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abstract Cost-effectively collecting distributed state in-
formation is a challenging problem. It perhaps has no
single perfect answer since different distributed applica-
tion environments pose different requirements from the in-
formation collection process. In any case, knowledge of
the environment, in terms of traffic models, load mod-
els etc. play a key role in determining tradeoffs between
accuracy (needed to ensure QoS requirements) and cost-
effectiveness. In this paper, we develop an adaptive in-
formation collection algorithm that utilizes network traffic
knowledge characterized using a time series model. The al-
gorithm utilizes an information collection architecture con-
sisting of a directory service integrated into the middle-
ware layer with monitoring modules distributed across the
network. The cost-effectiveness of the proposed informa-
tion collection algorithm proposed is verified in simulations
over diverse network traffic patterns, i.e. Internet WAN
(TCP), MPEG(multimedia) and web access traffic traces.
Our results show that the proposed adaptive information
collection algorithm compensates for inaccuracies in net-
work traffic predictions in a cost-effective manner.

1 Introduction

In this paper, our objective is to explore effective middle-
ware infrastructures which can be used to support efficient
QoS-based resource provisioning algorithms. MM appli-
cations have QoS requirements which translate to system
level resource requirements (e.g., network link bandwidth,
server resources). Resource provisioning algorithms (e.g.,
QoS based network routing, server selection) utilize cur-
rent system resource availability information to ensure that
applications meet their QoS requirements. Given a rea-
sonably good approximation of the current utilization map,
network control tasks such as connection admission con-
trol, load balancing and congestion control, can be per-
formed highly effectively. Such optimized resource pro-
visioning policies are becoming more crucial with the ex-
ponential growth of Internet based services.

In this paper, we consider a management framework
consisting of a directory service that holds system infor-
mation which can be used by resource provisioning algo-

rithms. An important issue in managing the directory in-
formation is that of maintaining accurate and current sys-
tem state information. For this purpose, we study parame-
ter collection mechanisms that collect information from the
network and server components that are being provisioned.
In highly dynamic environments, where system conditions
are constantly changing, it is critical to provide effective
approximations of the current system state. There are trade-
offs between accuracy of directory information and the up-
date overhead costs that must be considered in engineering
such a parameter collection protocol. The work described
in this paper attempts to address this tradeoff by develop-
ing simple and efficient policies to collect and approximate
the current system state information in highly dynamic net-
work environments.

We propose an adaptive parameter collection protocol
using the notion of a dynamic range to describe the resid-
ual capacities of resources being provisioned, and describe
a simple algorithm to relax and tighten the range. While
the proposed approach to parameter collection is general
and applies to a variety of resources being provisioned,
(e.g., web servers, remote disks, processor capacity, etc.),
for concreteness, we focus on using the parameter collec-
tion process developed for network traffic measurement and
provisioning. Network traffic parameter collection is im-
portant for network control tasks such as connection ad-
mission control, load balancing for network and hosts, etc.

Network Traffic Measurement Traffic monitoring and
measurement is one of the key issues in large scale network
management research. The focus of the existing work has
been on designing measurement architectures and more re-
cently on traffic modeling and prediction [4, 5, 6, 7, 8] as
well as on system architectures to facilitate effective imple-
mentation of traffic prediction in real network environments
[2, 9]. Existing techniques have taken a simplistic approach
towards parameter collection — a monitoring module sam-
ples the residual capacity of a network link at fixed intervals
and updates the directory using the latest sampled value [9].
The sampling rate determines the quality of the information
stored in the directory — in highly dynamic traffic, the mon-
itoring module has to sample at a very high frequency to
prevent information from being outdated. Instead of us-



ing a snapshot value, an alternative mechanism proposed
in [3] is to partition the link capacity into static intervals,
and update the directory with an interval number [3]. This
interval based policy, however, does not improve the cost-
effectiveness of the monitoring process. First, given the
interval, only a uniform distribution can be inferred from it,
thus limiting its practical significance. Moreover the size of
the static interval does not directly correlate to a sampling
period.

