2) has concurrent pull optimization
turned on while CREWpas;c (Fig-1) does not have any
concurrency. The difference in dissemination time is quite
noticeable, especially as the network of nodes grows in size.
This reemphasizes the value of concurrent pull optimization.

Next, we evaluate if Push along with Pull
(CREWpyswH_ on) leads to decreased dissemination time.
Intuitively, Push+Pull should lead to increased concurrency
and hence reduced dissemination time. However, as Fig-12(b),
shows CREWpysm on has slightly longer dissemination
time as compared to a only-pull approach. We conjecture
that this is due to push messages congesting the network
without useful benefit; pull based concurrency seems enough
to achieve good performance.

Finally, we evaluate the effect of chunk size on the dis-
semination time. Figs-12(c)(d) show quite clearly that a chunk
size of 8KB results in the best performance. First, we evaluate
the performance using a 800KB file for 60 nodes. The result
is shown in Fig-12(c), which shows 8KB chunk to perform
the best. The question then, is whether using other chunks
results in loss of scalability. Fig-12(d) shows that a larger

0 30 40
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(d) Effect of Chunk Size

4 8
Chunk Size (KB)

(c) CREW Completion Time of
800KB File

chunk (16KB) is quite detrimental to performance. A large
chunk implies less number of chunks and also increased time
to transfer a chunk. This results in decreased concurrency,
hence slowing the dissemination time. Making the chunk too
small, however, results in too many pulls, again resulting in
poorer performance.

8 CONCLUDING REMARKS

Gossip based broadcast is extremely appealing for flash
dissemination because it is scalable and resilient to faults.
However, because gossip may entail redundant transmission of
messages, its performance becomes poorer as the size of the
disseminated content increases. In this paper, we introduced
CREW, a new gossip-based protocol for flash dissemination
that scales extremely well, achieving fast dissemination irre-
spective of network or content size. We also analyzed and
showed how it is resilient to various types of failures.

Even though we designed CREW with flash dissemination
in mind, its good performance may be useful for other ap-
plications as well. For example, CREW could be used for
dissemination of software patches or updates to millions of
machines. All machines should receive the required patches
as soon as possible. CREW, is however, currently designed
for nodes that are fully cooperative. Adapting CREW for a
barter approach [12] is extremely challenging due to the gossip
nature of the protocol; nodes cannot establish long standing
‘barter agreements’.
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