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ABSTRACT
We develop a Drone-assisted Monitoring system, DOME, that gath-

ers real-time data for situational awareness in emergent and evolv-

ing events. The driving use case for this work is a prescribed burn

event (Rx fire), often used to reduce hazardous fuels in forests.

DOME coordinates the use of multiple heterogeneous drone plat-

forms to support the observation of emergent physical phenomena

(e.g., fire spread) by leveraging domain expert input and physics-

based modeling/simulation methods. We propose an executable

rule-based system for drone task generation; here, a high-level

mission specification utilizes physics-based models for fire spread

prediction and automatically generates detailed monitoring instruc-

tions with locations, periods, and frequency for individual drones.

DOME integrates algorithms for task allocation (mapping tasks

to drones) and flight path planning while considering trade-offs

between sensing coverage and accuracy. In addition, DOME will

guide in-flight drones to store and upload data under challenged

communication settings (out of transmission range, external sig-

nal blocking by trees). We evaluate the performance of DOME in

real events (with expert-developed burn plans for a forest in North

America). We test the applicability of the DOME system using simu-

lated Rx burns at the Blodgett Forest Research Station and evaluate

our proposed algorithms by comparing their performance with

multiple baseline algorithms. Our experiments illustrate the effec-

tiveness of the composite mechanisms in DOME that outperforms

other approaches with higher rewards (capturing data of higher

quality) and coverage (reduction of missed tasks).

1 INTRODUCTION
This paper addresses techniques to monitor dynamic and emer-

gent events involving community safety. Generally speaking, an

emergent event is a planned or unplanned scenario with evolving

activities occurring in geography/space over a timespan - often

involving humans, nature, and infrastructure. Examples include

large sporting events, outdoor concerts, military activities, or re-

gions impacted by emergencies caused by earthquakes, fires, or

floods. In mission-critical scenarios, monitoring ongoing events

and understanding how they evolve is critical to ensure human

safety, mitigate property loss and reduce ecosystem impacts.

Wildland fires are an ongoing threat to those living in rural areas

and at the wildland-urban interface - where homes, communities,

and wildland vegetation meet or intermingle [38]. From 2012 to

2021, there were an average of 61,289 wildfires and an average of 7.4

million acres impacted annually in the U.S. In addition, reports from

the USDA Forest Services indicate that there has been rapid growth

within the wildland-urban interface (WUI) in the last decade with

an increase in 33%more land area occupied, 97% of which constitute

new homes. Multidisciplinary efforts are made to prevent or reduce

the impact of WUI fires, including meteorological reports, drought

monitoring, vegetation status monitoring, fire suppression actions,

and post-fire recovery strategies [3]. Reliable and timely access to

information is required to take action under extreme conditions -

however, gaining situational awareness is challenging in rural or

remote wildlands andWUI communities with limited infrastructure.

Existing technologies for monitoring wildland fires and ambient

conditions include remote sensing/satellite imagery and in-situ

wireless sensor networks [9]; while helpful, these approaches have

practical limitations, such as delays, coarse data resolution, and

maintenance difficulties due to fire damage [38]. Today, advances

in sensing, mobility, and computing capabilities have made it fea-

sible to create low-cost aerial sensing technologies [19], such as

unmanned aerial vehicles (UAVs) or drones, making them suitable

for data gathering in Wildland fires [33]. By serving as "eyes in

the sky," data obtained from a carefully coordinated set of drones

equipped with sensors have the potential to enable continuous

monitoring of mission-critical events.

In this paper, we utilize a driving use case from the wildfire

resilience domain to address issues of effective drone-based moni-

toring for emergent events. We focus on prescribed (Rx) fires, one

of the most important tools forest services use to manage wildland

fires today [6]. Rx fires are controlled burns that experts execute un-

der specific weather conditions to reduce hazardous fuels that can

cause future wildfires. In addition to reducing future extreme fire

conditions, Rx burns are beneficial since it can help restore healthy

ecosystems by removing species that threaten the ecosystem, thus

promoting the growth of trees, wildflowers, and other plants [6].

While Rx fires have many benefits, there are always inherent risks

associated with such burns. Rx fires can escape from their planned

region and turn into wildfires. For example, the 2012 Lower North

Fork Escape fire in Schell Creek Range [28] resulted in multiple

civilian casualties, destroyed 27 residences, and caused $11.3 mil-

lion in property damages. Needless to say, fine-grained, real-time

monitoring of Rx fires as they occur is critical to its safe execution

and consequent adoption/acceptance at scale in WUI communities.

With the above concerns, we propose a novel system, called DOME,

for supporting drone-assisted Rx fire monitoring, in which multiple

(diverse) drones with payload sensors (e.g., visible and thermal)

effectively collect data above the burn sites to monitor various user-

specified targets. The DOME system utilizes a physics-based model

(for fire prediction), user-specified rules, and perceived fire status to

automatically develop detailed drone instructions by generating a

series of tasks to specify the monitoring locations, time, and targets.

Then, DOME aims to plan the flights of multiple drones by develop-

ing waypoint sequences to guide them to fulfill specified tasks. The

flight planning aims to address the trade-off between data quality

and coverage by maximizing task accomplishment and improving

the acquisition data resolution. DOME can also handle the network

interruptions between drones and the ground controller (GC) by

letting drones transmit data in a store-and-upload manner.

Specific contributions of this paper are: i) the design of DOME, a

drone-based monitoring system (§2), ii) design of an automatic and

flexible task generation procedure to generate drone monitoring

instructions based on given physics-based models and user-defined

rules (§3), iii) formulation of the multi-drone flight planning (MFP)



problem; and a two-step approach to solve it effectively (§4,§5), iv)

implementation of the DOME prototype and thorough evaluation

of our proposed algorithms in Rx burn use cases (§6).

2 PROBLEM DEFINITION AND APPROACH
We begin by providing the context for Rx fire use case. An Rx fire is

coordinated by a burn boss who serves as an incident commander

and makes decisions during the burn. Burn bosses develop burn

plans that pinpoint burn sites, time of burn, and ignition strategy;

they assess the potential of an escaped fire and strategies to re-

spond in a timely manner. Situational awareness is assimilated

from a number of factors - status of wind, fire spread, spot fires,

ember transport, and firefighter mobility to low-level observation

parameters, such as vegetation status, fire flame length, and fire

intensity. Planning drone usage for fire monitoring in a Rx fire is

complex; it requires a systematic approach to guide fire parameter

observation, drone placement, and task scheduling.

Opportunities and challenges in Rx fires. In the past year,

we conducted multiple drone surveys during Rx burns within the

Blodgett Forest Research Station as shown in Fig 1. We highlight

some observations about executing Rx fires that present unique

opportunities and challenges for drone usage. First, Rx fires are

human-induced and planned; these planned and controlled nature

of these burns enables us to access burn site information, which

can be used to predict fire behavior using physics-based models to

guide real-time monitoring. Second, multiple features must be mon-

itored during Rx fires, including fire rate of spread, flame length,

and location of firefighters and ground personnel. These monitor-

ing targets place different demands on sensors, data quality, and

observation frequency. In our Rx burn, we used multiple drones

(DJI Matrice 300 RTK and DJI Mini 3) with diverse payloads for

capturing a variety of information. For example, RGB images are

used to localize fires and humans; the multispectral sensor provides

information on vegetation health, and the thermal sensor captures

data on fire intensity within the firefront. Furthermore, data quality

needs also vary - data used for determining fire intensity require

higher-resolution thermal imagery compared to that used for fire

detection [26]. Similarly, improving RGB image resolution allows

us to improve object detection results with more granular object

recognition outcomes [16], In practice, there are coverage/accuracy

tradeoffs since the drone’s coverage will be reduced with a lower

altitude flight but with higher spatial resolutions. This tradeoff

between higher spatial resolution and a larger field of view is of

concern during data collection. Diverse monitoring requirements

point to the need for heterogeneous drones that have varying flying

speeds and are equipped with different sensors and networking

capabilities. In addition, drones may connect to their ground con-

troller (GC) through wireless techniques such as WiFi, proprietary

technologies such as DJI’s Lightbridge, or cellular networks [42].

These communication technologies vary in data transmission range

from 200 to 3000 meters [38]. An associated challenge in wildland

scenarios is the lack of cellular network infrastructures in forest

regions; vegetation/trees influence signal attenuation and blocking

characteristics even when partially available. Drones typically have

limited data transmission range [14] and hence lose communication

with the GC during flight. All the above challenges demonstrate

the need for a novel multi-drone flight planning approach, which

aims to plan the motion of diverse drones to continuously monitor

multiple features in an emergent event (Rx fire).

Existing work and limitations. We assess related efforts in

multi-drone planning and drone-based monitoring, which have

been explored inmany fields, including operations research (OR) [29]

artificial intelligence (AI) [40], and robotics [10]. We discuss their

suitability and limitations for the Rx Fire monitoring scenario.

In OR literature, multi-drone flight planning problems have his-

torically been generalized to NP-hard vehicle routing problems

(VRPs), where vehicles are coordinated to visit a set of locations [29].

Here, popular methods such as branch-and-cut and dynamic pro-

gramming have been utilized by CPLEX [11] to obtain optimal

solutions; but they are computationally expensive and intractable.

This has led to a rise in heuristic-based methods, such as tabu

search [4], genetic algorithms[17], evolutionary algorithms [34],

and two-phase methods [24], which solve VRPs fast, but with subop-

timal solutions. To add to the complexity, domain-specific monitor-

ing requirements and other constraints in RxFires are challenging

to model, which may lead to diminished situational awareness.

The multi-drone flight planning problem has been generalized

to the cooperative multi-agent planning problem (MAP) in the AI

community; this approach involves multiple agents that work to-

gether towards a specific goal [40]. The state-of-the-art solutions

involve modeling MAP instances using Planning Domain Descrip-

tion Language PDDL or Multi-agent PDDL [2], and applying PDDL

solvers such as ADP [12] to obtain actions for agents. However,

such solvers cannot adequately address potential anomalies during

emergent events. This has led to new heuristic-based methods for

new domains, from the Rapidly-exploring Random Tree approach

for path planning [15] to horizon optimization and model predic-

tive control for cinematography [32]. Other efforts have leveraged

auction-based task allocations [41], Markov decision processes [31],

and Monte-Carlo tree search [30] for dispatching emergency re-

sponders to disaster zones. All of these solutions focus on specific

use cases, such as collision-avoidance path planning and dispatch-

ing agents to specific destinations. In contrast to Rx fire scenarios,

where repetitive monitoring, disconnected network, and data qual-

ity issues dominate, such solutions are not directly applicable.