Our Approach In contrast to existing approaches, the
adaptive parameter collection protocol developed in this pa-
per provides a novel way to cost-effectively measure the
network state information. Using statistical analysis tech-
niques, we quantify and estimate network traffic fluctua-
tion. We propose a 2-phase information collection pro-
cess that uses simple statistical analysis techniques based
on time-series. First, we derive an adaptive range such that
the deviation between the predicted and observed values
remains in the range with high confidence. Based on the
size of the adaptive range and the confidence level, we de-
termine a bound on the rate at which the resource needs
to be sampled. The parameter collection process dynami-
cally adjusts the range as well as the sampling rate based
on the burstiness of the incoming traffic. To study the
cost-effectiveness of our adaptive range-based parameter
collection algorithm, we apply our approach to the mea-
surement of network traffic from three different scenarios —
TCP, MPEG and WEB. We also develop a metric to statisti-
cally measure the effectiveness of using the collected range
to perform admission control. Our performance evaluation
results indicate that the adaptive range based parameter col-
lection is significantly more cost-effective than static range-
based approaches in most of the traffic traces studied. In
addition, the robustness of our algorithm in nonstationary
traffic environments allows it to be deployed in scalable
measurement architectures.

2 A Modd for Predicting the Range
and Sampling Interval

Our objective in this section is to develop an analytic model
for predicting the network traffic for a link. The model de-
veloped will be used in the following section to design an
adaptive parameter collection/monitoring process. The pa-
rameters collected by the monitoring process are used to
predict the residual capacity of a resource (e.g., a network
link) in the future.

Our parameter collection algorithm maintains a dynamic
range such that the deviation of the predicted value from
the real observation lies within the range with high prob-
ability. Let Z; be a random variable representing the load
at a given link at time ¢. Let Z(l) denote the predicted

value at time ¢ + [ based on the parameters collected at or
before time ¢. Thus, the error in the prediction is specified
by e: () = |Z4qi — Z}(l)|. Our algorithm determines the
tightest possible range [Z;(l) — R*, Z:(l) + R*] such that
the actual value (7;) lies within the range with high proba-
bility. More formally, we define the notion of an ¢-optimal
range as follows:

Definition 1 (¢-optimal range) Given a confidence level
¢, attime ¢, we define an e-optimal range as [ Z; — R*, Z, +
R*], where

R = min{R‘Pr(|Zt+1 ~ Z(1)| > R) < e}

Notice that by the definition above, the ¢-optimal interval
guarantees that the deviation based on the parameters col-
lected upto time ¢ at the next time step ¢ + 1 is bounded
within the range [ 7, (1) — R*, Z,(1) + R*]. It is expected
that the error in prediction (deviation) will increase with
time. That is, the estimation of residual resource capacity
atatimet +1 (Z}(l)) based on parameters collected at or
before time ¢, will increase with / unless new samples of
actual value 7, are obtained. We next define an optimal
sampling interval as the time unit 7™ such that the devia-
tion between the predicted value and the actual value lies
within the interval R* with high probability for 7™ units.
Formally, the optimal sampling interval is defined as fol-
lows:

Definition 2 (Optimal Sampling Interval) Given an op-
timal ¢ —range as[Z; — R*, Z;+ R*], we define an optimal
sampling interval to be 7™, where

T = max{T‘PrHZH_T _Z(T)| > R") < e}

In the next section we will develop an adaptive parame-
ter collection protocol based on the estimation of range pa-
rameter R* and the optimal sampling interval 7. In the
remainder of this section, we establish how the monitoring
process can determine R* and 7™ for a network link.

For this purpose, we need an analytic model for network
link traffic. It is well known that internet traffic is diffi-
cult to model using simple models since the inter-arrival
process of the packets is not independent. Instead, the traf-
fic arrival patterns have long-lived correlations that impact
traffic patterns for a significant duration in the future [4].
Such long range dependencies in the auto-covariance gives
rise to the "self-similar” phenomenon of the traffic series
in different time-scales [10]. Such self-similar traffic pat-
terns can be generated by multiplexing a large number of
ON/OFF sources which have their ON and OFF period
follow a perato distribution[5]. However in practice, the
heavy-tailed distribution can easily give rise to large vari-
ances, which poses difficulties for data analysis and pre-
diction [4]. Since our goal is to to draw statistical infer-
ences from history values, we model the incoming network



traffic using a time-series model. Specifically, we fit the
Auto-Regressive Moving Average (ARMA) model for this
purpose. In the ARMA model [21], a stationary stochas-
tic process 7, is modeled as a linear combination of Gaus-
sian random variables, a;, that follows a normal distribution
N(0,02)

Zi=p+> tiai =1 < 1fori>0 (1)
=0

where p is the mean of Z;, and ¢; is the ARMA model
parameter.

