
Mallika Ghurye, Aditi Sharma, Sruthi Shyamsunder

 Storage of web objects near the user to allow fast access,
thus improving the user experience of the Web surfer.

 Types of caches

 Browser cache

 Proxy cache

 Reverse (inverse) proxy cache

Summary Cache: A Scalable Wide-Area Web Cache Sharing Protocol - Li Fan et. al.

 Faster delivery of Web objects to the end user.

 Reduces bandwidth needs and cost. It benefits the user,
the service provider and the website owner.

 Reduces load on the website servers

 As the content on the web grows, an important technique
to reduce bandwidth consumption is web cache sharing.

 Improves the scalability of the web.

 Today many networks have hierarchies of proxy caches
which interact to reduce the traffic on the internet.

 Whenever a cache miss occurs, it sends a query message to all the
neighboring cache

 As the number of proxies increases, it increases the total
communication and CPU processing

 Drawback is the large overhead

 Proxy keeps a compact summary of the cache directories of every
other proxies

 When a cache miss occurs, checks all the summaries to see if it might
be a cache hit in other proxies

 It then sends a query message only to those proxies whose summaries
indicate a promising result

 False Miss:

 summary does not reflect that the requested document is cached at some
other proxy

Effect: The hit ratio is reduced

 False Hit:

 summary indicates that a document is cached at some proxy when it is
actually not

Effect: proxy will send a query message to the other proxy i.e wasted query
message

 Network overhead (Interproxy traffic)

 frequency of summary updates

 number of false hits and remote hits

Solution: Instead of updating summaries at regular intervals , the update is
delayed until a percentage of cached summaries is ‘new’ reaches a
threshold

 Memory requirement

 size of individual summaries

 number of cooperating proxies

Solution: An ideal summary is small and having low false hit ratios.
Summaries are stored in the main memory so that the lookups are faster.

 Poor service quality by internet. Two reasons:
 no central co-ordination

 Increased load and content demand

 Solution: Distributes content from original server to replica
servers close to the end users.

 Replica servers hold selective set of content and requests for
that content set are sent.

CDN: Content Distribution Network∗ - Gang Peng et. al

*from ‘CDN:Content Distribution Network’ by Gang Peng

*

 DISTRIBUTION SYSTEM: Distributes content from origin server to
replica servers usually via tree or overlay network over the Internet.

 REPLICA PLACEMENT:

 Where do I place the replica server?

 Where do I place the replica object?.e.g. Web Page

 REQUEST ROUTING SYSTEM:

 Sends the requests to replica servers which hold a copy of the requested
content.

 How do I choose a replica server? (distance/load based)

 How do I route requests to it? (HTTP/DNS redirection, anycasting, etc)

deliver the desired content to the user most quickly. Based on some white papers and published

papers, we describe our conjectures on two major processes involved in the operat ion of Akamai:

one is how to direct Internet t raffic to the Akamai server network, another is how to direct requests

to the suitable Akamai replica servers.

5.1 A RLs and A kamaizer

Akamaizer is the tool that tags embedded Web objects for delivery via the Akamai network, t rans-

forming (” akamaizing”) their URLs into Akamai Resource Locators (ARLs). ARLs contain a

number of fields that aid in the content delivery process. Their format is described in the following

example.

A typical embedded object URL such as http:/ / www.foo.com/ a.gif would be transformed into

the following ARL:

http : / / a

Ser i a l #

836 .

A k am ai D om ai n

g.akamai tech.net /

T y p e

7 /

Ser i a l #

836 /

P r ov i d er C o d e

123 /

O b j ec t D at a

e358f 5db0045 /

ab so l u t eU R L

www.f oo.com/ a.gi f

The serial number ident ifies a virtual ” bucket” of content – a group of akamaized objects that will

always be served from the same set of Akamai replica servers. The Akamai domain ensures that

requests for akamaized content t ravel direct ly from the user to the Akamai network, completely

avoiding the object ’s origin site. The type field aids in interpret ing an ARL. The provider code

uniquely ident ifies an Akamai customer. The object data is used to guarantee object freshness.

Depending on the type in use, this field contains either the object ’s expirat ion t ime, or a string

that uniquely ident ifies a part icular version of the object , e.g., the MD5 hash value of the object

content . In the lat ter case, when the object is modified, its object data field changes, so its ARL

changes as well. The last field absolute URL is used by Akamai replica servers to retrieve the object

from the content provider’s origin site the first t ime the object is requested.

