Towards Adaptive Secure Group Communication:
Bridging the Gap between Formal Specification and
Network Simulation

Sebastian Gutierrez-Nolasco,
Nalini Venkatasubramanian
School of Inf. and Comp. Science,
University of California Irvine,
Irvine, CA 92697, USA
{seguti,nalinj@ics.uci.edu

Abstract— Traditionally, adaptability in communication frame-
works has been restricted to predefined choices without takig
into consideration tradeoffs between them and the applicabn
requirements. In this paper we extend an executable specifition
of a state-of-the-art secure group communication subsyste to
explore two dimensions of adaptability, namely security ad
synchrony under crash-recovery and intermittent connecwity
scenarios. In particular, we relax the traditional requirement
of virtual synchrony (a well-known bottleneck) and propose
various generic optimizations, while preserving essentiaecurity
guarantees. In order to evaluate how practical and effectig
our generic optimizations are, we integrate the specificabin into
ns2, bridging the gap between formal specification and clagsal
network simulation.

I. INTRODUCTION

Mark-Oliver Stehr,
Carolyn Talcott
Computer Science Laboratory,
SRI International,
Menlo-Park, CA 94025, USA
stehr@csl.sri.com, clt@cs.stanford.edu

establishment and management of keys. Secure Spread [11],
a state-of-the-art GCS, uses key establishment protobats t
stall all communication (at the application level), whileet

key is generated and rely on strong synchronization guegant

to assure that no member can receive and decrypt messages
after he left the groupférward secrecyand no new member

can receive and decrypt messages sent before he joined the
group packward secredy However, in many applications,
disconnections are common and expected and data in transit
must not only be protected against unauthorized users)dmt a
must be delivered in a timely manner, so that decisions can
be made from accurate and fresh data. Triggering a blocking
rekey after every join or leave (to preserve forward and

backward secrecy) may preclude timely delivery of serssitiv
In recent years some secure group communication systeimf®rmation and even may lead to potential denial of service
(GCS) have been developed [1]-[5] and several useful tedttacks if a trusted member is compromised and joins and
nigues have been proposed to deal with scalability, perfdeaves the group intermittently. In this case, it would be
mance and security in peer groups with dynamic membershipsirable to employ a less constrained GCS that does not
and decentralized control [6]-[8]. However, GCS were deequire the generation of a new key after every join or leave,
signed to be highly efficient in local (wired) networks, asgu but still maintains a certain degree of security. In fact, we
a relatively small group size (up to few hundred), and doelieve that an application should be able to tailor the ecu
not consider mobility, temporary disconnections and riea¢t GCS according to its needs not only in terms of security but
constraints. In particular, scalability and high perfono@a also synchrony, timeliness and reliability, because tliemo
are both currently achieved via the light-weight/heavyighe one-size-fits-all solution.
model [9], [10], where powerful servers (daemons) residing In this paper we study two dimensions of adaptability,
in each host execute relatively expensive distributedomals namely security and synchrony in the presence of intermtitte
and several clients can connect to a server to share the G&ifires, formalize adaptation rules and establish kegong
services on each host. and security properties. Furthermore, we experimentaty-e
The next generation of adaptable GCS is driven by conate the overhead and cost of adaptation in secure group com-
stantly changing application requirements, real-timeaddd- munication and our quantitative results illustrate hownfat
livery, intermittent membership changes due to tempor&y dprototyping and classical network simulation complemeicte
connections and mobility patterns, performance requirgseother. Our starting point is a formal prototype of the Secure
and non-uniform security and fault tolerance levels. Due ®pread GCS, which we have generalized along various lines
the high computational overhead of public key cryptographyp support secure communication with fewer synchronizatio
symmetric keys are commonly used to encrypt the data. §onstraints and adaptability along several new dimensions
fully exploit the multicasting nature, a shared group keparticular, our approach opens a spectrum of new security
is typically considered to be the most efficient solutiorguarantees, which are weaker than in the synchronized case,
Consequently, the main problem now becomes the efficidmit still sufficient for many applications. Thanks to the use

of abstract APIs, our generalizations are to a large degm@e Spread

independent of the group communication system and the key o
establishment algorithm, and hence can be combined with! '® Spread group communication system [14] emerged

improvements along other dimensions, such as the choice/M the work on Transis [15] and Totem [16] and has been

specific group communication protocols and key establistimél€Signed to cope with node failure and network partitions.

protocols. The use of formal prototyping techniques base®réad supports the EVS semantics and provides different
on the executable specification language Maude enabled @IS Of service with different reliability and orderingaran-

to explore and validate design decisions without the need (&S Messages can be reliable, fifo, causally orderedlytota
carry out a full-fledged implementation. ordered (also called agreed), or safe, where the later means

that messages are only delivered if it is known that everybod
in the group has actually received it.
The Spread architecture consists of two layers, which are

After a brief explanation of the relevant group Communporrespon.dingly reflected in our fqrmal ;pecification: the
cation system semantics, this section gives an overview §avy-weight group layer and the light-weight group layer.
a state-of-the-art group communication system (Spread) ahhe heavy-weight group layer provides extended virtual syn
a framework for key establishment protocols (Cliques), arfdirony semantics at the level of tiphysical groupi.e. the
discusses how these components are assembled to provi@Cap of hosts (servers). Due to changing network connectiv
secure group communication architecture (Secure Spread)ity, We are really concerned with snapshots of group mem-
this paper we use Spread and Secure Spread without furtR@fship, which are calledonfigurations This layer provides

qualification to refer to the publicly released versiong ten Services to multicast data messages which should be sent
be found atht t p: / / wwv. spr ead. or g/ . ideally to every host and to retrieve messages that have been

delivered to the application, which can be either applarati
data messages or messages that represent configuratigechan
events.

The most well-known group communication model is the The primary mode of operation is to deliver messages to all
virtual synchrony semanticé/S semantics) [9] which was hosts which are part of the most recently established regula
originally developed for Isis/Horus [12], a primary comgoi configuration. According to the EVS semantics all messages
GCS, but later extended to partitionable GCS. One of theskould be delivered at each of these hosts in the same reg-
extensions is th@xtended virtual synchrony semant{&VS ular configuration or the following transitional configuicat
semantics) [13], a model that extends the virtual synchrofsee below). This delivery is furthermore subject to onagri
model of Isis to support continued operation in all comp@onstraints that depend on the service level that was reeglies
nents of a partitioned network. The central concept of growghen the message was sent. In the case of safe messages, it is
communication is that of giew, i.e. a snapshot of membershipalso subject the constraint that every host in the configurat
in a group. In each execution of a partitionable GCS, viewss received this message, and hence can deliver it unless
and transitions between them form a partial order. Both, tftecrashes. If a change in the connectivity is detected, two
VS and the EVS semantics, share the key propertyitfial ~ different configuration change events are generated;, Hieste
synchrony namely that every two processes that participate i®8 an event to introduce a transitional configuration, which
the same two consecutive view changes, deliver the sameised reduced configuration in which certain messages can be
of messages between the two changes. delivered that could not be delivered in the previous regula

Virtual synchrony, however, is only one property of theonfiguration. After this transitional phase, a new regular
VS semantics. The VS semantics furthermore ensures thatfiguration is introduced which reflects the new connégtiv
messages are delivered in the same view they were senpirthe network. The light-weight group layer provides EVS
(sending view delivery). To accomplish this, an extra roofid semantics at the level of logical groups. groups of agents
acknowledgment messages is needed every time before a Vielients), simply called groups in the following. Groupsar
change, preventing applications to send other messag#s udentified by names and the different snapshots of group
the next view is installed. Furthermore, the VS semantics risembership are called views. The API is similar to that at the
a closed group semantics, allowing only current members lndavy-weight group layer, except that messages and changes
the group to send messages to the group. refer to groups instead of configurations, but in additioa th

The EVS semantics, on the other hand, allows messafy@l offers two new services at this level: A client can redues
delivery in a different view than it was sent in, as long at® join or leave a group, and in response Spread generates
the message is delivered in the same view to all membé&gresponding group change events when the actual tr@msiti
(same view delivery). Consequently, the synchronizativmse to the new view has occurred.
which allows the application to be aware of the sending view It is worth to emphasize that in the EVS semantics the
is not needed in the EVS semantics. The EVS semantics atgaplication cannot determine or even know the view in which
allows open groups, where non-members of the group can séinel message is sent by the GCS. The application passes
messages to a group. messages to the GCS where they can be buffered. Hence, the

Il. STATE OF THEART IN GCS

A. Semantics of Group Communication

most recently established view at the time when the apjgicat these components an executable specification of Secura%Spre
sends the message is not necessarily the view in which tes been built, more precisely the basic algorithm desdribe
message is sent out by the GCS, let alone the view when thg11].
message is delivered to the receiving application. The starting point for our use of formal prototyping tech-
nigues in this paper is a formal specification of the Spread

C. Secure Spread GCS. We model its distributed state as a multiset of local

Secure Spread [11] provides secure group communicatistate elements (hosts, agents, messages) that behavdiagcor
for closed groups and can operate with different protodws t to a set of local rules formalizing the evolution of indivalu
establish a single key shared by all members of the curreéments. Thus, we can visualize the distributed state of
view. Secure Spread is built on top of Flush Spread [17] atide GCS as aspacein which all state elements float and
the Cliques toolkit [8]. Flush Spread has a similar functiity interact with each other. Due to the complexity and highly
as Spread but provides the stronger virtual synchrony semaondeterministic nature of the GCS, we first explain how the
tics, which requires acknowledgments by all members foheastate elements are axiomatized in rewriting logic, then how
view change. In [17] it is explained how VS semantics cagach layer (configuration, group, flush, secure) is specified
be implemented using the weaker EVS semantics. The Fluglwriting logic as an individual component with a public (AP
Spread implementation is essentially a refinement of thesed a private (structure) part. The modular structure of the
ideas. The Cliques toolkit provides a generic API and implapecification naturally leads to a modular structure ofitgst
mentations of various group key agreement protocols, amoagalysis, and mathematical proofs.
them the Group-Diffie-Hellman protocol (GDH) [8] and a o - .
tree-based variant (TGDH). Authentication is not provideft- Modeling in Rewriting Logic
by the key agreement protocol, but instead all messages arén general, a rewrite theory is a triple = (X, F, R) with
authenticated using digital signatures. An interestirrguee of (X, E') an equational specification with signature of operators
GDH and its variants is that they are contributory, whichngea® and a set of equational axiom8, and a collection of
that every member contributes a key share, but the entire keyrite rules R. The equational specification describes the
is never transmitted over the channel (not even in encryptsttic structure of the GCS as an algebraic data type and
form). However, this leads to the essential requiremeritatha is a purely functional part, while the dynamics is described
members actively participate in the key agreement. by the rules inR representing local state transitions that

