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Abstract

A common assumption in activity recognition is that the
system remain unchanged between its design and its poste-
rior operation. However, many factors can affect the data
distribution between two different experimental sessions in-
cluding sensor displacement (e.g. due to replacement or
slippage), and lead to changes in the classification perfor-
mance. We propose an unsupervised adaptive classifier that
calibrates itself to be robust against changes in the sensor
location. It assumes that these changes are mainly reflected
in shifts in the feature distributions and uses an online ver-
sion of expectation-maximisation to estimate those shifts.
We tested the method on a synthetic dataset in addition to
two activity recognition datasets modeling sensor displace-
ment. Results show that the proposed adaptive algorithm is
robust against shift in the feature space due to sensor dis-
placement.

1 Introduction

Activity recognition from wearable sensors is largely be-
ing studied in applications like gaming [1], industrial main-
tenance [2] and health monitoring [3]. In particular, acceler-
ation sensors have been applied for recognising different ac-
tivities from modes of locomotion [4] to complex daily liv-
ing activities [5]. Typically, the design of these systems (e.g.
feature selection, classification) assumes that the character-
istics of the sensor network will not change. However, dur-
ing system operation body-worn sensor location may slip
or rotate. Similarly, is unrealistic to expect users to pre-
cisely re-attach the sensors at the same location from day to
day. In order to address the issue of sensor location variabil-
ity, we propose a self-calibrating approach based on prob-
abilistic classifiers. The method tracks changes in the fea-
ture distribution in an unsupervised manner using an online
implementation of the Expectation-Maximisation algorithm
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(EM). We tested the method on two scenarios of Human-
computer interaction (HCI).

Several methods have been previously proposed to cope
with those changes in activity and gesture recognition using
body-worn sensors, Kunze et. al. used gyroscope and ac-
celerometers to distinguish between rotation and translation
[6]. They show that sensor translation does not significantly
affect the acceleration signals while rotations does. Using
physical concept behind they proposed a heuristic method
to deal with these variations and achieved higher recogni-
tion rates for displaced sensors on body segments. Other ap-
proaches have focused on the use of displacement-invariant
features [7]. Forster et. al. use genetic programing for ex-
tracting invariant features [8]. They located six acceleration
sensors on lower arm to simulate six sensor placements in
a Human Computer Interface (HCI) scenario. They leaved
one sensor out from training and used evolving features of
other sensors to train a classifier. Using evolving features
compared to standard features, they reported higher recog-
nition rate and robustness against sensor displacement. In
another work, the same group proposed an online unsuper-
vised self-calibration algorithm [9]. Using online adapta-
tion they adjusted the centres in a nearest centre classifier
(NCC). They applied the method on synthetic data in addi-
tion to two real life datasets, namely the HCI scenario de-
scribed above and a fitness scenario dataset.

As state above, changes in sensor placement affect the
signal feature distributions amongst different sessions. A
particular case, termed covariate shift, is when the train-
ing and testing feature distributions change but the condi-
tional distribution of the classifier output given input is the
same. Based on this assumption, Sugiyama et. al. pro-
posed a modification of cross validation technique called
importance weighted cross validation (IWCV) that can be
used in model and parameter selection in classification tasks
[10]. They used IWCV to select parameters in importance
weighted LDA (IWLDA) were the weights are the ratio
of the test and train patterns distribution in the calibra-
tion session. In experimental studies, this ratio is replaced
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by its empirical estimates either Direct Importance Estima-
tion by Kullback-Leibler Importance Estimation Procedure
(KLIEP) or Unconstrained Least Square Importance Fitting
(uLSIF) [11]. This method has been tested in Brain Com-
puter Interface (BCI) applications [12]. However, it should
be noticed that adaptation requires a calibration session to
estimate the ratio of distribution between training and test
session.

The rest of this paper is structured as follows, in Section
2 we describe the proposed method followed by a toy exam-
ple using synthetic data (Sec 3.1). Then we validate it using
the same applications introduced by Forster and Colleagues
[9]; a Human-computer-Interaction (Sec 3.2) and a fitness
scenario (Sec 3.3).

