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Abstract—Efficient resource allocation is crucial in many
domains, particularly in senior care, where assigning resources
to older adults must consider uncertainties associated with
vulnerable populations. In collaboration with Senior Health
Facilities (SHFs) and domain experts, this paper presents iFair, a
novel framework designed to assist decision-makers in equitably
allocating scarce resources to older adults. iFair was prototyped
in the context of ongoing work on a data exchange platform,
CAREDEX, used for enhancing older adults’ resilience during
disasters. A key novelty of iFair focuses on aligning resident
preferences with resources in urgent situations, expediting care,
and enhancing task efficiency. We integrate static and dynamic
environmental data, including facility layouts and sensor data,
with detailed resident profiles to cater to the individual needs and
preferences of residents. While our framework primarily focuses
on allocation within facilities, it also extends to a regional scale
to support the planning and transfer of seniors to mutual aid
facilities. Our experiments adapt data from a real SHF to emulate
resource allocation in an emergency fire evacuation setting and
highlight the delicate balance that decision-makers can achieve
between efficiency and fairness.

Index Terms—fairness, resource allocation, senior health care,
decision-making.

I. INTRODUCTION

Scheduling in human-centric processes, especially in senior
care settings, involves aligning limited resources with high
demand, a challenge critical for timely care in healthcare
and emergency services. Hence, efficient scheduling is key
to managing staff shortages in senior health facilities (SHFs),
reducing hospital wait times, and ensuring prompt emergency
response [1], [2]. Domain experts highlight that senior care
resource allocation often targets staffing and staff time distri-
bution [3]. The COVID-19 pandemic highlighted the magni-
fication of equitable resource allocation challenges, leading
to a comprehensive review by the Agency for Healthcare
Research and Quality (AHRQ) and encouraging new research
into shortages of equipment, medication, and staff [4]–[6].
Along with disparities in COVID-19 vaccine distribution,
this accentuated the need for equitable resource allocation,
especially as mortality rates among seniors soared with limited
critical medical resources like ventilators and ICU beds [7],
[8]. Conventional resource allocation guidelines and meth-
ods may fall short in human-centric situations, especially in
scenarios requiring urgent decision-making. For example, in

a hypothetical fire evacuation setting, new caregivers may
choose whom to evacuate at random, leading to wasted time
and effort. However, prior knowledge of residents’ needs and
preferences could facilitate this process, motivating the need
for informed resource allocation strategies in emergencies.

Older adults, including those with disabilities or physi-
cal limitations, often face challenges in accessing essential
healthcare services due to resource scarcity. However, current
resource allocation methods offer broad solutions, lacking the
fine-grained personalization needed for optimal care. Hence,
there is a need for a novel approach that is fair, considers
the complexities of the environment, and the dynamic state
of the residents, accounts for their preferences, and adapts to
changes in real time. iFair incorporates those by leveraging
detailed resident data, including their Activities of Daily
Living (ADLs), to support decision-makers and stakeholders.

Allocating resources to older adults must involve consid-
erations like individual needs, resource availability, and care
urgency, making fair distribution challenging. Decisions must
balance fairness and efficiency, significantly impacting lives.
Emergency situations add pressure for swift decision-making,
complicating the assurance of optimal choices. At the re-
gional level, resource allocation becomes even more complex,
especially during evacuations from disasters. Various factors
must be considered, including in-facility conditions, resident
relocation, resource availability at mutual aid facilities, real-
time traffic, and other special needs. Our experiences with
wildfires and earthquakes in California have informed our
approach, detailed in our discussion on using relocation tools
for regional allocation in - §9. Key contributions include:

• A mathematical model to capture a digital twin representa-
tion of a SHF, i.e. facility, residents, resources, etc - §III-A.

• A new definition of fairness for equitable resource allocation
which considers human needs and preferences - §III-B.

• A novel framework for fair senior care resource allocation
that integrates expert insights and our experience with SHFs.
Under this framework, we propose a task-based assessment
method for scoring and prioritizing older adults - §IV.

• A detailed evaluation of our framework using an emulated-
based approach with data adapted from a real SHF - §V.



II. RELATED WORK AND LIMITATIONS

In this section, we review related literature for efficiency
and fairness in resource allocation methods and highlight the
limitations of such approaches in addressing the specific needs
of vulnerable, dynamically changing populations.