Secure Spread simply uses the underlying Flush Spreadcem occur in the system axiomatized B and that are
exchange the messages required and produced by the Clicagslied modulo the equations. In Maude, an equational
toolkit, whenever a group change occurs. If the key agreémepecification is made up of declarations of the followingdsn
is itself interrupted by a new group change the Cliques proto
col is restarted. Furthermore, Secure Spread implements SQ.ar VarName : Sort .
optimizations allowing several subsequent joins and ledwe op OpName : Sorto...Sorti, — Sort [OpAtt] .
be batched into a single call of the delete/merge subprbtoc@ Termo = Term: [StAtt] .

ceq Termog = Termy if Condy A ... N Condy .
I1l. FORMAL METHODOLOGY

The general methodology we employ for system designA term is a variable \ar) or the well-formed application
and analysis is based on an executable specification lapguafy an operator ¢p) to a list of argument terms. In the
called Maude [18]. Its theoretical foundation is rewritingragment aboveVarNameis a variable name of typ&ort,
logic [19], a logic with an operational as well as a model©pNameis the operator nam&oriy ... Sort, is the list of
theoretic semantics. Formal prototyping is a key ingrediesorts for its argumentsSort the sort of its result optionally
of our methodology, which allows us to experiment witliollowed by attribute declaration®©pAt), which allow us to
an abstract mathematical but executable specification ef #pecify structural equations like associativity, comntiuity,
system early in the design phase. Our experience indicaigsmpotency and identityl’ermy and T'erm, are equivalent
that the combination of mathematical rigor with executiad a only if they belong to the same equivalence class as
analysis tools such as Maude leads to better understanélingletermined by the equationgd] or conditional equations
the system and often pinpoints potential problems. (ceg. In the particular case of conditional equations,

To employ this methodology in the exploration of adaptiv€'ond; A ...A Condy represent the set of conditions that
secure group communication, we build upon abstract exeust hold. We then give a sét of rewrite rules to specify
cutable specifications of all relevant components of Secuwstate transitions as follows.
Spread. This includes the physical and logical group layers
providing the functionality of Spread [14] with its EVSrl Termo = Term, .
semantics. The more constrained VS semantics is provided Term, = Term; if Condi A ... A Condy .
by a specification of Flush Spread [20] on top of this.
Independently, a specification of the Cliques toolkitinsiated The keywordsrl and crl introduce a rule and a condi-
to the GDH protocol [8] has been developed. On top of dilonal rule respectivelyTermy and Term; are terms and

Cond; N ...A Condy are rule conditions. Intuitively, rules of messages sent (output buffer). Thus, we model a pﬁysical
(conditional and unconditional) describe local, potditieon- host froc) using the following state elements:

current state transitions. States are represented as ¢ tims
equational theory. op

. . . o op operational : Proc -> State .
Let us begin to axiomatize the distributed state of the GG® failed : Proc -> State .
: : : op evs-start : Proc ProcSet Bool -> State .
by assuming the rr_lult_|set structure desgrlbed abovg. Td)ler,ef_ op regconf : ProcSet Nat -> Conf .
we can view the distributed state as built up by a binary unien transconf : ProcSet Nat Conf -> Conf .
: : op localconf : Proc Conf -> State .
operator, which we can represent using empty syntax as op received : Proc MessageSet -> State .
) op delivered : Proc MessagelList -> State .
op _ _: State State -> State [assoc conmid: eState] op alldelivered : Proc Messagelist -> State .

op acked : Proc MessageSet -> State .
Following the conventions of Maude’s mix-fix notation, wep pc 9 © Pree 20 es =2 Sate -
use underscore symbolg (o indicate argument positions ancbp sent : Proc Proc’ BroadcastSet -> State .
the multiset union operator is declared to satisfy the lafs o
associativity (assoc) and commutativity (comm), and toehav In order to have a consistent distributed state of the GCS, we
identity empty statgeState). Thus, complex distributed stateforce each host to be in exactly one of the local states dustri

are generated from singleton state elements by multisenuniabove and we explicitly keep a list of all existing hosts and
o a set of global counters used to generate new configuration

B. Formal Specification indices and message sequence numbers. Each configuration
We tried to keep the formal specification as abstract ases a pair of sequence numbers to ensure fifo and causality

possible by omitting several optimizations of the actual intonstraints, respectively, and holds the causal and totkro

plementation while preserving the observable behaviois Thielivery constraints to be enforced (the eventlist compbne

allows us to reduce the complexity of states as well as tbétotalorder is simply a trace of all delivery events)

complexitiy of the state space, compared with the concrete

implementation. Our specification is modular in the sense ttf? Tt T Gt

each layer is specified as a component with a clearly defin@dfreshseq : Nat -> state .

: Conf ConstraintSet -> State .

; ; causal order :
API and each component takes the role of an apphcaugﬁtotal order © Conf EventLiet -> State .

from the viewpoint of the component below and the role o

a service for the component above. We will not discuss theconfiguration Layer MessagesEach data messagehas
formal details of the specifications of each component ia thy type (data, transitional, configuration, internal ackiealg-
paper, but the interested reader can find all the componeﬁ)]tént)’ a sequence number and mode (reliable, fifo, causal,

on the web [21]. For sake of brevity we have omitted manyyreed, safe), which defines its reliability and deliveryi-co
details, in particular sorts for sets and lists. straints.

proc : String -> Proc .

Conflguratlon Layer op datansg : Proc Mbde Conf Nat Nat Set Data -> Message .

The conflggranon layer sp.ecn‘_lcatlon does not imply thgag Egﬁpis”;gmcgpf o :cgtss-agel\/éssage .
use of a particular synchronization protocol (such as tokep ackmsg : Proc Conf Nat Nat -> Message .
ring or hop). The choice of a particular protocol could hav‘(t)?; broadeast : ProcSet Message -> Broadeast .
certain bottom-up effects that upper layers should notoely op fifo : -> Mde .
Additionally, we expressed the principle of best effortidety gg g;fzee"d - mgg :
in the most direct way, namely in each situation we allowp safe : -> Mde .
the delivery of all possible messages under the given dglive
constraints. Since data messages are identified by their sequence num-

Configuration Layer StateA host encapsulates its local ber, we use the standard definition of Lamport's causal order
state (operational in normal conditions, failed if crashedbking all messages into account, and carefully adding the
transitional if the EVS algorithm is being executed) andaloc message’ sequence numberlécalmsgsand knownmsgof
configuration (which can be either a regular configuration orthe sender host when a multicast request is handled and to
transitional one, which is inserted by the EVS algorithm whethe receiver host'&nownmsgsvhen the message is delivered.
a network change occurs), as well as a configuration index afiden we require that before a message can be delivered, all
(optionally) the previous configuration information. Ndteat messages in its past cone must have been delivered, except fo
members of a configuration form a connected componenttbbse messages sent by a member outside of the current con-
the network, such that each member can communicate wiifpuration,i.e. we allow gaps in the causal order for messages
every other member. Each host also holds the set of receiweldere the sender is not with us anymore. Similarly, we keep
messages (input buffer), the set of delivered messagebdto the total order of delivered messages for each configuration
client), a history of messages delivered since the lasth¢raand allow gaps in the total order for messages where the
the set of acknowledged messages, sequence numbers loc@hder is not longer with us. Due to space limitation we

generated, sequence numbers known to each host and thecaenhot discuss the extended virtual synchrony algorithmd, a

we have to constrain ourselves to give only a flavor of tHsottom-up effects that do not represent guaranteed baf:lavio

formal specification. such as the fact that messages between agents on the same
Configuration Layer RulesBelow we have selected two host would never be lost.

key rules. The first rule formalizes the processing of an in- Group Layer State:An agent holds information regarding

coming multicast request (from a higher protocol layer)ia t its local state, such as the list of the groups it belongs to

normal operational mode.¢. without disruptions). The effect (there is always an implicit private group it belongs to) ésd

is that local knowledge and causal order delivery condsairview, whose value is the associated configuration, grougenam

are updated, the message is broadcast on the network, andgiie@p members and a view index. We added the following state

processing of the request is acknowledged. elements to modedgents groups andviews

rl operational (proc)

op agent String -> Agent .
net wor k(ever ybody) op group : String -> Goup .
I'ocal conf (proc, conf) op view : Conf Group AgentList Nat -> View .

| ocal msgs(proc, conf, | ocal nsgs)
knownnsgs(pr oc, conf, knownnsgs)
freshseq(seq)

del i ver ed(proc, nessagel i st)

al | del i vered(proc, messagel ist’)
causal order (conf, constraints)
sent (proc, broadcast set)

mul ticast-req(proc, node, dat a)
=>

oper ati onal (proc) op goperational Proc -> State .
net wor k(ever ybody) op gtrans : Proc ProcSet -> State .

Additional state elements and message types were added
to keep track of group layer states of hosts (operational,
transitional and gather), all connected clients, updatugr
views and process group messages.

| ocal conf (proc, conf) op ggather : Proc ProcSet ProcSet -> State .

I ocal msgs(proc, conf, | ocal negs sNat Set (seq)) op ggat her’ Proc ProcSet ProcSet GwessagelList -> State .
knownnsgs(proc, conf, knownnsgs sNat Set (seq)) op gclients : AgentList -> State .

freshseq((s seq)) op gjoined : Proc GroupList -> State .

del i vered(proc, nessagel i st) op gview : Proc ViewSet -> State .

Proc Conf -> State .
Proc G\essagelist -> State .

al | del i ver ed(proc, nessagelist’) op gl ocal conf :

causal or der (conf, (addConstrai nt s(constrai nts, proc, op gdelivered :
| ocal megs, knownnsgs, seq, node)))

sent (proc, broadcast set sBroadcast Set (br oadcast (ever ybody,
dat amsg(pr oc, node, conf, seq, knownnsgs, data))))

mul ticast-ack(proc) .