Suppose we are at time ¢, the least square error predic-
tion of Z;,; can be estimated by setting future noise input
agy1,. .- ,a¢4; t0 be their expected value to zero. That is,

Zt(l) = pu+ Z%’%H—i (2)
i=[

The forecast error of leading time [ can be estimated as fol-
lows:

-1

cill) =1 Zest = Ze()| = Y diargi-i ©)
i=0
and its mean and variance is given as
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The random variable a; is called the noise input at time ¢. It
is also be called an estimation residue, since e;(1) = ay, it
is the deviation between actual value 7, and the prediction
Zt_l(l). During the process of ARMA model estimation,
the estimation residual series will be tested to see if it fits
a normal distribution. If not, the ARMA model needs to
be re-fitted, and parameters recalculated. In practice, there
are standard statistics toolbox to do model identification,
estimation and model diagnostics. In the following discus-
sion, we assume that estimation residue series a; does fol-
low N (0, o%) and the model fits well.

Based on the ARMA model for network traffic, we can
establish a bound on the dynamic range parameter R* and
the sampling interval 7™ discussed earlier.

Proposition 1 (Lower bound for R*) Let ¢ be a confi-
dence level between 0 and 1, and let R* be defined as:

R = min{R‘Pr(|Zt+1 ~Z(1)| > R) < e}
If Z, follows the ARMA model, the following holds:
R* > ¢(1—¢/2) o4 (5)

where ¢(-) is the inverse cdf of N (0, 1).

This proposition tells us that based on parameters collected
at or before time ¢, the most accurate possible <-range for
next step prediction is [Z,(1) — R*, Z,(1) + R*]. From
(5), we see that R* has a simple linear relationship with
o,. Intuitively, the smaller the estimation residual, o, the
better the parsimony the incoming traffic exhibits, which
enables us to derive a better prediction. For a formal proof,
please refer to [24].

Due to the bursty nature of network traffic, series a, ex-
hibits highly dynamic local behavior. During the network
burst period, such as addition or removal of large number
of connections, the variance of «; rises, which makes ¢-
range larger. While during other period as traffic becomes
predictable and conforms to the ARMA model, the range
narrows gradually providing better approximation.

In order to capture this local behavior, later in section 3,
we will use &,(¢) in stead of o, to derive R*.

1 t 1/2
Ga(t) = (— . azdx)
M Je_ms ’

In the above equation, A is the memory size which deter-
mines how long ago should the prediction model remember.
A small M makes the e-range sensitive to higher frequency
traffic components, while a larger M causes the change in
R* to be more gradual in both directions. We will discuss
the impact of varying M on the measurements in the con-
text of the TCP, MPEG and WEB traffics in the section on
performance analysis.

In the following proposition, we establish the closed
form equation for the optimal sampling interval 7™ when
the traffic follows the ARMA model.

M >0, (6)

Proposition 2 (Maximum Sampling Interval for R*)
Given ¢, the maximum sampling interval for range size R*,
which is derived from (5), is

* _ — &Z ¢2(1 B 6/2)
7w = vt (U_Z : m) where  (7)
U(t) = /0 W2 dx (8)

and v, is the continuous form of our ARMA model param-
eters.

The term 62 /o2 quantifies the level of short term bursti-
ness in traffic. From equation (7), if we fix the global de-
viation o, and a confidence level ¢, 73" monotonously de-
crease and increase with ,. From equation (5), this im-
plies that holding a smaller ¢-range requires higher sam-
pling rate, while holding bigger ranges involves lower sam-
pling requirement. Due to space limitation, for a detailed
proof and discussion of the two propositions, please refer
to [24].



3 The Adaptive Parameter Collec-
tion Algorithm

In this section, we describe our two-phased information
collecting algorithm for monitoring residual bandwidth of
the network links. The collection algorithm is based on the
ARMA model for traffic and uses the range parameter R*
and sampling interval 7™ derived in the previous section.
Our goal is to maximize the measurement accuracy while
minimizing the sampling as well as directory update over-
head cost.

Measurement Architecture We assume that network
monitoring modules are distributed among the network and
that each module monitors a portion of the entire network
domain. A monitoring module samples the network to col-
lect the system state information such as current residual
bandwidth capacity and update the directories. Notice that
the directories may not be placed at the monitoring mod-
ule. In fact, within an administrative domain, the monitor-
ing modules may be placed near the critical subnets in or-
der to reduce the sampling cost, while the directories may
be placed close to the client access points [13] to provide
convenient resource provisioning service. Since directory
update requires both network bandwidth and computation
(CPU cost) at the directory service, the cost of the parame-
ter collection process is proportional to the number of direc-
tory updates. In the following discussion, we will assume
that monitoring modules have enough processing power for
linear model calculation on each monitoring module.