Resource allocation has been studied in many settings such
as economics [9], education [10], and transportation [1]. These
works primarily focus on the efficiency of allocation and opti-
mize metrics for completion time [11] and resource usage [12]
under varying conditions. In healthcare, resource allocation
typically consists of assigning human (e.g., nurses, doctors)
and equipment (e.g., beds, wheelchairs) resources to residents
and patients. In the context of hospital systems, this has led
to metrics such as hospital bed occupancy rates (BOR) and
patient length of stay (LOS) [13]. Early work in this context
has leveraged solutions from other optimization problems,
including makespan [11], MULTIFIT [14], and TSP [15].
These solutions rely on heuristics [14] and evolutionary al-
gorithms [16] for their speed of computation and simplicity,
as well as mixed integer linear programs [13] to optimize BOR
and LOS. However, for senior health care, these approaches
struggle to accurately model complex/dynamic interdepen-
dencies (e.g., changing and long-term medical conditions of
patients) and the needs of older adults without requiring
extensive constraints. The interdependencies between specific
resources (a specific caregiver) and a resident influence the
feasibility and efficacy of tasks. Recent efforts have explored
queuing theory [17] and Markov decision processes [1], [2]
to address different system dynamics; however, they lack
consideration for preferences and the multifaceted needs of
patients and may become complex.

When resource allocation involves real people, it becomes
increasingly vital to consider the issue of fairness and its
trade-offs with efficiency [18]. Several definitions for the
concept of fairness in healthcare have emerged in literature,
characterized by the distribution of resources to residents and
the degree to which they satisfy individual health/well-being
needs. For instance, proportional fairness [19] aims to allocate
resources proportional to each resident’s needs, while max-min
fairness [20], [21] looks to maximize the minimum resource
share among residents. Other efforts have considered more
complex settings with multiple resources and heterogeneous
requests [22], as well as sets of desirable properties, e.g.,
envy-freeness [12] and pareto-efficiency [19], [22]. A recent
study [23] also identified several key criteria for prioritizing
residents/patients and considers how sickness, prognosis, and
waiting lists should be utilized while allocating resources to
minimize waiting/evacuation time. In our work, we leverage
max-min fairness to allow equal opportunities for resource
access based on these needs.

In dynamic environments, e.g., emergencies, the resource
allocation problem must consider the impact of time alongside
efficiency and fairness [22], [24]. Traditional approaches rely
on scheduling strategies such as shortest job first [25], round
robin [26], and priority-based schemes [23], [26], [27]. How-

ever, these methods discard considerations of preference and
the specific needs of residents and patients. Efforts for a more
realistic representation of healthcare settings have considered
bottlenecks in resources [28] and patient urgency [29], but rely
on manual appointment scheduling for a larger timescale. For
emergencies that run under shorter timescales, such scheduling
becomes impractical. To address this, iFair presents a cus-
tomized strategy that considers the inherent uncertainties in
an emergency, along with the dynamic states of vulnerable
populations, including their distinct needs, preferences, and
immediate circumstances.

III. PROBLEM FORMULATION

A. Modeling Key Components

This paper tackles the challenge of fair resource allocation
for older adults in senior care facilities. We model the static
and dynamic elements of a senior care facility, and the
resources and tasks requiring allocation to residents. Then,
we characterize the event and allocation processes.

1) Facility: We model a facility as a graph G = (V ,E)
where nodes vi ∈ V represent different areas (e.g., rooms,
nurse’s office) and weighted edges eij ∈ E denote a pathway
between vi and vj with travel time ωij . We denote two key
areas in the facility: exits vExit and an evacuation area vEvac.
The dynamic state of a node vi is captured by state(vi, t)
representing the condition of vi at time t, which can be one
of {Impacted, Clear, Unknown}. This is used to pinpoint
emergency sites and their proximity to residents. We also
model the traversal delays using access(vi, t), which could
occur in an emergency (e.g., due to smoke, or narrow exits).

2) Resources: We consider two types of resources: hu-
mans such as nurses and firefighters, and equipment such as
medication and wheelchairs. Human resources hi ∈ H are
characterized by a headcount Ci and skill-set Si. We model
Si as a tuple of personal attributes (e.g., gender) and skills
defined in the O*NET resource center skill ontology [30],
which includes certifications (e.g., basic/critical care) and
abilities (e.g., mobility aid). Equipment resources, ei ∈ E are
characterized by their quantity qi, reusability ri and type γi.
In our context, we define reusability to distinguish between
single-use items (e.g., syringes, medication) and multi-use
items (e.g., portable tanks). The type of equipment resource
defines its purpose and capabilities, e.g., a wheelchair is used
for mobility and can be manual or electric. For our allocation
problem, we also consider the real-time location loc(·, t) and
status avail(·, t) of human and equipment resources.