Group Layer Rules:Following the Spread implementation,
join and leave events are realized as agreed messages, and

The deli f f is f lized b weaker messages (e.g. reliable, fifo) do not have to respect
e delivery of a non-safe message Is formalized by t flem, i.e. can be delivered earlier or later depending on the
following rule. If a message is received from the networ

d the deli . giti ball ost. The following rule shows how join, leave, or discortnec
and the delivery constraints are met (see condition), th O events, which have been sent by the group layer as agreed

knowledge and the total order is updated, and the mess%ggssages and are now delivered by the underlying configura-

s put into the delivery buffer, \{vher_e if can be acces_sed l%n layer back to the group layer, are passed on to the next
a higher protocol layer. We defirgeliverableas a predicate hig}her layer under normal conditions

that allows us to check if a message can be delivered unde

the given constraints. crl gstate(goperational,gtrans, ggat her, ggat her')
gj oi ned(proc, grouplist)

crl operational (proc)

| ocal conf (proc, conf)

del i ver ed(proc, del i ver ed)

| ocal msgs(proc, conf, | ocal nsgs)

knownnsgs(pr oc, conf, knownnsgs)

recei ved(proc, (sMessageSet (nmessage) received))

al | del i vered(proc, al | del i vered)

causal order (conf, constraints)

total order(conf, events)

=>

oper ational (proc)

| ocal conf (proc, conf)

| ocal msgs(proc, conf, | ocal nsgs)

knownnmsgs(pr oc, conf, knownnsgs knownnsgs(nessage)
sNat Set (seq(nmessage)))

recei ved(proc, recei ved)

del i vered(proc, (delivered sMessagelLi st (nessage)))

al I del i vered(proc, (all delivered sMessagelLi st (nmessage)))

causal order (conf, constraints)

total order (conf, addEvent (events, src(nmessage)
seq(nmessage), node(message)))

if deliverabl e(proc, conf, received,alldelivered

nmessage, constraints, events) /\

gvi ew proc, vi ewset)

gl ocal conf (proc, conf)

del i vered(proc, (sMessagelLi st (nmessage) nessagelist))

gdel i ver ed(proc, gnmessagel i st’)

=>

gst at e(goperati onal , gtrans, ggat her, ggat her’)

gj oi ned(proc, grouplist’)

gvi ew(proc, vi ewset ')

gl ocal conf (proc, conf)

del i ver ed(proc, nessagel i st)

gdel i vered(proc, (gnessagel i st’ grmessagelist’’))

if contains(goperational gtrans,proc) /\
i sdat a(nmessage) /\ gnmessage : = data(nessage) /\
(isgjoin(gmessage) or (isgleave(gnessage) /\
sender (gnmessage) =/= proc) or (isgdisconnect(gnessage)
I\ sender (gnessage) =/= proc)) /\

grouplist’ := update(proc, grouplist, gnessage) /\
vi ewset’ := update(proc, conf,vi ewset, gnessage) /\
grmessagel i st’’ := nkGvessages(proc, grouplist’,

vi ewset’, gnessage) .

It uses a (partial) functiomkGMessagewhich translates

not (saf e(node(message))) . each such message into a multiset of messages, one for each
affected group. Some cases of its equational specificatien a

Group Layer given below:

We assume the use of light-weight groups and a simplified

. L . nkG\Vessages :
one-to-one mapping of agents to hosts, which avoids certain

Proc GroupList ViewSet Gvessage ->
G\essageli st .

6 .
eq nkGvessages(proc, eG oupli st, vi ewset ', gmessage) = Secure Layer Statetn order to support secure communi-

eGvessageli st . H ; H
ceq mkaNBssages(pr oc, SGroupLi st (group) groupl i st’ . vi evset’ patlon, we equped each agent with a secure group context
gmessage) = sGVessageli st (gj oi nmsg(sender , group, information (session random number, partial group shaesgd k
sfgggf%ggsg;gg’m mkQvessages(proc, groupl i st’, group members, keyid), which is modeled using the following
i f gjoi nmsg(sender, group, novi ew) := gmessage . state elements
ceq nmkGVessages(proc, sG oupLi st (group) gr oypl i st’, vi ewset ',
gmessage) = mkGMessages(proc, grouplist’, viewset’, op context : KeyShare Partial Key GroupMenberlList -> Context
) g_ms_ssage) . op groupcontext : Goup Context -> G oupContext .
if gjoinmsg(sender, group’,noview := gnessage /\ op scontext : Agent GroupContextSet -> State .

group’ =/= group .

Secure Layer RulesTo begin with one of the simpler rules,

Flush Layer we show below how a secure multicast request is formalized.

Our flush layer specification mainly follows [20], but weThe secure multicast request for a given group encrypts the
have omitted several optimizations, such as special te@tmapplication data with the corresponding group key and &igg
for non-vulnerable messages (non-vulnerable messages afush layer multicast request. The condition expresses tha
messages that can never be delivered too early and hencehi® rule can only apply if the group is in a secure state,
not need to be tagged with the sending view), efltrah-recv a key has been established for the current view.
messages afterflush-okand drop of unprocessed membership ,
changes if they become too old. These optimizations obsclfe J3oa evri b ent ot oumcont ekt sety |
the algorithm and are not relevant at the specification Jevel ssp-milticast-req(client, mode, group, sdat a)
i.e. from an observational point of view. ot at e(client, secure, cmpt,ft,fo ki)

Flush Layer State:Additional state elements were added scontext(client, groupcontextset)
to keep track of agent's installed and pending views (pendin ssp- m L'agtasﬁe;?‘c‘l fg'n{e%dg“gfog:)o;‘gafgft 3)
views are views that the agent has not yet installed), as well if contains(secure, group) /\

. . ; key := groupsecret (get(groupcontextset,group)) /\
as how pending configuration messages are handled. fdata : = enc(key, sdata) .

op fiview: Agent ViewSet -> State . . i i
op fpview: Agent ViewSet -> State . Following [11], a membership change triggers the key estab-

o e Aot o o ounset & eupSet > State . lishment, which deterministically chooses an initial memof
the new view (forming a singleton clique) and merges all re-

Flush Layer Rules:The following rule formalizes the maining members into the clique using the merge subprotocol
situation where a join operation is pending for a group ariBelow we show the first two rules of this process. The first rule
an application requests the next message using a flush laipemalizes the creation of a singleton clique; while thecset
receive request. If the condition, which requires tiiask-ok rule formalizes the the creation of a new cliques’ user, Whic
messages have been received from all current members (agilbe eventually merged with the singleton clique (rulest n
reply to an earliefflush-reqgenerated by a different rule), isgiven here).

satisfied, the join message is passed on to the application (a _
crl ssp-cmcases(client, group, f mressage)

a reply to its receive request). snewcontrol I er(client,newcontroller)
=>

crl fstate(client, steady, authori ze, agree) ssp-cm not - al one-wait-for-first-user(
f pendi ng(client, pendi ng) client, group, f message, mer gi ngagent s)
fpview(client, viewset) snewcontrol I er(client,newcontroller’)
fiview(client,viewset’) clg-first-user-req(client, group)
f-receive-req(client) if card(agentset(menbers(view fnessage)))) > 1 /\
fbuffer(client, gmessagelist) client==first(menmbers(view fmessage))) /\
=> mer gi ngagent s: =r m{ menber s(vi ew(f nessage)), cli ent)
fstate(client, add(steady, group), authori ze, /\ newcontroller’:= rm(newcontroller, group) .

rn(agr ee, group))
f pendi ng(client, rm(pending, group))

fpview(client,viewset''") crl ssp-cmcases(client, group, f nessage)
fiview(client,viewset'’) snewcontrol l er(client, newcontroller)
fbuffer(client, renoveal | foks(client, group, menbers(view, =
grmessagel i st)) ssp-cm not - al one-wai t - f or - new-user (cl i ent,
f-recei ve-ack(client,fjoinmsg(sender (get(pending, group, f message)
group)), group, vi ew)) snewcontrol |l er(client, newcontroller”)
if sGroupSet(group) groupset := receivedallfoks(client, cl g-newuser-req(client, group)
_ agree, vi ewset, gmessagel i st) /\) if card(agentset(menbers(view fnessage)))) > 1 /\
j oi ning(pending, group) /\ view := get(viewset,group) client=/=first(menbers(view fnessage))) /\
/\ viewset'' := update(viewset’,group,view /\ newcontrol l er’:=if client==last(menbers(
viewset’’'’ := rm(viewset,group) . vi ew(f message))) then add(newcontroller, group)

el se rm(newcontroller, group) fi
Secure Layer

Our secure layer specification uses the basic algorithmin the case of cascaded membership chariges, member-
presented as a finite state machine in [11] and includes tt@p change occurs while the key agreement is still in prsgyre
GDH2 specification obtained by a reverse engineering atite algorithm is restarted. Once the key agreement is com-
abstraction process from the Cliques toolkit source code. pleted, the new group key is used for future communication

until a new key has been established. to decrypt!. One possibility would be to drop the mess7age,
but this would violate the EVS semantics (only a network
IV. HIGH-LEVEL ADAPTABILITY change can justify dropping a message). We have addressed

As we briefly explained in Section I, the application shoulg1IS issue by introducing the concept of rendecryptable

be able to tailor the secure GCS according to its needs irster o ogc €. 8 message with _con_tent_that IS not acce_ssmle,
QB inform the application of this situation. However, thése

of synchrony and security. In order to provide this level o . ' L
adaptability, we need to identify what assumptions neeceto ﬁlso the possibility that the new member can find a key in his

relaxed, what are the tradeoffs between these differeeidev Ist associated with the keyid of the message, but it is net th

. keé/id associated with the new view. In this case, we say that
and what parameters can be adjusted to tune the performart'}(]:e ‘message was encrypted undeolihkeyid and we tag the

message adelayedto inform the application of this situation.

Security on top of EVS allows us to increase concurrency
Secure Spread implements security on top of Flush Spreagd hence performance by providing non-blocking (apgticat

a layer providing the VS semantics, which guarantees thavel) communication that uses the most recently estaddish

messages are sent and delivered in the same view. Tkéy to send messages, while the key establishment for the new

synchronization makes it easier to implement the key estallew is in progress. However, this new added flexibility xels

lishment protocol because every message is encrypted wiie degree of consistency in the system and eliminates some

the same key as the receiver believes is current when #eurity guarantees.

