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Abstract— Traditionally, adaptability in communication frame-
works has been restricted to predefined choices without taking
into consideration tradeoffs between them and the application
requirements. In this paper we extend an executable specification
of a state-of-the-art secure group communication subsystem to
explore two dimensions of adaptability, namely security and
synchrony under crash-recovery and intermittent connectivity
scenarios. In particular, we relax the traditional requirement
of virtual synchrony (a well-known bottleneck) and propose
various generic optimizations, while preserving essential security
guarantees. In order to evaluate how practical and effective
our generic optimizations are, we integrate the specification into
ns2, bridging the gap between formal specification and classical
network simulation.

I. I NTRODUCTION

In recent years some secure group communication systems
(GCS) have been developed [1]–[5] and several useful tech-
niques have been proposed to deal with scalability, perfor-
mance and security in peer groups with dynamic membership
and decentralized control [6]–[8]. However, GCS were de-
signed to be highly efficient in local (wired) networks, assume
a relatively small group size (up to few hundred), and do
not consider mobility, temporary disconnections and real time
constraints. In particular, scalability and high performance
are both currently achieved via the light-weight/heavy-weight
model [9], [10], where powerful servers (daemons) residing
in each host execute relatively expensive distributed protocols
and several clients can connect to a server to share the GCS
services on each host.

The next generation of adaptable GCS is driven by con-
stantly changing application requirements, real-time data de-
livery, intermittent membership changes due to temporary dis-
connections and mobility patterns, performance requirements
and non-uniform security and fault tolerance levels. Due to
the high computational overhead of public key cryptography,
symmetric keys are commonly used to encrypt the data. To
fully exploit the multicasting nature, a shared group key
is typically considered to be the most efficient solution.
Consequently, the main problem now becomes the efficient

establishment and management of keys. Secure Spread [11],
a state-of-the-art GCS, uses key establishment protocols that
stall all communication (at the application level), while the
key is generated and rely on strong synchronization guarantees
to assure that no member can receive and decrypt messages
after he left the group (forward secrecy) and no new member
can receive and decrypt messages sent before he joined the
group (backward secrecy). However, in many applications,
disconnections are common and expected and data in transit
must not only be protected against unauthorized users, but also
must be delivered in a timely manner, so that decisions can
be made from accurate and fresh data. Triggering a blocking
rekey after every join or leave (to preserve forward and
backward secrecy) may preclude timely delivery of sensitive
information and even may lead to potential denial of service
attacks if a trusted member is compromised and joins and
leaves the group intermittently. In this case, it would be
desirable to employ a less constrained GCS that does not
require the generation of a new key after every join or leave,
but still maintains a certain degree of security. In fact, we
believe that an application should be able to tailor the secure
GCS according to its needs not only in terms of security but
also synchrony, timeliness and reliability, because thereis no
one-size-fits-all solution.

In this paper we study two dimensions of adaptability,
namely security and synchrony in the presence of intermittent
failures, formalize adaptation rules and establish key ordering
and security properties. Furthermore, we experimentally eval-
uate the overhead and cost of adaptation in secure group com-
munication and our quantitative results illustrate how formal
prototyping and classical network simulation complement each
other. Our starting point is a formal prototype of the Secure
Spread GCS, which we have generalized along various lines
to support secure communication with fewer synchronization
constraints and adaptability along several new dimensions. In
particular, our approach opens a spectrum of new security
guarantees, which are weaker than in the synchronized case,
but still sufficient for many applications. Thanks to the use
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of abstract APIs, our generalizations are to a large degree
independent of the group communication system and the key
establishment algorithm, and hence can be combined with
improvements along other dimensions, such as the choice of
specific group communication protocols and key establishment
protocols. The use of formal prototyping techniques based
on the executable specification language Maude enabled us
to explore and validate design decisions without the need to
carry out a full-fledged implementation.

II. STATE OF THE ART IN GCS

After a brief explanation of the relevant group communi-
cation system semantics, this section gives an overview of
a state-of-the-art group communication system (Spread) and
a framework for key establishment protocols (Cliques), and
discusses how these components are assembled to provide a
secure group communication architecture (Secure Spread).In
this paper we use Spread and Secure Spread without further
qualification to refer to the publicly released versions that can
be found athttp://www.spread.org/.

A. Semantics of Group Communication

The most well-known group communication model is the
virtual synchrony semantics(VS semantics) [9] which was
originally developed for Isis/Horus [12], a primary component
GCS, but later extended to partitionable GCS. One of these
extensions is theextended virtual synchrony semantics(EVS
semantics) [13], a model that extends the virtual synchrony
model of Isis to support continued operation in all compo-
nents of a partitioned network. The central concept of group
communication is that of aview, i.e.a snapshot of membership
in a group. In each execution of a partitionable GCS, views
and transitions between them form a partial order. Both, the
VS and the EVS semantics, share the key property ofvirtual
synchrony, namely that every two processes that participate in
the same two consecutive view changes, deliver the same set
of messages between the two changes.

Virtual synchrony, however, is only one property of the
VS semantics. The VS semantics furthermore ensures that
messages are delivered in the same view they were sent in
(sending view delivery). To accomplish this, an extra roundof
acknowledgment messages is needed every time before a view
change, preventing applications to send other messages until
the next view is installed. Furthermore, the VS semantics is
a closed group semantics, allowing only current members of
the group to send messages to the group.

The EVS semantics, on the other hand, allows message
delivery in a different view than it was sent in, as long as
the message is delivered in the same view to all members
(same view delivery). Consequently, the synchronization phase
which allows the application to be aware of the sending view
is not needed in the EVS semantics. The EVS semantics also
allows open groups, where non-members of the group can send
messages to a group.

B. Spread

The Spread group communication system [14] emerged
from the work on Transis [15] and Totem [16] and has been
designed to cope with node failure and network partitions.
Spread supports the EVS semantics and provides different
levels of service with different reliability and ordering guaran-
tees: Messages can be reliable, fifo, causally ordered, totally
ordered (also called agreed), or safe, where the later means
that messages are only delivered if it is known that everybody
in the group has actually received it.

The Spread architecture consists of two layers, which are
correspondingly reflected in our formal specification: the
heavy-weight group layer and the light-weight group layer.
The heavy-weight group layer provides extended virtual syn-
chrony semantics at the level of thephysical group, i.e. the
group of hosts (servers). Due to changing network connectiv-
ity, we are really concerned with snapshots of group mem-
bership, which are calledconfigurations. This layer provides
services to multicast data messages which should be sent
ideally to every host and to retrieve messages that have been
delivered to the application, which can be either application
data messages or messages that represent configuration change
events.

The primary mode of operation is to deliver messages to all
hosts which are part of the most recently established regular
configuration. According to the EVS semantics all messages
should be delivered at each of these hosts in the same reg-
ular configuration or the following transitional configuration
(see below). This delivery is furthermore subject to ordering
constraints that depend on the service level that was requested
when the message was sent. In the case of safe messages, it is
also subject the constraint that every host in the configuration
has received this message, and hence can deliver it unless
it crashes. If a change in the connectivity is detected, two
different configuration change events are generated: First, there
is an event to introduce a transitional configuration, which
is a reduced configuration in which certain messages can be
delivered that could not be delivered in the previous regular
configuration. After this transitional phase, a new regular
configuration is introduced which reflects the new connectivity
of the network. The light-weight group layer provides EVS
semantics at the level of logical groups,i.e. groups of agents
(clients), simply called groups in the following. Groups are
identified by names and the different snapshots of group
membership are called views. The API is similar to that at the
heavy-weight group layer, except that messages and changes
refer to groups instead of configurations, but in addition the
API offers two new services at this level: A client can request
to join or leave a group, and in response Spread generates
corresponding group change events when the actual transition
to the new view has occurred.

It is worth to emphasize that in the EVS semantics the
application cannot determine or even know the view in which
the message is sent by the GCS. The application passes
messages to the GCS where they can be buffered. Hence, the
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most recently established view at the time when the application
sends the message is not necessarily the view in which the
message is sent out by the GCS, let alone the view when the
message is delivered to the receiving application.

C. Secure Spread

Secure Spread [11] provides secure group communication
for closed groups and can operate with different protocols that
establish a single key shared by all members of the current
view. Secure Spread is built on top of Flush Spread [17] and
the Cliques toolkit [8]. Flush Spread has a similar functionality
as Spread but provides the stronger virtual synchrony seman-
tics, which requires acknowledgments by all members for each
view change. In [17] it is explained how VS semantics can
be implemented using the weaker EVS semantics. The Flush
Spread implementation is essentially a refinement of these
ideas. The Cliques toolkit provides a generic API and imple-
mentations of various group key agreement protocols, among
them the Group-Diffie-Hellman protocol (GDH) [8] and a
tree-based variant (TGDH). Authentication is not provided
by the key agreement protocol, but instead all messages are
authenticated using digital signatures. An interesting feature of
GDH and its variants is that they are contributory, which means
that every member contributes a key share, but the entire key
is never transmitted over the channel (not even in encrypted
form). However, this leads to the essential requirement that all
members actively participate in the key agreement.

Secure Spread simply uses the underlying Flush Spread to
exchange the messages required and produced by the Cliques
toolkit, whenever a group change occurs. If the key agreement
is itself interrupted by a new group change the Cliques proto-
col is restarted. Furthermore, Secure Spread implements some
optimizations allowing several subsequent joins and leaves to
be batched into a single call of the delete/merge subprotocol.

III. F ORMAL METHODOLOGY

The general methodology we employ for system design
and analysis is based on an executable specification language
called Maude [18]. Its theoretical foundation is rewriting
logic [19], a logic with an operational as well as a model-
theoretic semantics. Formal prototyping is a key ingredient
of our methodology, which allows us to experiment with
an abstract mathematical but executable specification of the
system early in the design phase. Our experience indicates
that the combination of mathematical rigor with execution and
analysis tools such as Maude leads to better understanding of
the system and often pinpoints potential problems.