3) Tasks: We support a set of tasks τi ∈ T with de-
pendencies denoted by TD, such as in Fig. 1. Tasks range
from relocating resident or resource entities (which we denote
abstractly as X ) to specific facility locations move to(vi),
to managing entities via get entity() and release entity().
The core tasks, color-coded in blue in Fig. 1, involve providing
basic and/or critical care. Denoted as provide basic care()
and provide critical care(), they range from ADLs such as
dressing and toileting to more advanced medical needs.



Fig. 1. Task Dependency Graph.

Each task is defined by its name N , entities involved
X , and the resources needed Req(E ,H). We model the
changing conditions of an emergency through task updates
task update(τi,X , t). We define the overall task completion
time in Eqn. 1, which encompasses the path traversal times
ωe , delays for space access access(·), and additional time
incurred for allocating a resident’s non-preferred resources
λp (described later). To optimize task execution, Dijkstra’s
shortest path algorithm is employed.

TTC() =
∑
e

ωe +
∑
v

access(vi, t) + λp,∀e,v ∈ G (1)

4) Residents: Let Pi ∈ P denote residents in the senior
care facility. Each resident is characterized by a 3-tuple
{B,D,F}, denoting basic attributes (e.g., name, gender, age,
DOB, room), their diagnoses (e.g., dementia, arthritis, obesity,
etc.), and preferences for specific resources. In our model,
preferences are quantified on a numerical scale ranging from
−5 (strong dislike) to +5 (strong preference). Table I indicates
these preferences for basic care tasks. This scaling allows
us to measure the impact on task efficiency and residents’
satisfaction. Positive values indicate resources that enhance
operational performance, while negative values increase task
completion time; directly reflecting the operational costs of
utilizing less favored resources.

A resident’s satisfaction level LS() is the sum of their
preferences Fi, for all resources used in a task τi, i.e.,
LS() =

∑nPi
i=0 Fi, where nPi

is the number of resources
allocated to resident Pi. The extra time λp, for using less
preferred resources is computed from summing negative Fi

values, i.e., λp = −
∑

αi · min(0,Fi). αi quantifies how
much a preference impacts task efficiency. For an emergency
scenario, let the criticality score Cscore, assess the urgency
of residents’ needs based on a set of important attributes I
with corresponding weights ωa. We track changes in resident
conditions (e.g., head injury from falling) using a health
report form HRF and adjust attribute weights and necessary
resources which are described later in §IV-A. A resident’s
location is captured using loc(Pi, t); we assume that residents
have expected locations at specific times, as depicted in Fig. 2.

Fig. 2. Resident Expected Location.

TABLE I
RESIDENT PREFERENCES FOR BASIC CARE.

Joe Mary Bob Carol Don
h1 +5 -5 0 -4 0
h2 +2 -3 0 -1 0
h3 -5 +3 0 +4 0
e1 0 0 0 +5 0
e2 0 -1 0 -2 -5

Consider a resident, Joe, who requires two-person assistance
and equipment e2 (See Table I). If he was assigned resources
h2, h3, and e2 under impact rates αh2

=3, αh3
=2, and αe2

=4
(in minutes per Fi), we find that λJoe=10 extra minutes,
and LS(Joe)=−3, suggesting slight dissatisfaction with his
allocated resources.

5) Event and Allocation: Our analysis prioritizes urgent
events like fires that require immediate action. An event is
defined by its starting point, with vo=loc(event, t=0), and its
propagation, prop(vi, vj) within the facility, which increases
edge weights ω near the affected nodes. Allocations A are
denoted by {Pi, hi || ei, ts, te}, indicating that a resident Pi

is allocated a resource hi or ei during time period (ts, te).
Notably, resources assigned to the same task might start
simultaneously but end at different times, such as a nurse
and a consumable (medication). We also note that the human
resource count in senior facilities is much lower than that of
residents, i.e.,

∑|H|
i=1 Ci <<

∑|P |
j=1 Pj .