message is delivered. In order to provide security on top of

EVS semantics, the secure GCS can no longer assume Baidaptable Security

the received message was encrypted with the current key. Thgne choice of the key establishment protocol is a natural
paper [1] proposes a solution to this problem based on tgmension of adaptability in secure group communication.
levels of keys used by the heavy-weight and the light-weighfowever, even with the most efficient key establishment pro-
layer, respectively. In the present paper we use the ideagéo|s, network connectivity changes and membership amng
[1] to maintain a history of keys indexed by key identifiergan cascade while the key establishment is in progressingaus
(keyids), but we stick to the use of light-weight group keyg restart of the key establishment protocol from scratch.
without assuming underlying heavy-weight keys. This eesblThys, delaying the execution of the key establishment poito
us to study the interaction between security and EVS seo®nting carefully avoiding its execution in certain situatiarz
in its pure form and makes the solution independent of th@prove system performance while preserving forward and
implementation of Spread. Furthermore, given that we direapackward secrecy. We have explored two approaches to reduce
have a specification of Secure Spread, it makes it easy# number of key establishment phases. The first approach
obtain an integrated solution which can be adapted to blo¢h, {s pased on key caching and the second one is based on
original VS-based security, exactly as implemented in 88cyszy key establishment, that is delaying key establishment
Spread, and to the new EVS-based security. until the key is really needed. Both approaches geaeric
Hence, we have modified the formal prototype of Secutgat is independent of the underlying protocol, and can be
Spread as follows: First, for EVS groups (we added VS arémposed to further improve system performance without
EVS group synchrony modes as adaptation parameters) ¥rifying security guarantees. As an important by-praduc
removed the synchronization constraints imposed by thehFluey caching allows us to deal efficiently with temporary dis-
Spread layer. Second, every key generated is associated Wigonnections (as opposed to voluntary join/leave eventsiiw
keyid, every message is tagged with the corresponding kéyidare quite common in groups with mobile participants andrthei
the key used to encrypt the message, and every member ofdBsequences are similar to network connectivity changes.
group keeps a list of (possibly old) keys and their assotiatthterestingly, the decision to (partially) relax virtugighrony
keyids. Thus, every time a message is received its keyidHgs opened a variety of new possibilities, which includes no
checked and the corresponding key is fetched from the liét s@nly the possibility to perform lazy key establishment bisba
can be properly decrypted. Thus members can move from qf&y secure delivery modes.
view to another one and rekey asynchronously. Every rekey1) Key Establishment Protocol©ne of the most important
phase adds the current key to the list of older keys and tBgcurity guarantees is data confidentiality, which preteleta
newly generated key is used as the current key. from being eavesdropped. The way the secret shared group
Obviously, the dynamics of this approach is far less coRey is computed, how often, and when it is computed are
strained than in the VS case. Specifically, we observed thgtical for the security of the GCS. There are two basic
following difficulties: Although keyids allow to decrypt rse approaches to generate a secret shared key in GCS. In the
sages sent in previous views, they do not guarantee that eveéntralized approach, one member (typically a group Idader
message received can be decrypted and delivered to the @boses the group key and distributes it to all group members

plication. In particular, it may be possible that a new membggroup key distributioly while in the contributory approach
receives an old message sent in a previous view. If he joined

the group very recently, he does not have the key requiredThe solution presented in [1] also has this problem.

A. Adaptable Synchrony

every member contributes to the creation of the secret dhamncryption. Even if the message is sent out in the newsview,
key (group key agreementAlthough the centralized approachthe key of the requested sending view should be used. Note
works reasonably well for static (possibly large) grougs, that there are two possibilities for a member of the new view.
turns out that the contributory approach is more robust ftfrit was a member of the earlier sending view it can decrypt
non-hierarchical (mid-size) groups with dynamically cheny the message. If it was not a member of the earlier sending
memberships [7]. The relevant properties for key establestt view it just joined the group and will not be able to decrypt in
algorithms are of purely computational nature [2€fypto- accordance with backward secrecy. In this case, the message
graphic forward secrecyuarantees that a passive adversaiy delivered but asondecryptableThe possibility to specify a
who knows a contiguous subset of old group keys cannot disquested sending view is optional, so that if backwardesscr
cover subsequent group kegayptographic backward secrecyis not a concern the original implementation can be used.
guarantees that a passive adversary who knows a contiguouthe high-level rationale for this solution is the following
subset of group keys cannot discover preceding group keyfie EVS semantics leads to a loss of sending view awareness
In a GCS like Secure Spread that supports the VS semantiisthe application, but the benefits of sending view awamenes
tightly synchronizing view changes with key establishmermian be recovered by always sending messages wituested
phases, backward and forward secrecy are immediate corsmiding viewwhich prevents members joining unexpectedly
quences of cryptographic forward and cryptographic bacwao decrypt messages not intended for them. The drawback
secrecy, respectively [11JForward secrecyguarantees that is that we have to internally keep track of former keys, and
nobody should be able to read messages sent to a group aftene messages received will hendecryptableBoth of these
he left this group (assuming he will not become a membsrechanisms, however, were already added when we moved
of the group in the future)Backward secrecguarantees that from the VS to the EVS semantics (see Section IV-A) so that
nobody should be able to read messages sent to a group befioie extension does not cause any additional overhead.
he joined this group (assuming he was not a member of the2) Key Caching: Frequent network connectivity changes
group in the past). However, to be precise, we need to defimay trigger patterns of membership changes, where new views
what are the join/leave events referenced in these defisitiv tend to have the same members as earlier views. Current
obviously would not make sense to take them to be the eveiftglementations of secure GCS generate a new key for each
of requesting a join/leave at the GCS. These events would beview. Thus, if a subset of members of a group becomes
no use for the client applications. They are not (immedjateltemporary isolated due to a network partition, the key es-
observable for the applications, because the processisigobf tablishment protocol will be invoked for each new partition
requests can be delayed. This suggests to define leave/mid again when the partitions merge together. No member
events to be the events where the GCS delivers leave/joth (whas left/joined the group, but several new keys have been
the new view) to the application which sends the messagenerated. Obviously, this is unnecessary, because thg gro
Similarly, we have to be precise about what the send evenembership has not changed in the end. Ideally, the key
in these definitions refers to. Since a message carriegtigensiestablishment protocol should be executed only if the arre
data, we should adopt the most conservative definition, famé&et of members has not shared a secret key before; otherwise,
the event when the application requests the GCS to sen@ @reviously agreed upon key can be used instead. Since the
message. reuse of keys increases the vulnerability to crypto-analys
Forward secrecy under the EVS semantics is fairly straigt@ttacks, key caching like all forms of key reuse need to be
forward: Assume a membet leaves the groug:, the GCS carefully constrained. To this end, keys can be equippell wit
delivers a new view ta3, and B sends a messag¥ to G. an expiration or some other attribute limiting key reused an
The new view can have only been delivered after successtia¢y are removed from the list when this limit is reached.
completion of a key establishment phase between the member detail we have made the following modifications to our
of the new view. Sincé/ is encrypted with the resulting key formal prototype to accommodate for key caching:

that A does not know, forward secrecy is guaranteed. 1) Every member keeps a list of keys and the associated
Backward secrecy under the EVS sematics, however, does set of members that share that key. The list is updated

not hold, as the following counterexample shows: Assuine whenever a new key is generated.

requests the GCS to send a messafj¢o a groupG, but the 2) If a membership change or network connectivity change

processing of this request is delayed. In the meanfitrjeins happens, every member receives a message with the

G, and the GCS delivers the new vigu, B} to A. Now the updated membership.

GCS processes the send request in the new view, which mean3) Every member checks its list of keys and if the updated
that the message is encrypted using using the key associated membership shared a key before, the key is retrieved and
with this view. Hence,B can decrypt the message, which is used as the current key; otherwise the key establishment
a violation of backward secrecy. is triggered and a new key is generated.

To solve this problem we have adopted the following Forward and backward secrecy are still satisfied, eyt
solution: We add the view in which we would like to sendreshnessi.e. the property that each view uses a fresh key
the messageréquested sending vigvas an argument to theto encrypt messages, is given up. Therefore, a new group
multicast service. This view determines the key to be used feecurity mode ftesh securg is added to enforce freshness

if the application requests this level of security. If thegp 4) Secure Delivery ModesTraditionally, secure delivgry
security mode is fresh secure, a normal key establishmenirisGCS has been restricted to the delivery of an encrypted
triggered even if the members shared a secret key befose. Iiriessage, assuming that all members of the group are able to
important to point out that a keyid associated with a noffifreslecrypt the message using the unique shared group key. When
key should not be confused with an old keyid. a keyid we relax the virtual synchrony semantics, messages ermatypt
associated with a previous view, and hence it does not impiyth different group keys may be received at any time and
that the message is delivered as delayed (see Section)V-Bwle can no longer assume that the receiver is able to decrypt

3) Lazy Key EstablishmentCurrent GCS have been de-€Very message using the most recent key or even to decrypt the

signed under the assumption that network connectivity gaan MeSSage. As a result, EVS semantics leads to a new variety of
occur rarely and that members exchange a consideraBfREUre delivery modes based on key freshness and an extended
amount of messages between membership changes. HowekRICEPt ofsafe messagess follows:

membership changes (due to unpredictable network connece Non-secure: Message is sent and received in clear-text.
tivity changes or join/leave operations) may occur quite fr * Secure: Message is encrypted and can be decrypted with
quently in certain environments (wireless, mobile), anthwi any (possibly old) known key; otherwise delivered as
many view changes taking place it is highly unlikely that ~nondecryptable

messages are sent in every intermediate view. Under these Strongly secure: Message is encrypted and must be
circumstances, delaying the execution of the key estahkst decrypted with the most recent known key; otherwise
protocol until a message needs to be sent will avoid unneces- delivered asondecryptable

sary key establishment phases. We say that a key establishmee Safe-secure: Message is encrypted and can be decrypted
phase is unnecessary if a key is generated but not used lecaus With any (possibly old) known key, but can only be

message using any (possibly old) known key.

« Strongly safe-secure: Message is encrypted and must be
decrypted with the most recent known key, but can only
be delivered if everybody else received and decrypted the
message using the most recent known key.

As a possible solution we exploredelayed key estab-
lishment Instead of a synchronized initiation of the key
establishment algorithm by a view change event, the member
who wants to send a message triggers the key establishment
asymmetrically. Our formal prototype is modified as follows

. - V. FORMAL PROTOTYPING
1) Any membership change or network connectivity change hi , how h lize the | .
is treated normally and the membership is updated, byt this section we show how we generalize the formal speci-

the key establishment protocol is not executed. fication of Secure Spread to support the high level adajitiabil

2) When a member needs to send a message, it checkdigeussed in Section 1V.
a current key exists and if it is up to dafes. belongs A. Relaxing Synchrony

to the most recently established view. _ Since the configuration and group layers already provide
3) If the key is up to date, then the message is encrypted/s semantics, our first thought was to remove the flush
and sent normally.)) layer and let the group and secure layers communicate to
4) If the key does not exist or is not up to date: each other. However, the key establishment protocol reguir
a) The member starts the key establishment protocel synchronized initializationi.¢. all members must be aware
notifies the other group members and stalls tHbat a new key is going to be generated) that then would have
message till the new key is generated. to be added to the secure layer to ensure proper execution,
b) Members are notified and each one of them stamsaking impossible to provide different degrees of synciiron
the key establishment protocol, which proceedssing the same specification. Therefore, we modified the flush
normally. layer to incorporate group types (a group type identifiesthe
c) If another member wants to send a message, th@ntics of the group) and remove synchronization congrain
key establishment has been triggered by some oti&gcordingly;i.e. groups using VS-semantics use the full-
member and no view change has been triggerdtgdged flush layer; while groups using EVS-semantics update
the message is stalled until the new key is geiflush layer state, but avoid the expensive and time consuming
erated and the member continues with the norm@iish acknowledgmerats well asdata blocking This allows
key establishment executiond the key algorithm us to model and support both VS groups and EVS groups
is not restarted). at the same time, and explore their possible coexistence. In
d) If a view change event is triggered at any time, thearticular, we added the following state elements to théhflus
membership is updated and the key establishmdayer to keep track of the semantics of each group and modified

protocol is restarted. the rules accordingly.
e) Once the key has been generated, the current key ,
op’group-vs : -> G oupType .

is updated, the up-to-date flag is set and membeys group-evs : -> GoupType .
proceed to encrypt and send messages normallyP forptype : Agent GroupSet GroupSet -> State .