A related body of literature in robotics focuses on area coverage

as a key objective in drone-based monitoring. This is typically

cast as the UAV coverage path planning problem (CPP), which

directs multiple UAVs to cover a specific area [8]. Subproblems

considered in this regard involve the efficient decomposition of

non-uniform areas [37], heuristic algorithms [23] for area partition

among multiple UAVs, and waypoint generation and path planning

for coverage [5]. Although efficient area coverage is critical in

path planning, other requirements, such as monitoring frequency,

priority, and data quality, must be considered to support monitoring

for emergent events, such as Rx fires.

Drone-centric approaches have been explored in many applica-

tions showing strong potential in enabling real-time disaster moni-

toring applications, such as building fire monitoring [27], military

missions [7] and environmental monitoring [36]. These settings

often require drones to monitor target areas with dynamic threats,

and hostile environments [25]. In the context of wildfires, the goals

of such monitoring include tracking the fire perimeter [21] and

fire intensity deviation [35]. In contrast, automating drone-assisted
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Figure 1: Our Previous
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monitoring in Rx fires requires schemes to monitor multiple fea-

tures with diverse data quality requirements and deal with the

diversity of drone configurations and sporadic network conditions.

Furthermore, the availability of the pre-existing burn plan can help

guide operation better than a unplanned wildfire scenario.

Our DOME Approach This paper proposes DOME, a system

to support multi-drone flight planning for monitoring Rx burns, as

shown in Fig. 2. DOME considers multiple drones equipped with

RGB and/or thermal cameras that continuously fly above the burn

site to collect and transmit data to a ground controller (GC) using

wireless techniques such as WiFi and DJI’s Lightbridge. To launch

the DOME system, users (e.g., burn boss) need to provide their mon-

itoring requirements, consisting of a series of missions. A mission

is defined by the following: (i) mission type, which describes the

type of information we should obtain from sensing data; (ii) period,

which provides a desired frequency to capture data for the use; and

(iii) significance, which enables the prioritization of missions. In this

work, we consider four types of missions which are: i) Burn site
monitoring (BM): localizing firefighters and checking the state

of equipment at the burn site; ii) Fire detection (FD): detecting
fires; iii) Fire tracking (FT): tracking fire spread near the fire front;
and iv) Fire intensity inspection (FI): checking the intensity and

the flame length of burning fires. This, combined with period and

significance details, enables users to specify complex requirements

in monitoring, e.g., check fire intensity (FI) every 3 minutes or

prioritize fire tracking (FT) to prevent escaped fires.

However, missions only provide coarse monitoring specifica-

tions; they do not give detailed information about where (target

locations) and when to monitor. To address this issue, DOME lever-

ages a task generator component (in Fig. 2) to automatically create

a series of tasks that are defined by a monitoring area (𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)
and duration (𝑠𝑡𝑎𝑟𝑡/𝑒𝑛𝑑 𝑡𝑖𝑚𝑒) for an associated mission. Tasks

are based on the currently observed fire status, user-defined rules,

and a fire prediction model. The generated tasks are given to the

multi-drone flight planner component (in Fig. 2), which schedules

drone flight paths to fulfill the given tasks in two steps: task allo-

cation and flight planning. The task allocation maps all tasks to

drones, considering their heterogeneity in mobility, sensing, and

networking capabilities. Then, the flight planning step generates a

waypoint sequence for each drone, which contains a series of way-

points (3D coordinates) to visit. In this step, DOME additionally

considers potential network disconnections, during which drones

must decide when to store/upload data, and the tradeoff between

data quality and coverage to improve task accomplishment and

acquisition data resolution. In this work, we assume that drones

will be operating under adverse networking conditions (i.e., discon-

nections), and thus will store collected data until connection can

be established with a ground controller (GC), then transmit data.

The GC, comprised of a data receiver and analyzer, collects and

processes the data, which discloses information required for the

diverse missions. This information is then cast as an event, which

specifies state information, location and time. All events will be

reported to a task generator, which utilize them to generate tasks

for drones based on user-specified rules and physical models.

Considering the intermittent network connection and dynam-

ics of the fire status, DOME periodically plans drone flights for

a predetermined duration, called an epoch. To avoid incomplete

tasks throughout epochs, we set the epoch length to be a common

multiple of the periods for 4 types of missions. At the beginning of

each epoch, the task generator generates tasks in this epoch, and

our flight planner plans the flights of drones to fulfill these tasks.

We require that all drones connect with the GC to obtain new flight

plans (or return for charging) at the end of each epoch.

3 PHYSICS-INSPIRED TASK GENERATOR
In DOME, we introduce a physics-inspired rule-based framework

for drone task generation. The entire emergent event duration is

divided into epochs, and at the beginning of each epoch, the task

generator generates tasks that drones should execute in this epoch.

This procedure is called time-driven mode task generation. Each

generated task is characterized by a mission, the observation area,

and its start and end times. To illustrate the task generation compo-

nent in DOME, we use the Rx fire driving use case. Here, the task

generation procedure creates the spatial-temporal requirements

for four missions in §2: Fire detection (FD), Burn site monitoring

(BM), Fire tracking (FT), and Fire intensity inspection (FI). Fig. 3
illustrates the workflow of the DOME task generator for Rx fires

with three components: i) a fire state tracker captures the current

state and records the updates of burn site status (based on events

reported by the data analyzer), ii) a fire predictor that predicts

the evolution of the event using physics-based fire models (FAR-

SITE [18]) and iii) a rule engine with user-specified rules and a rule

interpreter (PyKnow [1]) for generating tasks based on the current

state (fire status) and future state (prediction results). The rule en-

gine specifies and executes production rules with an ’If’ segment

indicating an event occurrence with facts (e.g., a fire is detected)

and a ‘Then’ segment with the triggered actions (e.g., ‘add task’) or

consequent facts. Two segments are connected by ‘⇒,’ and all facts

and actions are expressed by predicates in first-order logic.

Fire status tracker. To represent the fire status, we partition the
whole burn site G into multiple non-overlapping square grids and

track the state of each grid cell 𝑔 ∈ G. The state 𝑠 of each 𝑔 ∈ G is

one of {UK,B,NB,BO}, where Unknown (UK) denotes no data has
been received for this cell, Burning (B) indicates fires are detected
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within it, Not burning (NB) indicates that the fire hasn’t arrived in

this cell and Burnt out (BO) implies that fires within it have burnt

out. Our fire status tracker records the state of each 𝑔 ∈ G at each

timestamp using 𝑆𝑡𝑎𝑡𝑒 (𝑔, 𝑡) in our database. The state of a grid cell

𝑔’s is updated as our data analyzer reports events related to the

existence of fire or no fire at 𝑔. These events are expressed using

facts Fire(𝑔, 𝑡) and NoFire(𝑔, 𝑡) and state updates are denoted using

ShiftState(𝑔, 𝑡, 𝑠), as shown in Fig. 4. Here, Rules RST-1 and RST-2
imply that 𝑔’s changes from UK to B or NB, depending on whether

fires are detected. Rules RST-3 and RST-4 express the state shift

from NB to B and B to BO, resulting from the newly detected fires

and the fire burnout. Note that BO can only transfer from B as fire

burnout occurs only at cells that detected fire before.

Fire prediction. DOME’s task rule engine triggers a fire pre-

dictor, which executes fire simulations. The predictor first issues a

query to obtain the current fire status from our database; the cur-

rent fire state serves as input to FARSITE [18], a physics-based fire

simulator incorporating multiple models for surface fire, crown fire,

spotting, etc. The burn site’s landscape, weather conditions (e.g.,

wind speed, moisture), and the shape of ignition fires are also pro-

vided a priori to FARSITE since Rx fires are planned. Information on

ignition fires (polygons) is derived by extracting the contour of the

grid cells in state B into polygons. FARSITE simulates fire growth

by producing the fire perimeters (polygons) at all specified time

intervals. This is mapped into our grid-based burn site to obtain an

estimated fire arrival time (EFA) of each grid cell. If s fire does not

arrive at a grid cell within the simulation time, we set its EFA as

“INF”. In each simulation, we compute the EFA of all cells where

fire has not arrived (under state NB) for the grid cells where fires

have already passed, we set their EFA to the fire simulation time.

Rule-based task generation.Next, we illustrate the time-driven

task generation rules. Prior to the burn, we assume that the state

of every grid cell is UK (unknown). To bootstrap DOME, the mis-

sion FD is initiated to scan the whole burn site. Note that DOME

can allow for external input to DOME regarding fire status; in this

case, the mission FD will execute for cells where the fire status

is unknown (i.e., in state UK). Once burn site scanning is com-

pleted, DOME begins to monitor the dynamic status of the burn

site. Specifically, three types of monitoring missions are initiated,

which are FI for checking the fire intensity, BM for monitoring

human/equipment status, and FT for detecting potential fires in

the regions where fires are expected to arrive within the epoch. All

tasks are periodically executed during the epoch; each mission has a

customized period to indicate its user-defined execution frequency.

We next introduce some basic notation for DOME’s rule-based task

generation framework, i.e., facts, actions, and task generation rules

in Fig. 4. State transition rules RST-1 to RST-4 are applied over

time, which updates the state of grid cells continuously, and Rules

RT-1 to RT-5 support time-driven task generation. Here, we de-

fine fact Epoch(𝑡) to check if the current time 𝑡 is at the start of

an epoch and maintain a boolean variable Monitor , which is false

initially and turns true when we can initiate monitoring. The action

Add (𝑚,𝑔, 𝑠𝑡, 𝑒𝑡) generates a task for mission𝑚 ∈ {BM, FD, FT, FI}
at 𝑔 from time 𝑠𝑡 to 𝑒𝑡 . We use action ∀𝑔(GetEFA(𝑔, 𝑡)) to trigger

fire simulation and set EFA(𝑔) as the latest computed EFA of 𝑔 ∈ G.
Rule RT-1 generates tasks for mission FD to cover all grid cells

with state UK at the start of an epoch. We use the symbol ‘∼’ to

Facts :
• State (𝑔, 𝑡 ) = 𝑠 : it is true if g’s state at time t is 𝑠 ∈ {UK,B,NB,BO}.
• 𝐹𝑖𝑟𝑒 (𝑔, 𝑡 ) : it is true if fires are detected at g at time t.

• NoFire (𝑔, 𝑡 ) : it is true if no fire is detected at g at time t.

• 𝐸𝑝𝑜𝑐ℎ (𝑡 ) : it is true if current time t is at the beginning of an epoch.

• Monitor : it is true if we have entered the monitoring phase.

Actions :
• ShiftState (𝑔, 𝑡, 𝑠) : change g’s state to 𝑠 ∈ {UK,B,NB,BO} at time t.