The Adaptive Collecting Process The adaptive collec-
tion process is represented using a state transition diagram
in Figure 1 with four states: Regular Probing(RP), steadi-
ness Identification(Sl1), Transient Noise Filtering(NF), and
Range Adjusting(RA).

Initially, the monitoring module observes the traffic at
the monitored link and determines the prediction model by
fitting the parameters into the ARMA model discussed in
the previous section. Once the prediction model has been
determined, the collection process enters the regular prob-
ing state. In the regular probing state, based on the sam-
pling interval (that is, 7 determined in the previous sec-
tion), the link is periodically probed. If a sampled value
falls out of the predicted <-confidence range (that is, R*),
the module enters a filtering state to prepare to potentially
expand the range; otherwise, if the value conforms to the
predicted range, the monitoring module enters the steadi-
ness identification state to attempt to tighten the range.

We next explain the details of the collection process by
discussing the actions taken at each state and the resulting
transition in the state-transition diagram shown in Figure 1.

[A.] Upon entering a Regular Probing state at time ¢,
the monitoring module calculates 7, = Z}(l) as the ex-
pected next step prediction with equation (2). Furthermore,

Regular Probing Change
ge
Observed /:/

Observed
Noise
Range& Filtered
Steady I dentification Samgil”g Transient Noige Filtering
rae
Adused

Steaty Chgnge
Sate Confirmed

|dentified o
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Figure 1: State Transition Diagram Representing the Pa-
rameter Collection Process

as discussed in the previous section, it determines the cur-
rent value for range parameter R, = R* and the sampling
interval 7, = 7™ based on Z,. When the sampling time
is due, the monitoring module sends out probes to corre-
sponding network node to collect link state information.
Upon getting the sample, s, with the link’s state value v(s)
and a time stamp ¢(s), the monitoring module writes the
estimation residual a; = v(s) — Z, into its memory table.
Then the monitoring module compares v(s) with R, to de-
termine the state transition.

[B.] If the value v(s) fall into the existing active range
R, no change is observed. Proceed to the Steadiness Iden-
tification (SI) state to see if the link state has been steady
for some time. If v(s) fall out of R,, change is observed,
we proceed to the Transient Noise Filtering (NF) state.

[C.] In the SI state, we decide if range R, should be
tightened to provide higher accuracy. To do this, we cal-
culate o7¢" based on samples currently in the memory
table by equation (6). Suppose the old estimation vari-
ance that generated the current active range R, is ¢2'¢, if
onev Jgold < 1 —TH,, where T H, is a threshold between
0 and 1 which serves as one of the administrative tuning
knobs 1, we anticipate more steadiness for the link. There-
fore we tighten current range accordingly in the Range Ad-
justing(RA) state. If otherwise, the new estimation variance
hasn’t been significantly reduced, the process goes back to
the RP state and waits for more input.

[D.] In the RA state, the range size is adjusted according
to the memory table. Consider the case of range tightening
triggered by the Sl state. The new size R, (set equal to
the range parameter R;) is computed using equation (5) as
follows:

Ry <= o6(1—¢/2) - 67,0> Ry > C (9)

where C'is the capacity of the link. And the new sampling

1in our simulation, T H . is related with windows size M; the bigger
the M , the closer to O for the T'H ¢, vise versa.



interval, by equation (7), is adjusted to be

52 92 (1—¢/2)
o2 ¢2(1—¢)

where Psi~—1(-) is defined in equation(8) in section 2. T},,:,,
is a cut off limit imposed on adaptive sampling interval. By
setting this parameter, the network administrator is able to
limit the maximum sampling cost. Notice that in the RA
state, the current prediction model to determine if a good-
ness of fit test fails and execute the parameter refitting pro-
cess as outlined in [21, 2].