To employ this methodology in the exploration of adaptive
secure group communication, we build upon abstract exe-
cutable specifications of all relevant components of Secure
Spread. This includes the physical and logical group layers,
providing the functionality of Spread [14] with its EVS
semantics. The more constrained VS semantics is provided
by a specification of Flush Spread [20] on top of this.
Independently, a specification of the Cliques toolkitinstantiated
to the GDH protocol [8] has been developed. On top of all

these components an executable specification of Secure Spread
has been built, more precisely the basic algorithm described
in [11].

The starting point for our use of formal prototyping tech-
niques in this paper is a formal specification of the Spread
GCS. We model its distributed state as a multiset of local
state elements (hosts, agents, messages) that behave according
to a set of local rules formalizing the evolution of individual
elements. Thus, we can visualize the distributed state of
the GCS as aspace in which all state elements float and
interact with each other. Due to the complexity and highly
nondeterministic nature of the GCS, we first explain how the
state elements are axiomatized in rewriting logic, then how
each layer (configuration, group, flush, secure) is specifiedin
rewriting logic as an individual component with a public (API)
and a private (structure) part. The modular structure of the
specification naturally leads to a modular structure of testing,
analysis, and mathematical proofs.

A. Modeling in Rewriting Logic

In general, a rewrite theory is a tripleR = (Σ, E, R) with
(Σ, E) an equational specification with signature of operators
Σ and a set of equational axiomsE, and a collection of
rewrite rulesR. The equational specification describes the
static structure of the GCS as an algebraic data type and
is a purely functional part, while the dynamics is described
by the rules inR representing local state transitions that
can occur in the system axiomatized byR and that are
applied modulo the equationsE. In Maude, an equational
specification is made up of declarations of the following kinds

var V arName : Sort .

op OpName : Sort0...Sortk −→ Sort [OpAtt] .

eq Term0 = Term1 [StAtt] .

ceq Term0 = Term1 if Cond1 ∧ ... ∧ Condk .

A term is a variable (var) or the well-formed application
of an operator (op) to a list of argument terms. In the
fragment above,VarName is a variable name of typeSort,
OpNameis the operator name,Sort0 . . . Sortk is the list of
sorts for its arguments,Sort the sort of its result optionally
followed by attribute declarations (OpAtt), which allow us to
specify structural equations like associativity, commutativity,
idempotency and identity.Term0 andTerm1 are equivalent
only if they belong to the same equivalence class as
determined by the equations (eq) or conditional equations
(ceq). In the particular case of conditional equations,
Cond1 ∧ . . .∧ Condk represent the set of conditions that
must hold. We then give a setR of rewrite rules to specify
state transitions as follows.

rl Term0 =⇒ Term1 .

crl Term0 =⇒ Term1 if Cond1 ∧ ... ∧ Condk .

The keywordsrl and crl introduce a rule and a condi-
tional rule respectively.Term0 and Term1 are terms and
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Cond1 ∧ . . .∧ Condk are rule conditions. Intuitively, rules
(conditional and unconditional) describe local, potentially con-
current state transitions. States are represented as termsof the
equational theory.

Let us begin to axiomatize the distributed state of the GCS
by assuming the multiset structure described above. Therefore,
we can view the distributed state as built up by a binary union
operator, which we can represent using empty syntax as

op _ _ : State State -> State [assoc comm id: eState]

Following the conventions of Maude’s mix-fix notation, we
use underscore symbols () to indicate argument positions and
the multiset union operator is declared to satisfy the laws of
associativity (assoc) and commutativity (comm), and to have
identity empty state(eState). Thus, complex distributed states
are generated from singleton state elements by multiset union.

B. Formal Specification

We tried to keep the formal specification as abstract as
possible by omitting several optimizations of the actual im-
plementation while preserving the observable behavior. This
allows us to reduce the complexity of states as well as the
complexitiy of the state space, compared with the concrete
implementation. Our specification is modular in the sense that
each layer is specified as a component with a clearly defined
API and each component takes the role of an application
from the viewpoint of the component below and the role of
a service for the component above. We will not discuss the
formal details of the specifications of each component in this
paper, but the interested reader can find all the components
on the web [21]. For sake of brevity we have omitted many
details, in particular sorts for sets and lists.

Configuration Layer

The configuration layer specification does not imply the
use of a particular synchronization protocol (such as token
ring or hop). The choice of a particular protocol could have
certain bottom-up effects that upper layers should not relyon.
Additionally, we expressed the principle of best effort delivery
in the most direct way, namely in each situation we allow
the delivery of all possible messages under the given delivery
constraints.

Configuration Layer State:A host encapsulates its local
state (operational in normal conditions, failed if crashed,
transitional if the EVS algorithm is being executed) and local
configuration (which can be either a regular configuration ora
transitional one, which is inserted by the EVS algorithm when
a network change occurs), as well as a configuration index and
(optionally) the previous configuration information. Notethat
members of a configuration form a connected component of
the network, such that each member can communicate with
every other member. Each host also holds the set of received
messages (input buffer), the set of delivered messages (to the
client), a history of messages delivered since the last crash,
the set of acknowledged messages, sequence numbers locally
generated, sequence numbers known to each host and the set

of messages sent (output buffer). Thus, we model a physical
host (proc) using the following state elements:

op proc : String -> Proc .
op operational : Proc -> State .
op failed : Proc -> State .
op evs-start : Proc ProcSet Bool -> State .
op regconf : ProcSet Nat -> Conf .
op transconf : ProcSet Nat Conf -> Conf .
op localconf : Proc Conf -> State .
op received : Proc MessageSet -> State .
op delivered : Proc MessageList -> State .
op alldelivered : Proc MessageList -> State .
op acked : Proc MessageSet -> State .
op localmsgs : Proc Conf NatSet -> State .
op knownmsgs : Proc Conf NatSet -> State .
op sent : Proc Proc’ BroadcastSet -> State .

In order to have a consistent distributed state of the GCS, we
force each host to be in exactly one of the local states described
above and we explicitly keep a list of all existing hosts and
a set of global counters used to generate new configuration
indices and message sequence numbers. Each configuration
uses a pair of sequence numbers to ensure fifo and causality
constraints, respectively, and holds the causal and total order
delivery constraints to be enforced (the eventlist component
of totalorder is simply a trace of all delivery events)

op network : ProcSet -> State .
op freshconf : Nat -> State .
op freshseq : Nat -> State .
op causalorder : Conf ConstraintSet -> State .
op totalorder : Conf EventList -> State .

Configuration Layer Messages:Each data messagehas
a type (data, transitional, configuration, internal acknowledg-
ment), a sequence number and mode (reliable, fifo, causal,
agreed, safe), which defines its reliability and delivery con-
straints.

op datamsg : Proc Mode Conf Nat NatSet Data -> Message .
op transmsg : Conf -> Message .
op confmsg : Conf ProcSet -> Message .
op ackmsg : Proc Conf Nat Nat -> Message .
op broadcast : ProcSet Message -> Broadcast .
op reliable : -> Mode .
op fifo : -> Mode .
op causal : -> Mode .
op agreed : -> Mode .
op safe : -> Mode .

Since data messages are identified by their sequence num-
ber, we use the standard definition of Lamport’s causal order,
taking all messages into account, and carefully adding the
message’ sequence number tolocalmsgsand knownmsgsof
the sender host when a multicast request is handled and to
the receiver host’sknownmsgswhen the message is delivered.
Then we require that before a message can be delivered, all
messages in its past cone must have been delivered, except for
those messages sent by a member outside of the current con-
figuration,i.e. we allow gaps in the causal order for messages
where the sender is not with us anymore. Similarly, we keep
the total order of delivered messages for each configuration
and allow gaps in the total order for messages where the
sender is not longer with us. Due to space limitation we
cannot discuss the extended virtual synchrony algorithm, and
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we have to constrain ourselves to give only a flavor of the
formal specification.

Configuration Layer Rules:Below we have selected two
key rules. The first rule formalizes the processing of an in-
coming multicast request (from a higher protocol layer) in the
normal operational mode (i.e. without disruptions). The effect
is that local knowledge and causal order delivery constraints
are updated, the message is broadcast on the network, and the
processing of the request is acknowledged.

rl operational(proc)
network(everybody)
localconf(proc,conf)
localmsgs(proc,conf,localmsgs)
knownmsgs(proc,conf,knownmsgs)
freshseq(seq)
delivered(proc,messagelist)
alldelivered(proc,messagelist’)
causalorder(conf,constraints)
sent(proc,broadcastset)
multicast-req(proc,mode,data)
=>
operational(proc)
network(everybody)
localconf(proc,conf)
localmsgs(proc,conf,localmsgs sNatSet(seq))
knownmsgs(proc,conf,knownmsgs sNatSet(seq))
freshseq((s seq))
delivered(proc,messagelist)
alldelivered(proc,messagelist’)
causalorder(conf,(addConstraints(constraints,proc,
localmsgs,knownmsgs,seq,mode)))

sent(proc,broadcastset sBroadcastSet(broadcast(everybody,
datamsg(proc,mode,conf,seq,knownmsgs,data))))

multicast-ack(proc) .