• ∀𝑔 (GetEFA(𝑔, 𝑡 )) : run FARSITE to obtain EFA of all grid cells

based on fire status at time t .

• Add (𝑚,𝑔, 𝑠𝑡, 𝑒𝑡 ) : add a task for mission m ∈ {BM, FD, FT, FI}
at g with st and et as its start and end times.

RST-1 : ∀𝑔 ( (State (𝑔, 𝑡 ) = UK) ∧ 𝐹𝑖𝑟𝑒 (𝑔, 𝑡 ) ⇒ ShiftState (𝑔, 𝑡 + 1,B))
RST-2 : ∀𝑔 (State (𝑔, 𝑡 ) = UK ∧ 𝑁𝑜𝐹𝑖𝑟𝑒 (𝑔, 𝑡 ) ⇒ ShiftState (𝑔, 𝑡 + 1,NB))
RST-3 : ∀𝑔 ( (State (𝑔, 𝑡 ) = NB) ∧ 𝐹𝑖𝑟𝑒 (𝑔, 𝑡 ) ⇒ ShiftState (𝑔, 𝑡 + 1,B))
RST-4 : ∀𝑔 ( (State (𝑔, 𝑡 ) = B) ∧ NoFire (𝑔, 𝑡 ) ⇒ ShiftState (𝑔, 𝑡 + 1,BO))
RT-1:∀𝑔 (¬Monitor ∧ (State (𝑔, 𝑡 ) = UK) ∧ 𝐸𝑝𝑜𝑐ℎ (𝑡 ) ⇒ Add (FD, 𝑔, 𝑡,∼))
RT-2 : ¬𝑀𝑜𝑛𝑖𝑡𝑜𝑟 ∧ ∀𝑔 (¬(State (𝑔, 𝑡 ) = UK)) ∧ Epoch(𝑡 ) ⇒ Monitor

RT-3 : Monitor ∧ Epoch(𝑡 ) ⇒ ∀𝑔 (GetEFA(𝑔, 𝑡 ))
RT-4 : ∀𝑔

(
Monitor ∧ (State (𝑔, 𝑡 ) = B) ∧ Epoch(𝑡 ) ⇒ Add (FI, 𝑔, 𝑡,∼)

)
RT-5 : ∀𝑔

(
Monitor ∧ (State (𝑔, 𝑡 ) = NB) ∧ Epoch(𝑡 ) ⇒ Add (BM, 𝑔, 𝑡,

max{𝑡, EFA(𝑔) − 𝛿𝑓 𝑡 }) ∧ Add (FT, 𝑔,max{𝑡, EFA(𝑔) − 𝛿𝑓 𝑡 },∼)
)

Figure 4: Task Generation Rules

indicate the end time of this epoch. Rule RT-2 starts the monitoring

phase after an initial fire detection (FD) by setting Monitor to true

after all grid cells are not under the state UK. Then, rule RT-3
triggers the fire predictor at the start of the epoch to generate the

EFA of all cells, given the current fire status. Rule RT-4 adds tasks

for mission FI at cells under state B, and RuleRT-5 generates a task
for mission BM at each cell under state NB before time EFA(g)-𝛿𝑓 𝑡 ,

after which mission FT starts execution. The threshold 𝛿𝑓 𝑡 forces
tasks for FT to execute earlier than the cell’s EFA, which addresses

the uncertainty in prediction and flying time for drones. To order

the execution of rules that may be triggered simultaneously, we

prioritize state transition rules as follows (high to low): i) RST-1
to RST-4, ii) rule RT-3, and iii) rules RT-1, RT-2, RT-4, and RT-
5. This forces our task generator to update cell states first, then

compute their EFA, and finally generate tasks.

In our framework, we also propose an ’event-drive task update’

procedure (using rules RE-1 to RE-5 in Fig.9 in Appendix) to sup-

port the dynamic update of ongoing tasks during the epoch; mean-

while, drones can adjust their flights to accommodate these updates.

This flight adjustment requires stable communication between GC

and the drones for task reallocation during the epoch.

4 MULTI-DRONE FLIGHT PLANNING
We next explore how the flight planning procedure can coordi-

nate with the time-driven task generation. At the beginning of

each epoch, the flight planner receives a set of tasks generated by

the task generator and then plans the flights of multiple drones

within this epoch to fulfill all tasks. In this section, we formulate

this multi-drone flight planning problem (MFP) as a combinatorial

optimization problem.

4.1 Symbols and Notations
In DOME, drones are assigned missions/tasks detailing spatial-

temporal sensing monitoring requirements. To this end, waypoint

candidates describing specific drone flight paths are proposed.
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Missions and tasks.We first formulate the missions and gener-

ated tasks specified in the previous sections by letting 𝑗 ∈ [1, 𝑀]
denote a mission, which has a corresponding period 𝑝 ( 𝑗) and sig-

nificance 𝜎 ( 𝑗). For guiding drones to capture valuable data of

high resolution, we evaluate and score data quality for diverse

missions by comparing its resolution, measured by Pixel Per Me-

ter (PPM), against certain threshold values proposed in empirical

standards [16, 26] (more details are provided in Appendix C). In

particular, for each mission 𝑗 , the quality of the data captured by

a sensor 𝑠 is evaluated using a score 𝑆𝐶
𝑗
𝑠 (𝑝𝑚), which is a function

of its PPM value 𝑝𝑚. Intuitively, data of higher quality (i.e., res-

olution) will receive higher scores. Table 1 shows a data quality

scoring rubric. For example, the cell located at the intersection of

the Thermal and BM represents that if a thermal camera captures

data for BM with PPM value 𝑝𝑚, then the data’s quality score is 0

if 𝑝𝑚 < 8.48, 0.6 if 8.48 ≤ 𝑝𝑚 < 10.6, 0.75 if 10.6 ≤ 𝑝𝑚 < 15.2 and

0.9 otherwise. As RGB images cannot reveal fire intensity (temper-

ature) information, we set ’not applicable’ (N/A) in the cell for RGB

and FI.
Table 1: Data quality score under diverse PPMs

Sensor

Mission BM FD/FT FI

Thermal

PPM Score PPM Score PPM Score

8.48 0.6 6 0.6 12 0.6

10.6 0.75 7.5 0.8 15 0.8

15.2 0.9 10.74 1 21.4 1

RGB

25 0.6

62 0.85 262 1 N/A N/A

125 1

To realize these missions, a series of tasks 𝑇𝑖 ∈ T are generated.

Each task 𝑇𝑖 is defined using the 4-tuple (𝑚𝑖 , 𝑔𝑖 , 𝜙𝑖 , 𝑒𝑖 ), which spec-

ifies a covering area (grid cell) 𝑔𝑖 ∈ G that a drone must observe

during time duration (𝜙𝑖 , 𝑒𝑖 ) for its associated mission𝑚𝑖 ∈ [1, 𝑀].
To track the partial completion of periodic tasks, we further split

each task 𝑇𝑖 into multiple subtasks based on its period 𝑝 (𝑚𝑖 ) and
use 𝑇𝑘

𝑖
to indicate its 𝑘th subtasks, with 𝑘 > 0. Then, we define

a subtask’s release time 𝑟 (𝑇𝑘
𝑖
) = 𝜙𝑖 + (𝑘 − 1)𝑝 (𝑚𝑖 ), and deadline

𝑑 (𝑇𝑘
𝑖
) = 𝑟 (𝑇𝑘

𝑖
) + 𝑝 (𝑚𝑖 ), which are used to represent when the

subtask is released or expired, respectively.

Drones characteristics. Suppose that drone 𝑑 ∈ [1, 𝐷] is de-
fined by its maximum data transmission range rng𝑑 , flying speed

spd𝑑 , and is equipped with a set of visibility sensors 𝑠𝑒𝑛𝑑 . In this

paper, we assume the communication between drones and the GC

is stable as long as the ground controller is within the transmission

range rng𝑑 of the drone. We also assume that all sensors in 𝑠𝑒𝑛𝑑
are fixed on the drone to point downwards and that quantities such

as sensor coverage range (CR) and captured image resolution (PPM)

can be computed for some height, given sensor configurations. We

use Eq. (1) and (2) derived in [13] to find PPM and CR values cap-

tured by drone 𝑑’s sensor 𝑠 ∈ 𝑠𝑒𝑛𝑑 at height ℎ, where FHs and FVs

(degree) indicate the its horizontal and vertical field of view (FOV),

and PHs and PVs (pixels) represent its horizontal and vertical image

resolution. In general, these equations reveal that drones at lower

heights can capture more detailed images (higher PPM) but at the

cost of a smaller coverage range.

PPMs (ℎ) = PH𝑠/(2ℎ × tan(FHs/2)) (1)

CR𝑠 (ℎ) = 2ℎ ×min {tan (FHs/2) , tan (FVs/2) } (2)

Waypoint candidate generation. Given the Rx fire site G, we
find potential locations above the burn site for each drone𝑑 ∈ [1, 𝐷],
to ensure the required coverage of the burn site and capture data

for all executable missions. These locations, which we refer to as

drone 𝑑’s waypoint candidates (WPCs), are a set of 3D coordinates

W𝑑 = {𝑤𝑖 : 𝑤𝑖 = (𝑥 (𝑤𝑖 ), 𝑦 (𝑤𝑖 ), 𝑧 (𝑤𝑖 ))}, which are derived based

on missions’ PPM requirements and drone 𝑑’s sensing capability.

Here we also bound drones’ flight height within [𝐻𝑚𝑖𝑛, 𝐻𝑚𝑎𝑥 ] to
keep their distance from trees/fires and fly legally. To generateW𝑑 ,

we construct a set of WPCs for each drone 𝑑’s sensor 𝑠 ∈ 𝑠𝑒𝑛𝑑 ,
and each mission 𝑗 ∈ [1, 𝑀]. For a mission 𝑗 and a sensor 𝑠 , we

let TH( 𝑗, 𝑠) denote the set of PPM threshold values for executing

mission 𝑗 using sensor 𝑠 , as shown in Table 1. Then, we deduce

the set of potential heights at which sensor 𝑠 should capture data

as HSet( 𝑗, 𝑠) = {min(ℎ, 𝐻𝑚𝑎𝑥 ) : PPM𝑠 (ℎ) ∈ TH( 𝑗, 𝑠), ℎ ≥ 𝐻𝑚𝑖𝑛}.
Next, we generate WPCs to let sensor 𝑠 cover the whole burn site

at each height ℎ ∈ HSet( 𝑗, 𝑠). To do this, we first round its cov-

erage range to the nearest multiple of a burn site’s grid size, i.e.,

⌊CR𝑠 (ℎ)/𝑠𝑖𝑧𝑒 (𝑔)⌋ × 𝑠𝑖𝑧𝑒 (𝑔) (to ensure fully capturing burn site’s

grid cells). Then we divide the burn site into squares equal to this

rounded coverage range and get a set ofWPCs positioned at the cen-

ter of each of these squares.We repeat this procedure for each sensor

𝑠 ∈ 𝑠𝑒𝑛𝑑 and 𝑗 ∈ [1, 𝑀] to produce W𝑑 . Note that if HSet( 𝑗, 𝑠) is
empty for all 𝑠 ∈ 𝑠𝑒𝑛𝑑 , drone 𝑑 cannot execute mission 𝑗 .