[E.] The collection process enters the NF state from the
regular probing state due to an ¢-range miss. In practice
there could be various reasons for the ¢-range miss: mea-
surement error, a transient burst or a significant load level
change. In order to 1) filtering out high frequency traffic
components 2) assist the underlying model to adapt to a
confirmed change, the monitoring module sends multiple
probes over a given probing period £, at a probing rate P,.
After the probing period, we count the number of samples
with values out of the active range R,. Theoretically, the
ratio of the outliers over the total numbers of samples col-
lected should be less than . Therefore, if the ratio is less
than this bound, the samples collected during the probing
period can be discarded. otherwise, the observed change
is confirmed and the range parameter R, needs to be ex-
panded. In this case, we record the samples during probing
period to the memory table, and proceed to the Range Ad-
just state to calculate the new value of the range parameter
R, and the sampling interval 73,.

[G.] If a significant change is confirmed by NF state, a
burst series should be recorded in the memory table. De-
pending on its size M, the &, will increase more or less
(equation (6)), causing both the range size and the next
step sampling interval to increase in RA state. This puts
the measurement in a low cost and low accuracy operation.
When more steady states are identified, it approaches by
gradually improving the accuracy with more active sam-
pling. From the later simulations, we show that this is an
effective method to achieve cost-effectiveness and prevent
oscillation in nonstationary traffic.

T, < ¥t Ta > Tnin  (10)
( )

3.1 Algorithm Discussions

Identifying Bursts in the NF State. To identify a burst in
traffic in the NF state, we used a ratio of outliers samples
(that is, samples which were out of the range R, based on
current prediction) to the total number of samples collected
and compared the ration to . In practice, given the short
probing period, the ratio of outlier in the sample will have
a large variance. Let O; be a random variable that takes
a value 0 or 1 depending on whether the :th sampled
value fall out of range R, from the predicted model (that

is, it is an outlier). From the discussion in Section 2,
Pr{0; =1} =c¢and Pr{O; = 0} = 1 — . The expected
value of O; is ¢ and the variance is ¢(1 — ¢). The ratio can
be writtenas RATIO = (5." O;)/n), where n is the total
number of samples in the probing period and the variance
of the ratio VAR(RATIO) = [e(1 — ¢)]/n = 2. By
Chebyshev’s inequality, with less than probability 1/k,
RATIO > ¢+ Vk - o, In practice, we found that
combined with proper choice of probing period, taking
k = 3 is very effective in identifying a significant state
change of the measured traffic.

Directory Update Cost. Since the monitoring module
and the directory are distributed, sending a range infor-
mation over the network and performing a directory up-
dates have a significant cost. To reduce the number of up-
dates needed, the monitoring module can send, in stead
of the 1 step prediction Z(1), send in 1 to ! step pre-
dictions Z; (1), Z;(2), - - -, Z:(1) along with the prediction
range size R,. Thus, no updates is needed as long as R, (¢)
doesn’t change. A directory update occurs only because R,
adjusted or / steps exceeded. In these cases, the monitoring
module updates the directory with new 1 to [ step predic-
tions and R,. At the directory service side, it simply steps
the range prediction according to the pre-informed range
size and 1 to [ step predictions. For step ¢, the active range
should be [Z; (i) — Rq, Z:(i) + R,]. Later in the simulation,
we express this technique as update reduction.

4 PerformanceEvaluation

In this section, we evaluate our prediction model and the
adaptive information collection protocol using 3 diverse
traffic traces obtained from TCP-WAN traffic loads, mul-
timedia (MPEG) traffic and Web request traffic.

4.1 Experimental Setup

Before we present the performance (simulation) results, we
briefly report the parameters used in the simulation, table 1,
as well as some implementation details. In calculating 7%,
we need to approximate a continuous model from the dis-
crete sampled values; we use a value of one second as the
smallest unit of measure and use discrete summation for the
integral value.

In the simulation, we evaluate the adaptive informa-
tion collection algorithm with 3 different traffic traces
that are of varying nature - (a)TCP(WAN) traffic [18],
(b)MPEG(multimedia) traffic [19] and (c)pure Web ac-
cesses [20]. The tcp trace obtained from Lawrence Berke-
ley Labs (LBL) is collected on a WAN backbone link con-
necting LBL and the Internet using tcpdump. The mpeg



trace is collected by recording the number of bytes for each
frame generated by a mpeg decoder playing back the movie
star war. The web trace was collected at EPA, by recording
every request/reply between the web server and the rest of
the world during a whole day. A more detailed description
of these traffic traces can be found at [24].