The delivery of a non-safe message is formalized by the
following rule. If a message is received from the network
and the delivery constraints are met (see condition), the local
knowledge and the total order is updated, and the message
is put into the delivery buffer, where if can be accessed by
a higher protocol layer. We definedeliverableas a predicate
that allows us to check if a message can be delivered under
the given constraints.

crl operational(proc)
localconf(proc,conf)
delivered(proc,delivered)
localmsgs(proc,conf,localmsgs)
knownmsgs(proc,conf,knownmsgs)
received(proc,(sMessageSet(message) received))
alldelivered(proc,alldelivered)
causalorder(conf,constraints)
totalorder(conf,events)
=>
operational(proc)
localconf(proc,conf)
localmsgs(proc,conf,localmsgs)
knownmsgs(proc,conf,knownmsgs knownmsgs(message)

sNatSet(seq(message)))
received(proc,received)
delivered(proc,(delivered sMessageList(message)))
alldelivered(proc,(alldelivered sMessageList(message)))
causalorder(conf,constraints)
totalorder(conf,addEvent(events,src(message),

seq(message),mode(message)))
if deliverable(proc,conf,received,alldelivered,

message,constraints,events) /\
not(safe(mode(message))) .

Group Layer

We assume the use of light-weight groups and a simplified
one-to-one mapping of agents to hosts, which avoids certain

bottom-up effects that do not represent guaranteed behavior,
such as the fact that messages between agents on the same
host would never be lost.

Group Layer State:An agent holds information regarding
its local state, such as the list of the groups it belongs to
(there is always an implicit private group it belongs to) andits
view, whose value is the associated configuration, group name,
group members and a view index. We added the following state
elements to modelagents, groups, andviews:

op agent : String -> Agent .
op group : String -> Group .
op view : Conf Group AgentList Nat -> View .

Additional state elements and message types were added
to keep track of group layer states of hosts (operational,
transitional and gather), all connected clients, update group
views and process group messages.

op goperational : Proc -> State .
op gtrans : Proc ProcSet -> State .
op ggather : Proc ProcSet ProcSet -> State .
op ggather’ : Proc ProcSet ProcSet GMessageList -> State .
op gclients : AgentList -> State .
op gjoined : Proc GroupList -> State .
op gview : Proc ViewSet -> State .
op glocalconf : Proc Conf -> State .
op gdelivered : Proc GMessageList -> State .

Group Layer Rules:Following the Spread implementation,
join and leave events are realized as agreed messages, and
weaker messages (e.g. reliable, fifo) do not have to respect
them, i.e. can be delivered earlier or later depending on the
host. The following rule shows how join, leave, or disconnect
events, which have been sent by the group layer as agreed
messages and are now delivered by the underlying configura-
tion layer back to the group layer, are passed on to the next
higher layer under normal conditions.

crl gstate(goperational,gtrans,ggather,ggather’)
gjoined(proc,grouplist)
gview(proc,viewset)
glocalconf(proc,conf)
delivered(proc,(sMessageList(message) messagelist))
gdelivered(proc,gmessagelist’)
=>
gstate(goperational,gtrans,ggather,ggather’)
gjoined(proc,grouplist’)
gview(proc,viewset’)
glocalconf(proc,conf)
delivered(proc,messagelist)
gdelivered(proc,(gmessagelist’ gmessagelist’’))
if contains(goperational gtrans,proc) /\

isdata(message) /\ gmessage := data(message) /\
(isgjoin(gmessage) or (isgleave(gmessage) /\
sender(gmessage) =/= proc) or (isgdisconnect(gmessage)
/\ sender(gmessage) =/= proc)) /\
grouplist’ := update(proc,grouplist,gmessage) /\
viewset’ := update(proc,conf,viewset,gmessage) /\
gmessagelist’’ := mkGMessages(proc,grouplist’,

viewset’,gmessage) .

It uses a (partial) functionmkGMessageswhich translates
each such message into a multiset of messages, one for each
affected group. Some cases of its equational specification are
given below:

op mkGMessages : Proc GroupList ViewSet GMessage ->
GMessageList .
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eq mkGMessages(proc,eGroupList,viewset’,gmessage) =

eGMessageList .
ceq mkGMessages(proc,sGroupList(group) grouplist’,viewset’,

gmessage) = sGMessageList(gjoinmsg(sender,group,
get(viewset’,group))) mkGMessages(proc,grouplist’,
viewset’,gmessage)

if gjoinmsg(sender,group,noview) := gmessage .
ceq mkGMessages(proc,sGroupList(group) grouplist’,viewset’,

gmessage) = mkGMessages(proc,grouplist’,viewset’,
gmessage)

if gjoinmsg(sender,group’,noview) := gmessage /\
group’ =/= group .

Flush Layer

Our flush layer specification mainly follows [20], but we
have omitted several optimizations, such as special treatment
for non-vulnerable messages (non-vulnerable messages are
messages that can never be delivered too early and hence do
not need to be tagged with the sending view), extraflush-recv
messages after aflush-okand drop of unprocessed membership
changes if they become too old. These optimizations obscure
the algorithm and are not relevant at the specification level,
i.e. from an observational point of view.

Flush Layer State:Additional state elements were added
to keep track of agent’s installed and pending views (pending
views are views that the agent has not yet installed), as well
as how pending configuration messages are handled.

op fiview : Agent ViewSet -> State .
op fpview : Agent ViewSet -> State .
op fpending : Agent GroupOpSet -> State .
op fstate : Agent GroupSet GroupSet GroupSet -> State .

Flush Layer Rules: The following rule formalizes the
situation where a join operation is pending for a group and
an application requests the next message using a flush layer
receive request. If the condition, which requires thatflusk-ok
messages have been received from all current members (as a
reply to an earlierflush-reqgenerated by a different rule), is
satisfied, the join message is passed on to the application (as
a reply to its receive request).

crl fstate(client,steady,authorize,agree)
fpending(client,pending)
fpview(client,viewset)
fiview(client,viewset’)
f-receive-req(client)
fbuffer(client,gmessagelist)
=>
fstate(client,add(steady,group),authorize,

rm(agree,group))
fpending(client, rm(pending,group))
fpview(client,viewset’’’)
fiview(client,viewset’’)
fbuffer(client,removeallfoks(client,group,members(view),

gmessagelist))
f-receive-ack(client,fjoinmsg(sender(get(pending,

group)),group,view))
if sGroupSet(group) groupset := receivedallfoks(client,

agree,viewset,gmessagelist) /\
joining(pending,group) /\ view := get(viewset,group)
/\ viewset’’ := update(viewset’,group,view) /\
viewset’’’ := rm(viewset,group) .

Secure Layer

Our secure layer specification uses the basic algorithm
presented as a finite state machine in [11] and includes the
GDH2 specification obtained by a reverse engineering and
abstraction process from the Cliques toolkit source code.

Secure Layer State:In order to support secure communi-
cation, we equipped each agent with a secure group context
information (session random number, partial group shared key,
group members, keyid), which is modeled using the following
state elements

op context : KeyShare PartialKey GroupMemberList -> Context .
op groupcontext : Group Context -> GroupContext .
op scontext : Agent GroupContextSet -> State .

Secure Layer Rules:To begin with one of the simpler rules,
we show below how a secure multicast request is formalized.
The secure multicast request for a given group encrypts the
application data with the corresponding group key and triggers
a flush layer multicast request. The condition expresses that
this rule can only apply if the group is in a secure state,i.e.
a key has been established for the current view.

crl sstate(client,secure,cm,pt,ft,fo,kl)
scontext(client,groupcontextset)
ssp-multicast-req(client,mode,group,sdata)
=>
sstate(client,secure,cm,pt,ft,fo,kl)
scontext(client,groupcontextset)
ssp-multicast-req’(client,mode,group,sdata)
f-multicast-req(client,mode,group,fdata)
if contains(secure,group) /\

key := groupsecret(get(groupcontextset,group)) /\
fdata := enc(key,sdata) .

Following [11], a membership change triggers the key estab-
lishment, which deterministically chooses an initial member of
the new view (forming a singleton clique) and merges all re-
maining members into the clique using the merge subprotocol.
Below we show the first two rules of this process. The first rule
formalizes the creation of a singleton clique; while the second
rule formalizes the the creation of a new cliques’ user, which
will be eventually merged with the singleton clique (rules not
given here).

crl ssp-cm-cases(client,group,fmessage)
snewcontroller(client,newcontroller)
=>
ssp-cm-not-alone-wait-for-first-user(

client,group,fmessage,mergingagents)
snewcontroller(client,newcontroller’)
clq-first-user-req(client,group)
if card(agentset(members(view(fmessage)))) > 1 /\

client==first(members(view(fmessage))) /\
mergingagents:=rm(members(view(fmessage)),client)
/\ newcontroller’:= rm(newcontroller, group) .

crl ssp-cm-cases(client,group,fmessage)
snewcontroller(client,newcontroller)
=>
ssp-cm-not-alone-wait-for-new-user(client,

group,fmessage)
snewcontroller(client,newcontroller’)
clq-new-user-req(client,group)
if card(agentset(members(view(fmessage)))) > 1 /\

client=/=first(members(view(fmessage))) /\
newcontroller’:=if client==last(members(

view(fmessage))) then add(newcontroller,group)
else rm(newcontroller,group) fi .

In the case of cascaded membership changes,i.e. a member-
ship change occurs while the key agreement is still in progress,
the algorithm is restarted. Once the key agreement is com-
pleted, the new group key is used for future communication
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until a new key has been established.

IV. H IGH-LEVEL ADAPTABILITY

As we briefly explained in Section I, the application should
be able to tailor the secure GCS according to its needs in terms
of synchrony and security. In order to provide this level of
adaptability, we need to identify what assumptions need to be
relaxed, what are the tradeoffs between these different levels
and what parameters can be adjusted to tune the performance.