2 Unsupervised adaptation

Classification methods for activity recognition typically
assume that the feature distribution used for training will re-
main the same during the system operation. As mentioned
before several factors can induce changes in the system
leading to a decrease in performance. We propose a method
to provide online unsupervised adaptation to changes in the
feature distribution resulting from sensor displacement. We
assume that sensor displacement results in changes in the
overall feature distribution but the conditional distributions
of classes given these features remain the same (i.e. co-
variate shift) [10]. Moreover, we assume that the change in
the feature distribution can be fully characterised by shift of
an unknown magnitude and direction. Given this assump-
tion, the proposed method estimates the distribution shift
using an online version of the Expectation-Maximisation
algorithm. Once the shift vector has been estimated, in-
coming samples can be shifted back and classified using the
original classifier (i.e. the one trained in the original feature
distribution).

Specifically, let C(x) be a classifier trained on data with
feature distribution p(x). If during runtime the distribution
of incoming samples y is equal to p(x) shifted by a
vector 6, performance will not be affected if samples are
shifted back before classification: C(y — 6). Therefore,
self-adaptation can be achieved by estimating the shift
vector 6 in an online, unsupervised manner.

Let p(x) be the training feature distribution,

I
p(x) = ZP(Z = w;)P(x|z = w;) (1)

i=1
where x represents the features, P(z = wj;) is the

prior probability of class ¢, I is the number of classes,
and the class-conditional distribution is a normal dis-
tribution with mean p; and covariance matrix ;:
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P(x|z = w;) = N(x|pi, 35)-

Let y be the samples recorded during system operation.
Given the method assumptions, (y — 6) should follow the
same distribution as the training samples(Eq 1). Given a
matrix Y where the j —th column represents the j-th obser-
vation, y; and Z be a matrix of labels, with corresponding
z; that are latent variables. We can define the likelihood for
a specific value of 6,

Inp(Y|f) =In Zp(Y, Z\0)
z

)

We use Expectation-Maximisation (EM) algorithm to
maximise the likelihood over 6 [13]. Given an initial shift
estimation #°'¢ the E-step corresponds to compute the pos-
terior probabilities given the shift vector p(Z|Y, #°!?). For
j — th observation it is computed as follows,

P(z; = ws)P(y; — 0°|z = w,)

P(z; = wyly;,0°%) =
(J i o) Yioi Pz = wi)P(y; — 09z = w;)

3

The M-step corresponds then to evaluate 6",
™" = arg max Q(6,06°%) 4)

where
Q0,0°") => " p(Z]Y,0°) Inp(Y,Z|0)  (5)
Z
J
Q(e, eold) _ Z Qj (07 Hold) (6)
j=1

where J is the number of patterns and Q; (6, 6°'?) is de-
fined as follows:

I
> Pz = wily;, 07 (In P(z; = wi)+In N(y;—0|i, )

i=1

)

In order to have a runtime estimation of the distribution

shift we use an online version of Levenberg-Marquardt al-

gorithm [14]. This yields an on-line update rule that max-
imises Eq. 7 using its gradient (g) and Hessian (H),

pnew — 901d + Af (8)

where,

A0 =(H+ M) 'g ©)



Algorithm 1 Online shift estimation

for every new sample y; do
Compute posterior probability of the shifted sample

using Eq. 3.
Classify the pattern based on maximum posterior
rule.
Compute shift update, A6
if (JAf| > 9)
Update the shift 6 (Eq. 8).
endif
end for
I
g=> P(z; =wly;,0")%;  (y — 6 — ) (10)
i=1
I
H =Y P(z; = wily;, 0" (11)
i=1

The A term in Eq. 9 is a small positive number and Z
is identity matrix, this regularisation term prevents from in-
verting a singular matrix. In the current experiments \ was
set to the absolute value of the smallest non-positive eigen-
value of H + 0.01. Although in practical applications it can
be set to a fixed value to reduce the computational cost.

To sum up, given a trained Gaussian classifier—i.e. Lin-
ear or Quadratic Discriminant Analysis, LDA or QDA
respectively— shifts in the feature distribution can be esti-
mated online using Algorithm 1. In order to avoid unneces-
sary changes in the shift estimation when there is no change
in the feature distribution, the shift 6 is only updated when
the magnitude of the estimated change exceeds a threshold
(©). Note that at the beginning of the operation, an ini-
tial value for the shift has to be set. Having no knowledge
about how the distribution may have changed since training,
we set this value to be zero, thus assuming no change.