5.2 T he A kamai DN S Syst em

All user requests for ARLs are directed to the Akamai network by the server domain field (set

to g.akamai.net) in each ARL. Then, the Akamai DNS system chooses the Akamai replica server

that will deliver the content to the user most quickly and resolve the *.g.akamai.net server name

using this server’s IP address. Unlike the convent ional DNS name resolut ion, this resolut ion relies

not only on the server name, but also on the source address of the DNS query, current network

condit ion and replica servers status.

TheAkamai DNSsystem is implemented asa 2-level hierarchy of DNSservers: by April 2000, 50

high-level .akamai.net servers (HLDNS) and 2000 low-level .g.akamai.net servers (LLDNS). Each

HLDNS server is responsible for direct ing each DNS query it receives to a LLDNS server that is

close to the request ing client . The LLDNS servers perform the final resolut ion of server name to

IP address, direct ing each client to the Akamai replica server that is opt imally located to serve

the client ’s requests. As Akamai cont inuously monitors network condit ion as well as the status of

replica servers, it can respond to network events within a matter of seconds.

When a browser makes a request for an ARL, whoseserver name is a9.g.akamai.net for example,

it first contacts its local DNS server, asking it to resolve theserver name. In theabsence of a cached

response, the local DNS server resolves the server name by using iterat ive DNS queries. It first

contacts a .net root server, which responds with a list of Akamai HLDNS servers. When the local

18

*from ‘CDN:Content Distribution Network’ by Gang Peng

*

 Placed replicas at data centres & PoPs of major internet providers.

 Akamizers: URLS to ARLS(Akamai Resource Locator)

 Object data-object freshness parameter

 Provider code- unique customer code

 Serial #-a group of akamized objects

 Type- interpretation of ARLs

 Akamai Domain- for Akamai DNS system lookup

 Scope: Increase in internet content and data centers in the cloud
had led to an increase in scale, cost and operation.

 Solution: Optimize overall response time using “proxy” front-
end (FE) servers closer to users.

 How FE improve user-perceived performance?

 Cache static portion of dynamic page at FE servers

 FE can establish Persistent TCP via split TCP connections

 Eliminates TCP slow-start between FE and BE

 Reduces RTT between user and server.

Characterizing Roles of Front-end Servers in End-to-End Performance of Dynamic Content

Distribution – Chen et. al.

Purpose: Measurement-based comparative study of
Google and Microsoft Bing Web Search services

How?
 PlanetLab nodes + in-house search query emulator

 ~40,000 keywords with various combinations

 Detailed TCPdump and Application Layer data collected

Different conditions
 First set – all measurement nodes launch search queries to

their default FE servers every 10 seconds

 Second set – one fixed FE server (Bing or Google
respectively) at a time, gets queries from all nodes

Content includes static and dynamic

Static portion: HTTP header, HTML header, CSS style files and the static menu
bar.

Dynamic portion: keyword-dependent menu bar, search results and ads.

Static portion is cached and directly delivered by FE servers.

Dynamic portion is generated by BE data centers and them passed onto the
FE servers for delivery.

As the RTT increases, the gap
between the end of the second and
the beginning of the third clusters
decreases, and eventually the two
are lumped together

Several parameters:
tb: start of TCP three-way handshake
t1: HTTP GET request
t2: receive packets from server
t3/t4: receive first/last static packet
t5/t6: receive first/last dynamic packet

RESULTS
Tfetch Google < Tfetch Bing and more stable

Bing FE servers closer to client but higher Tstatic and Tdynamic compared to Google
(possibly due to variable loads at Akamai FE server)

E2E performance determined by FE-BE fetch time i.e. Tproc and RTTbe

SUMMARY

FE severs cache the static information of dynamic content but while proximity
improves latency other key factors, such as processing times, loads at FE/BE data
centers, and the quality of connections between them also play a critical role in
determining the overall user-perceived performance.

Trade-off between placement of FE severs and the FE-BE fetch time. There is a
threshold within which placing FE further closer to users is no longer helpful.

DESIGN FLAWS

 Interactive typing of search query was not taken into account

Most nodes used were close to Bing FE server hence unfairness/bias possible

No significant packet loss. With high loss rate, close FE servers would improve
E2E performance.

 WEB CACHE

 Cache Sharing

 Internet Cache Protocol (ICP)

 Summary Cache

 CONTENT DELIVERY NETWORKS (CDN)

 CDN Architecture

 Specific CDN: Akamai

 Use of Akamai with Bing& Google Example

 THANK YOU!