A. Adaptable Synchrony

Secure Spread implements security on top of Flush Spread,
a layer providing the VS semantics, which guarantees that
messages are sent and delivered in the same view. This
synchronization makes it easier to implement the key estab-
lishment protocol because every message is encrypted with
the same key as the receiver believes is current when the
message is delivered. In order to provide security on top of
EVS semantics, the secure GCS can no longer assume that
the received message was encrypted with the current key. The
paper [1] proposes a solution to this problem based on two
levels of keys used by the heavy-weight and the light-weight
layer, respectively. In the present paper we use the idea of
[1] to maintain a history of keys indexed by key identifiers
(keyids), but we stick to the use of light-weight group keys
without assuming underlying heavy-weight keys. This enables
us to study the interaction between security and EVS semantics
in its pure form and makes the solution independent of the
implementation of Spread. Furthermore, given that we already
have a specification of Secure Spread, it makes it easy to
obtain an integrated solution which can be adapted to both, the
original VS-based security, exactly as implemented in Secure
Spread, and to the new EVS-based security.

Hence, we have modified the formal prototype of Secure
Spread as follows: First, for EVS groups (we added VS and
EVS group synchrony modes as adaptation parameters) we
removed the synchronization constraints imposed by the Flush
Spread layer. Second, every key generated is associated with a
keyid, every message is tagged with the corresponding keyidof
the key used to encrypt the message, and every member of the
group keeps a list of (possibly old) keys and their associated
keyids. Thus, every time a message is received its keyid is
checked and the corresponding key is fetched from the list soit
can be properly decrypted. Thus members can move from one
view to another one and rekey asynchronously. Every rekey
phase adds the current key to the list of older keys and the
newly generated key is used as the current key.

Obviously, the dynamics of this approach is far less con-
strained than in the VS case. Specifically, we observed the
following difficulties: Although keyids allow to decrypt mes-
sages sent in previous views, they do not guarantee that every
message received can be decrypted and delivered to the ap-
plication. In particular, it may be possible that a new member
receives an old message sent in a previous view. If he joined
the group very recently, he does not have the key required

to decrypt1. One possibility would be to drop the message,
but this would violate the EVS semantics (only a network
change can justify dropping a message). We have addressed
this issue by introducing the concept of anondecryptable
message,i.e. a message with content that is not accessible,
to inform the application of this situation. However, thereis
also the possibility that the new member can find a key in his
list associated with the keyid of the message, but it is not the
keyid associated with the new view. In this case, we say that
the message was encrypted under anold keyid, and we tag the
message asdelayedto inform the application of this situation.
Security on top of EVS allows us to increase concurrency
and hence performance by providing non-blocking (application
level) communication that uses the most recently established
key to send messages, while the key establishment for the new
view is in progress. However, this new added flexibility relaxes
the degree of consistency in the system and eliminates some
security guarantees.

B. Adaptable Security

The choice of the key establishment protocol is a natural
dimension of adaptability in secure group communication.
However, even with the most efficient key establishment pro-
tocols, network connectivity changes and membership changes
can cascade while the key establishment is in progress, causing
a restart of the key establishment protocol from scratch.
Thus, delaying the execution of the key establishment protocol
and carefully avoiding its execution in certain situationscan
improve system performance while preserving forward and
backward secrecy. We have explored two approaches to reduce
the number of key establishment phases. The first approach
is based on key caching and the second one is based on
lazy key establishment, that is delaying key establishment
until the key is really needed. Both approaches aregeneric,
that is independent of the underlying protocol, and can be
composed to further improve system performance without
sacrifying security guarantees. As an important by-product,
key caching allows us to deal efficiently with temporary dis-
connections (as opposed to voluntary join/leave events), which
are quite common in groups with mobile participants and their
consequences are similar to network connectivity changes.
Interestingly, the decision to (partially) relax virtual synchrony
has opened a variety of new possibilities, which includes not
only the possibility to perform lazy key establishment but also
new secure delivery modes.

1) Key Establishment Protocols:One of the most important
security guarantees is data confidentiality, which protects data
from being eavesdropped. The way the secret shared group
key is computed, how often, and when it is computed are
critical for the security of the GCS. There are two basic
approaches to generate a secret shared key in GCS. In the
centralized approach, one member (typically a group leader)
chooses the group key and distributes it to all group members
(group key distribution); while in the contributory approach

1The solution presented in [1] also has this problem.



8
every member contributes to the creation of the secret shared
key (group key agreement). Although the centralized approach
works reasonably well for static (possibly large) groups, it
turns out that the contributory approach is more robust for
non-hierarchical (mid-size) groups with dynamically changing
memberships [7]. The relevant properties for key establishment
algorithms are of purely computational nature [22]:Crypto-
graphic forward secrecyguarantees that a passive adversary
who knows a contiguous subset of old group keys cannot dis-
cover subsequent group keys.Cryptographic backward secrecy
guarantees that a passive adversary who knows a contiguous
subset of group keys cannot discover preceding group keys.
In a GCS like Secure Spread that supports the VS semantics,
tightly synchronizing view changes with key establishment
phases, backward and forward secrecy are immediate conse-
quences of cryptographic forward and cryptographic backward
secrecy, respectively [11]:Forward secrecyguarantees that
nobody should be able to read messages sent to a group after
he left this group (assuming he will not become a member
of the group in the future).Backward secrecyguarantees that
nobody should be able to read messages sent to a group before
he joined this group (assuming he was not a member of the
group in the past). However, to be precise, we need to define
what are the join/leave events referenced in these definitions. It
obviously would not make sense to take them to be the events
of requesting a join/leave at the GCS. These events would be of
no use for the client applications. They are not (immediately)
observable for the applications, because the processing ofsuch
requests can be delayed. This suggests to define leave/join
events to be the events where the GCS delivers leave/join (with
the new view) to the application which sends the message.
Similarly, we have to be precise about what the send event
in these definitions refers to. Since a message carries sensitive
data, we should adopt the most conservative definition, namely
the event when the application requests the GCS to send a
message.

Forward secrecy under the EVS semantics is fairly straight-
forward: Assume a memberA leaves the groupG, the GCS
delivers a new view toB, andB sends a messageM to G.
The new view can have only been delivered after successful
completion of a key establishment phase between the members
of the new view. SinceM is encrypted with the resulting key
that A does not know, forward secrecy is guaranteed.

Backward secrecy under the EVS sematics, however, does
not hold, as the following counterexample shows: AssumeA
requests the GCS to send a messageM to a groupG, but the
processing of this request is delayed. In the meantimeB joins
G, and the GCS delivers the new view{A, B} to A. Now the
GCS processes the send request in the new view, which means
that the message is encrypted using using the key associated
with this view. Hence,B can decrypt the message, which is
a violation of backward secrecy.

To solve this problem we have adopted the following
solution: We add the view in which we would like to send
the message (requested sending view) as an argument to the
multicast service. This view determines the key to be used for

encryption. Even if the message is sent out in the new view,
the key of the requested sending view should be used. Note
that there are two possibilities for a member of the new view.
If it was a member of the earlier sending view it can decrypt
the message. If it was not a member of the earlier sending
view it just joined the group and will not be able to decrypt in
accordance with backward secrecy. In this case, the message
is delivered but asnondecryptable. The possibility to specify a
requested sending view is optional, so that if backward secrecy
is not a concern the original implementation can be used.

The high-level rationale for this solution is the following:
The EVS semantics leads to a loss of sending view awareness
at the application, but the benefits of sending view awareness
can be recovered by always sending messages with arequested
sending view, which prevents members joining unexpectedly
to decrypt messages not intended for them. The drawback
is that we have to internally keep track of former keys, and
some messages received will benondecryptable. Both of these
mechanisms, however, were already added when we moved
from the VS to the EVS semantics (see Section IV-A) so that
this extension does not cause any additional overhead.

2) Key Caching: Frequent network connectivity changes
may trigger patterns of membership changes, where new views
tend to have the same members as earlier views. Current
implementations of secure GCS generate a new key for each
view. Thus, if a subset of members of a group becomes
temporary isolated due to a network partition, the key es-
tablishment protocol will be invoked for each new partition,
and again when the partitions merge together. No member
has left/joined the group, but several new keys have been
generated. Obviously, this is unnecessary, because the group
membership has not changed in the end. Ideally, the key
establishment protocol should be executed only if the current
set of members has not shared a secret key before; otherwise,
a previously agreed upon key can be used instead. Since the
reuse of keys increases the vulnerability to crypto-analysis
attacks, key caching like all forms of key reuse need to be
carefully constrained. To this end, keys can be equipped with
an expiration or some other attribute limiting key reuse, and
they are removed from the list when this limit is reached.

In detail we have made the following modifications to our
formal prototype to accommodate for key caching:

1) Every member keeps a list of keys and the associated
set of members that share that key. The list is updated
whenever a new key is generated.

2) If a membership change or network connectivity change
happens, every member receives a message with the
updated membership.

3) Every member checks its list of keys and if the updated
membership shared a key before, the key is retrieved and
used as the current key; otherwise the key establishment
is triggered and a new key is generated.

Forward and backward secrecy are still satisfied, butkey
freshness, i.e. the property that each view uses a fresh key
to encrypt messages, is given up. Therefore, a new group
security mode (fresh secure) is added to enforce freshness



9
if the application requests this level of security. If the group
security mode is fresh secure, a normal key establishment is
triggered even if the members shared a secret key before. It is
important to point out that a keyid associated with a nonfresh
key should not be confused with an old keyid,i.e. a keyid
associated with a previous view, and hence it does not imply
that the message is delivered as delayed (see Section IV-B.4).

3) Lazy Key Establishment:Current GCS have been de-
signed under the assumption that network connectivity changes
occur rarely and that members exchange a considerable
amount of messages between membership changes. However,
membership changes (due to unpredictable network connec-
tivity changes or join/leave operations) may occur quite fre-
quently in certain environments (wireless, mobile), and with
many view changes taking place it is highly unlikely that
messages are sent in every intermediate view. Under these
circumstances, delaying the execution of the key establishment
protocol until a message needs to be sent will avoid unneces-
sary key establishment phases. We say that a key establishment
phase is unnecessary if a key is generated but not used because
no message is sent before a new key is generated.