B. Problem Statement

In our model, fairness is defined as the balance between
prioritizing urgent resident needs, reflected by criticality scores
Cscore, and achieving equitable satisfaction levels LS() across
residents. This dual objective ensures resources are initially
allocated to those in immediate need based on their conditions
and needs while striving to meet the satisfaction of all residents
uniformly. Yet, emergencies introduce a balance challenge
between fairness and efficiency; for instance, during a fire,
swift evacuation might override individual preferences for
everyone’s safety. Hence, fairness is prioritized without com-
promising urgent safety measures, leading to the formulation
of the fair resource allocation problem as shown in Eqn. 2.

min
∑

(ω1 · λp − ω2 · LS()) (2a)

subject to λp =
∑
|Fi| × αi,∀Fi

< 0 (2b)

LS() =
∑nPi

i=0
Fi (2c)

ω1 + ω2 = 1 , 0 ≤ ω1, ω2 ≤ 1 (2d)

This corresponds to a multi-objective optimization problem
with two objectives where one consists of accomplishing
efficiency by minimizing

∑
Fp, incurred when assigning non-

preferred resources to residents and achieving fairness by
maximizing

∑
LS(), the residents’ satisfaction. ω1 and ω2 are

the efficiency and fairness weights respectively. For instance,
setting ω1 = 0.4 and ω2 = 0.6 indicates a greater emphasis
on fairness over efficiency in the allocation.

Theorem: Our fair resource allocation problem is NP-Hard.
Proof : We demonstrate its NP-Hardness by reducing from the
makespan optimization problem, a classic NP-Hard problem



in scheduling theory. Consider an instance of the makespan
problem with n jobs and m machines, where each job i has a
processing time pij on machine j. We construct an analogous
instance of our resource allocation problem as follows; each
job corresponds to a resident, and each machine to a resource
(either human or equipment). Let pij = TTC() represent the
processing time of resident i when assigned to resource j.
In the simple case of identical machine scheduling problems
where the processing time of each job is the same on each
machine, minimizing the weighted average completion time is
NP-hard by reduction from the Knapsack problem [31]. Even
if there are only two machines, the problem remains NP-Hard
by reduction from the partition problem [32]. In our resource
allocation problem, the processing times are unrelated. For
instance, machine i could have pij > pij′ , while machine i′

could have pi′j < pi′j′ . This corresponds to an instance of
the unrelated parallel machines scheduling problem where the
objective is to minimize the makespan (Eqn. 3).

min
n∑

j=1

pijxij ≤ Cmax (3a)

subject to
∑
i=1

xij = 1, ∀ij ∈ {0, 1} (3b)

Our reduction from the well-established NP-Hard makespan
problem shows that our resource allocation problem is at
least as complex as the makespan problem. Consequently, our
problem inherits the NP-Hard classification. In the subsequent
section, we outline our methodology for achieving fairness.

IV. IFAIR APPROACH

A. Overview of iFair Approach

We prototyped the iFair framework in the context of CARE-
DEX: a data exchange platform that aims to enhance the
resilience of older adults in aging communities. We assume
the availability of static healthcare and dynamic smart space
information about residents; sensors embedded in the space are
used to collect data about residents’ location and movement
[33]–[35]. Information from health records and caregiver logs
can provide additional data about health and ADLs to create
a comprehensive picture of each individual’s needs. This
information is then shared with other stakeholders including
first responders, family, and caregivers [36]. Fig. 3, provides
an overview of key components in the iFair framework.

(a) Physical Infrastructure and Occupants: First, we collect
data about the residents and resources in the facility using a
variety of records and sensors for localization and tracking,
such as motion sensors, emergency call buttons, and Wi-Fi
sensing. Note: Indoor localization is not the main focus of
this paper; however, through the CAREDEX project, we have
conducted multiple drills that allow us to approximate the
location of participants. Thus, we have some real-world expe-
rience in this area. All data collection complies with the Health
Insurance Portability and Accountability Act of 1996 (HIPAA)
regulations, utilizing encryption and data anonymization to
ensure the privacy and security of resident information [34]
(out of scope for this paper).

Fig. 3. Overview of the iFair Framework.

(b) Resident/Resource Database: Next, we store and analyze
this data to gain insights about the residents. We also use
the database for storing the residents’ medical profiles and
ICD-10-CM (International Classification of Diseases, Tenth
Revision, Clinical Modification) [37] coding data including
real-time regional information about mutual aid facilities (e.g.:
number of beds or oxygen units available).