In addition, we define Λ𝑑 (𝑤𝑖 ) with 𝑤𝑖 ∈ W𝑑 , to represent

the network connectivity status between drone 𝑑 and the GC at

𝑤𝑖 . We set Λ𝑑 (𝑤𝑖 ) = 1 if drone 𝑑 at 𝑤𝑖 is connected with the

GC, i.e., rng𝑑 ≥ Dis(𝑤𝑖 , 𝑔
′) with 𝑔′ is the location of the GC, and

Λ𝑑 (𝑤𝑖 ) = 0 otherwise. We compute drone 𝑑’s flying time between

two waypoints by FLT𝑑 (𝑤𝑖 ,𝑤 𝑗 ) = (Dis(𝑤𝑖 ,𝑤 𝑗 )/spd𝑑 )+𝑇𝑙𝑜𝑖 , where
Dis(𝑤𝑖 ,𝑤 𝑗 ) is the distance between them, and𝑇𝑙𝑜𝑖 is the loiter time

the drone spend at a waypoint to capture and upload data as needed.

4.2 Spatial-temporal Factors for Task Execution
The data captured by drones for tasks intrinsically have spatial

and temporal components. In general, let Q = {Q1, . . .Q𝐷 } denote
waypoint sequences on which the 𝐷 drones fly to fulfill a set of

tasks T during time duration [𝑡0, 𝑡∗]. Each waypoint sequence Q𝑑

for a drone 𝑑 is denoted by ⟨𝑤
𝑞𝑑(0)

,𝑤
𝑞𝑑(1)

, . . .⟩ with𝑤
𝑞𝑑(𝑛)
∈W𝑑 .

Spatial factors. To assess the degree to which data captured by

drones can contribute to tasks, we first consider its captured spatial

location. In particular, we define a data value function 𝑉𝑑 (𝑤 𝑗 ,𝑇𝑖 ) in
Eq. (3) which evaluates the value of data that drone 𝑑 captured at

location𝑤 𝑗 ∈ Q𝑑
for task 𝑇𝑖 ∈ T.

𝑉𝑑 (𝑤𝑗 ,𝑇𝑖 ) = 𝜎 (𝑚𝑖 ) × max

𝑠∈𝑠𝑒𝑛𝑑

(
SC

𝑚𝑖
𝑠 (PPMs

(
𝑧 (𝑤𝑗 )

)
× Cov𝑠 (𝑤𝑗 ,𝑇𝑖 )

)
, (3)

where 𝜎 (𝑚𝑖 ) is the𝑚𝑖 ’s significance value. PPMs (𝑧 (𝑤 𝑗 )) computes

the PPM value of data drone 𝑑 captured at𝑤 𝑗 . SC
𝑚𝑖
𝑠 (PPMs (𝑧 (𝑤 𝑗 ))

gives its data quality score for executing mission𝑚𝑖 . We also set

the coverage correlation Cov𝑠 (𝑤 𝑗 ,𝑇𝑖 ) to 1 if task𝑇𝑖 (at 𝑔𝑖 ) is within
the coverage range of drone 𝑑’s sensor 𝑠 at𝑤 𝑗 , and 0 otherwise.

Temporal factors.Data collected at a WPC towards a subtask is

only useful if its collection and upload time are within the subtask’s

release time and deadline. Thus, we define Θ(Q𝑑 ,𝑇𝑘
𝑖
) to represent

indices in Q𝑑
that indicate the set of waypoints at which drone

𝑑 collects valuable data for subtask 𝑇𝑘
𝑖
by Θ(Q𝑑 ,𝑇𝑘

𝑖
) = {𝑛 : 𝑛 ∈
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[1, |Q𝑑 | ],𝑉𝑑 (𝑤𝑞𝑑(𝑛)
,𝑇𝑖 ) > 0,AT𝑑 (Q𝑑 , 𝑛),UT𝑑 (Q𝑑 , 𝑛) ∈ (𝑟 (𝑇𝑘

𝑖
), 𝑑 (𝑇𝑘

𝑖
) ] }.

where AT𝑑 (Q𝑑 , 𝑛) is used to denote the drone 𝑑’s arrival time at

the 𝑛th waypoint 𝑤
𝑞𝑑(𝑛)

, which can be computed by AT𝑑 (Q𝑑 , 𝑛) =∑
𝑖∈[0,𝑛−1] FLT𝑑 (𝑤𝑞𝑑(𝑖 )

, 𝑤
𝑞𝑑(𝑖+1)

) .We defineUT𝑑 (Q𝑑 , 𝑛) = min{AT𝑑 (Q𝑑 , 𝑖) :

𝑖 ∈ [𝑛, |Q𝑑 | ],Λ𝑑 (𝑤𝑞𝑑(𝑖 )
) = 1} to denote the upload time for data cap-

tured at the 𝑛th waypoint in Q𝑑
. This is the drone 𝑑’s arrival time

at the first waypoint, whose index is no less than 𝑛 and where the

drone connects to the GC.

4.3 Formulating MFP
We cast our multi-drone flight planning problem (MFP) as a combi-

natorial optimization problem for generating waypoint sequences

Q for 𝐷 heterogeneous drones to cooperatively fulfill all tasks T
during [𝑡0, 𝑡∗]. Each drone starts at a waypoint 𝑤𝑑

0
and needs to

return back to depot 𝑤𝑑𝑝𝑡 in the end. We start by defining the

reward for each subtask𝑇𝑘
𝑖
to evaluate the performance of multiple

drones executing each subtask given their waypoint sequence Q by

R(Q,𝑇𝑘
𝑖 ) =


−𝛽, if

∑
𝑑∈[1,𝐷 ]

|Θ(Q𝑑 ,𝑇𝑘
𝑖
) | = 0,

max

𝑑∈[1,𝐷 ]

(
max

𝑛∈Θ(Q𝑑 ,𝑇𝑘
𝑖
)
𝑉𝑑 (𝑤𝑞𝑑(𝑛)

,𝑇𝑖 )
)
, else.

(4)

The reward of a subtask is negative if it is missed, i.e.,

∑
𝑑∈[1,𝐷 ]

( |Θ(Q𝑑 ,𝑇𝑘
𝑖
) | = 0. In this case, we get a reward −𝛽 < 0 which is a

user-specified penalty value for missing a subtask. In this paper, we

let the value of 𝛽 be larger than the maximum mission significance

value to prioritize task accomplishment over data value improve-

ment. Note that the subtask’s reward is set to the maximum data

value obtained across all data collected by 𝐷 drones; this is the

best value we can obtain from analyzing data under the given time

constraints. We then formulate our MFP problem as follows:

max

Q

∑︁
𝑇𝑘
𝑖
:𝑡0<𝑑 (𝑇𝑘

𝑖
)≤𝑡∗ ;𝑇𝑖 ∈T

R(Q,𝑇𝑘
𝑖 ) (5a)

s.t. AT (Q𝑑 , |Q𝑑 |) ≤ 𝑡∗, ∀𝑑 ∈ [1, 𝐷 ], (5b)

𝑤
𝑞𝑑(0)

= 𝑤𝑑
0
, 𝑤

𝑞𝑑

( |Q𝑑 |)
= 𝑤𝑑𝑝𝑡 , ∀𝑑 ∈ [1, 𝐷 ] . (5c)

In our optimization, our objective function (Eq. (5a)) aims to max-

imize the sum of the rewards for all subtasks. We use {𝑇𝑘
𝑖

: 𝑘 >

0,𝑇𝑖 ∈ T, 𝑡0 < 𝑑 (𝑇𝑘
𝑖
) ≤ 𝑡∗ } to represent the set of 𝑇𝑖 ’s subtasks

during epoch [𝑡0, 𝑡∗], which contains all subtasks with deadlines

between time 𝑡0 and 𝑡
∗
. Constraint (5b) requires that each drone’s

flying time does not exceed the end time of the epoch, while con-

straint (5c) ensures the validity of the waypoint sequence. Note that

if we require drones to connect with the GC instead of returning

to the depot at the end of the epoch, Eq. (5c) can be replaced with

Λ𝑑 (𝑤𝑞𝑑

( |Q𝑑 |)
) = 1. In general, MFP is an NP-hard problem, which can

be proven by reducing the Orienteering problem [22] to a special

case of our problem, where there is only one mission with a single

PPM requirement and a single drone.

5 PROPOSED ALGORITHMS FOR MFP
We solve the MFP problem in two steps and design appropriate

heuristics for each step: i) task allocation (§5.1), which assigns to

each drone a set of tasks (every generated task is assigned to a

specific drone), and ii) flight planning (§5.2), where each drone

computes its waypoint sequence to fulfill its given tasks.

5.1 Step 1: Allocating Tasks to Drones
Our task allocation problem aims to allocate all generated tasks, rep-

resented by a set T, to 𝐷 drones that have diverse mobility, sensing,

and networking capabilities. Here each task 𝑇𝑖 ∈ T is represented

by a 4-tuple (𝑚𝑖 , 𝑔𝑖 , 𝜙𝑖 , 𝑒𝑖 ), which specifies a grid cell 𝑔𝑖 ∈ G that a

drone must observe during time duration (𝜙𝑖 , 𝑒𝑖 ) for its associated
mission𝑚𝑖 . To optimize the task allocation, an exhaustive search

of 𝐷 |T | possible task allocations to estimate the drones’ obtained

reward (using Eq. (5a)) is infeasible given time constraints. Thus,

we propose a heuristic to reduce the time taken by all drones to

complete all tasks, assuming drones operate concurrently. Assume

a set of tasks T′ are assigned to drone 𝑑 , we define a time utiliza-

tion function U𝑑 (T′) to measure the its time usage for fulfilling

T′ by U𝑑 (T′) =
∑𝑀

𝑗=1 (ETd ({𝑇𝑖 : 𝑇𝑖 ∈ T′,𝑚𝑖 = 𝑗})
/
𝑝 ( 𝑗)), where

{𝑇𝑖 : 𝑇𝑖 ∈ T′,𝑚𝑖 = 𝑗} denotes the subset of tasks in T′ for a mission

𝑗 with period 𝑝 ( 𝑗), and ET
d
({𝑇𝑖 : 𝑇𝑖 ∈ T′,𝑚𝑖 = 𝑗}) indicates the

task execution time for drone 𝑑 to complete these tasks once. Addi-

tionally, we group all tasks based on their missions since different

missions may have different periods. The U𝑑 (T′) is the sum of the

ratios between the execution time of multiple groups of tasks and

their periods. It is easy to see that, the lower U𝑑 (T′) (<1) yields a
higher probability that drones finish their assigned tasks. Thus, the

objective of our task allocation approach is to split all tasks T into

𝐷 disjoint subsets {T1, . . . T𝐷 } with
⋃

𝑖∈[1,𝐷 ] T𝑖 = T, and assign

a set of tasks T𝑑 to drone 𝑑 , such that the maximal time utiliza-

tion across all drones, i.e., max𝑑∈[1,𝐷 ] U𝑑 (T𝑑 ) is minimized. We

propose a utilization-based task allocation (UTA) approach (Alg. 2

in Appendix A) to estimate each drone’s time utilization given its

assigned tasks and allocate tasks considering the heterogeneous

sensing and networking capabilities of drones.