As a possible solution we exploreddelayed key estab-
lishment. Instead of a synchronized initiation of the key
establishment algorithm by a view change event, the member
who wants to send a message triggers the key establishment
asymmetrically. Our formal prototype is modified as follows:

1) Any membership change or network connectivity change
is treated normally and the membership is updated, but
the key establishment protocol is not executed.

2) When a member needs to send a message, it checks if
a current key exists and if it is up to date,i.e. belongs
to the most recently established view.

3) If the key is up to date, then the message is encrypted
and sent normally.

4) If the key does not exist or is not up to date:

a) The member starts the key establishment protocol,
notifies the other group members and stalls the
message till the new key is generated.

b) Members are notified and each one of them starts
the key establishment protocol, which proceeds
normally.

c) If another member wants to send a message, the
key establishment has been triggered by some other
member and no view change has been triggered,
the message is stalled until the new key is gen-
erated and the member continues with the normal
key establishment execution (i.e. the key algorithm
is not restarted).

d) If a view change event is triggered at any time, the
membership is updated and the key establishment
protocol is restarted.

e) Once the key has been generated, the current key
is updated, the up-to-date flag is set and members
proceed to encrypt and send messages normally.

4) Secure Delivery Modes:Traditionally, secure delivery
in GCS has been restricted to the delivery of an encrypted
message, assuming that all members of the group are able to
decrypt the message using the unique shared group key. When
we relax the virtual synchrony semantics, messages encrypted
with different group keys may be received at any time and
we can no longer assume that the receiver is able to decrypt
every message using the most recent key or even to decrypt the
message. As a result, EVS semantics leads to a new variety of
secure delivery modes based on key freshness and an extended
concept ofsafe messagesas follows:

• Non-secure: Message is sent and received in clear-text.
• Secure: Message is encrypted and can be decrypted with

any (possibly old) known key; otherwise delivered as
nondecryptable.

• Strongly secure: Message is encrypted and must be
decrypted with the most recent known key; otherwise
delivered asnondecryptable.

• Safe-secure: Message is encrypted and can be decrypted
with any (possibly old) known key, but can only be
delivered if everybody else received and decrypted the
message using any (possibly old) known key.

• Strongly safe-secure: Message is encrypted and must be
decrypted with the most recent known key, but can only
be delivered if everybody else received and decrypted the
message using the most recent known key.

V. FORMAL PROTOTYPING

In this section we show how we generalize the formal speci-
fication of Secure Spread to support the high level adaptability
discussed in Section IV.

A. Relaxing Synchrony

Since the configuration and group layers already provide
EVS semantics, our first thought was to remove the flush
layer and let the group and secure layers communicate to
each other. However, the key establishment protocol requires
a synchronized initialization (i.e. all members must be aware
that a new key is going to be generated) that then would have
to be added to the secure layer to ensure proper execution,
making impossible to provide different degrees of synchrony
using the same specification. Therefore, we modified the flush
layer to incorporate group types (a group type identifies these-
mantics of the group) and remove synchronization constraints
accordingly; i.e. groups using VS-semantics use the full-
fledged flush layer; while groups using EVS-semantics update
flush layer state, but avoid the expensive and time consuming
flush acknowledgmentas well asdata blocking. This allows
us to model and support both VS groups and EVS groups
at the same time, and explore their possible coexistence. In
particular, we added the following state elements to the flush
layer to keep track of the semantics of each group and modified
the rules accordingly.

op group-vs : -> GroupType .
op group-evs : -> GroupType .
op fgrptype : Agent GroupSet GroupSet -> State .
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As an example, we show the modified version of the joining

operation rule presented in Section III-B for the specific
case of EVS groups. That is, a join message for an EVS
group updates the flush state, but does not requireflush
acknowledgmentsand the message is immediately passed on
to the application.

crl fstate(client,steady,authorize,agree)
fgrptype(client,vsgrp,evsgrp)
fpending(client,pending)
fpview(client,viewset)
fiview(client,viewset’)
f-receive-req(client)
=>
fstate(client,add(steady,group),authorize,

rm(agree,group))
fgrptype(client,vsgrp,evsgrp)
fpending(client,rm(pending,group))
fpview(client,viewset’’’)
fiview(client,viewset’’)
f-receive-ack(client,fjoinmsg(sender(get(pending,

group)),group,view))
if sGroupSet(group) groupset := agree /\

joining(pending,group) /\ view := get(viewset,group)
/\ viewset’’ := update(viewset’,group,view) /\
viewset’’’ := rm(viewset,group) /\
contains(evsgrp,group) .

Similarly, at the secure layer, we added to theagentdecla-
ration the semantics of the group (group type), the associated
keyid-key list and keyid-membership set information, the level
of laziness of the key establishment protocol (eager, key
caching, lazy till a message needs to be sent, or a combination
of both) and extended the secure group context information by
including the keyid associated to the current key

op keyid : Nat -> KeyId .
op scontext : Agent KeyId GroupContextSet -> State .
op sgrptype : Agent GroupSet GroupSet -> State .
op slaziness : Agent GroupSet GroupSet GroupSet -> State .
op sgroupkeylist : Agent GroupAssocKeyidListSet -> State .
op sgroupmembersetlist : Agent GroupAssocMembSetListSet ->

State .

Furthermore, we enhanced the multicast request with areq-
sending-viewparameter that allows us to request a specific
view in which the message should be sent, afreshkeyparam-
eter that indicates if a new key was generated for the current
view and the capability to tag every outgoing message with the
keyid corresponding to the key used to encrypt the message.
The following rule shows the modified version of the multicast
request rule described is Section III-B. Note that the restriction
to perform a multicast only in a secure state is not present
anymore, allowing us to encrypt and send messages using the
most recently established key while a rekey is in progress.

crl sstate(client,secure,cm,pt,ft,fo,kl)
scontext(client,currkeyid,groupcontextset)
sgroupkeylist(client,groupassockeylistset)
sgroupmembersetlist(client,groupassocmembsetlistset)
slaziness(client,lazyst,lazyct,eager)
siview(client,viewset)
ssp-multicast-req(client,mode,group,sdata,

req-sending-view)
=>
sstate(client,secure,cm,pt,ft,fo,kl)
scontext(client,currkeyid,groupcontextset)
sgroupkeylist(client,groupassockeylistset)
sgroupmembersetlist(client,groupassocmembsetlistset)
slaziness(client,lazyst,lazyct,eager)
siview(client,viewset)

ssp-multicast-req’(client,mode,group,sdata)
f-multicast-req(client,mode,group,fdata)
if viewkeyid := keyid(lookup((

get(groupassocmembsetlistset,group)),
agentset(members(get(viewset,group))))) /\

key := partialkey(lookup((get(groupassockeylistset,
group)),viewkeyid)) /\

fdata := enc(viewkeyid,key,sdata) .

Preserving EVS Semantics

Although the idea of providing security on top of EVS was
mentioned in [1], no actual system implementation exists and
subtle effects that may be observed naturally when the system
is running were easily overlooked. The following example
illustrates a simple scenario overlooked in the literature, but
discovered in our formal prototype via symbolic execution.

Let us assume thatA andC belong to the same secure group
G, which has a current shared group keyk. Let C send an
agreed messagem1 encrypted withk. Just after sendingm1,
B joins G and triggers the key establishment protocol. Let us
assume thatm1 is delayed so that it is received in the new
view containing{A, B, C}, i.e. after the key establishment is
completed.A and C deliver this message because they both
have access to the keyk (they use the keyid inm1 to locate the
key in their key history).B receivesm1 but can not decrypt
and deliverm1 to the application, becauseB does not know
the keyk used to encryptm1. Finally, let’s assume thatB
sends an agreed messagem2 with the new keyk′ andA and
C deliver this message. But what aboutB ?

The messagesm1 andm2 were sent in agreed mode and the
EVS semantics guarantees that agreed messages are delivered
in the same order. In our example,m1 must be delivered before
m2 because this is the order chosen byA andC. Furthermore,
due to the self-delivery propertym2 needs to be delivered by
B at some point, but only afterm1 according to the constraint
just mentioned. Thus,B can not dropm1 without creating a
gap in the ordering and thus violating EVS semantics. On the
other hand,B cannot deliver the message in the usual way,
because it cannot decrypt it.

In order to preserve the EVS semantics we introduced the
concept ofnondecryptable messageand extended the receive
rules to tag the message nondecryptable if the keyid used to
encrypt is not found in the history of keys for that particular
member (see condition).

crl siview(client,viewset)
sstate(client,secure,cm,pt,ft,fo,kl)
scontext(client,currkeyid,groupcontextset)
ssp-receive-req’(client)
sbuffer(client,smessagelist)
f-receive-ack(client,fmessage)
sgroupkeylist(client,groupassockeylistset)
=>
siview(client,viewset)
sstate(client,secure,cm,pt,ft,fo,kl)
scontext(client,currkeyid,groupcontextset)
sbuffer(client,smessagelist sSMessageList(smessage))
ssp-receive-req(client)
sgroupkeylist(client,groupassockeylistset)
if isidata(fmessage) /\ group := group(fmessage) /\

keyid’ := keyid(data(fmessage)) /\
not(contains((get(groupassockeylistset,

group)),keyid’)) /\
smessage := sdatamsg(client,group,
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nondecryptable(data(fmessage)),get(viewset,group)) .

