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Spamming indices

Vector Space Scoring

• This was invented before spam 

• Consider: 

• Indexing a sensible passive document collection 

• vs. 

• Indexing an active document collection, where people, 

companies, bots are shaping documents to maximize 

scores 

• Vector space scoring may not be as useful in this context.



Interaction: vectors and phrases

Vector Space Scoring

• Scoring phrases doesn’t naturally fit into the vector space 

world: 

• How do we get beyond the “bag of words”? 

• “dark roast” and “pot roast” 

• There is no information on “dark roast” as a phrase in 

our indices. 

• Biword index can treat some phrases as terms 

• postings for phrases 

• document wide statistics for phrases



Interaction: vectors and phrases

Vector Space Scoring

• Theoretical problem: 

• Axes of our term space are now correlated 

• There is a lot of shared information in “light roast” 

and “dark roast” rows of our index 

• End-user problem: 

• A user doesn’t know which phrases are indexed and 

can’t effectively discriminate results.



Multiple queries for phrases and vectors

Vector Space Scoring

• Query: “rising interest rates” 

• Iterative refinement: 

• Run the phrase query vector with 3 words as a term. 

• If not enough results, run 2-phrase queries and fold into 

results: “rising interest” “interest rates” 

• If still not enough results run query with three words as 

separate terms.



Vectors and Boolean queries

Vector Space Scoring

• Ranked queries and Boolean queries don’t work very well together 

• In term space 

• ranked queries select based on sector containment - cosine 

similarity 

• boolean queries select based on rectangle unions and 

intersections
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Vectors and wild cards

Vector Space Scoring

• How could we work with the query, “quick* print*” ? 

• Can we view this as a bag of words? 

• What about expanding each wild-card into the 

matching set of dictionary terms? 

• Danger: Unlike the boolean case, we now have tfs and 

idfs to deal with 

• Overall, not a great idea



Vectors and other operators

Vector Space Scoring

• Vector space queries are good for no-syntax, bag-of-

words queries 

• Nice mathematical formalism 

• Clear metaphor for similar document queries 

• Doesn’t work well with Boolean, wild-card or positional 

query operators 

• But ...



Query language vs. Scoring

Vector Space Scoring

• Interfaces to the rescue 

• Free text queries are often separated from operator 

query language 

• Default is free text query 

• Advanced query operators are available in “advanced 

query” section of interface 

• Or embedded in free text query with special syntax 

• aka -term -”terma termb”



Alternatives to tf-idf

Vector Space Scoring

• Sublinear tf scaling 

• 20 occurrences of “mole” does not indicate 20 times 

the relevance 

• This motivated the WTF score. 

!

!

!

• There are other variants for reducing the impact of 

repeated terms

WTF(t, d)
1 if tft,d = 0
2 then return(0)
3 else return(1 + log(tft,d))



TF Normalization

Vector Space Scoring : Alternatives to tf-idf

• Normalize tf weights by maximum tf in that document 

!

!

• alpha is a smoothing term from (0 - 1.0 ) ~0.4 in 

practice 

• This addresses a length bias. 

• Take one document, repeat it, WTF goes up 

• this score reduces that impact

ntft,d = � + (1� �)
tft,d

tfmax(d)



TF Normalization

Vector Space Scoring : Alternatives to tf-idf

• Normalize tf weights by maximum tf in that document 

!

!

• a change in the stop word list can change weights 

drastically - hard to tune 

• still based on bag of words model 

• one outlier word, repeated many times might 

throw off the algorithmic understanding of the 

content

ntft,d = � + (1� �)
tft,d

tfmax(d)



Laundry List

Vector Space Scoring : Alternatives to tf-idf

Term Frequency Document Frequency Normalization
(n)atural tft,d (n)o 1 (n)one 1
(l)ogarithm 1 + log(tft,d) (t)idf log |corpus|

dft
(c)osine 1⇤

w12+w22+...+wm
2

(a)ugmented � + (1� �) tft,d

tfmax(d) (p)robidf max{0, log( |corpus|�dft
dft

) (u)pivoted 1/u

(b)oolean tft,d > 0?1 : 0 (b)yte 1/CharLength�,� < 1
(L)ogaverage 1+log(tft,d)

1+log(avet�d(tft,d))

• SMART system of describing your IR vector algorithm 

• ddd.qqq (ddd = document weighting) (qqq = query 

weighting) 

• first is term weighting, second is document, then 

normalization 

• lnc.ltc is what?



Efficient Cosine Ranking

Vector Space Scoring

• Find the k docs in the corpus “nearest” to the query 

• the k largest query-doc cosines 

• Efficient ranking means: 

• Computing a single cosine efficiently 

• Computing the k largest cosine values efficiently 

• Can we do this without computing all n cosines? 

• n = number of documents in corpus



Efficient Cosine Ranking

Vector Space Scoring

• Computing a single cosine 

• Use inverted index 

• At query time use an array of accumulators Aj to 

accumulate component-wise sum (incremental dot-

product) 

• Accumulate scores as postings lists are being 

processed (numerator of similarity score)

Aj =
�

t

(wq,twd,t)



Efficient Cosine Ranking

Vector Space Scoring

• For the web 

• an array of accumulators in memory is infeasible 

• so only create accumulators for docs that occur in postings list 

• dynamically create accumulators 

• put the tf_d scores in the postings lists themselves 

• limit docs to non-zero cosines on rare words 

• or non-zero cosines on all words 

• reduces number of accumulators



Efficient Cosine Ranking

Vector Space Scoring

CosineScore(q)
1 Initialize(Scores[d ⇤ D])
2 Initialize(Magnitude[d ⇤ D])
3 for each term(t ⇤ q)
4 do p⇥ FetchPostingsList(t)
5 dft ⇥ GetCorpusWideStats(p)
6 �t,q ⇥WeightInQuery(t, q, dft)
7 for each {d, tft,d} ⇤ p
8 do Scores[d] + = �t,q · WeightInDocument(t, q, dft)
9 for d ⇤ Scores

10 do Normalize(Scores[d],Magnitude[d])
11 return top K ⇤ Scores



Use heap for selecting the top K Scores

Vector Space Scoring

• Binary tree in which each node’s value > the values of 

children 

• Takes 2N operations to construct 

• then each of k “winners” read off in 2logn steps 

• For n =1M, k=100 this is about 10% of the cost of sorting 

• Java “TreeMap” for example