4.2 Performance Results

As described in section 3, the design objective of our algo-
rithm is to try and provide better accuracy whenever possi-
ble (i.e. during relatively stable states), and tradeoff accu-
racy for cost-effectiveness when in the bursty states (since
it is extremely expensive and difficult to predict accurately
in the presence of bursts anyway). It is therefore critical to
effectively identify bursty states and quickly adapt to them.
Unless the underlying prediction model is perfect, using a
large history table generally isn’t practical, since its long
memory of bursty states prevents it from identifying steady
states effectively. In other words, long memory (larger win-
dow size) sacrifices the accuracy that can be obtained from
steady state traffic to try and accommodate more bursty
states, which is contrary to our design goal. Furthermore,
the accuracy of state prediction as derived from the ana-
Iytical time series model can vary. The goal of the adap-
tive information collection algorithm is to allow for vari-
ations in predictions (which are likely to occur in highly
dynamic and intractable environments) without sacrificing
significantly on either performance or accuracy.

4.2.1 Cost-effectiveness study

For comparison purposes, we introduce a static range based
measurement algorithm here. The static algorithm, briefly
described in Section 1 uses predefined fixed ranges. It sam-
ples the traffic with a fixed interval and represents a sam-
pled value using a range in which it falls. It uses this range

param. description setting
€ the confidence level 0.05
M size of the sliding specified
window (1sec-per-entry)
Tonin the lower cut off limit specified
for Ty: Ty > Tinin
Traz the upper cut off limit max(14, Tinin)
for Ty: Ty < Thas
P, the probing period maxz(10, Trnin)
P, the sampling rate in RP Trnin
TH, the triggering threshold in S 0.1
k the triggering threshold in NF 3.0

Table 1: parameter settings in simulation implementation

approximation until the next sampling. Intuitively, with the
static range-based algorithm, a smaller static interval im-
plies greater accuracy and increased directory update over-
head. In order to quantitatively evaluate the degree of ac-
curacy in using a range representation, we introduce a met-
ric, acc which compares predicted value wrt to the original
trace value. It is defined as follows:

Definition 3 (acc for adaptive range) For e-
range:< L,U >, derived by adaptive range based
measurement, to approximate a random value 7, the
degree of accuracy is defined as

L+R R-L

acc = Pr{X = Z;11}, where X ~ N( 2 p(l—¢/2

In Section 2, we show £ — Z;(1) is the expected next
step prediction, and by equation 5 ﬁ = &y, is the de-
viation of the estimation residual for next step prediction.
So the above normal distribution is the predicted pdf of the
next step value Z;,;. Naturally, the probability value at
Z4+1 inthis pdf indicates the quality of this range approxi-
mation. Note that the nearer the 7, ., getsto (L+U)/2, the
higher the ace, also the smaller the range size, the higher
the ace for values within the range.

We now define a similar metric acc for the static range.

Definition 4 (acc for static range) For a static range:<
L,U >, derived by static range based algorithm, to ap-
proximate a random value Z;, ., the degree of accuracy is
defined as

acc = Pr{X = Zyy1},where X ~ uniform(L,U)

The choice of a static range in representing a value is based
only on the occurrence of the value in that range; hence
we represent the next step value as a uniform distribution
over the interval of the selected range. In the following,
we evaluate the accuracy, sampling cost and directory cost
of the adaptive parameter collection algorithm, and com-
pare them with the static range based measurement algo-
rithm. For a given traffic trace, we run the measurement
program multiple times with different settings for history
table size M and cut off sampling interval 7,,;,,. For each
of the measurement runs, we note (a) the weighted? average
acc value, (b) the total number of samples initiated and (c)
directory updates performed. The following three sets of
performance graphs for TCP-WAN, MPEG and Web traffic
were obtained using the described process.

TCP traffic measurement: Due to the effect of multi-
plexing (multiple connections), the tcp trace is less bursty
than the single MPEG and web traces. The performance

2we weight each a.cc based on the sampling interval between two suc-
cessive measurements

~—
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Figure 2: Performance with TCP-WAN traffic. Top: The
accuracy plot with varying 7,,;, and M, compared to the
static algorithm with equivalent range sizes; Middle, Sam-
pling overhead; Bottom, The directory update overhead

of our adaptive measurement is very satisfactory both in
terms of accuracy and cost overhead. Figure 2 shows the
results. We chose static range sizes to match the average
range sizes in adaptive measurements to ensure a fair com-
parison (note that in the static range based algorithm, we
can provide higher accuracy with smaller range sizes at the
cost of much higher overhead).