As an example, we show the modified version of the joining 10

operation rule presented in Section |lI-B for the specific
case of EVS groups. That is, a join message for an EVS
group updates the flush state, but does not reqfiireh
acknowledgmentand the message is immediately passed on
to the application.

ssp-mul ticast-req (client, node, group, sdat a)
f-nulticast-req(client, node, group, fdata)
if viewkeyid := keyid(lookup((
get (groupassocnenbset | i stset, group)),
agent set (nmenber s(get (vi ewset, group))))) /\
key := parti al key(l ookup((get (groupassockeyli stset,
group)), viewkeyid)) /\
fdata : = enc(vi ewkeyi d, key, sdata) .

crl fstate(client, steady, authori ze, agr ee)
fgrptype(client,vsgrp, evsgrp)
f pendi ng(client, pendi ng)
fpview(client,viewset)

Although the idea of providing security on top of EVS was
I"r’gg‘gl(s'e' fg;(‘c’: .E\ng;) mentioned in [1], no actual system implementation exists an
=> subtle effects that may be observed naturally when the syste
fsngfgegﬁoﬁﬁ:%“ eady, group), authori ze, is running were easily overlooked. The following example
fgrptype(client, vsgrp, evsgr p) illustrates a simple scenario overlooked in the litergtime
]Eg\e“”g'w?gl(f[ehtemv' fem"égte{‘fjf ;‘9' group)) discovered in our formal prototype via symbolic execution.
fiview(client, viewset' ') Let us assume that andC' belong to the same secure group
f-recei ve-ack(client, fj oi nmsg(sender (get (pendi ng, G, which has a current shared group keylLet C' send an
ifg;ggtéég{ ?Sfaﬁ'p)”%?oupset ‘= agree /\ agreed messagel encrypted withk. Just after sendingn1,
J ot nt ng(pendi ng. g;ggf’e(a oew ;gﬁ‘p(:’/" Z‘”‘A’;e}\' group) B joins G and triggers the key establishment protocol. Let us
viewset’ '’ := rm(viewset, group) /\ assume thatnl is delayed so that it is received in the new
contai ns(evsgrp, group) . view containing{ 4, B, C}, i.e. after the key establishment is
completed.A and C deliver this message because they both
ration the semantics of the group (group type), the assm:tiaE:;//ei:‘;ﬁsisrskfytmil:%;r}?;g:;\ign[b(fyk;i,['T;;ongcg;i:cgt
keyid-key list and keyid-membership set information, Wl y yoliver,n1 to the application, becaus® does not know
of laziness of the key establishment protocol (eager, k(ﬁ){e keyk used to encrypinl Fihally let's assume thab
caching, lazy till a message needs to be sent, or a Comhmatl%nds an agreed message W'ith the r,1ew keyk’ and A and
of both) and extended the secure group context informatyon

. . . . deliver this message. But what abait?
including the keyid associated to the current key The messages1 andm?2 were sent in agreed mode and the

EVS semantics guarantees that agreed messages are dklivere
in the same order. In our example] must be delivered before
m?2 because this is the order chosendwandC. Furthermore,
due to the self-delivery property.2 needs to be delivered by
B at some point, but only aften1 according to the constraint
just mentioned. ThusB can not dropm1 without creating a
Furthermore, we enhanced the multicast request witga gap in the ordering and thus violating EVS semantics. On the
sending-viewparameter that allows us to request a specifigher hand,B cannot deliver the message in the usual way,
view in which the message should be sentieshkeyparam- pecause it cannot decrypt it.
eter that indicates if a new key was generated for the curreny, grder to preserve the EVS semantics we introduced the
view and the capability to tag every outgoing message weh toncept ofnondecryptable messagad extended the receive
keyid corresponding to the key used to encrypt the messag@es to tag the message nondecryptable if the keyid used to

The following rule shows the modified version of the multicagncrypt is not found in the history of keys for that particula
request rule described is Section I1l-B. Note that the i@8n memper (see condition).

to perform a multicast only in a secure state is not present
anymore, allowing us to encrypt and send messages using Hesi vi ew(client, vi ewset)

. . .. sstate(client,secure,cmpt,ft,fo,kl)
most recently established key while a rekey is in progress. scontext (client, currkeyi d, gr oupcont ext set)

ssp-receive-req’ (client)

Preserving EVS Semantics

Similarly, at the secure layer, we added to #gentdecla-

op keyid :
op scontext :
op sgrptype :
op slaziness :
op sgroupkeylist :
op sgroupnenbersetlist :

Nat -> Keyld .

Agent Keyld G oupContextSet -> State .

Agent GroupSet GroupSet -> State .

Agent GroupSet G oupSet G oupSet -> State .
Agent G oupAssocKeyi dListSet -> State .
Agent G oupAssocMenbSet Li st Set ->
State .

crl

sstate(client,secure,cmpt,ft,fo,kl)
scontext (client, currkeyid, groupcont ext set)
sgroupkeylist(client, groupassockeylistset)
sgroupnenbersetlist(client, groupassocnenbset!|istset)
sl azi ness(client,lazyst,|azyct, eager)
siview(client, viewset)
ssp-nul ticast-req(client, node, group, sdat a,

reg- sendi ng- vi ew)
=>
sstate(client,secure,cmpt,ft,fo,kl)
scontext (client, currkeyid, groupcont ext set)
sgroupkeylist(client, groupassockeylistset)
sgroupnenbersetlist(client, groupassocnenbset!|istset)
sl azi ness(client,lazyst,|azyct, eager)
siview(client, viewset)

sbuffer(client, smessagelist)
f-receive-ack(client, fnessage)
sgroupkeylist(client, groupassockeylistset)
=>
siview(client, viewset)
sstate(client,secure,cmpt,ft,fo,kl)
scont ext (client, currkeyid, groupcont ext set)
sbuffer(client, snessagel i st sSMessagelLi st (snmessage))
ssp-recei ve-req(client)
sgroupkeylist(client, groupassockeylistset)
if isidata(fnessage) /\ group := group(fnessage) /\
keyi d" := keyid(data(fmessage)) /\
not (cont ai ns((get (groupassockeyl i stset,
group)), keyid')) /\
smessage : = sdatansg(client, group,

11
nondecr ypt abl e(dat a(f message)), get (vi ewset, group)) . currkeyid'))) /\ currkeyid := keyid /\
groupassockeyl i st set’: =updat e(gr oupassockeyl i st set,

group, assockeylist’) /\
assocnenbset | i st: =get (gr oupassocnenbset| i stset, group)
/\ assocnenbsetlist’ := add’ (assocnenbsetlist,
(assocnenbset (agent set (menber s(vi em f message))),
currkeyid))) /\ groupassocnenbsetlistset’:=update(

B. Applying Generic Optimizations
In order to support key-caching and lazy key establishment,

we modified thekey-listand cascading-membershitates of /\groupassocmmsstl i stset, groEJp, a(ssocnenngsetl ist’)
H H H H snmessage : = update-transset (get(newrenbnsgset,
the finite state machine. First, we allow tkey-list state to group) , get (vsset , group)) /\

update the associated keyid-key ligtqupassockeylistgeand notfirstem :=rn(notfirstemgroup) /\
its corresponding membership informatiogrqupassocmem- em :=rm(cm group) /1 secure’:=add(secure, group) .

bsetlistset every time a new key is successfully generated. If the updated membership is a reoccuring one, its mem-

Then, we modified the behavior of timascading—membershipbership information is used to get (via the associated Beyid

state (which in spite of its name is also used for a single NOfiie previously agreed key. The cached key is then used as
cascaded view change) to avoid rekey in case we specified |

K tablish Cort h . d kev. if W& current key, a new associated keyid is generated and
ey establishment or 1o cache a previous agreed key, I Ky 5ssociated keyid-key and membership informatios list

c?hchlng hatsh b?elrkspecTet()jl_ar?d atprev'louslaglrlebed key exighe updated. Finally, the membership change notification is
otherwise, the Tuflkey establisnment protocot will be &Xetl. 4o jiyered to the application and the finite state machineanov
In VS semantics, a membership change not|f|cat|<_3n is deliye 1 the cascading-membershigtate directly to thesecure
\#tate without triggering the key establishment protocol.
eSimiIarIy, the following rule formalizes a membership
change operation when thazy key establishmerg selected,
. i . o eé(\%iding the creation of a new key and the execution of the
n EVS semantics, any_membershm changg nOt'f',Cat'on mLI'(%S/ establishment protocol. As we can see in the conditfan, t
be delivered to the_apphca‘uon as soon as it is receivedderor membership is updated, the membership change notification i
to preserve ordermg_ constra_mts, since we all_ow MmeSSafetivered to the application and the finite state machineasov
to be sent and received while the key establishment is #m the cascading-membershigtate directly to thesecure

progress. Thus, th&ey-list state will deliver a membership tate without triggering the key establishment protocol.
change to the application if and only if the group uses V%

semantics and let theascading-membershgiate to deliver a cri ssp-cm avoi d-rekey(client, group, f ressage)
. . . . sstate(client,secure,cmpt,ft,fo,kl)

membe_rshlp change to the application if the group uses EV_S scontext (ol i ent, currkeyi d, gr oupcont ext set)

semantics. Below we have selected the most representative snewrenbrsg(cl i ent, newrenbnsgset)

. - . - . svsset (client, vsset)
rules to illustrate these modifications. The first rule folizes snotfirstem(client, notfirstcm

ing to delay and discard membership notifications while t

a membership change operation wheay cachings selected sshadownessage(cl i ent, shadownessage)
and the updated membership already shared a key in the nears2!ffer(client, smessagelist)
past (see condition). sstate(client,secure’,cni,pt,ft,fo,kl)

scont ext (client, currkeyid, groupcont ext set)
snewnenbnsg(cl i ent, newrenbnsgset)

svsset (client, vsset)

snotfirstcn(client,notfirstcm)
sshadowressage(client, add’ (shadownessage, f message))
sbuffer(client, smessagel i st sSMessagelLi st (snessage))
ssp-receive-req(client)

if card(agentset(nmenbers(view fnmessage)))) > 1 /\

crl ssp-cm check- menbers(client, group, f nessage)
sstate(client,secure,cmpt,ft,fo,kl)
scontext (client, currkeyid, groupcont ext set)
snewnenbnsg(cl i ent, newrenbnsgset)
svsset(client, vsset)
snotfirstcn(client,notfirstcm
sbuffer(client, snessagelist)

sgroupkeylist(client, groupassockeylistset) smessage : = update-transset (get (newrenbmsgset ,
sgroupnenbsetlist(client, groupassocnenbsetlistset) grpup) » get l(zsset : gr o_up)) n

sfreshness(client, freshkey) 221”! r_sicmc : _r:)"(no}{‘l rstemgroup) /3

skai nprogress(client, kai nprogress) secu.r;’ m: g]dg(sggzjre gr oup)