Spatial task clustering. Before assigning tasks to drones, we

propose to cluster tasks based on their spatial (location) similarity.

With this effort, we can speed up the task allocation procedure by

assigning a group of tasks (a cluster) to a drone at each iteration

(described later). In particular, we divide the entire area intomultiple

squares of size Γ (a multiple of burn site grid size) and generate task

clusters Ci ⊆ T such that

⋃
𝑖 Ci = T, where each cluster contains

tasks within the same square and for the same mission.

Iterative allocation of task clusters.We heuristically assign

a initial task cluster to each drone based on its sensing and net-

working capabilities. More specifically, to each drone, we assign a

task cluster with its executable mission; with the assignment closer

to the GC if this drone has shorted data transmission range. We

also heuristically select clusters far from those already assigned,

aiming to distribute drones over the burn site sparsely. After this,

we start iteratively allocate task clusters to drones.In each iteration,

all drones estimate their time utilization after receiving each un-

allocated cluster; subsequently, we assign the cluster to the drone

whose time utilization after obtaining the cluster is the lowest.

Next, we illustrate how a drone 𝑑 computes its time utilization

given its assigned tasks T′ in each iteration. We find ET
d
({𝑇𝑖 : 𝑇𝑖 ∈

T′,𝑚𝑖 = 𝑗}) by computing the total time that the drone: (i) flies from

its start point to the first waypoint; (ii) traverses a set of waypoints

for executing tasks ({𝑇𝑖 : 𝑇𝑖 ∈ T′,𝑚𝑖 = 𝑗}), and (iii) returns for
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uploading data. Here we only allow drone𝑑 to fly at the same height

ℎ, where it can fulfill mission 𝑗 and get themaximum coverage using

one of its sensors. Then we select the set of waypoints at height

ℎ from its WPCs W𝑑 to cover all these tasks with mission 𝑗 . We

estimate the task execution time by considering that the drone

follows the Nearest Neighbor approach [20], a 2-approximation

algorithm for solving traveling salesman problem, which rules that

drones will always fly to the next closest waypoint. In this way,

we get ET
d
({𝑇𝑖 : 𝑇𝑖 ∈ T′,𝑚𝑖 = 𝑗}) for each 𝑗 ∈ [1, 𝑀], and then

compute U𝑑 (T′) following its definition above. The complexity of

the time utilization estimation procedure is O(|W𝑐 |2) where |W𝑐 |
is the maximum size of the group of generated WPCs at the same

height for covering a mission. The complexity of the UTA algorithm

is O(|T|2𝐷 |W𝑐 |2). Alg.2 in Appendix shows the pseudo-code.

5.2 Step 2: Single Drone Flight Planning
After task allocation, each drone plans its flight to fulfill its assigned

tasks. In particular, given that drone𝑑 is assigned to tasks T𝑑 at time

𝑡0 at𝑤
𝑑
0
, our single drone flight planning problem aims to generate

a waypoint sequence using WPCs in W𝑑 throughout epoch [𝑡0, 𝑡∗]
to maximizes the total reward for its given tasks. As a special case

of our MFP problem with a single drone, this problem is NP-hard.

We solve this problem by selecting a series of waypoints, where

the choice of each waypoint is based on the drone’s status and

task completion condition. To this end, we model this problem as a

Markov decision process (MDP), considering its ability to represent

this discrete decision-making process and its ease in tracking the

above information.

States. A state is defined by a tuple ⟨𝑤, 𝑡, S(T𝑑 )⟩, where𝑤 ∈ W𝑑

indicates the drone’s current waypoint at time 𝑡 ∈ [𝑡0, 𝑡∗]. We use

S(T𝑑 ) = {(𝑇𝑖 ,DLi,UR𝑖 , SR𝑖 ) : 𝑇𝑖 ∈ T𝑑 } to denote the state of all

released tasks for drone 𝑑 . Each task 𝑇𝑖 has a deadline DLi for its

ongoing subtask. We use UR𝑖 and SR𝑖 to indicate the maximum data

value (defined in Eq. (3)), for 𝑇𝑖 ’s ongoing subtask, of uploaded and

stored data respectively. We set the initial state to ⟨𝑤𝑑
0
, 𝑡0, S0 (T𝑑 )⟩

with S0 (T𝑑 ) = {(𝑇𝑖 ,max(𝑡0, 𝜙𝑖 ) + 𝑝 (𝑚𝑖 ), 0, 0) : 𝑇𝑖 ∈ T𝑑 }.
Action. An action is used to indicate that the drone flies to a

waypoint𝑤 ′ ∈W𝑑 .

Transitions.We use transition function TX(⟨𝑤, 𝑡, S(T𝑑 )⟩,𝑤 ′) =
⟨𝑤 ′, 𝑡 ′, S′(T𝑑 )⟩ to represent the state update after the drone flies to

𝑤 ′, where 𝑡 ′ is updated by flying time 𝐹𝐿𝑇𝑑 (𝑤,𝑤 ′). For each 𝑇𝑖 ∈
T𝑑 , with𝜙𝑖 ≤ 𝑡 ′, we check: (1) If 𝑡 ′ passes𝑇𝑖 ’s subtask’s deadline, i.e.,
𝑡 ′ > DLi , we reset its UR

′
i
= SR

′
i
= 0 and update 𝐷𝐿′

𝑖
to the deadline

of the newly released subtask. (2) if drone 𝑑 at𝑤 ′ connects with the

GC, i.e., Λ𝑑 (𝑤 ′) = 1, we update UR
′
𝑖
= max(UR𝑖 ,𝑉𝑑 (𝑤 ′,𝑇𝑖 ), SR𝑖 )

and SR𝑖 = 0 to model the drone uploading stored and captured data

to the GC. Otherwise, we set SR
′
𝑖
= max{𝑉𝑑 (𝑤 ′,𝑇𝑖 ), SR𝑖 } to mimic

the drone capturing and storing data.

Action reward.We define action reward AR(⟨𝑤, 𝑡, S(T𝑑 )⟩,𝑤 ′)
to compute the overall change of rewards for subtasks (specified in

Eq. (4)) caused by missing of subtasks and uploaded data following

an action. Given its consequential state ⟨𝑤 ′, 𝑡 ′, S′(T𝑑 )⟩, this can be

found by (1) we count the number of expired subtasks during (𝑡, 𝑡 ′)
that did not get valuable data before their deadline by 𝐾 = |{𝑇𝑖 :
𝑇𝑖 ∈ T𝑑 , 𝑡 < 𝐷𝐿𝑖 < 𝑡 ′,UR𝑖 = 0}|, and add 𝐾 × −𝛽 to the action

reward. (2) If the drone connects with the GC at𝑤 ′, we increment

the action reward by the increase in data value

∑
𝑇𝑖 ∈T𝑑 (UR

′
𝑖
− UR𝑖 ).

Each episode in our MDP starts with the initial state and ends

when it reaches a state with 𝑡 ≥ 𝑡∗. In the worst case, our MDP’s

state-space complexity is |W𝑑 | (𝑡
∗−𝑡0)/𝑇𝑙𝑜𝑖

where |W𝑑 | indicates
the number of drone 𝑑’s waypoint candidates, and

𝑡∗−𝑡0
𝑇𝑙𝑜𝑖

equals

to maximal waypoint selection times within an epoch. Due to its

exponential state space, a heuristic approach is needed to solve our

problem. We design a DOME flight planning algorithm (DFP), i.e.,

the policy of this MDP, to select waypoints at each state. DFP’s

novel aspects include its validity-checking procedure to ensure

timely data upload in a disconnected network and the heuristics for

waypoint selection, considering improving task accomplishment

and data quality. Alg. 1 shows the pseudo-code of DFP approach.

Validity checking. To enable the drone to quickly upload data

from the waypoints that are out of the data transmission range, we

specify an uploading point UP(𝑤) for each 𝑤 ∈ W𝑑 . If drone 𝑑

at𝑤 disconnected with the GC, we setUP(𝑤) to its closest WPC

where the drone is connected; otherwise, we setUP(𝑤) to itself.

Moreover, assuming a drone is at𝑤 at time 𝑡 , we define𝑤 ′ as a valid
WPC if, after flying to𝑤 ′, the drone has sufficient time to upload

the stored data before their deadlines and return to the depot before

𝑡∗. In particular, we first compute its earliest data uploading time,

i.e., 𝑡 ′′ = 𝑡 + FLT𝑑 (𝑤,𝑤 ′) + FLT𝑑 (𝑤 ′,UP(𝑤 ′)). We say, at current

state, 𝑤 ′ is valid if 𝑡 ′ is before the earliest deadline for its stored
data, i.e., 𝑡 ′′ ≤ min{𝐷𝐿𝑖 : 𝑇𝑖 ∈ T𝑑 , SRi > 0} and early enough

to return in time, i.e., 𝑡 ′′ + FLT𝑑 (UP(𝑤 ′),𝑤𝑑𝑝𝑡 ) ≤ 𝑡∗. The DFP
approach filters out all invalid WPCs in each waypoint selection.

Algorithm 1 DOME Flight Planning (DFP)
Input: Initial state (𝑤𝑑

0
, 𝑡0, S0 (T𝑑 )) , ending time 𝑡∗ and WPCs W𝑑

Output: Waypoint sequence Q𝑑
of drone 𝑑

1 Queue: Group subtasks by deadlines, sort groups from earliest to latest.

2 while 𝑡 ≤ 𝑡∗ do
3 if STUpdate then Update and reorder the Queue ;

4 for Each group in the Queue do
5 Get all unfinished subtasks in the group

6 while There are unfinished subtasks do
7 Select a Valid waypoint 𝑤′ to cover unfinished subtasks.