From Figure 2, we report a significant accuracy im-
provement (100 percent to 200 percent) of our adaptive
range based algorithm over the static range based algo-
rithm. In addition, the overhead costs both in terms of
sampling cost and directory updates are reduced. For the
adaptive measurement, a smaller history table size(smaller
sliding window) leads to better accuracy when smaller sam-
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Figure 3: Performance with MPEG traffic.

pling intervals (higher sampling rates) are allowed. With an
increased sampling intervals (lower sampling rates), mea-
surements with larger history table (larger sliding window)
have slightly better accuracy because of the bigger range
size. As expected, with the static algorithm, a smaller inter-
val yielded higher accuracy and caused increased directory
update overheads. Note that the sampling interval remains
unaltered for different interval sizes of the static algorithm.

MPEG traffic measurement: The single (video) mpeg
trace is relatively more bursty than the tcp trace. Even
though the prediction model we are able to derive has
only a modest fit, we expect that the collection algorithms
will compensate for inaccuracy in prediction by identifying
steady states and suppressing bursts. Again, we choose the
static range size in accordance to the average size of adap-
tive measurements.

As expected, from Figure 3 we found that the improve-
ments in accuracy with the adaptive algorithm over the
static algorithm are not as dramatic as in the TCP-WAN
trace. With an extremely small memory size, M = 1,2,
we observe 50 percent to 100 percent accuracy improve-
ments over the static algorithm with comparable cost over-
heads. When M is extremely small, the next step pre-
diction always anticipates exactly the same traffic state
as the current one, quickly reducing the adaptive range
in relatively steady states. Whenever a burst is identified
through the probing process, the algorithm’s burstiness me-
ter ¢, /o, rises directly, causing the sampling interval 7, to
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Figure 4: Performance with web traffic.

increase, preventing oscillation during the bursts. This pro-
cess proactively catches the steady states and simply blocks
the influences from bursty states, therefore yielding a better
overall performance.

Web traffic measurement: The 1 day trace of the EPA
web server is extremely bursty, especially during less busy
hours when the load changes from 0 to a few hundred kilo-
bytes per second easily. Although 90 percent of the values
are well below average, the tail distribution can give rise to
extremely large values. The ARMA prediction model isn’t
satisfactory due to its large estimation residual variation.
We include this traffic to test the robustness of the proposed
algorithm when the source traffic isn’t stationary. Similar
to the tcp and mpeg trace measurements, the 5K and 10K
static range sizes are chosen according to the average range
size of the adaptive measurements.

Figure 4 shows that the adaptive algorithms with small
values of M shows slightly higher accuracy levels as com-
pared to the static algorithms, however the directory update
costs of the adaptive algorithm is much smaller than the
static With minimal prediction ability from the estimated
model, the adaptive algorithm accommodates the enhanced
dynamics by manipulating the range size to ensure reduced
directory update overheads. In large scale distributed mea-
surement infrastructures, the overhead of directory updates
can be critical since frequent updates cause the directory
service to become a bottleneck, reducing the performance
of the system.
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4.2.2 Theimpact of M (sliding window size)

Figures 5 and Fig 6 show a 5 minute clip obtained from the
entire TCP traffic trace and illustrates the impact of history
table (moving window) sizes at M = 150 and M = 15
respectively. From the first graph (LHS of Figure 5), we
observe that the next step prediction Z; (1), which is in the
middle of the two bounds (upper and lower), generally fol-
lows the source traffic. The range size expands upon ar-
rival of bursts and reduces when it stays steady for for a
while. However, due to the relatively large window size
(M = 150), the changes observed were not dramatic, be-
cause a large window size records history information from
past bursts longer (i.e. long memory). The impact of the
long memory (large moving window) can be clearly ob-
served in the second graph (RHS of Figure 5) where the
rise and fall of &, takes about 150 seconds. This can be
compared to Figure 6, where a much smaller history table
is used (M = 15), and the same burst caused &, to fluctu-
ate much more quickly.

From the graphs in Figure 5, we also observe that large tran-
sient bursts are filtered due to the averaging effect caused
by the large number of history values. Furthermore, we no-
tice that the sampling rate increases upon range tightening
and decreases upon range relaxation. In Fig 6 the calcu-
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lated range is much smaller on average. This is due to the
fact that the source traffic is heavy tailed in burst distribu-
tion, with relatively steady behavior most of the time, with
a few extremely bursty states. With a smaller history table,
bursts slide out of the memory (moving window) quickly,
resulting in smaller values of &, most of the time. We ob-
serve similar results (i.e. impact of sliding window size)
with the MPEG and Web traces as well and do not discuss
them in this section due to space limitations.