(c) Dynamic Assessment Module: We use this module to
assess the residents and update their criticality scores, a
measure of their wellness and needs. Furthermore, we cluster
the residents into three groups based on their criticality. This
module also handles real-time changes that affect the priority
of residents. e.g.: if a resident classified as low-priority based
on criticality is injured during an evacuation, we reassess them
and update their criticality score.

(d) Resource Allocator: Based on all known information,
this module assigns the resources (see Alg. 3). Overall, this
framework can serve a range of purposes such as facilitating
the evacuation of residents, improving the distribution of
vaccines during an outbreak, and enabling swift relocation of
residents in the face of a natural disaster.

B. Task-Based Assessment and Scoring

We collaborated with geriatric experts at the University
of California Irvine (UCI) to explore leading assessment
tools for evaluating older adults. This exercise led to the
adoption of the ICD-10-CM system for resident assessment
and scoring. The ICD-10-CM, developed by the Centers for
Disease Control and Prevention (CDC) and based on the World
Health Organization’s (WHO) alphanumeric disease classifica-
tion codes, is widely used in the U.S. healthcare system for
disease classification. In line with HIPAA regulations, health-
care professionals use these codes for patient assessments,
assigning risk scores for various purposes such as determining
care levels, classifying healthcare services and pricing, and
assessing cognitive and mobility functions among older adults.
Assessments are performed when a resident is admitted to
a facility, quarterly, and annually. In addition, residents are
assessed whenever they experience a significant change in
status, and whenever the facility identifies a significant error
in a prior assessment.



Algorithm 1: Offline Criticality Score Assessment
Input: Residents P , Important attributes I , Desired attribute

value vα, Weight of attribute ωα

Output: List of Criticality Scores
1 List Cscore ← ∅
2 for resident in P do
3 Cscore ← 0 // to update using ICD-10-CM
4 for Di ← resident.diagnoses do
5 Cscore ← Cscore + hcc val(Di)

6 Cscore ←
∑

α∈I ωα ·HCC valueα, ∀α=vα

7 Add Cscore to List Cscore

8 return SortDescending(List Cscore)

a) Offline Criticality Score - (computed apriori based
on medical profile): For evaluating residents’ physical con-
ditions, we analyze attributes from their medical profiles,
employing a risk-adjustment model to calculate their Risk
Adjustment Factor (RAF) scores. This study adopts the Hierar-
chical Condition Category (HCC) model [38] for this purpose.

Consider a resident with a severe head injury coded as
T31.11, equating to an HCC value of 0.486. Adding dementia
increases their score by 0.346. A BMI between 40.0-44.9
adds another HCC value of 0.25. Summing these values gives
Cscore = 0.486 + 0.346 + 0.25 = 1.082 (refer to lines 4-
5 of Alg. 1). This method is applied to all residents, noting
that those with a score over 1.0 are regarded as having severe
health issues. During an urgent evacuation, attributes like the
weight of a resident and their ability to move independently
are crucial. To address this, we define important attributes I
and desired values vα, e.g., I = {BMI,Ambulatory} with
vBMI > 25 for overweight, and vAmbulatory = False for
mobility issues. A set of weights is then applied to emphasize
these attributes’ importance. Consequently, residents matching
these criteria have their HCC values adjusted, thereby updating
their criticality score as outlined in line 6 of Alg. 1. This
adjustment yields a weighted Cscore, our measure for offline
criticality.

b) Online Criticality Score - (computed in real-time
based on event urgency): During emergencies, criticality
scores are updated to reflect the urgency of care needed
by residents, as outlined in Alg. 2. In a fire scenario, for
instance, a resident’s criticality score is modified based on
their closeness to the fire, enabling a reevaluation of their

Algorithm 2: Online Criticality Score
Input: P , G , List Cscore

Output: List Cscore

1 vo ← G .loc(event, t = 0)
2 for Pi ← P do
3 dP

i
← ShortestDistance(loc(Pi, t), vo)

4 UP
i
← 1

dPi

// compute urgency

5 U List.add(UP
i
)

6 for UP
i
← U List do

7 Normalized U
′
P
i
=

UPi
−min(U List)

max(U List)−min(U List)

8 Update List Cscore[Pi]← List Cscore[Pi] ∗ U
′
P
i

9 return SortDescending(List Cscore)

priority. This could lead to assigning a higher priority to those
in immediate danger, thus allowing for a dynamic response to
the unfolding situation. By combining the CDC’s established
medical scoring framework with real-time data from sensors
across the facility, we dynamically gauge the new criticality
of each resident.