8 if No Valid WPC to select then break (Go to next group);

9 else Add 𝑤′ to Q𝑑
; Transit State; If STUpdate Go to line 3;

10 if Drone’s storage is empty then
11 while No Subtask Update do
12 Select a Valid waypoint 𝑤′ to improve reward greedily.

13 if No Valid WPC then break;
14 else Add 𝑤′ to Q𝑑

; Transit State; If STUpdate Go to line 3;

15 if UP(𝑤) is Valid then Add UP(𝑤) to Q𝑑 else Add Depot to Q𝑑
;

16 Transit State; If STUpdate, Go to line 3

Fast coverage and reward improvement. Next, we illustrate
the workflow of our DFP approach. Intuitively, we want to finish

all released subtasks, then improve the data value as time allows.

Thus, we split our flight planning algorithm into two phases: fast

coverage and reward improvement. We aim to finish all subtasks

before their deadlines in the first phase. To do this, we maintain a

queue of all released subtasks grouped by their deadlines Que, and

update it whenever certain subtasks are released or expired. In the

algorithm, we use a flag STUpdate to track the tasks’ update; once
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its subtasks are newly released, the STUpdate will be set to True

during the state transition. We prioritize all groups in the queue

by giving higher priority to those with an earlier deadline and

then let the drone execute these groups of subtasks following their

priorities (lines 1 to 9). To execute each subtask group in the queue

Que[𝑖], we get the set of unfinished subtasks, by T𝑛𝑜𝑡 = {𝑇𝑖 ,𝑇𝑖 ∈
Que[𝑖],UR𝑖 = SR𝑖 = 0}, and the associated a subset of WPCs that

cover those unfinished subtasks; we greedily choose the next valid

waypoint that can maximize the the ratio between the number of

unfinished subtasks in Que[𝑖] and the flying time FLT𝑑 (𝑤,𝑤 ′) (line
7). We find the number of 𝑤 ′’s covering unfinished subtasks by

CovNum(𝑤 ′) = |{𝑇𝑖 : 𝑇𝑖 ∈ T𝑛𝑜𝑡 ,Vd (𝑤 ′,𝑇 ) > 0}|. This is repeated
until no valid WPC remains or we reach the last group in the

queue. Then, if the drone’s storage is not empty, we will let the

drone upload stored data by flying to the upload point of its current

waypoint and continue to cover unfinished subtasks from the first

group in the queue (lines 10, 15, and 16). Note that the minimum

deadline for drone-stored data impacts the validity of WPCs; after

the drone uploads data, the WPCs’ validity may change, allowing

more valid WPCs to cover other unfinished subtasks.

If no stored data remained, we enter the reward improving phase

(line 10) where we aim to capture higher value data by having

the drone fly lower. To this end, we continuously select a way-

point to maximize the reward improvement, i.e., Reward (𝑤 ′) =∑
𝑇𝑖 ∈T𝑑 max(0,𝑉𝑑 (𝑤 ′,𝑇𝑖 ) −max(UR𝑖 , SR𝑖 )). This phase ends when

there are no validWPCs, after which the drone will return to upload

data or return to the depot if needed (lines 13 and 15). Note that

when subtasks are released or expired (STUpdate = True), we need

to update the subtasks queue and restart the fast coverage phase

(lines 9, 14, and 16). In our approach, these two phases alternate

until the end of the epoch. The computational complexity of our

DFP algorithm is O( 𝑡
∗−𝑡0
𝑇𝑙𝑜𝑖
|W𝑑 | |T|), where the 𝑡∗−𝑡0

𝑇𝑙𝑜𝑖
indicates the

times of waypoint selections when drone stays static. Algs. 4 and 5

in Appendix A shows DFP’s detailed pseudo-code.

6 EXPERIMENTAL EVALUATION
Prototype Implementation. Due to the limited Rx burn opportu-

nities in real forests, we created a lab-based testbed and prototype

system (see Fig. 5(a)) to evaluate the implementation and devel-

opment challenges in DOME. A mock-up burn site (6 × 8 ft) was
partitioned into 3× 4 grids. We use a DJI Tello drone equipped with

a top-down RBG camera for data collection and the open-source

interface –Tello SDK for flight control. Commands are provided

to guide the drone flying following a waypoint sequence to cap-

ture/transmit images at each waypoint. Data is exchanged with a

drone controller (a laptop) through a Wi-Fi UDP port. Time and

location-stamped images are returned to the ground controller (GC)

through the local network, which is stored in an edge database. In

the GC, the data analyzer analyzes all received data to detect and

locate fires based on where images are captured. All detected fires,

with their detection time and location, will be stored in the database

and reported to the task generator, which will update the states

of grid cells and generate corresponding tasks at the start of each

epoch (set to 3 min in our experiments). All generated tasks are

submitted to the flight planner to plan the drone flight in this epoch.

A newly generated flight plan will then be sent to the drone con-

troller to guide the flight of the drone correspondingly. This system

also maintains a dashboard showing all detected events and the fire

spread prediction to visualize the fire status.

6.1 Simulation setup
We simulate the Rx burns using the burn plans developed for Blod-

gett Forest Research Station; we evaluate DOME at three burn sites

with different areas/shapes, as shown in Fig. 5(b). In our simulation,

a sequence of fire stripes is added progressively, as shown in two

sub-figures in Fig. 5(b). We run each Rx burn simulation for 80

mins, with an epoch length of 20 mins. At the beginning of each

epoch, we input the simulated fire status at that time into the task

generator to generate tasks for missions: burn site monitoring (BM)

and fire intensity inspection (FI), and fire tracking (FT) using our
proposed rules in §3 under time-driven mode. We next perform

task allocation and single-drone flight planning to schedule the

flights of multiple drones in this epoch to fulfill these generated

tasks. We get the missions’ PPM requirements from Table 1. In our

simulation, we utilize two types of drones; the type 1 drone in-

cludes DJI Zenmuse XT2’s RGB and thermal cameras, and the type

2 drone includes a DJI Air 2S’s RGB camera. During our simulation,

we assume drones capture data (RGB/thermal images) when they

arrive at a waypoint in their flight path, upload data if connected

with the GC, and otherwise store the data onboard. We vary several

parameters in our simulations, including the wind speed from 5

mph to 25 mph and the number of drones from 4 to 16, and test the

performance of algorithms in three burn sites. Table 2 in Appendix

lists the detailed simulation parameters. The performance metrics

in our simulation are: (i) Total Reward, as defined in the MFP’s

objective function in Eq. (5a); (ii) Total Missing subtasks, which is

the number of unfinished subtasks after an epoch; and (iii) Running

time, which measures the computation time of algorithms. We re-

peat each experiment 10 times for statistically meaningful results

and report the average results with 95% confidence intervals.

We comparedDOME techniqueswith state-of-the-art approaches

(baseline algorithms), which are lightweight heuristics suitable

for real-time planning. For the task allocation step, we compared

DOME’s UTA (Utilization-based Task Allocation) approach with

the Voronoi decomposition algorithm (VD) [23], a popular spatial-

based area partition approach used in multi-agent task allocation

problems. UTA was also compared with the area-based heuristics

task allocation algorithm (ATA) that we proposed - here, we quan-

tify task execution time using the ratio between the total area of

tasks and the drone’s coverage area. For the flight planning step,

we compared DOME’s algorithms (DFP) with the Nearest-Neighbor

approach (NN) [20], a classical greedy algorithm for vehicle routing

problems. We also compared it with an extended version of the

Earliest-Deadline-First baseline algorithm[39], a traditional heuris-

tic approach for task scheduling problems; in particular, we added

a spatial component to it to create a new baseline called Deadline-

based Nearest Neighbor (DNN). We also developed two additional

heuristics, a Reward Maximization algorithm (RM), which selects

waypoints to maximize the task reward improvement, and Deadline-

based Reward Maximization (DRM) to improve the reward of tasks

with the earliest deadlines. For a fair comparison, we incorporated

the validity checking procedure (in §5.2) into all flight planning

baseline algorithms so that they could route the drone to update

data in time. We experiment with different combinations of task
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Figure 5: (a) Implementation of our DOME system (b) Illustration of three burn sites and fire ignition strategy.

allocation and flight planning algorithms to solve the MFP problem;

we use ‘–’ to connect two algorithms to represent their combination.

6.2 Experimental Results
Comparative Performance. Fig 6 compares the performance of

the proposed UTA-DFP algorithm with other baseline algorithms in

burn site 2○ (see results in burn site 3○ in Fig. 10 in the Appendix).

We provide sample results from simulations with six drones (three

of each type) under 10 mph wind condition over four epochs, each

lasting 20 mins. At the beginning of each epoch, we use the defined

rules in §3 to generate tasks based on the simulated fire spread

status. The number of generated tasks for diverse missions is shown

in Fig.11 in the appendix. We specifically illustrate the comparisons

with the combinations of VD and RM algorithms and omit the

others as they are the best-performance baseline algorithms for

task allocation and flight planning, respectively. Fig 6 shows that

our UTA-DFP algorithm always leads to higher total reward and

fewer missing subtasks, compared with other baseline algorithms in

diverse scenarios. In particular, our UTA-DFP algorithm achieves 1.7

times gain on total reward, 99% fewer missing subtasks compared

with the VD-RM algorithm during 60-80 mins. We also can observe

that UTA-DFP and UTA-RM algorithms can consistently provide

a relatively steady performance than using VD for task allocation,

whose performance drops as the number of tasks increases.

Task allocation algorithms. Next, we evaluate our approach
for task allocation in Fig. 7. Fig. 7(a) and 7(b) compare our proposed

UTA algorithm against other baseline algorithms, generally using

the DFP algorithm for flight planning. The results show that our

proposed UTA-DFP algorithm consistently outperforms the other two

baseline algorithms by achieving 0.46% higher total reward, while

missing 91% fewer subtasks, compared with the ATA-DFP algo-

rithm during the 60-80 min interval. Also, VD’s performance drops

during the 40-80 min interval, when more high-frequency tasks for

FT and FI are generated. This reveals that UTA can handle task

heterogeneity better than distance-based approaches.

