Introduction to Information Retrieval
INF 141/ CS 121
Donald J. Patterson

Content adapted from www.vogella.com

http://www.vogella.com/tutorials/JavaRegularExpressions/article.html#regexjava

Regular Expressions

A regular expression defines a search pattern for strings. Regular expressions can be used to search,
edit and manipulate text. The pattern defined by the regular expression may match one or several times
or not at all for a given string.

The abbreviation for regular expressionis regex.

The process of analyzing or modifying a text with a regex is called: The regular expression is applied to
the text (string) .

The pattern defined by the regexis applied on the text from left to right. Once a source character has
been used in a match, it cannot be reused. For example, the regex aba will match ababababa only two
times (aba_aba_).

A simple example for a regular expression is a (literal) string. For example, the Hello World regex will
match the "Hello World" string.

. (dot) is another example for a regular expression. A dot matches any single character; it would match,
for example, "a" or "z" or "1".

M‘h\
1

www.vogella.com

http://www.vogella.com/tutorials/JavaRegularExpressions/article.html#regexjava

Regular Expressions

e Most programming languages support regex’s
e Most have there own quirks

® These instructions are for regex’s in Java / Eclipse

/:l‘\-:‘
1

www.vogella.com

http://www.vogella.com/tutorials/JavaRegularExpressions/article.html#regexjava

Regular Expressions

e Regular Expressions are about finding patterns in text

e Based on aline by line paradigm

/:l‘\-:‘
1

www.vogella.com

http://www.vogella.com/tutorials/JavaRegularExpressions/article.html#regexjava

Regular Expressions

Regular. Description

Expression
Matches any character

“regex Finds regex that must match at the beginning of the line.

regexs$ Finds regex that must match at the end of the line.

[abc] Set definition, can match the letter a or b or c.

[abc][vz] Set definition, can match a or b or ¢ followed by either v or z.

[“abc] When a caret appears as the first character inside square brackets, it negates the pattern. This can
match any character except a or b or c.

[a-d1-7] Ranges: matches a letter between a and d and figures from 1 to 7, but not d1.

X|z Finds X or Z.

XZ Finds X directly followed by Z.

$ Checks if a line end follows.

/’J.\(\
1

www.vogella.com

http://www.vogella.com/tutorials/JavaRegularExpressions/article.html#regexjava

Regular Expressions

Regular Expression Description

\d Any digit, short for [0-9]

\D A non-digit, short for [*0-9]

\s A whitespace character, short for [\t\n\x0b\r\£f]

\S A non-whitespace character, short for [*\s]

\w A word character, short for [a-zA-Z 0-9]

\W A non-word character [“\w]

\S+ Several non-whitespace characters

\b Matches a word boundary where a word character is [a-zA-Z0-9_].

l"f‘\\\
1

www.vogella.com

http://www.vogella.com/tutorials/JavaRegularExpressions/article.html#regexjava

Regular Expressions

Regular
Expression

*

{X}

{X,Y}

*?

Description

Occurs zero or more times, is short for {0,}

Occurs one or more times, is short for {1,}
Occurs no or one times, ? is short for {0,1}.

Occurs X number of times, {} describes the order
of the preceding liberal

Occurs between X and Y times,

? after a quantifier makes it a reluctant
quantifier. It tries to find the smallest match.

X* finds no or several letter X,
.* finds any character sequence

X+ - Finds one or several letter X
X? finds no or exactly one letter X

\d{3} searches for three digits, . {10} for any
character sequence of length 10.

\d{1,4} means \d must occur at least once
and at a maximum of four.

/’nl.\(\
1

www.vogella.com

http://www.vogella.com/tutorials/JavaRegularExpressions/article.html#regexjava

Regular Expressions

3.4. Grouping and Backreference

You can group parts of your regular expression. In your pattern you group elements with round
brackets, e.g., (). This allows you to assign a repetition operator to a complete group.

In addition these groups also create a backreference to the part of the regular expression. This captures
the group. A backreference stores the part of the string which matched the group. This allows you to
use this part in the replacement.

Via the s you can refer to a group. s1 is the first group, s2 the second, etc.

Let's, for example, assume you want to replace all whitespace between a letter followed by a point or a
comma. This would involve that the point or the comma is part of the pattern. Still it should be included
in the result.

/7 Removes whitespace between a word character and . or ,
String pattern = "Q\\WOQO\\s+)C([\\.,1D";
System.out.println(EXAMPLE_TEST.replaceAll(pattern, "$13$3"));

This example extracts the text between a title tag.