B. Applying Generic Optimizations

In order to support key-caching and lazy key establishment,
we modified thekey-listand cascading-membershipstates of
the finite state machine. First, we allow thekey-list state to
update the associated keyid-key list (groupassockeylistset) and
its corresponding membership information (groupassocmem-
bsetlistset) every time a new key is successfully generated.
Then, we modified the behavior of thecascading-membership
state (which in spite of its name is also used for a single non-
cascaded view change) to avoid rekey in case we specified lazy
key establishment or to cache a previous agreed key, if key
caching has been specified and a previous agreed key exists;
otherwise, the full key establishment protocol will be executed.

In VS semantics, a membership change notification is deliv-
ered to the application along with the new secure view, allow-
ing to delay and discard membership notifications while the
key establishment is being executed and still preserve ordering
constraints since no messages are sent or received. However,
in EVS semantics, any membership change notification must
be delivered to the application as soon as it is received in order
to preserve ordering constraints, since we allow messages
to be sent and received while the key establishment is in
progress. Thus, thekey-list state will deliver a membership
change to the application if and only if the group uses VS
semantics and let thecascading-membershipstate to deliver a
membership change to the application if the group uses EVS
semantics. Below we have selected the most representative
rules to illustrate these modifications. The first rule formalizes
a membership change operation whenkey cachingis selected
and the updated membership already shared a key in the near
past (see condition).

crl ssp-cm-check-members(client,group,fmessage)
sstate(client,secure,cm,pt,ft,fo,kl)
scontext(client,currkeyid,groupcontextset)
snewmembmsg(client,newmembmsgset)
svsset(client,vsset)
snotfirstcm(client,notfirstcm)
sbuffer(client,smessagelist)
sgroupkeylist(client,groupassockeylistset)
sgroupmembsetlist(client,groupassocmembsetlistset)
sfreshness(client,freshkey)
skainprogress(client,kainprogress)
=>
sstate(client,secure’,cm’,pt,ft,fo,kl)
scontext(client,currkeyid’,groupcontextset)
snewmembmsg(client,newmembmsgset)
svsset(client,vsset)
snotfirstcm(client,notfirstcm’)
sbuffer(client,smessagelist sSMessageList(smessage))
sgroupkeylist(client,groupassockeylistset’)
sgroupmembsetlist(client,groupassocmembsetlistset’)
sfreshness(client,add’(freshkey,group))
skainprogress(client,rm(kainprogress,group))
ssp-receive-req(client)
if contains((get(groupassocmembsetlistset,group)),

agentset(members(view(fmessage)))) /\
card(agentset(members(view(fmessage)))) > 1 /\
keyid’:=keyid(lookup((get(groupassocmembsetlistset,

group)),agentset(members(view(fmessage))))) /\
key:=partialkey(lookup((get(groupassockeylistset,

group)),keyid’)) /\
assockeylist:=get(groupassockeylistset,group) /\
assockeylist’:=add’(assockeylist,(assockey(key,

currkeyid’))) /\ currkeyid’ := keyid’ /\
groupassockeylistset’:=update(groupassockeylistset,

group,assockeylist’) /\
assocmembsetlist:=get(groupassocmembsetlistset,group)
/\ assocmembsetlist’ := add’(assocmembsetlist,

(assocmembset(agentset(members(view(fmessage))),
currkeyid’))) /\ groupassocmembsetlistset’:=update(
groupassocmembsetlistset,group,assocmembsetlist’)

/\ smessage := update-transset(get(newmembmsgset,
group),get(vsset,group)) /\

notfirstcm’ := rm(notfirstcm,group) /\
cm’:=rm(cm,group) /\ secure’:=add(secure,group) .

If the updated membership is a reoccuring one, its mem-
bership information is used to get (via the associated keyid)
the previously agreed key. The cached key is then used as
the current key, a new associated keyid is generated and
both associated keyid-key and membership information lists
are updated. Finally, the membership change notification is
delivered to the application and the finite state machine moves
from the cascading-membershipstate directly to thesecure
state without triggering the key establishment protocol.

Similarly, the following rule formalizes a membership
change operation when thelazy key establishmentis selected,
avoiding the creation of a new key and the execution of the
key establishment protocol. As we can see in the condition, the
membership is updated, the membership change notification is
delivered to the application and the finite state machine moves
from the cascading-membershipstate directly to thesecure
state without triggering the key establishment protocol.

crl ssp-cm-avoid-rekey(client,group,fmessage)
sstate(client,secure,cm,pt,ft,fo,kl)
scontext(client,currkeyid,groupcontextset)
snewmembmsg(client,newmembmsgset)
svsset(client,vsset)
snotfirstcm(client,notfirstcm)
sshadowmessage(client,shadowmessage)
sbuffer(client,smessagelist)
=>
sstate(client,secure’,cm’,pt,ft,fo,kl)
scontext(client,currkeyid,groupcontextset)
snewmembmsg(client,newmembmsgset)
svsset(client,vsset)
snotfirstcm(client,notfirstcm’)
sshadowmessage(client,add’(shadowmessage,fmessage))
sbuffer(client,smessagelist sSMessageList(smessage))
ssp-receive-req(client)
if card(agentset(members(view(fmessage)))) > 1 /\

smessage := update-transset(get(newmembmsgset,
group),get(vsset,group)) /\

notfirstcm’ := rm(notfirstcm,group) /\
cm’ := rm(cm,group) /\
secure’ := add(secure,group) .

C. Key Properties

Since security on top of VS has been studied in [11], we
constrain ourselves to properties of EVS groups (recall that
our formal prototype integrates both approaches).
Property 1 All messages received at the secure layer are
delivered to the application.
Proof SketchAll data messages received at the secure layer
are encrypted and tagged with a keyid that identifies the key
used to encrypt the message. For each message, if the key
associated to its keyid is found in the associated keyid-key
list, the message is decrypted and delivered to the application;
otherwise the message is tagged nondecryptable and delivered
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to the application. All membership and configuration change
messages received are delivered to the application.
Property 2All message ordering constraints are preserved.
Proof SketchAll received messages at the secure layer are
delivered to the application without delay and in the same
order they were received, regardless of the current state ofthe
finite state machine.

Regarding security on top of EVS, we prove that forward
and backward secrecy are preserved and that generic optimiza-
tions can regain key freshness if fresh secure mode is used.
Property 3Security on top of EVS semantics provides forward
secrecy.
Proof SketchSince we defined a leave event as an event where
the GCS delivers the new secure view to the application, a
message send in this new view will be encrypted with a new
key, which may be recently generated or a previously agreed
key. In either case, the key is only known by the remaining
members of the group.
Property 4Security on top of EVS semantics provides back-
ward secrecy if messages are always sent using the current
view as the requested sending view.
Proof SketchMessages encrypted using the requested sending
view parameter will be encrypted with the key that only
the members of the specified (possibly past) view have and
therefore, only they can decrypt the message. Obviously, the
members of the specified view must have joined before the
message is sent.
Property 5When fresh secure mode is used to send a message,
key freshness is guaranteed.
Proof SketchIn fresh secure mode, a message is always
encrypted with a recently generated key for the current view.
If no new key was generated for the current view due to
key caching or lazy key establishment, the key establishment
protocol is triggered and the message is stalled until a new
key is generated.

Although in our formal specification a message already
encrypted may sit in the GCS for an unbounded amount of
time, in practice, this time is bounded and relatively short
compared to the key expiration time. Hence, we have the
following property in such an implementation.
Property 6A delayed message can never be tagged as non-
decryptable, assuming that a maximal transit time (max. time
between multicast and delivery) exists and is smaller than the
key expiration time.
Proof SketchUnder the given assumption it is not possible to
receive an old message encrypted with a key that has been
removed from the keyid-key association list.

D. Symbolic Execution

Usually, abstract specifications are axiomatic and not ex-
ecutable, but the distinguishing feature of rewriting logic
from many other specification languages is that it allows
us to use axiomatic specification techniques at a reasonably
high-level while still maintaining executability, allowing us
to apply symbolic execution to: (i) validate our specification
against our understanding of the system, and (ii) find violations

of key properties of the formal model and hence of the
implementation. In order to deal with the complexity and
high degree of concurrency and nondeterminism of a typical
GCS, we partially constrain the behavior of the system by
composing it with an environment that acts as a controller. By
defining a controller language based on sequential and parallel
composition of actions and associating each action to a rulein
our specification, we steer the system into critical states that
confirm or validate the properties of interest.

We present two running examples. The first one represents
the nondecryptable example given in Section V-A and the sec-
ond one illustrates the execution of the lazy key establishment
protocol. Below, we show a code excerpt where we define an
initial state containing three hosts (a,b,c). This initial state is
shared by the two examples.

eq allprocs = sProcSet(agent("a")) sProcSet(agent("b"))
sProcSet(agent("c")) .

op a : Nat -> State .
op b : Nat -> State .
op c : Nat -> State .
op init : -> State .
eq init =

network(allprocs)
mkinitialconf(allprocs)
mkinitialprocs(allprocs)
mkinitialagents(allprocs)
fresh(0) --- for cliques
freshkeyid(0) --- for keyId
ssp-receive-req(agent("a"))
ssp-receive-req(agent("b"))
ssp-receive-req(agent("c"))
sdelivered(agent("a"),eSMessageList)
sdelivered(agent("b"),eSMessageList)
sdelivered(agent("c"),eSMessageList)
sdelivered’(agent("a"),eSMessageList)
sdelivered’(agent("b"),eSMessageList)
sdelivered’(agent("c"),eSMessageList)

Preserving EVS Semantics:Following the scenario de-
scribed in Section V-A, the agent located at hostc sends a
message inagreed modeto the groupG. Before the message
is received, an agent located at hostb joins the group and
triggers the key establishment protocol. After the successful
completion of the key establishment protocol the message is
received by the members of the group and a new message also
in agreed modeis sent by the agent at hostc, and immediately
received by all.