After assessment and scoring, we allocate resources to
residents as shown in Alg. 3, cycling through sorted criticality
scores to match residents with tasks, which involves setting
task names (e.g., provide basic care()), identifying depen-
dencies, and determining necessary resources with preferences
(lines 3-6). We assign preferred resources within dmax and
to avoid starvation, any human available resource (lines 7-
12). Then compute task completion times and satisfaction
(lines 13-14), updating resource states and storing these in
the allocation record (lines 15-21). Additionally, we maintain
a health report form (HRF) where we include residents
experiencing changes in health conditions and use it to update
their criticality scores.

Algorithm 3: Resource Allocation
Input: Online criticality scores List Cscore, Distance

threshold dmax, Health report form HRF
Output: Allocation records AR

1 A ← ∅;AR ← ∅
2 ts ← GetCurrentTime()
3 while ¬ isEmpty(List Cscore) do
4 Cscore ← max(List Cscore)
5 Pi ← GetCorrespondingResident(Cscore)
6 Req,Fi ← GetTaskDetailsAndPrefs(Pi)
7 for rr ∈ Req do
8 r ← GetResource(Fi,max dist = dmax)
9 if r == null // Assign human

10 then r ← NextAvailableHuman() ;
11 A ← A ∪ {(Pi, r, ts)}
12 SetResourceState(r,“in-use”)

// Get Task completion time, satisfaction
13 TTC()←

∑
ωe +

∑
access(vi, ts) + λp

14 LS()←
∑nPi

i=0 Fi

15 for r in A do
16 SetResourceState(r,“unavailable”)
17 if reusable(r) then
18 ts, te ← te, te + TTC()
19 SetResourceState(r,“available”)
20 A ← A ∪ {(Pi, r, te)}

21 AR ← AR ∪ {(TTC(),LS(),A)}
22 if ¬isEmpty(HRF) then
23 for i, sc← GetUpdatedCriticalityScores(HRF) do

List Cscore[i]← sc ;

24 return AR

V. EXPERIMENTAL EVALUATION

Experimental Setup: We evaluated our framework through
emulation, utilizing anonymized data modeled after a real-
world senior care facility in Orange County, USA, including
30 elderly residents’ profiles (age, gender, medical informa-
tion). With input from experts in the Department of Family



Fig. 4. Floor Plan of Small Facility.

Medicine, Division of Geriatric Medicine and Gerontology
at UCI Health, we generated synthetic data for 400 resident
profiles to facilitate larger population experiments. The offline
criticality score was evaluated using the CASAS dataset [39],
featuring real-world data on Activities of Daily Living (ADL),
activity scores, and diagnoses for 400 residents from Wash-
ington State University. We mapped ICD-10-CM diagnoses
to compute scores using HCC coding, based on residents’
medical information. A simulator (written in Python) was
developed to emulate resource allocation within a facility,
incorporating actual floor plans (Fig. 4) from a partner facility.

Experimental Plan: When a disaster strikes, older adults
are disproportionately affected [40]. During this type of event,
the human resources (i.e. medical staff, first responders, etc.)
needed to evacuate this frail population from their SHF to
a safe location are minimal. Hence, we crafted a use case
where rapid evacuation is imperative. We map this scenario
to a parallel machine scheduling problem translating staff to
machines and residents to jobs. Using the formulation in Sec-
tion III, our goal is to reduce evacuation times (i.e. optimize
the makespan Cmax [41]) as well as the residents’ satisfaction.
Accordingly, the key metrics we utilize in our evaluation are
time-to-completion (an efficiency/latency metric) and level of
satisfaction (a fairness metric).

We next discuss strategies that are used as baselines and
comparison points for iFair. Senior care facilities have emer-
gency plans in place that correspond to the following al-
gorithms: Shortest Job First (SJF), which aims to evacuate
residents who can be moved with the least effort and in the
shortest amount of time. This includes those who are fully
ambulatory, require minimal assistance, or are closest to the
exits. Longest Job First (LJF), on the other hand, prioritizes the
most critical residents, requiring the most time and resources
to evacuate. This could include those with mobility issues,
those requiring medical equipment, or residents located in the
most challenging parts of the facility.