/7 Extract the text between the two title elements
pattern = "(7i)(<title.*7>)(.+7)(</title>)";
String updated = EXAMPLE_TEST.replaceAll(pattern, "$2");

\Ih

www.vogella.com

http://www.vogella.com/tutorials/JavaRegularExpressions/article.html#regexjava

Backslashes

The backslash \ is an escape character in Java Strings. That means backslash has a predefined meaning
in Java. You have to use double backslash \\ to define a single backslash. If you want to define \w, then

you must be using \\w in your regex. If you want to use backslash as a literal, you have to type \\\\ as \
is also an escape character in regular expressions.

l"f‘\\\
1

www.vogella.com

http://www.vogella.com/tutorials/JavaRegularExpressions/article.html#regexjava

Backslashes

strings in Java have built-in support for regular expressions. strings have three built-in methods for
regular expressions, i.e., matches(), split()), replace().

These methods are not optimized for performance. We will later use classes which are optimized for

performance.

Table 4.

Method Description

s.matches("regex") Evaluates if "regex" matches s. Returns only true if the WHOLE string can be
matched.

s.split("regex") Creates an array with substrings of s divided at occurrence of "regex". "regex"
is not included in the result.

s.replace("regex"), Replaces "regex" with "replacement

"replacement”

/’J.\(\
1

www.vogella.com

http://www.vogella.com/tutorials/JavaRegularExpressions/article.html#regexjava

Backslashes

public class RegexTestStrings {
public static final String EXAMPLE_TEST = "This is my small example "
+ "string which I'm going to " + "use for pattern matching.";

public static void main(String[] args) {
System.out.println(EXAMPLE_TEST.matches("\\w.*"));
String[] splitString = (EXAMPLE_TEST.split("\\s+"));
System.out.println(splitString.length);// should be 14
for (String string : splitString) {

System.out.println(string);

}
/7 replace all whitespace with tabs
System.out.println(EXAMPLE_TEST.replaceAll("\\s+", "\t"));

/,l"\(\
1

www.vogella.com

http://www.vogella.com/tutorials/JavaRegularExpressions/article.html#regexjava

Pattern and Matcher

import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class RegexTestPatternMatcher {
public static final String EXAMPLE_TEST = "This is my small example string which I'
m going to use for pattern matching.";

public static void main(String[] args) {

Pattern pattern = Pattern.compile("\\w+");

/7 in case you would like to ignore case sensitivity,

// you could use this statement:

/7 Pattern pattern = Pattern.compile("\\s+", Pattern.CASE_INSENSITIVE);

Matcher matcher = pattern.matcher(EXAMPLE_TEST);

/7 check all occurance

while (matcher.find()) {
System.out.print("Start index: " + matcher.start());
System.out.print(” End index: " + matcher.end() + " ");
System.out.println(matcher.group());

}

/7 now create a new pattern and matcher to replace whitespace with tabs

Pattern replace = Pattern.compile("\\s+");

Matcher matcher2 = replace.matcher(EXAMPLE_TEST);

System.out.println(matcherZ.replaceAl1("\t"));

/,l"\(\
1

www.vogella.com

http://www.vogella.com/tutorials/JavaRegularExpressions/article.html#regexjava

Example: Phone Number

import org.junit.Test;

import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;

public class CheckPhone {

@Test
public void testSimpleTrue() {
String pattern = "\\d\\d\\d([,\\s])?\\d\\d\\d\\d";
String s= "1233323322",
assertFalse(s.matches(pattern));
s = "1233323";
assertTrue(s.matches(pattern));
s = "123 3323";
assertTrue(s.matches(pattern));

/’J.\(\

www.vogella.com

http://www.vogella.com/tutorials/JavaRegularExpressions/article.html#regexjava

Online checker

Regular Expression Test Page for Jav2 | JavaDoo |
Eﬂlﬂﬂ@ ‘h"l!dzﬂ | KA share

Expression to test

Regular expression:

Options: () Force canonical equivalence (CANON_EQ)
() Case insensitive (CASE_lNSENSlTNE)
() Allow comments i regex (GOMMENTS)
() Dot matches line terminator (DOTALL)
() Treatasa sequence of literal characters (LlTERAL)
() rand$ match EOL (MULTlLlNE)
() Unicode case matching (UNlGODE_CASE)
) Only consider “\n' as line terminator (UNlX_LINES)

Replacemen\:
ﬂ_ More Inputs |
pout e
ot 2 =
Input 4: / \22)
gt Dl

m\ More Inputs
.)

\ Make sharé code |

i —

pey TNl

/"‘\a\
1

RegexPlanet

http://www.regexplanet.com/advanced/java/index.html