=) !)

sstate(client,secure’ ,cm,pt,ft,fo,kl)

scontext (client, currkeyid , groupcontextset) .

snewnenbnsg(client, newrenbnsgset) C. Key Propertles

svsset (client, vsset) . . i i
snotfirstcn(client,notfirstcn) Since security on top of VS has been studied in [11], we
sbuffer(client, smessagel i st sSMessagelLi st (snessage)) constrain ourselves to properties of EVS groups (recall tha
sgroupkeylist(client, groupassockeylistset’) .

sgroupnenbset | i st(client, groupassocrnenbset|istset’) our formal prototype integrates both approaches).

sfreshness(client, add' (freshkey, group)) Property 1 All messages received at the secure layer are
skai nprogress(client, rn(kai nprogress, group))

ssp-receive-req(client) delivered to the application.

if contains((get(groupassocmembset | istset, group)), Proof SketchAll data messages received at the secure layer
agent set (nmenber s(vi ew(f message)))) /\

car d(agent set (menber s(vi ew(f nessage)))) > 1 /\ are encrypted and tagged with a keyid that identifies the key
keyi d’ : =keyi d(1 ookup((get (groupassocnenbset| i stset, ;

ST oUp)) . Agent set (Member S(vi ew(f nessage))))) /\ used _to encrypt the message. Fpr each message, if t_he key
key: =parti al key(| ookup((get (groupassockeyl i st set, associated to its keyid is found in the associated keyid-key

group)), keyid')) /\ ; ; ; -_p
assockeyl | st - =get (gr oupassockeyl i st set , group) /\ list, the message is decrypted and delivered to the apiolicat

assockeyl i st’ : =add’ (assockeyl i st, (assockey(key, otherwise the message is tagged nondecryptable and deliver

to the application. All membership and configuration changd key properties of the formal model and hence 01? the
messages received are delivered to the application. implementation. In order to deal with the complexity and
Property 2All message ordering constraints are preserved. high degree of concurrency and nondeterminism of a typical
Proof SketchAll received messages at the secure layer at&CS, we partially constrain the behavior of the system by
delivered to the application without delay and in the sanmmmposing it with an environment that acts as a controllgr. B
order they were received, regardless of the current statieeof defining a controller language based on sequential andi@aral
finite state machine. composition of actions and associating each action to aimule
Regarding security on top of EVS, we prove that forwardur specification, we steer the system into critical states t
and backward secrecy are preserved and that generic ogtimzonfirm or validate the properties of interest.
tions can regain key freshness if fresh secure mode is used. We present two running examples. The first one represents
Property 3Security on top of EVS semantics provides forwarthe nondecryptable example given in Section V-A and the sec-
secrecy. ond one illustrates the execution of the lazy key establesttm
Proof SketctSince we defined a leave event as an event wheymtocol. Below, we show a code excerpt where we define an
the GCS delivers the new secure view to the application,irdtial state containing three hosta,b,9. This initial state is
message send in this new view will be encrypted with a neshared by the two examples.
key, which may be recently generated or a previously agreed

i : e I = sProcSet t("a")) sProcSet t("b"
key. In either case, the key is only known by the remaining *'P"°°® = Sprocsel (agem ([a))) sProcset(agent ("b7)
members of the group. op a m -> g a:e .

. . - . -> .
Property 4Secyr|ty on top of EVS semantics pr_owdes bac O-S c . Nat -> St gtg _
ward secrecy if messages are always sent using the curm)n_tnii o> State .
view as the requested sending view. o et vor k(al | pr ocs)

Proof SketchMessages encrypted using the requested sending nki ni tial conf (al | procs)
. . . nki ni tial procs(all procs)
view parameter will be encrypted with the key that only i nitial agents(al I procs)
the members of the specified (possibly past) view have and fresh(0) --- for cliques
. freshkeyid(0) --- for keyld
therefore, only they can decrypt the message. Obviousty, th g5 ecei ve-req(agent (*a"))

members of the specified view must have joined before the ssp-receive-req(agent("b"))
. ssp-receive-reqg(agent(“c"))
message 1S sent. sdel i vered(agent ("a"), eSMessageli st)

Property 5When fresh secure mode is used to send a message, sdel i vered(agent ("b"), eSvessagelLi st)

k f h . teed sdel i vered(agent ("c"), eSMessageli st)
€y 1reshness Is guaranieea.) sdel | vered’ (agent("a"), eSMessageLi st)

Proof Sketchin fresh secure mode, a message is always sdelivered’ (agent("b"), eSMessagelist)

encrypted with a recently generated key for the current view S°¢''Vered (agent("c’), esiessagelist)

If no new key was generateq for the current view ,due to Preserving EVS Semanticd-ollowing the scenario de-
key caching or lazy key establishment, the key eStab“Smm%'&ribed in Section V-A, the agent located at hossends a

protocol is triggered and the message is stalled until a n%ssage imgreed modeo the groupG. Before the message

key is gener_ated. L is received, an agent located at hdsjoins the group and
Although in our formal specification a message alreaci

. Yl gers the key establishment protocol. After the sudoéss
gncrypted may sit ;1” thg G(_:S gor a(? (ijbo(;md?d.aTourrl]t & mpletion of the key establishment protocol the message is
time, In practice, this time Is bounded and relatively Shoff g ed by the members of the group and a new message also

compared to the key expiration time. Hence, we have e, eed modés sent by the agent at hastand immediately
following property in such an implementation. received by all.

Property 6 A delayed message can never be tagged as non-

decryptable, assuming that a maximal transit time (maxe tinrRERFORM MULTI CAST- TEST) ;

between multicast and delivery) exists and is smaller than toesgae Senp(saom (ror) 23y 2 2P osaane. sent

key expiration time. PERFORM JO N(agent ("b"), group("G'))) ;

Proof SketctUnder the given assumption it is not possible tBEx-om pece vEcagont (* 5] 3)) -
receive an old message encrypted with a key that has b@&eRFORM RECEI VE(agent (" b)g;; ;

removed from the keyid-key association list. PERFCRM RECEI VE(agent ("¢"),

. . ("a")))

D. Symbolic Execution PERFORM DEL| VERCHANGE(agent ("b"))) ;
o . . PERFORM DELI VERCHANGE(agent ("¢"))) ;

Usually, abstract specifications are axiomatic and Nnot exRFORM RECEI VE(agent ("a"), 2
2
2

ecutable, but the distinguishing feature of rewriting bgiﬁggig"’(m pass @23:2:22;
from many other specification languages is that it allowsRFORM MULTI CAST- TEST) ;
us to use axiomatic specification techniques at a reasonafii-or serpy saom ooy 10y} 2O E)
high-level while still maintaining executability, allomgy us PERFORM RECEI VE(agent ("a"), 10)) ;

to apply symbolic execution to: (i) validate our specifioati PERFORM RECEI VE(agent (*b7), 10))

| ’ T OPEM PERFORM RECEI VE(agent ("¢"), 10)) ;
against our understanding of the system, and (ii) find viiohest

- message received

Without the nondecryptable tag, the agent at lmosan not

decrypt and deliver the received message to the appligation

13
sAgent Li st (agent("c")) sAgentList(agent("a")),0)))

sSMessageli st (sdat amsg(agent ("c"), group("G'),

since it was encrypted and sent before he joined the groupsdata(*ne"), vi ew(r egconf (sProcSet (agent ("a"))

Furthermore, dropping or queuing the message create a gap Eti

the ordering that will eventually stall the system when aeot

rocSet (agent ("b")) sProcSet(agent("c")),7),group("G'),
gent Li st (agent ("a")) sAgentList(agent("b"))
sAgent Li st (agent("c")),0))))

agreed message is received, as we can see in the followjng . .. (agent ("b")., . ..

excerpt of the system, where the messag2 can not be

sSMessageli st (sdat ansg(agent ("b"), group("G"),

delivered even if it has been received by all clients. Let us"ondecryptabl e(sdatamsg(keyi d(1),idpartial Key,

recall thatsdelivered'is the history of messages delivered to

the application. Configuration and transitional message® h
been removed fromsdelivered) for better readability.

net wor k(sProcSet (agent ("a")) sProcSet (agent("b"))
sProcSet (agent("c")))

freshconf (1)

f.réshseq(10)

fresh(0)

freshkeyi d(2)

ssp-receive-req (agent("a"))

ssp-receive-req’ (agent("b"))

ssp-receive-req’ (agent("c"))

i .o;:al conf (agent ("a"), regconf (sProcSet (agent ("a"))
sProcSet (agent ("b")) sProcSet(agent("c")),7))

I ocal conf (agent ("b"), regconf (sProcSet (agent ("a"))
sProcSet (agent ("b")) sProcSet(agent("c")),7))

| ocal conf (agent ("c"), regconf (sProcSet (agent("a"))
sProcSet (agent ("b")) sProcSet (agent("c")),7))

sdelivered’ (agent("a"),...
sSMessageli st (sdat anmsg(agent ("a"), group("G'),
sdata("nl"), vi ew(r egconf (sProcSet (agent("a"))
sProcSet (agent ("b")) sProcSet (agent("“c")),7),group("G"),
sAgent Li st (agent("c")) sAgentList(agent("a")),0)))

sdel i vered’ (agent("b"), ...