Flight planning algorithms. Next, we compare our proposed

DFP algorithm with our baseline algorithms when using the UTA

algorithm for task allocation in Figs. 7(c) and 7(d). The results

demonstrate our DFP flight planning algorithm always leads to higher

overall reward and fewer missing subtasks, which achieves 0.16 times

gain and 99.5% fewer comparedwith UTA-NN algorithm. In baseline

algorithms, the distance-based baseline algorithms (NN and DNN)

always perform worse than the reward-based algorithms (RM and

DRM). The results show that DRM and DNN lead to fewer missing

subtasks in the first three duration. This observation reveals that
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Figure 6: Performance of our UTA-DFP algorithm at Burn sites 2○,
(a) gives total reward and (b) gives total missing subtasks.
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Figure 7: Performance of (a), (b) UTA and (c), (d) FDP algorithms. (a),
(c) give the total reward, (b), (d) give the missing subtasks.

considering the temporal factor–deadlines can help improve task

accomplishment, but this factor helps less when the number of

tasks is much more than drones can complete (e.g., during 60-80

min) Figs. 7(c) and 7(d) show that our DFP algorithm can provide

a higher total reward than DRM while they delivering the same

number of missing subtasks (in 0-40 min). This confirms that DFP

can improve both task accomplishment and data quality.

Scalability of our proposed algorithm. Next, we consider

the larger MFP problem with the different number of drones (from

8 to 16) and tasks (from 4000 to 6000). Fig. 8(a) and (Fig. 12(a) in

Appendix) present the performance of these algorithms in burn site

1 during 60-80 min under 10 mph wind under a diverse number of

drones. In all cases, the number of type 1 equals that of type 2 drones.
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Both figures reveal that our UTA-DFP algorithm always produces

the highest total reward and fewer missing subtasks, which achieve

0.43 times gain on total reward and 99.5% fewer missing subtasks

compared with VD-RM when drones’ number equals 16. Also, the

performance of all algorithms becomes better as the number of

drones increases. Fig. 8(b) and (Fig. 12(b) in Appendix) show our

algorithms’ performance in scenarios with various wind speeds.

We give this sample results from simulations with 6 drones in burn

site 1○ during 40-60 min. From the statistics in Fig.11(a) in the

appendix, we can see that stronger wind brings out more tasks for

FT and FI. As the wind becomes stronger, we can see the superior

performance of our UTA-DFP algorithm compared to the baseline

ones, which delivers 0.9 times gain on the total reward and about

99% fewer missing events compared with the VD-RM algorithm

when wind speed is 5 mph. Fig. 13 show the running time of our

UTA-DFP algorithm at burn sites 1○ and 2○ . The results show that,

in scenarios of about 6000 tasks (during 60-80 min at burn site 1○),

it can terminate in about 7 seconds, which is negligible to the epoch

length, which is 20 min. It depicts that our UTA-DFP algorithm

reacts fast even with a large problem size.
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Figure 8: Performance of the UTA-DFP algorithm with (a), (b) the
diverse number of drones and (c), (d) diverse wind speed. (a), (c) give
the total reward, (b), (d) give the missing subtasks.

7 CONCLUSION AND FUTUREWORK
In this paper, we design a platform to support drone-based monitor-

ing, called DOME, in emergent events and use Rx fire monitoring as

a driving use case. DOME includes a task generation procedure that

combines the a physical model with a logic-based approach to gener-

ate detailed spatial-temporal sensing requirements for drone-based

monitoring. We formulate and solve the multi-drone flight plan-

ning problem with heterogeneous drones, disconnected networks,

and addressing the data quality/coverage tradeoff. Our extensive

evaluations reveal the superior performance of our proposed algo-

rithms under various scenarios. In future work, we plan to exploit

reinforcement learning to improve flight planning and onboard

image processing to adjust flight plans for better timeliness and

accuracy. We will also explore multi-network integration for drone-

based situational awareness. We also plan to extend the use of

DOME into other emergent mission-critical scenarios, e.g., floods

and earthquakes, by flexibly adjusting monitoring requirements

and redefining task generation rules.We expect that such integrated

mobile sensing (land and aerial) platforms will find applications for

community resilience worldwide in the years to come.
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A ADDITIONAL PSEUDO-CODE

Algorithm 2 Utilization-based task allocation (UTA)
Input: Tasks T, Drones 𝐷 , Monitoring Area 𝑎𝑟𝑒𝑎, int Γ
Output: Task allocation of T∗ = {T1,T2, . . . T𝐷 }

1 C← ∅; T𝑑 ← ∅ for all 𝑑 = [1, 𝐷 ];
// Task clustering: get a group of clusters

2 for 𝑠𝑞𝑟, 𝑗 ← 𝑆𝑝𝑙𝑖𝑡𝐵𝑦𝐴𝑟𝑒𝑎𝐴𝑛𝑑𝑀𝑖𝑠𝑠𝑖𝑜𝑛 (𝑎𝑟𝑒𝑎, Γ) do
3 C𝑠𝑞𝑟,𝑗 ← 𝑇 .filter(𝑠𝑞𝑟, 𝑗)
4 C← C ∪ C𝑠𝑞𝑟,𝑗

// Assign each drone an initial cluster

5 for 𝐷𝑖 ← D.groupby(“𝑠𝑒𝑛𝑠𝑜𝑟 ′′) do
6 Ctmp ← ∅; C𝑒𝑥𝑒𝑐 ← 𝐶ℎ𝑜𝑜𝑠𝑒𝐸𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒𝑇𝑎𝑠𝑘𝐶𝑙𝑢𝑠𝑡𝑒𝑟 (𝐷𝑖 ,C)
7 for 𝑛 ∈ [1, |𝐷𝑖 | ] do // Get |𝐷𝑖 | clusters far from each other

8 𝐶∗ ← argmax𝐶′∈C𝑒𝑥𝑒𝑐
∑
𝐶′′∈Ctmp

Distance (𝐶′,𝐶′′) .
9 C← C \ {𝐶∗ }; Ctmp .add(𝐶∗)

// Map one cluster to one drone by distance to GC and 𝑟𝑎𝑔𝑑

10 Sort 𝐷𝑖 and Ctmp by 𝑟𝑎𝑔𝑑 and distance to GC; Add Ctmp [𝑛] to TDi [𝑖 ]

11 while (C) ≠ ∅ do // Iteratively allocate task cluster

12 for 𝑑 ∈ [1, 𝐷 ] do // Compute minimum U𝑑 by adding one cluster

13 𝑀𝑖𝑛𝑑 ,𝐶
∗
𝑑
← 𝐺𝑒𝑡𝑀𝑖𝑛𝑖𝑚𝑢𝑚{U𝑑 (T𝑑 ∪𝐶′) : 𝐶′ ∈ C}

14 𝑑 ← argmin𝑑∈[1,𝐷 ] 𝑀𝑖𝑛𝑑 // Get the winner.

15 T𝑑 ← T𝑑 ∪ {𝐶∗𝑑 }, C← C \ {𝐶∗
𝑑
} // Allocate a cluster to a drone

16 return T∗

Algorithm 3 Compute time utilization U𝑑 (T′)
Input: Drone 𝑑 and a set of tasks T′, WPCsWd
Output: Drone utilization U𝑑 (T′)

1 for𝑇𝑖 ∈ T′ do // Determination WPCs to cover tasks

2 if𝑚𝑖 is not executable then return +∞;
// Get the height for executing 𝑇𝑖

3 Get 𝑠′ ← argmax𝑠∈sen𝑑 𝐶𝑅𝑠 (𝐻 (𝑠) with
𝐻 (𝑠) =𝑚𝑎𝑥 {ℎ : PPMs (ℎ) ≥ min(TH(𝑚𝑖 , 𝑠)), ℎ ∈ 𝐻𝑒𝑖𝑔ℎ𝑡𝑠 (W𝑑 ) }

4 Get WPC
d
(𝑇𝑖 ) , a WPC inW𝑑 at height 𝐻 (𝑠′) can cover𝑇𝑖

5 for 𝑘 ∈ [1, 𝑀 ] do // Compute U𝑑 (T′)
6 Get tasks for mission 𝑘 : T′

𝑘
← {𝑇𝑖 : 𝑇𝑖 ∈ T′,𝑚𝑖 = 𝑘 }

7 Get WPCs for T′
𝑘
:WPC← {WPC

d
(𝑇𝑖 ) : 𝑇𝑖 ∈ T′𝑘 }

8 ET
d
(T′

𝑘
) ← 0; 𝑤′ ← 𝑔0

9 while WPC ≠ ∅ do // Compute time for traversing WPC
10 Choose the WPC closest to 𝑤′: 𝑤 ← argmin

𝑤∈WPC
𝐹𝑙𝑦𝑇𝑖𝑚𝑒 (𝑤′, 𝑤)

11 ET
d
(T′

𝑘
) ← ET

d
(T′

𝑘
) +min{𝐹𝑙𝑦𝑇𝑖𝑚𝑒 (𝑤′, 𝑤) : 𝑤 ∈WPC}

12 WPC←WPC \ {𝑤 }; 𝑤′ ← 𝑤

// Add time for uploading data

13 ET
d
(T′

𝑘
) ← ET

d
(T′

𝑘
) + max(0,Dis (𝑤′,𝑔0 )−ragd )

𝑠𝑝𝑑𝑑
+𝑇𝑙𝑜𝑖

14 return
∑𝑀

𝑘=1
ET

d
(T′

𝑘
)/𝑝 (𝑘)

Algorithm 4 DOME Flight Planning (DFP)
Input: Initial state (𝑤0, 𝑡0, S0 (T𝑑 )) , ending time 𝑡∗ and WPCsW𝑑

Output: Waypoint sequence Q𝑑
of drone 𝑑 and total reward R𝑑 .

1 STUpdate← 𝐹𝑎𝑙𝑠𝑒 ; ⟨𝑤, 𝑡, S(T𝑑 ) ⟩ ← State0, R𝑑 ← 0;

2 Group all subtasks based on their deadlines, sort them from 𝑑𝑖 smallest to

largest: Que = [ {𝑇𝑖 : 𝑇𝑖 ∈ T𝑑 ,DLi = 𝑑1 },{𝑇𝑖 : 𝑇𝑖 ∈ T𝑑 ,DLi = 𝑑2 }...].
3 while 𝑡 ≤ 𝑡∗ do
4 if STUpdate then Update Que for new released subtasks ;

5 Seq← 0 // Enter Fast Coverage phase.

6 while Seq < |Que | and ¬ STUpdate and 𝑡 ≤ 𝑡∗ do
7 T𝑛𝑜𝑡 ← {𝑇𝑖 : 𝑇𝑖 ∈Que [𝑆𝑒𝑞 ],URi = SRi = 0}// Get Unfinished

subtasks in this group

8 while |T𝑛𝑜𝑡 | > 0 and ¬ STUpdate and 𝑡 ≤ 𝑡∗ do
9 W′ ← {𝑤′ : 𝑤′ ∈W𝑑 ,CovNum(𝑤′) > 0, Valid(𝑤′) } if

|W′ | = 0 then break; // If no valid WPC, next group.