3 Results

3.1 Synthetic Dataset

To illustrate our method we present a toy example of a
two-class problem in a two-dimensional feature space. A
training dataset was generated where both classes corre-
spond to Gaussian distributions (means: m4 = [0,0]7 and
mp = [4,4]"; random covariance matrices). The testing
set was created from a shifted version of the same distribu-
tions (both training and testing sets contain 200 patterns per
class) where the mean of both classes were shifted by a ran-
dom vector # drawn from a normal distribution with zero
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Figure 1: Evaluation of adaptive classifiers on a 2-class synthetic
data. See text for details. (a) adaptive QDA. (b) Average error in
the shift estimation using the adaptive QDA.

mean and 100 standard deviation. The update threshold ©
was set to zero.

To evaluate the method we performed 100 repetitions of
the simulation. For each repetition we compare the classi-
fication accuracy (C'A) of a fixed Gaussian classifier with
respect to the proposed adaptive classifier. In addition, we
assessed the level of bias of these classifiers by computing
the confusion index (CT) for a two-class problem [15],

a1 ag

I=|——-— 1 12
C ) ngOO% (12)

where a; and k; are respectively the number of correctly
classified patterns and the total number of patterns for class
7. This index, C1, is close to 100% if the classifier is bi-
ased towards one of the classes, while it tends to zero for an
unbiased classifier.

Figure 1(a) shows the feature distribution for both train-
ing and testing datasets (empty and filled symbols respec-
tively) where each class is represented by a different colour.
The dotted and solid lines correspond to the decision bound-
ary of the original classifier and adapted classifier respec-
tively. It can be seen that the original classifiers result in a
completely biased classification in the shifted feature space
(solid line). In contrast, the adaptive process based on the
shift estimation yields an unbiased classifier (dotted line).
Table 1 shows the performance of the fixed and adaptive
LDA and QDA classifiers after changes in the feature dis-
tribution. The accuracy (C' A) of the fixed classifier is close
to chance level and its outputs are highly biased (C'I — 1).
In contrast, the adaptive mechanism is able to prevent this
bias resulting in a high classification accuracy for both types
of classifiers. It should be noticed that the reported perfor-
mance corresponds to the online shift estimation.

In order to illustrate the evolution of the shift estimation,
we perform another simulation with a random shift vector
6 drawn from a normal distribution with mean [70, —80]%
and standard deviation of 10. We performed 100 repetitions
of this simulation where the feature distribution shift
remain constant for each repetition. Figure 1(b) shows



Table 1: Synthetic data - average classification accuracy (C'A) and
confusion index (CI) over 100 repetitions.

Classifier CA(Avg. £std) CI(Avg.+std)
LDA 51.04% + 6.14 97.73% + 13.67
QDA 49.84% =+ 8.38 95.22% =+ 17.68

Adaptive LDA 84.59% + 2.09 7.80% + 3.88
Adaptive QDA 84.39% £ 2.11 3.73% + 2.88

the average error in the shift estimation computed as the
Euclidean distance between the actual and the estimated
shift. It can be shown that the distance between the actual
and estimated shifts quickly decreases and remains stable
after a small number of presented samples.

3.2 HCI Gesture Dataset

We tested the proposed method on an acceleration-based
gesture based HCI scenario [8, 9]. Five different hand ges-
tures, namely a triangle, an upside-down triangle, a circle,
a square, and an infinity symbol should be distinguished.
Gestures were recorded using six USB acceleration sensors
at different positions to the right lower arm of the subject,
c.f. Fig. 2(a). For each action 50 repetitions are available.
Data are manually windowed to contain only a single action
with duration between five to eight seconds. We performed
two set of simulations, on the first we used only the mean
and variance of the y-acceleration as done by Forster and
colleagues [9]. In the second configuration we used a larger
set of features were for three different axes of acceleration
we compute mean, standard deviation, min, max, energy
in addition to magnitude of acceleration signals and corre-
lation between each pair of three axes. Canonical Variate
Analysis (CVA) is used to reduce the feature dimensional-
ity to four (i.e. corresponding to the to number of classes
minus one) [16, 17].