sdel i vered’ (agent("c"),...
sSMessageli st (sdat amsg(agent ("c"), group("G'),
sdata("ml"), view(regconf(sProcSet(agent("a"))
sProcSet (agent ("b")) sProcSet (agent("“c")),7),group("G"),
sAgent Li st (agent("c")) sAgentList(agent("a")),0)))

sdata("mL"))), viewregconf (sProcSet (agent("a"))
sProcSet (agent ("b")) sProcSet (agent("“c")),7), group("G'),
sAgent Li st (agent("c")) sAgentList(agent("a")),0)))

sSMessageli st (sdat amsg(agent ("c"), group("G'),
sdata("nmR"), view(regconf(sProcSet(agent("a"))

sProcSet (agent ("b")) sProcSet (agent("“c")),7),group("G'),
sAgent Li st (agent("a")) sAgentList(agent("b"))

sAgent Li st (agent("c")),0))))

sdel i vered’ (agent("c"),...
sSMessageli st (sdat ansg(agent("c"), group("G"),
sdata("nml"), vi ew(r egconf (sProcSet (agent("a"))
sProcSet (agent ("b")) sProcSet (agent("c")),7),group("G"),
sAgent Li st (agent("c")) sAgentList(agent("a")),0)))

sSMessageli st (sdat ansg(agent("c"), group("G"),

sdata(" nm2"), vi ew(r egconf (sProcSet (agent("a"))

sProcSet (agent("b")) sProcSet (agent("c")),7),group("G"),
sAgent Li st (agent("a")) sAgentList(agent("b"))

sAgent Li st (agent("c")),0)))

sstate(agent("a"), eG oupSet, eG oupSet, eG oupSet,
eGr oupSet, eGroupSet, eG oupSet)

sstate(agent("c"),sG oupSet(group("G')), eG oupSet,
eGroupSet , eGroupSet , eGr oupSet, eGr oupSet)

Using Lazy Key:In our second example, we select the lazy
key establishment protocol and create the gr@sp{a,b,c}.
We then steer the system by forcing a partition that divides
group G={a,b,¢ in two subgroupsG1l={a} and G2={b,c}
and triggers the EVS algorithm. Once new views have been
delivered and no key has been created, we steer the system
again by forcing the merge of both subgroups i6t{a,b,c},
again triggering the EVS algorithm, but avoiding the key
establishment protocol. Finally, the agent at hosequests

Using the nondecryptable tag, the example runs to CoRy send a message to the group.

pletion and the final state of the system (see below) can
summarized as follows: the agent located at redeft the
group, but is still alive, the agent located at hioslisconnected

and the agent located at hastemains as a singleton groupPERFORM CHANGE(agent ("c"), (sProcSet (agent

with the state machine in secure state.
result State: network(sProcSet(agent("a"))

sProcSet (agent ("b")) sProcSet (agent("c")))
freshconf (8)

freshseq(40)

fresh(8)

freshkeyi d(7)

ssp-receive-req’ (agent("a"))

ssp-receive-req (agent("c"))

CONTROLLER(eControl | er)

| ocal conf (agent ("a"), regconf (sProcSet (agent ("a"))
sProcSet (agent ("b")) sProcSet(agent("c")),7))

| ocal conf (agent ("b"), regconf (sProcSet (agent("a"))
sProcSet (agent ("b")) sProcSet (agent("c")), 7))

| ocal conf (agent ("c"), regconf (sProcSet (agent("a"))
sProcSet (agent ("b")) sProcSet(agent("c")),7))

sdel i vered’ (agent("a"), ...
sSMessageli st (sdat ansg(agent("a"), group("G'),
sdata("nl"), vi ew(r egconf (sProcSet (agent("a"))
sProcSet (agent("b")) sProcSet (agent("c")),7),group("G"),

be
PERFORM CHANGE(agent ("a"), sProcSet (agent("a")))) ;
PERFORM CHANGE(agent ("b"), (sProcSet (agent ("b"))
sProcSet (agent("c"))))) ;
("b"))
sProcSet (agent("c"))))) ;

(PERFORM EVS- START(agent ("a"),true)) ||
PERFORM EVS- START(agent ("b"),true)) ||

PERFORM EVS- START' (agent ("c"),true))

) --- a,b,and ¢ finish successfully

PERFORM CHANGE(agent ("a"), (sProcSet (agent ("a"
sProcSet (agent (" b"
sProcSet (agent ("c"

PERFORM CHANGE(agent ("b"), (sProcSet (agent ("a"

sProcSet (agent ("
sProcSet (agent("c"))

PERFORM CHANGE(agent ("c"), (sProcSet (agent ("a"))

sProcSet (agent ("b")
sProcSet (agent("c"))

(PERFORM EVS- START(agent ("a"),true)) ||

PERFORM EVS- START(agent ("b"),true)) ||
PERFORM EVS- START' (agent ("c"),true))

) --- a,b,and c finish successfully

PERFORM SENDGROUPMBG(agent ("a"))) ;

PERFORM SEND(agent ("a"), 13)) ; - a sends group nessage

PERFORM RECEI VE(agent ("a"), 13)) ;

PERFORM RECEI VE(agent ("b"), 13)) ;

PERFORM RECEI VE(agent ("c"), 13)) ;

PERFORM SENDGROUPMBG(agent ("b"))) ;

14

PERFORM SEND(agent ("b"), 14)) ; --- b sends group nessage operational (agent("c"))
PERFORM RECEI VE(agent ("a"), 14)) ; freshseq(35)

PERFORM RECEI VE(agent ("b"), 14)) ; sp-receive-req(agent("a"))
PERFORM RECEI VE(agent ("c"), 14)) ; sp-receive-reg(agent("“c"))
PERFORM SENDGROUPMSG agent ("c"))) ; f-receive-req’ (agent("a"))
PERFORM SEND(agent ("c"), 15)) ; --- c sends group nessage f-receive-req’ (agent("c"))
PERFORM RECEI VE(agent ("a"), 15)) ; fresh(4)

PERFORM RECEI VE(agent ("b"), 15)) ; freshkeyi d(1)

PERFORM RECEI VE(agent ("c"), 15)) ; ssp-receive-req (agent("a"))
PERFORM DEL| VERCHANGE(agent ("a"))) ; ssp-receive-req (agent("c"))
PERFORM DEL| VERCHANGE(agent ("b"))) CONTROLLER(eController)
PERFORM DELI VERCHANGE(agent ("¢"))) ; a(7)

PERFORM MULTI CAST- TEST) ; ---no key has been generated b(7)

PERFORM MULTI CAST(agent ("c"), group("G'))) c(3)

| ocal conf (agent ("a"), regconf (sProcSet (agent("a"))
. . sProcSet (agent ("b")) sProcSet (agent("c")),7))
Since no key has been generated, the agent athdghers |ocal conf (agent ("b"), regconf (sProcSet (agent ("a"))

the key establishment protocol asynchronously. However, t sProcSet (agent ("b")) sProcSet (agent ("c")), 7))
. | ocal conf (agent ("c"), regconf (sProcSet (agent("a"))
other members of the group are not aware of it and thus sProcSet (agent ("b")) sProcSet (agent ("c")), 7))

the agent at host blocks indefinely. Furthermore, any others-g-rouprmnbsetl | st (agent (~a") , 5O oUPASSOCNBIDSSt LI St Set (

member that tries to send a message will also block and N@roupassocrenbset 1 i st (group("G'),

membership change will alleviate this situation, as we @ s SAssocMenbSet Li st (assocmenbset (sAgent Set (agent ("a"))
sAgent Set (agent ("b")) sAgent Set (agent ("c")), keyid(0))))))

in the following excerpt. sgroupnenbset | i st (agent ("c"), sG oupAssocMenbSet Li st Set (
groupassocnenbsetlist(group("G'),
result State: ENABLED(MULTI CAST(agent ("b"), sAssocMenbSet Li st (assocnenbset (sAgent Set (agent ("a"))
privat egroup(agent ("c")))) sAgent Set (agent ("b")) sAgent Set (agent("c")), keyid(0))))))

net wor k(sProcSet (agent ("a")) sProcSet (agent("b"))
sProcSet (agent("c")))
freshconf (5)

VI. EXPERIMENTAL EVALUATION

fresh(0)
freshkeyi d(0) Although symbolic execution allows us to investigate derta
CONTROLLER(WAl TFOR(MULTI CAST(agent (" b") , scenarios that might be hard to generate in an experimesttal s

privategroup(agent("c")))): ting, quantitative information is needed to evaluate hoacpr
v o _ tical and effective our generic optimizations are. In orter
. .Th? blocking is caused by the lack of a synchronizgdeasure the overhead of adaptation,without re-implementi
initiation of the key agreement protocol (GDH2). Usuallyne specification, we developed a Maude API to systematicall
the membership change message serves as a synchronizgtigit|ate Maude commands into OTcl/C++ and enhanced
barrier that forces everyone to update the membership afd NS2 simulation framework to take commands from the
generate (pr retrie\{e) a key for the new view, but in case lagys,de engine via the API. This gives us the opportunity
key establishment is selected, we need a way to tell everyqfespecify and plugin different network topologies, mdigili
that a new key needs to be build (or retrieved) immediatelyng client connectivity models in NS2, without modifying
Furthermore, it is pos;ible that member_s try to send a message specification (and high-level algorithms) in Maude. Blor
almost at the same time and try to trigger more than onpgecisely, a thin hookup client in NS2 reports configuration
the key establishment protocol. We solved these issues dhanges to Maude via an action token. Since every action is
broadcasting dorce-keymessage everytime a new or cachegssociated to a rule in the specification, received tokeses st
key is needed for the current view. Once a member receiM@g symbolic execution, allowing the specification to retact
this message, it moves from theecurestate tocascading- the underlying network changes. Therefore, the integnatio
membershipstate and the key establishment protocol execprassical network simulation and formal specificationsvad

tion proceeds normally. In order to avoid multipferce-key s to formally model, observe and evaluate different typfes o
messages sent by different members almost at the same tigi&amic peer group systems.

we allow only one multicast of force-keymessage in a view.