To ensure a fair distribution of tasks among staff members,
we also developed a Clustered Round Robin (C-RR) strategy.
Here, each staff is assigned a fixed number/group of residents.
For example, staff and equipment may be assigned to specific
units/floors for a specific period to accomplish the task before
moving on to the subsequent floor. We also developed a
Criticality-aware Clustered Round Robin (CC-RR) strategy

TABLE II
COMPARATIVE OUTCOME WHEN EVACUATING RESIDENTS WITH

PREFERENCES (WP) VS. WITHOUT PREFERENCES (NP).

Priority
Residents

Csc
or

e

LS
-W

P
TTC-W

P

LS
-NP

TTC-NP
λp

H
IG

H

Joe 2.741 5 10 4 10 0
Mary 2.634 5 12 2 27 15
Bob 2.527 6 6 -6 6 0
... ... ... ... ... ... ...

M
E

D

Don 1.813 1 10 -6 18 8
Georgia 1.806 1 12 -6 22 10
Laura 1.799 1 14 -6 18 4
... ... ... ... ... ... ...

L
O

W

Mona 0.708 -1 17 2 18 1
Gennifer 0.601 0 18 2 20 2
Karole 0.0 5 11 -4 15 4
... ... ... ... ... ... ...

which is an improved version of the C-RR technique. CC-RR
consists of assigning resources first to high-priority residents,
then when there are no more residents in that cluster, it pro-
ceeds as C-RR alternating between medium-priority and low-
priority residents for a given amount of time. Let us note that
strict adherence to any single plan could lead to liability issues
based on negligence [42]. LJF policies may overlook urgent
needs for less critical, resource-intensive cases. Conversely,
SJF risks neglecting high-need residents for faster evacuations,
while RR’s fixed order may delay aid to urgent cases.

We use these algorithms to assess the effectiveness and
efficiency of our framework across various facility sizes. By
implementing these in both smaller settings, where resource
constraints may differ, and larger institutions with more com-
plex logistical challenges, we comprehensively evaluate our
approach. This enables us to adapt and refine our strategies,
optimizing evacuation procedures and ensuring equitable care
delivery in diverse operational environments.

Experimental Results: Although the evacuation time for
some residents, like Joe, remains the same (10 minutes)
whether preferences are used or not, indicating that his evacu-
ation is not impacted by any additional time due to preference
settings, most evacuation times observed in scenarios where
resident preferences were considered (TTC-WP) compared
to those where these were not included (TTC-NP), reveal
significant differences, as quantified in Table II. Notably, Mary
experiences a 15-minute increase in evacuation time without
preferences, rising from 12 to 27 minutes. This indicates that
ignoring preferences can lead to inefficient routing or resource
allocation, significantly increasing evacuation times.

Moreover, computating λp across different resident profiles
further illuminates this disparity. This measure quantifies the
additional time or delay potentially incurred when resident-
specific preferences and needs are overlooked. For instance,
Mary’s high λp value of 15 suggests considerable neglect of
her specific needs or location, which is adequately addressed
when preferences are considered, resulting in a more optimized
and faster evacuation process under the TTC-WP scenario.

iFair, particularly in a small facility as shown in Fig. 5,
achieves the lowest variability in satisfaction, with standard
deviations of 0.58 for high, 2.12 for medium, and 2.47
for low priority levels, indicating more equitable satisfaction
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Fig. 5. Residents’ Satisfaction Across Different Approaches for a Small Facility
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Fig. 6. Residents’ Satisfaction Across Different Approaches for a Large Facility

(a)

(b)

Fig. 7. Comparing Average Task Completion Times: (a) Small Facility vs.
(b) Large Facility.

among residents. It surpasses the other methods in terms of
satisfaction spread. The Clustered Round Robin method shows
moderate variability, suggesting the importance of a more
personalized approach.

In larger facilities, as illustrated in Fig. 6, iFair maintains
lower variability in satisfaction, highlighting its effectiveness
and scalability in evacuations that consider resident prefer-
ences. The figure shows that iFair outperforms other methods
by achieving higher satisfaction levels across high, medium,

and low-priority residents. The satisfaction levels depicted in
Fig. 6 for iFair are higher compared to SJF and LJF, especially
for residents of medium and low priority, where the need to
balance resources can often leave these groups less attended in
other models. Even when compared to Clustered Round Robin
(C-RR), iFair demonstrates a more favorable satisfaction pro-
file. In Fig. 7, iFair consistently provides the shortest average
task completion time (TTC) for high-priority residents in both
facilities, demonstrating efficient prioritization. LJF and SJF
show moderate TTCs, indicating less effective prioritization,
while C-RR records the longest TTC, showing a slower
response. Likewise, the efficiency gap between iFair and the
other methods, especially for high-priority tasks in large facil-
ities, highlights iFair’s scalability and effective prioritization.
CC-RR, despite high TTCs, suggests potential scalability close
to iFair’s performance.