10 𝑤∗ ← argmax𝑤′∈W′
(
CovNum(𝑤′)

/
FlyTime (𝑤, 𝑤′)

)
// Maximize the number of covered unfinished subtasks

11 ⟨𝑤, 𝑡, S(T𝑑 ) ⟩,AR, STUpdate← TRANS( ⟨𝑤, 𝑡, S(T𝑑 ) ⟩, 𝑤′) ;
12 Q𝑑 .add (𝑤′) ; R𝑑 ← R𝑑 + AR
13 Seq← Seq + 1 // Go to the next group.

14 if | {𝑇𝑖 : 𝑇𝑖 ∈ T𝑑 , SR𝑖 > 0} | = 0 then // If no stored data.

15 while ¬ STUpdate and 𝑡 ≤ 𝑡∗ do // Start Reward Improvement.
16 W′ ← {𝑤′ : 𝑤′ ∈W𝑑 , Valid(𝑤′) } // Check validity.

17 if |W′ | = 0 then break;
18 𝑤∗ ← argmax𝑤′∈W′

(
Reward (𝑤′)

/
FlyTime (𝑤, 𝑤′)

)
// Get next state, action reward and the update flag

19 ⟨𝑤, 𝑡, S(T𝑑 ) ⟩,AR, STUpdate← TRANS( ⟨𝑤, 𝑡, S(T𝑑 ) ⟩, 𝑤′) ;
20 Q𝑑 .add (𝑤′) ; R𝑑 ← R𝑑 + AR

21 if (not Valid(UP(𝑤)) then 𝑤′ ← 𝑤𝑑
0
; break; // Return back

22 𝑤′ ← UP(𝑤) // Upload data to the GC.

23 ⟨𝑤, 𝑡, S(T𝑑 ) ⟩,AR, STUpdate← TRANS( ⟨𝑤, 𝑡, S(T𝑑 ) ⟩, 𝑤′) ;
24 Q𝑑 .add (𝑤′) ; R𝑑 ← R𝑑 + AR
25 return Q𝑑

, R𝑑 .

Algorithm 5 State transition TRANS(⟨𝑤, 𝑡, S(T𝑑 )⟩,𝑤 ′)
Input: Current state ⟨𝑤, 𝑡, S(T𝑑 ) ⟩ and next waypoint 𝑤′

Output: Next state ⟨𝑤′, 𝑡 ′, S(T𝑑 ) ⟩, action reward AR, STUpdate
1 𝑡 ′ ← 𝑡 + 𝑑 (𝑤,𝑤′)

spd (𝑚) +𝑇𝑙𝑜𝑖 ; AR ← 0; STUpdate← 𝐹𝑎𝑙𝑠𝑒

2 for𝑇𝑖 ∈ T𝑑 with 𝜙𝑖 > 𝑡 ′ do // Update state of tasks

3 if 𝑡 ′ > DLi then // Pass subtasks’ deadline

4 k ← ⌊(𝑡 ′ − DLi)/𝑝𝑖 ⌋; AR ← AR − 𝑘𝛽 ; STUpdate← 𝑇𝑟𝑢𝑒

5 if URi = 0 then AR ← AR − 𝛽 ;
6 URi ← 0; SR𝑖 ← 0; DLi ← DLi + (𝑘 + 1)𝑝𝑖

// Drone connects with the GC, uploads data

7 if Λ𝑑 (𝑤′) = 1 and max(𝑉𝑑 (𝑤′,𝑇𝑖 ), SR𝑖 ) > URi then
8 AR ← AR +max(𝑉𝑑 (𝑤′,𝑇𝑖 ), SR𝑖 ) − URi ;
9 URi ← max(𝑉𝑑 (𝑤′,𝑇𝑖 ), SR𝑖 ) ; SR𝑖 ← 0

// Drone disconnects with the GC, stores data

10 else if Λ𝑑 (𝑤′) = 0 and𝑉𝑑 (𝑤′,𝑇𝑖 ) > SR𝑖 then
11 SR𝑖 ← 𝑉𝑑 (𝑤′,𝑇𝑖 )

12 return ⟨𝑤′, 𝑡 ′, S(T𝑑 ) ⟩, AR, STUpdate
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Table 2: Simulation Parameters

Parameter Value Parameter Value
Simulation time 80 min Penalty 𝛽 10

Epoch length 20 min Grid size 10 × 10𝑚
Wind direction 270

◦
(±30◦ ) Flying speed 5 m/s

Wind speed 5-25 (±3)mph Loiter time 2 s

Ignition interval 10 (±3) min Drone number 4 – 16

Fire strip gap 10 (±3) m Data trans. range 300 or 500 m

Drone storage 32 GB Data trans. rate 24 Mbps

Burn site sizes 1○ 400 × 500 m, 2○ 400 × 330 m, and 3○ 500 × 420
Mission (𝑝, 𝜎 ) BM(10 min, 2), FI(5 min, 1), FT(2.5 min, 3)

Drones DJI Zenmuse XT2 (XT2); DJI Air 2S (2S)

Sensor FOV XT2: thermal 45
◦ × 37◦ , RGB 57

◦ × 42◦ ; 2S: 72◦ × 58◦
Sensor Res. XT2: thermal 640 × 512, RGB 3840 × 2160; 2S: 5472 × 3078

B EVENT-DRIVEN TASK UPDATE
In practice, once tasks are generated, allocated to drones, and exe-

cuted; they may need to be modified to handle dynamic events. To

enable the event-driven task update, we add rules RE-1 to RE-5 as

defined in Fig. 9, which updates tasks during epochs. The actions

Delete(𝑚,𝑔, 𝑡) and Update(𝑚,𝑔, 𝑠𝑡, 𝑒𝑡) are used to remove and up-

date the time duration of tasks, respectively. Before the monitoring

phase, rule RE-1 deletes tasks for FD at cells whose state has been

changed from UK as a result of newly detected events. Rules RE-2
and RE-3 designate how to add/delete tasks for FI and FT during
monitoring when fires are detected/dissipated. Since fires may devi-

ate from expected propagation plans, we define a Rx fire ‘anomaly’

when they reach a cell earlier than its predicted EFA, potentially

denoting escaped or spot fires. This indicates the need for a revised

fire prediction and tasks to be updated correspondingly. We use

𝐴𝑛𝑜𝑚𝑎𝑙𝑦 (𝑡) to represent an anomaly occurring at time 𝑡 . RuleRE-4
recognizes an anomaly if fire arrives at 𝑔 at time 𝑡 ahead of its 𝐸𝐹𝐴,

i.e., 𝑡 ≤ EFA(𝑔) − 𝛿𝑎𝑛 , where 𝛿𝑎𝑛 is the anomaly threshold. This

triggers the fire predictor to rerun the simulation and report the

anomaly. Then, rule RE-5 updates the time duration of tasks for

BM and FT based on the updated grid cells’ EFA. Rules for the

event-driven mode are given the lowest priority so that tasks are

generated at the start of the epoch before updates.

Facts :
• Monitor : it is true if we have entered the monitoring phase.

• Anomaly (𝑡 ) : an abnormal fire spread is reported at time 𝑡 .

Actions :
• ∀𝑔 (GetEFA(𝑔, 𝑡 )) : run FARSITE to obtain EFA of all grid cells

based on fire status at time t .

• Add (𝑚,𝑔, 𝑠𝑡, 𝑒𝑡 ) : add a task for mission m ∈ {BM, FD, FT, FI}
at g with st and et as its start and end times.

• Delete (𝑚,𝑔, 𝑡 ) : remove the task for mission m at g at time t.

• Update (𝑚,𝑔, 𝑠𝑡, 𝑒𝑡 ) : update the start and end times of task at g for

mission𝑚 ∈ {BM, FD, FT, FI} to st and et respectively .

Rules :
RE-1 : ∀𝑔

(
¬Monitor ∧ (State (𝑔, 𝑡 ) = UK) ∧ (𝐹𝑖𝑟𝑒 (𝑔, 𝑡 ) ∨ NoFire (𝑔, 𝑡 ))

⇒ Delete (FD, 𝑔, 𝑡 )
)

RE-2 : ∀𝑔
(
Monitor ∧ (State (𝑔, 𝑡 ) = NB) ∧ 𝐹𝑖𝑟𝑒 (𝑔, 𝑡 ) ⇒ Delete (FT, 𝑔, 𝑡 )∧

Add (FI, 𝑔, 𝑡,∼)
)

RE-3 : ∀𝑔
(
Monitor ∧ (State (𝑔, 𝑡 ) = B) ∧ NoFire (𝑔, 𝑡 ) ⇒ Delete (FI, 𝑔, 𝑡 )

)
RE-4 : ∃𝑔

(
Monitor ∧ (State (𝑔, 𝑡 ) = NB) ∧ 𝐹𝑖𝑟𝑒 (𝑔, 𝑡 ) ∧ (𝑡 ≤ EFA(𝑔)−

𝛿𝑎𝑛)
)
⇒ ∀𝑔 (GetEFA(𝑔, 𝑡 )) ∧ Anomaly (𝑡 + 1)

RE-5 : ∀𝑔
(
Anomaly (𝑡 ) ∧ (State (𝑔, 𝑡 ) = NB) ⇒ Update (BM, 𝑔, 𝑡,max{𝑡,

EFA(𝑔) − 𝛿𝑓 𝑡 }) ∧ Update (FT, 𝑔,max{𝑡, EFA(𝑔) − 𝛿𝑓 𝑡 },∼)
)

Figure 9: Rules for event-driven task update

C PPM REQUIREMENT
We get these missions’ PPM requirements as shown in Table 1,

referring to the pixel density requirements for detection, observa-

tion, and recognition in Closed Circuit Television (CCTV) systems

[16] and Johnson’s criteria [26] that gives the PPM requirements

of thermal images for detection, recognition, and identification an

object considering the target dimension (height × width) of human

and fire are 1 × 0.5𝑚 and 1𝑚 × 1𝑚 respectively.
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Figure 10: Performance of our UTA-DFP at Burn sites 3○. (a) gives
the total reward, and (b) the total missing subtasks.
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Figure 11: Subtask number in burn sites 1○ (a), 2○ (b) under diverse
wind speeds
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Figure 12: Number of Missing Subtasks of our UTA-DFP under (a)
diverse number of drones, (b) diverse wind speed.
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Figure 13: Running time of UTA-DFP at burn sites 1○ (a) and 2○ (b)
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