PERFORM(MULTICAST-TEST) ;
PERFORM(MULTICAST(agent("c"),group("G"))) ;
PERFORM(SEND(agent("c"),2)) ; --- message sent
PERFORM(JOIN(agent("b"),group("G"))) ;
PERFORM(SEND(agent("b"),3)) ;
PERFORM(RECEIVE(agent("a"),3)) ;
PERFORM(RECEIVE(agent("b"),3)) ;
PERFORM(RECEIVE(agent("c"),3)) ;
...
PERFORM(DELIVERCHANGE(agent("a"))) ;
PERFORM(DELIVERCHANGE(agent("b"))) ;
PERFORM(DELIVERCHANGE(agent("c"))) ;
PERFORM(RECEIVE(agent("a"),2)) ; --- message received
PERFORM(RECEIVE(agent("b"),2)) ;
PERFORM(RECEIVE(agent("c"),2)) ;
PERFORM(MULTICAST-TEST) ;
PERFORM(MULTICAST(agent("c"),group("G"))) ;
PERFORM(SEND(agent("c"),10)) ;
PERFORM(RECEIVE(agent("a"),10)) ;
PERFORM(RECEIVE(agent("b"),10)) ;
PERFORM(RECEIVE(agent("c"),10)) ;
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Without the nondecryptable tag, the agent at hostb can not

decrypt and deliver the received message to the application,
since it was encrypted and sent before he joined the group.
Furthermore, dropping or queuing the message create a gap in
the ordering that will eventually stall the system when another
agreed message is received, as we can see in the following
excerpt of the system, where the messagem2 can not be
delivered even if it has been received by all clients. Let us
recall thatsdelivered’is the history of messages delivered to
the application. Configuration and transitional messages have
been removed fromsdelivered’) for better readability.

network(sProcSet(agent("a")) sProcSet(agent("b"))
sProcSet(agent("c")))

freshconf(1)
...
freshseq(10)
...
fresh(0)
freshkeyid(2)
ssp-receive-req’(agent("a"))
ssp-receive-req’(agent("b"))
ssp-receive-req’(agent("c"))
...
localconf(agent("a"),regconf(sProcSet(agent("a"))

sProcSet(agent("b")) sProcSet(agent("c")),7))
localconf(agent("b"),regconf(sProcSet(agent("a"))

sProcSet(agent("b")) sProcSet(agent("c")),7))
localconf(agent("c"),regconf(sProcSet(agent("a"))

sProcSet(agent("b")) sProcSet(agent("c")),7))
...
sdelivered’(agent("a"),...

sSMessageList(sdatamsg(agent("a"),group("G"),
sdata("m1"),view(regconf(sProcSet(agent("a"))
sProcSet(agent("b")) sProcSet(agent("c")),7),group("G"),
sAgentList(agent("c")) sAgentList(agent("a")),0)))

sdelivered’(agent("b"),...

sdelivered’(agent("c"),...
sSMessageList(sdatamsg(agent("c"),group("G"),
sdata("m1"), view(regconf(sProcSet(agent("a"))
sProcSet(agent("b")) sProcSet(agent("c")),7),group("G"),
sAgentList(agent("c")) sAgentList(agent("a")),0)))

...

Using the nondecryptable tag, the example runs to com-
pletion and the final state of the system (see below) can be
summarized as follows: the agent located at hosta left the
group, but is still alive, the agent located at hostb disconnected
and the agent located at hostc remains as a singleton group
with the state machine in secure state.

result State: network(sProcSet(agent("a"))
sProcSet(agent("b")) sProcSet(agent("c")))

freshconf(8)
...
freshseq(40)
...
fresh(8)
freshkeyid(7)
ssp-receive-req’(agent("a"))
ssp-receive-req’(agent("c"))
CONTROLLER(eController)
localconf(agent("a"),regconf(sProcSet(agent("a"))

sProcSet(agent("b")) sProcSet(agent("c")),7))
localconf(agent("b"),regconf(sProcSet(agent("a"))

sProcSet(agent("b")) sProcSet(agent("c")),7))
localconf(agent("c"),regconf(sProcSet(agent("a"))

sProcSet(agent("b")) sProcSet(agent("c")),7))
...
sdelivered’(agent("a"),...

sSMessageList(sdatamsg(agent("a"),group("G"),
sdata("m1"),view(regconf(sProcSet(agent("a"))
sProcSet(agent("b")) sProcSet(agent("c")),7),group("G"),

sAgentList(agent("c")) sAgentList(agent("a")),0)))
...
sSMessageList(sdatamsg(agent("c"),group("G"),
sdata("m2"),view(regconf(sProcSet(agent("a"))
sProcSet(agent("b")) sProcSet(agent("c")),7),group("G"),
sAgentList(agent("a")) sAgentList(agent("b"))
sAgentList(agent("c")),0))))
...

sdelivered’(agent("b"),...
sSMessageList(sdatamsg(agent("b"),group("G"),
nondecryptable(sdatamsg(keyid(1),idPartialKey,
sdata("m1"))),view(regconf(sProcSet(agent("a"))
sProcSet(agent("b")) sProcSet(agent("c")),7), group("G"),
sAgentList(agent("c")) sAgentList(agent("a")),0)))
...
sSMessageList(sdatamsg(agent("c"),group("G"),
sdata("m2"), view(regconf(sProcSet(agent("a"))
sProcSet(agent("b")) sProcSet(agent("c")),7),group("G"),
sAgentList(agent("a")) sAgentList(agent("b"))
sAgentList(agent("c")),0))))
...

sdelivered’(agent("c"),...
sSMessageList(sdatamsg(agent("c"),group("G"),
sdata("m1"),view(regconf(sProcSet(agent("a"))
sProcSet(agent("b")) sProcSet(agent("c")),7),group("G"),
sAgentList(agent("c")) sAgentList(agent("a")),0)))
...
sSMessageList(sdatamsg(agent("c"),group("G"),
sdata("m2"),view(regconf(sProcSet(agent("a"))
sProcSet(agent("b")) sProcSet(agent("c")),7),group("G"),
sAgentList(agent("a")) sAgentList(agent("b"))
sAgentList(agent("c")),0)))

...
sstate(agent("a"),eGroupSet,eGroupSet,eGroupSet,

eGroupSet,eGroupSet,eGroupSet)
sstate(agent("c"),sGroupSet(group("G")),eGroupSet,

eGroupSet,eGroupSet,eGroupSet,eGroupSet)

Using Lazy Key:In our second example, we select the lazy
key establishment protocol and create the groupG={a,b,c}.
We then steer the system by forcing a partition that divides
group G={a,b,c} in two subgroupsG1={a} and G2={b,c}
and triggers the EVS algorithm. Once new views have been
delivered and no key has been created, we steer the system
again by forcing the merge of both subgroups intoG={a,b,c},
again triggering the EVS algorithm, but avoiding the key
establishment protocol. Finally, the agent at hostc requests
to send a message to the group.

PERFORM(CHANGE(agent("a"),sProcSet(agent("a")))) ;
PERFORM(CHANGE(agent("b"),(sProcSet(agent("b"))

sProcSet(agent("c"))))) ;
PERFORM(CHANGE(agent("c"),(sProcSet(agent("b"))

sProcSet(agent("c"))))) ;
( PERFORM(EVS-START(agent("a"),true)) ||

PERFORM(EVS-START(agent("b"),true)) ||
PERFORM(EVS-START’(agent("c"),true))

) ; --- a,b,and c finish successfully
...
PERFORM(CHANGE(agent("a"),(sProcSet(agent("a"))

sProcSet(agent("b"))
sProcSet(agent("c"))))) ;

PERFORM(CHANGE(agent("b"),(sProcSet(agent("a"))
sProcSet(agent("b"))

sProcSet(agent("c"))))) ;
PERFORM(CHANGE(agent("c"),(sProcSet(agent("a"))

sProcSet(agent("b"))
sProcSet(agent("c"))))) ;

( PERFORM(EVS-START(agent("a"),true)) ||
PERFORM(EVS-START(agent("b"),true)) ||
PERFORM(EVS-START’(agent("c"),true))

) ; --- a,b,and c finish successfully
PERFORM(SENDGROUPMSG(agent("a"))) ;
PERFORM(SEND(agent("a"),13)) ; --- a sends group message
PERFORM(RECEIVE(agent("a"),13)) ;
PERFORM(RECEIVE(agent("b"),13)) ;
PERFORM(RECEIVE(agent("c"),13)) ;
PERFORM(SENDGROUPMSG(agent("b"))) ;
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PERFORM(SEND(agent("b"),14)) ; --- b sends group message
PERFORM(RECEIVE(agent("a"),14)) ;
PERFORM(RECEIVE(agent("b"),14)) ;
PERFORM(RECEIVE(agent("c"),14)) ;
PERFORM(SENDGROUPMSG(agent("c"))) ;
PERFORM(SEND(agent("c"),15)) ; --- c sends group message
PERFORM(RECEIVE(agent("a"),15)) ;
PERFORM(RECEIVE(agent("b"),15)) ;
PERFORM(RECEIVE(agent("c"),15)) ;
PERFORM(DELIVERCHANGE(agent("a"))) ;
PERFORM(DELIVERCHANGE(agent("b"))) ;
PERFORM(DELIVERCHANGE(agent("c"))) ;
PERFORM(MULTICAST-TEST) ; ---no key has been generated
PERFORM(MULTICAST(agent("c"),group("G")))

Since no key has been generated, the agent at hostc triggers
the key establishment protocol asynchronously. However, the
other members of the group are not aware of it and thus
the agent at hostc blocks indefinely. Furthermore, any other
member that tries to send a message will also block and no
membership change will alleviate this situation, as we can see
in the following excerpt.

result State: ENABLED(MULTICAST(agent("b"),
privategroup(agent("c"))))

network(sProcSet(agent("a")) sProcSet(agent("b"))
sProcSet(agent("c")))

freshconf(5)
...
fresh(0)
freshkeyid(0)
...
CONTROLLER(WAITFOR(MULTICAST(agent("b"),

privategroup(agent("c"))));
...