The following excerpt shows the final state of the systerimulation Environment Setup

After successfully generating a new key, the message was sefln our model, we assume that clients communicate with

and then received by all members. Similarly to our previoysch other as long as they do not move out of each other’s

example, the agent at hostdisconnects, the agent at h@st {ransmission range and that only one group is active in the

left the group and the agent at hasts a singleton group. petwork. We model join and leave events using a negative ex-

It is noteworthy to mention that only one key was generatgfhnential distribution with parameters\jand |-\, respectively.

in 7 view changes, as we can witness by inspecting the loggnjjarly, we use a Poisson distribution with parameten to-

configuration and the associated membership-keyid list. model message requests from the application and a Weilbull

result State: network(sProcSet (agent("a")) fa!lure rate function with parameters and 5 to model node
sProcSet (agent ("b")) sProcSet(agent("c"))) failures.

freshconf (8) The simulations were performed using three network den-

operational (agent("a")) . .
oper ati onal (agent ("b")) sities (sparse, medium and dense) and two commonly used

mobility models (Random-Waypoint and Gauss-Markov). The Exploring Scalability: Figure 3 shows our initial scalabjiﬁty
network densities consists of 29, 149 and 271 nodes, respegsults in a dense network using the Gauss-Markov model. We
tively. All the scenarios share the following input paraeret observe that achieving scalability is difficult due to freqt

A =10, IFA =10, m# = 2, a = 1 and 8 = 2. Initially, configuration changes caused by temporary partitions and
20 members using an IEEE 802.11 radio and MAC modslerges.
with random transmission ranges between 150m and 25~

and 1Mb of available bandwidth are randomly distributed i

a simulation space of 1024x1024 square meters. The nc ekeyecaching “a-lazpkby -elazyhcaching
velocities are chosen from the interval 5-10 m/s and a spe
standard deviation of 0.5. The nodes change speed and 60000 -
rection every 2.5s and the standard deviation for the an(
is /4. For the Random-Waypoint model, 7 attraction point
were added. Each point had an attraction intensity takemn frc
the interval 5-10, with a standard deviation of 20 and a unifo
probability of pausing at the attraction point of 0.75. lder
to obtain meaningful results, we repeated each scenario 10000 -
times, aggregated and averaged the obtained results. 0 4

50000 ~
40000 ~
30000 -
20000

Message Overhead

0 100 200 300 400 500
Time

We start by measuring the the performance of our generig. 3. Scalability of generic optimizations: Message overhead fo
optimizations using EVS semantics as compared to the syay establishment in a dense network using the Gauss-Mankalel.
chronized (VS semantics) version used by Secure Spread
under failure-free scenarios. Next, we allow node failund a
recovery, as well as intermittent disconnections, whicate VIl. CONCLUDING REMARKS
patterns of membership changes. While the system keep®ur effort to develop a formal specification of a secure
track of every group member, we report partitions and mergé€S was twofold. First, we obtained a mathematically sat-
on an aggregate basis to study the behavior and dynamgfactory and concise description that models the behavior
of the group as a whole. This allows us to evaluate traf the system. In addition, we found subtle bugs that broke
overall messaging overhead produced by the key establishm@essage ordering guarantees. Second, the formal speaificat
protocol and the total number of keys generated. was integrated into a classical network simulator and used a

Basic Results:Figure 1 compares the overall messaging tool for testing alternative designs, semantic guarantaed
overhead produced by the execution of the key establishmertensions in functionality without the need to carry-auit-f
protocol in failure-free scenarios in four different mod€k) fledged implementations.
eager-VS: full-blown rekey on every membership or configura In this paper we have focussed on two dimensions of
tion change using VS semantics, (2) key-caching using EVigh-level adaptability in group communication, namelysy
semantics, (3) lazy-key establishment using EVS semantatsony and security, as opposed to low-level adaptabilfty o
and (4) lazy+caching: a combined use of key caching atite underlying communication protocols, which we leave as
lazy key establishment using EVS semantics. In gener@lture work. We have explored several solutions and built
we observe that the EVS semantics has better messagindormal prototype to validate our ideas and explore the
performance than VS semantics since does not require spmeperties of the new design. We have emphasized adapt-
chronization barriers in the form of flush acknowledgementability, because there is no one-size-fits-all solutioregithe
This reduces both the number of messages sent and deldiysrsity of application requirements that we are concerne
induced by waiting time. with. We developed adaptation parameters that allow us to

Impact of Failures and Transient Partitiongigure 2 shows tailor (dynamically) the communication framework to sfieci
the overall messaging overhead produced by the four differapplication requirements. In the synchrony dimensionugso
modes in prone to failure scenarios. Not surprisingly, theith different degrees of synchrony can coexist given that
Random-Waypoint model in a medium network density shovesery group specifies its synchrony (VS or EVS), members can
a high level of burstiness in membership changes due to participate in several groups with different synchrony e®d
peated disconnections and failures at the attraction p¢den- simultaneously. In the security dimension, each groupifpsc
ter figure). The same pattern of failures and disconnecfionsthe degree of laziness of the key establishment protocathwh
the Gauss-Markov model produces a high messaging overheadot entirely independent of the degree of synchrony sadec
in the VS mode, but does not impact the performance of t(i¢ eager keying will trigger a rekey after every membership
EVS modes (left figure). However, the same pattern of falurehange; (ii) key caching will reuse previous cached keys
and disconnections in a sparse network scenario createsta saccordingly; and (iii) lazy keying will delay rekeying uht
lived subgroups. Thus, the difference of performance betwemessage needs to be send. It is noteworthy that our appr®ach i
key caching and eager-VS are the flush messages. entirely generic in the sense that it is independent of the ke

Experimental Strategy and Results

—e—eager-VS —— key-caching —s—lazy-key —+ lazy+caching

350 4
300 A
250 4
200 4
150 A

Message Overhead
Message Overhead

100 A
50 4

0
2400

N

ol

2600

2800

Time

Fig. 1. Message Overhead for key establishment and generic optiois
Waypoint model in a medium density network).

T T
3000 3200

16

—e—eager-VS ——key-caching —=—lazy-key ——lazy+caching

800 +
600 ~
400 +
200 | fr
,H ot s matagg
0 T]
2200 3200 4200
Time

(eft: Gauss-Markov model in a sparse netwdRight: Random-

—+-eager-VS —+key-caching —=-lazy-key —+lazy+caching —+—eager-YS ——key-caching =+

lazy-key —-lazy+caching —+-eager-VS —+key-caching —+-lazy-key —+lazy+caching ‘

250 4
800 -
T 200 o
8 8
£ %5007
9 150 4 3
g 9
[} -
B 40 | 3400
@ b
e v
2 50 2200 -
¥ 5
0 T T 0

200 A

T 150

(] 7

§ /

5 !

gmo— //

]

il /
s % L

T
500 1000 1500 1000

Time

2000 2500 3000 500

Time

T i "
1500 2000 1350 2350

Time

Fig. 2. Message Overhead for key establishment and generic optimiis in prone to failure scenariokeft: Gauss-Markov model in a
medium density networlkCenter: Random-Waypoint model in a medium density netwdright: Gauss-Markov model in a sparse network).

establishment protocol and the implementation of the group]
communication system.

Possible directions for future work include further geeri 5
optimizations for key management and secure multicasting,
dynamic access control for a high-level enforcement of se-
curity requirements, adaptability to support group commus=
nication in mobile environments, and adaptability to QoS
requirements such as timeliness constraints. [7

S

]

ACKNOWLEDGMENTS (8]

This research was supported by the Office of Naval Re-
search under MURI Research Contract N00014-02-1-0718]
We would like to thank Grit Denker for her collaboration ireth
specification of Secure Spread, and Yair Amir, John Schul{zg]
and Gene Tsudik for various discussions in this context.

REFERENCES [11]
[1] Y. Amir, C. Nita-Rotaru, J. Stanton and G. Tzudik, “Seeupread:
An Integrated Architecture for Secure Group CommunicgtidBEE
Transactions on Dependable and Secure Computing 2(3), 2005.
0. Rodeh, K. Birman, M. Hayden, Z. Xiao and D. Dolev, “Engge
Security,” Cornell University, Tech. Rep. TR98-1703, 20D@partment
of Computer Science.
P. McDaniel, A. Prakash and P. Honeyman, “Antigone: AxiHk
Communication for Secure Group Communication,”Aroceedings of
the 8th USENIX Security Symposiuh®99.

[12]
(2]

[13]
(3]

[14]

K.P. Kihlstrom, L.E. Moser and P.M. Melliar-Smith, “Th8ecureRing
Protocols for Securing Group Communication,” IBEE 31st Hawaii
International Conference on System Sciend&98.

] M. K. Reiter, “Secure Agreement Protocols: Reliable @&idmic Group

Multicast in Rampart,” in2nd ACM Conference on Computer and
Communications Security1994.

“The Keyed-Hash Message Authentication Code (HMAC) No.
FIPS 198, National Institute for Standards and Technolog8902.
[Online]. Available: http://csrc.nist.gov/publicatisfips/index.html

Y. Kim, A. Perrig and G. Tsudik, “Communication-efficieroup Key
Agreement,” inIlFIP SEC 2001 2001.

M. Steiner, G. Tsudik and M. Waidner, “Key Agreement in fymic
Peer Groups,” IHEEE Transactions on Parallel and Distributed Systems
2000.

A. Fekete, N. Lynch and A. Shvartsman, “Specifying andngsa
Partitionable Group Communication Service,” i6th Annual ACM
Symposium on Principles of Distributed Computid§97.

S. Floyd,V. Jacobson, C. Liu, S. McCanne and L. Zhang,Réliable
Multicast Framework for Light-weight Session and Applioat Level
Framing,” in IEEE/ACM Transactions on Networking, (5):784-803
1997.

Y. Amir, Y. Kim, C. Nita-Rotaru, J. Schultz, J. StantondaG. Tsudik,
“Secure Group Communication Using Robust Contributory Keyee-
ment,” in IEEE Transactions on Parallel and Distributed Syste2304.
R. van Renesse, K. Birman and S. Maffeis, “Horus: A AMxiGroup
Communication SystemCommunication of the ACMol. 39(4):76-83,
1996.

L. E. Moser, Y. Amir, P. M. Melliar-Smith and D. A. Aganka
“Extended Virtual Synchrony,” inl4th International Conference on
Distributed Computing System$994.

Y. Amir and J. Stanton, “The Spread Wide Area Group Comitation

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

System,” Johns Hopkins University, Tech. Rep. TechnicgddReCNDS-
98-4, 1998.

Y. Amir, D. Dolev, S. Kramer and D Malki, “Transis: A Comumication
Subsystem for High Availability,” in22nd International Symposium on
Fault-Tolerant Computing SystemE992.

Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. Agarwal ani. Ciarfella,
“The Totem Single-Ring Ordering and Membership Protociol, ACM
Transactions on Computer Systert995.

Y. Amir, G. Ateniese, D. Hasse, Y. Kim, C. Nita-Rotaru,Schlossnagle,
J. Schultz, J. Stanton and G. Tsudik, “Secure Group Comratioitin
Asynchronous Networks with Failures: Integration and Eipents,” in
20th International Conference on Distributed Computingt8&ss 2000.
M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-@lj J. Meseguer
and C. Talcott, “The Maude 2.0 System,” RRewriting Techniques
and Applications (RTA 2003yer. Lecture Notes in Computer Science,
Robert Nieuwenhuis, Ed. Springer-Verlag, June 2003, pp876

J. Meseguer, “Conditional Rewriting Logic as a Unifiedotiél of
Concurrency,” inTheoretical Computer Science 96(1):73-18992.

J. Schultz, “Partitionable Virtual Synchrony Using tBrded Virtual
Synchrony,” Master Thesis, Department of Computer Sciedoéins
Hopkins University, 2001.

C. Talcott, M.-O. Stehr and G. Denker, “Towards a For@pécification
of the Spread Group Communication System,” 2004, websitig:/h
formal.cs.uiuc.edu/stehr/spreamg.html.

Y. Kim, A. Perrig and G. Tsudik, “Simple and Fault TolataKey
Agreement for Dynamic Collaborative Groups,”ith ACM Conference
on Computer and Commmunications Secur900.

17