4.3 Performance Summary

Since network traffic can be highly unpredictable, the de-
sign goal of our algorithm is to (a) tradeoff accuracy for cost
savings during bursty states and (b) provide better accuracy
during relatively steady states. For most of the traffic traces
studied, the proposed adaptive range based algorithm sig-
nificantly improves the measurement accuracy with a much
smaller overhead cost compared with static range based al-
gorithms. We also found that setting the sliding window
to a smaller size generally improves the performance for
realistic network traffics. This is the because as the traffic
gets more and more unpredictable, quick response to traffic
state changes becomes more important than better predic-
tions. We also noticed that with less stationary traffic, the
adaptive range based algorithm gracefully reduces accuracy
while providing higher cost-efficiency. Such robustness is
especially desirable in large scale network systems.

5 Related Work and Future Re-
search Directions

Time series analysis has been used frequently to model
network traffic. The modeling of modern network and
telecommunication traffic using heavy tails have been stud-
ied [4],and several methods are proposed including a time
series approach, which uses the classical Yule-Walker es-
timation to obtain the heavy tailed autoregressions. The
ARMA model is used for network traffic prediction [7] to
show how multiplexing can be used to improve traffic pre-
dictability. In [6], the memory (moving window) size is
studied. By illustrating the existence of a persistent criti-
cal time scale, an optimal memory size is derived, so that
the concerned overflow probability £, the probability that
actual arrivals exceed the estimated arrivals, is minimized.
This memory size can be conservative for our purposes
since our goal is to maximize the overall accuracy of the
estimation while minimize the sampling and directory up-
date cost overhead.

A lot of measurement architectures have proposed to de-
termine traffic parameters[12, 2, 13, 1, 9] for network traf-
fic, for instance [12] develops methods to estimate the dis-
tance between any two points in the internet. [2] imple-
ments a linear model based information collecting and pre-
diction infrastructure, and defined service APIs for upper
level applications which need such support in establishing
network connections. Placement strategies for monitoring
modules are proposed in [13]. Here, the efficiency of the
sampling process is enhanced by emphasizing hot points
in typical ISP network topology. In the diffserv architec-
ture [17], state information collected in the directory is used
by the bandwidth broker (BB) to statistically guarantee the
negotiated QoS agreement. Possibly, the directories of ad-
jacent domain can exchange aggregated state information
to maintain a more accurate snapshot of the system. We are
also currently focusing on developing additional notions of
soft state [23] suitable for QoS provisioning.

QoS aware routing and resource scheduling rely on effi-
cient traffic measurement. A direct application of our range
based measurement technique is the QoS routing protocol
proposed in [16], where link-level parameters such as de-
lay, available bandwidth, etc, are modeled as probability
distributions Here, routing decisions are based on a most
probable path that satisfies the requested QoS. The static
range based algorithm used in this paper is proposed in [3]
where QoS routing performance is studied in detail using
different static range sizes and sampling intervals. The
study determined that smaller range sizes perform better
when sampling occurs at short intervals , while larger range
sizes are more cost-effective with longer sampling inter-
vals. Moving object databases deal with the modeling and
tracking of a moving object within a database; information



collection solutions have been proposed in this context that
directly compare the cost of information imprecision with
the cost of message passing and make decisions based on
the difference [22].

In this paper, we established an efficient information col-
lecting process and proposed an adaptive range based mea-
surement algorithm to measure the network traffic load.
The performance evaluation indicates that the proposed
technique improves the cost-effectiveness significantly over
the existing methods under varying network traffic patterns
and conditions. Furthermore, our algorithm is highly ro-
bust in network traffic conditions for which prediction mod-
els are difficult to estimate. We are currently studying the
implications of the proposed adaptive parameter collection
techniques in the performance of QoS provisioning proto-
cols, e.g to perform combined path and server selection,
which allows load balancing not only between replicated
servers but also among network links to maximize the re-
quest success ratio and system throughput.

This paper uses a time series approach for network traf-
fic analysis. Currently, we are studying a more structured
way in which the protocol information contained in the net-
work traffic is exploited to assist the measurement. We are
also studying how the sliding window size M should be
changed according to the knowledge of scaling factor, A
simple policy is then able to adjust A according to this es-
timation.
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