The blocking is caused by the lack of a synchronized
initiation of the key agreement protocol (GDH2). Usually
the membership change message serves as a synchronization
barrier that forces everyone to update the membership and
generate (or retrieve) a key for the new view, but in case lazy
key establishment is selected, we need a way to tell everyone
that a new key needs to be build (or retrieved) immediately.
Furthermore, it is possible that members try to send a message
almost at the same time and try to trigger more than once
the key establishment protocol. We solved these issues by
broadcasting aforce-keymessage everytime a new or cached
key is needed for the current view. Once a member receives
this message, it moves from thesecurestate tocascading-
membershipstate and the key establishment protocol execu-
tion proceeds normally. In order to avoid multipleforce-key
messages sent by different members almost at the same time,
we allow only one multicast of aforce-keymessage in a view.
The following excerpt shows the final state of the system.
After successfully generating a new key, the message was sent
and then received by all members. Similarly to our previous
example, the agent at hostb disconnects, the agent at hosta
left the group and the agent at hostc is a singleton group.
It is noteworthy to mention that only one key was generated
in 7 view changes, as we can witness by inspecting the local
configuration and the associated membership-keyid list.

result State: network(sProcSet(agent("a"))
sProcSet(agent("b")) sProcSet(agent("c")))

freshconf(8)
operational(agent("a"))
operational(agent("b"))

operational(agent("c"))
freshseq(35)
sp-receive-req(agent("a"))
sp-receive-req(agent("c"))
f-receive-req’(agent("a"))
f-receive-req’(agent("c"))
fresh(4)
freshkeyid(1)
ssp-receive-req’(agent("a"))
ssp-receive-req’(agent("c"))
CONTROLLER(eController)
a(7)
b(7)
c(3)
localconf(agent("a"),regconf(sProcSet(agent("a"))

sProcSet(agent("b")) sProcSet(agent("c")),7))
localconf(agent("b"),regconf(sProcSet(agent("a"))

sProcSet(agent("b")) sProcSet(agent("c")),7))
localconf(agent("c"),regconf(sProcSet(agent("a"))

sProcSet(agent("b")) sProcSet(agent("c")),7))
...
sgroupmembsetlist(agent("a"),sGroupAssocMembSetListSet(

groupassocmembsetlist(group("G"),
sAssocMembSetList(assocmembset(sAgentSet(agent("a"))
sAgentSet(agent("b")) sAgentSet(agent("c")),keyid(0))))))

sgroupmembsetlist(agent("c"),sGroupAssocMembSetListSet(
groupassocmembsetlist(group("G"),
sAssocMembSetList(assocmembset(sAgentSet(agent("a"))
sAgentSet(agent("b")) sAgentSet(agent("c")),keyid(0))))))

...

VI. EXPERIMENTAL EVALUATION

Although symbolic execution allows us to investigate certain
scenarios that might be hard to generate in an experimental set-
ting, quantitative information is needed to evaluate how prac-
tical and effective our generic optimizations are. In orderto
measure the overhead of adaptation,without re-implementing
the specification, we developed a Maude API to systematically
translate Maude commands into OTcl/C++ and enhanced
the NS2 simulation framework to take commands from the
Maude engine via the API. This gives us the opportunity
to specify and plugin different network topologies, mobility
and client connectivity models in NS2, without modifying
the specification (and high-level algorithms) in Maude. More
precisely, a thin hookup client in NS2 reports configuration
changes to Maude via an action token. Since every action is
associated to a rule in the specification, received tokens steer
the symbolic execution, allowing the specification to reactto
the underlying network changes. Therefore, the integration of
classical network simulation and formal specifications allows
us to formally model, observe and evaluate different types of
dynamic peer group systems.

Simulation Environment Setup

In our model, we assume that clients communicate with
each other as long as they do not move out of each other’s
transmission range and that only one group is active in the
network. We model join and leave events using a negative ex-
ponential distribution with parameters j-λ and l-λ, respectively.
Similarly, we use a Poisson distribution with parameter m-η to
model message requests from the application and a Weilbull
failure rate function with parametersα andβ to model node
failures.

The simulations were performed using three network den-
sities (sparse, medium and dense) and two commonly used
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mobility models (Random-Waypoint and Gauss-Markov). The
network densities consists of 29, 149 and 271 nodes, respec-
tively. All the scenarios share the following input parameters:
j-λ = 10, l-λ = 10, m-η = 2, α = 1 and β = 2. Initially,
20 members using an IEEE 802.11 radio and MAC model
with random transmission ranges between 150m and 250m
and 1Mb of available bandwidth are randomly distributed in
a simulation space of 1024x1024 square meters. The node
velocities are chosen from the interval 5-10 m/s and a speed
standard deviation of 0.5. The nodes change speed and di-
rection every 2.5s and the standard deviation for the angle
is π/4. For the Random-Waypoint model, 7 attraction points
were added. Each point had an attraction intensity taken from
the interval 5-10, with a standard deviation of 20 and a uniform
probability of pausing at the attraction point of 0.75. In order
to obtain meaningful results, we repeated each scenario 50
times, aggregated and averaged the obtained results.

Experimental Strategy and Results

We start by measuring the the performance of our generic
optimizations using EVS semantics as compared to the syn-
chronized (VS semantics) version used by Secure Spread
under failure-free scenarios. Next, we allow node failure and
recovery, as well as intermittent disconnections, which create
patterns of membership changes. While the system keeps
track of every group member, we report partitions and merges
on an aggregate basis to study the behavior and dynamics
of the group as a whole. This allows us to evaluate the
overall messaging overhead produced by the key establishment
protocol and the total number of keys generated.

Basic Results:Figure 1 compares the overall messaging
overhead produced by the execution of the key establishment
protocol in failure-free scenarios in four different modes: (1)
eager-VS: full-blown rekey on every membership or configura-
tion change using VS semantics, (2) key-caching using EVS
semantics, (3) lazy-key establishment using EVS semantics
and (4) lazy+caching: a combined use of key caching and
lazy key establishment using EVS semantics. In general,
we observe that the EVS semantics has better messaging
performance than VS semantics since does not require syn-
chronization barriers in the form of flush acknowledgements.
This reduces both the number of messages sent and delays
induced by waiting time.

Impact of Failures and Transient Partitions:Figure 2 shows
the overall messaging overhead produced by the four different
modes in prone to failure scenarios. Not surprisingly, the
Random-Waypoint model in a medium network density shows
a high level of burstiness in membership changes due to re-
peated disconnections and failures at the attraction points (cen-
ter figure). The same pattern of failures and disconnectionsin
the Gauss-Markov model produces a high messaging overhead
in the VS mode, but does not impact the performance of the
EVS modes (left figure). However, the same pattern of failures
and disconnections in a sparse network scenario creates a short
lived subgroups. Thus, the difference of performance between
key caching and eager-VS are the flush messages.

Exploring Scalability:Figure 3 shows our initial scalability
results in a dense network using the Gauss-Markov model. We
observe that achieving scalability is difficult due to frequent
configuration changes caused by temporary partitions and
merges.

Fig. 3. Scalability of generic optimizations: Message overhead for
key establishment in a dense network using the Gauss-Markovmodel.

VII. C ONCLUDING REMARKS

Our effort to develop a formal specification of a secure
GCS was twofold. First, we obtained a mathematically sat-
isfactory and concise description that models the behavior
of the system. In addition, we found subtle bugs that broke
message ordering guarantees. Second, the formal specification
was integrated into a classical network simulator and used as
a tool for testing alternative designs, semantic guarantees, and
extensions in functionality without the need to carry-out full-
fledged implementations.

In this paper we have focussed on two dimensions of
high-level adaptability in group communication, namely syn-
chrony and security, as opposed to low-level adaptability of
the underlying communication protocols, which we leave as
future work. We have explored several solutions and built
a formal prototype to validate our ideas and explore the
properties of the new design. We have emphasized adapt-
ability, because there is no one-size-fits-all solution given the
diversity of application requirements that we are concerned
with. We developed adaptation parameters that allow us to
tailor (dynamically) the communication framework to specific
application requirements. In the synchrony dimension, groups
with different degrees of synchrony can coexist given that
every group specifies its synchrony (VS or EVS), members can
participate in several groups with different synchrony modes
simultaneously. In the security dimension, each group specifies
the degree of laziness of the key establishment protocol, which
is not entirely independent of the degree of synchrony selected:
(i) eager keying will trigger a rekey after every membership
change; (ii) key caching will reuse previous cached keys
accordingly; and (iii) lazy keying will delay rekeying until a
message needs to be send. It is noteworthy that our approach is
entirely generic in the sense that it is independent of the key
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Fig. 1. Message Overhead for key establishment and generic optimizations (Left: Gauss-Markov model in a sparse network,Right: Random-
Waypoint model in a medium density network).

Fig. 2. Message Overhead for key establishment and generic optimizations in prone to failure scenarios (Left: Gauss-Markov model in a
medium density network,Center: Random-Waypoint model in a medium density network,Right: Gauss-Markov model in a sparse network).

establishment protocol and the implementation of the group
communication system.

Possible directions for future work include further generic
optimizations for key management and secure multicasting,
dynamic access control for a high-level enforcement of se-
curity requirements, adaptability to support group commu-
nication in mobile environments, and adaptability to QoS
requirements such as timeliness constraints.
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