The Gantt charts in Fig. 8 indicate that iFair achieves a
68-minute makespan, setting a benchmark. Compared to other
methods, it improves the makespan by 20% over LJF, 35.85%
over SJF, 22.47% over CC-RR, and 37.04% over C-RR. iFair’s
efficiency stems from prioritizing urgency and preferences,
contrasting with methods leading to longer completion times.
Overall, our findings demonstrate that our framework is equi-
table, as supported by the satisfaction of the residents, and it
is also an efficient system.

VI. EXTENSIONS FOR REGIONAL RESOURCE ALLOCATION
AND DECISION SUPPORT

Planning and coordinating resources for distressed seniors
is vital within and across facilities. We explore regional aware-
ness in developing cross-facility resource-sharing strategies for
elderly care, including senior relocation during evacuations.
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Fig. 8. Gantt Charts of Human Resource Allocation, using (a) iFair; (b) Longest Job First; (c) Shortest Job First; (d) Clustered Round Robin; and (e)
Criticality-aware Clustered Round Robin for a Small Facility.

Fig. 9. Relocation Planning Tool

This involves CAREDEX, a dynamic data exchange platform
to share regional resource availability (space/beds, caregivers,
special equipment such as oxygen, dialyzer) and personalized
care needs of relocating individuals for new providers unfa-
miliar with their unique requirements. CAREDEX features an
interactive visualization tool (Fig. 9) for viewing regional im-
pacts and a relocation module for coordinating resources dur-
ing disasters, offering non-technical decision-makers disaster-
specific information such as location, proximity, and severity,
and employing simulation tools like FEMA Hazus for esti-
mating damages. Its frontend is developed using Vue.js and
incorporates Leaflet and Google Maps for mapping, while
the backend utilizes Django REST and stores data in a Post-
greSQL database with GIS capabilities. The backend actively

collects data from various public hazard sources specific to
the hazard type. For earthquakes, it utilizes United States Ge-
ological Survey data [43], including Shakemap for immediate
impact assessment. A HAZUS-based engine estimates building
damage and potential injuries or fatalities. Wildfire information
is provided by the National Interagency Fire Center [44],
assessing fire proximity to facilities. Additionally, the risk to
older adults from wildfires extends beyond physical harm to
increased respiratory risk from smoke exposure, highlighted
by epidemiological research [45].

NOAA’s Hazard Mapping System Fire and Smoke Prod-
uct [46] provides daily smoke plume data, and AIRNOW [47]
offers hourly updates on ozone, PM1.0, and PM2.5 levels,
aiding in relocation decisions. We used CAREDEX’s regional



awareness tool in drill exercises to understand the smoke
spread and air quality impacts from nearby wildfires on
facilities. For earthquakes, it evaluates impacts on senior care
facilities and evacuation sites. CAREDEX integrates data on
healthcare facilities’ conditions, like local trauma centers, to
assess damage at potential relocation sites. It pre-identifies res-
idents’ special needs, matching them with mutual aid facilities’
resources, and offering relocation options.

VII. CONCLUSION AND FUTURE WORK

In summary, this paper highlights the benefits of integrating
residents’ preferences and real-time criticality assessments
in resource allocation for senior care facilities. Leveraging
insights from domain experts and our experience with SHFs,
we proposed a method to assess and score older adults based
on their personal information. Our findings indicate that inte-
grating preferences into allocation algorithms enhances user
satisfaction and operational efficiency, ensuring a balanced
approach to resource distribution. Beyond emergency evac-
uations, the iFair framework is adaptable to non-evacuation
scenarios such as equipment or staff shortages resulting from
unforeseen incidents or disruptions that impact the normal
flow of activities in senior care facilities. This adaptability
enables iFair to prioritize needs and allocate resources effec-
tively, ensuring continuity of care even when mobility is not
required. Such flexibility not only strengthens facility-level
operations but also sets the stage for broader applications of
this framework. Hence, future work will focus on enhancing
resource allocation at the regional scale to facilitate the sharing
of resources across multiple facilities.
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