We created training and testing sets containing two thirds
and one third of the data respectively. As in previous stud-
ies, sensor displacement was emulated by testing the clas-
sifier using data from a different sensor of the one used for
training [9]. We report the classification performance of a
static LDA classifier, as well as the proposed adaptive ver-
sion of LDA (aLDA). The update threshold © was set to 1.5
based on the training dataset.

For comparison, we evaluate the Importance Weighted
LDA (IWLDA) that also relies on the covariance shift as-
sumption but requires a calibration dataset to estimate the
distribution shift (c.f. Section 1, [11]). In the reported sim-
ulations we used the all test samples as calibration dataset,
therefore corresponding to the performance of an off-line
recognition system. KLIEP was applied for the importance
estimation (for IWLDA we set A = 1 and for KLIEP we set
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Figure 2: Sensor placement on the two experimental setups. (a)
Gesture recognition scenario. (b) Fitness Scenario.

0 = 0.01 and three Newton iterations). We also compare
with the reported performance of the adaptive NCC classi-
fier (aNCC) originally used on this dataset [9]. It should be
noticed that the reported results for IWLDA and aNCC the
feature distribution change is first estimated and then kept
fixed for estimating the accuracy on the training set. In con-
trast, for aLDA we report the accuracy of the classification
while the adaptation process takes place, therefore emulat-
ing the online performance.

Classification improvement for aLDA and IWLDA for
the two set of features are shown in Fig. 3. In these plots
the x-axis corresponds to the test accuracy of the fixed clas-
sifier (LDA), while the y-axis corresponds to the accuracy
of the adaptive classifier. Each point corresponds to one of
the tested sensor combinations. Red circles show the per-
formance when there is no change in the sensor location
(i.e. the classifier is tested on data from the same sensor it
was trained). Points above the diagonal line correspond to
an improvement due to the adaptation process with respect
to the static classifier. It shows that for both sets of features
the adaptive LDA outperforms the static classifier in most
of the cases, while the accuracy remains similar when there
is no change in the sensor location. In contrast IWLDA
performance is less consistent, as it decreases when only
y-acceleration is used as features.

Table 2 shows the average performance with respect to
the sensor change. The performance of the LDA classifier
decreases significantly when tested with data recorded at a
different location. In contrast, aLDA consistently outper-
forms both the LDA and IWLDA classifiers for both sets
of features. Surprisingly, IWLDA does not allow any im-
provement with respect to the LDA classifier when tested
on another sensor location.

Since the adaptation process relies on the estimation of
changes in the feature distribution, one may expect that it
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Figure 3: Classification accuracy on the HCI scenario using both
sets of features (see text). Each plot shows the accuracy of the
adaptive classifier vs. the accuracy of a static classifier. Red circles
show the cases when the classifier is tested at the same location it
was previously trained. (Left), aLDA. (Right), IWLDA.

performs better when there are small changes in the sensor
location. In the case of no sensor location change (¢t = s),
the aLDA adaptive mechanism yield a small decrease in
performance with respect to the static classifier. In contrast,
alLDA average performance is about 20% higher than LDA
when tested in sensors located next to the training sensors
(|t — s| = 1). Similarly, aLDA also improves performance
in the other sensor combinations (|t — s| > 1). In particu-
lar, we observe that the alLDA is quite robust for the location
of sensors 3 to 6 (i.e. sensors located closer to the wrist).
Indeed the average performance after displacement among
of these positions is equal to 75.2% and 86.9% for the two
simulated set of features (c.f. Fig 4).

In comparison to the reported results for aNCC using
the y-acceleration as feature, the adaptive LDA has a bet-
ter performance when tested on the same sensor. For small
displacements the average performance is similar but aLDA
exhibit less variance across sensors. Finally, when the dis-
placement is larger, the average performance for aL.DA is
lower than for aNCC. This is mainly due to a sharp decrease
of performance when any of sensors 1 or 2 is tested on lo-
cations 3 to 5.

3.3 Fitness Activity Dataset

The method was also tested on a fitness scenario where
five different aerobic movements of the leg were recorded
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Table 2: Classification accuracy - HCI scenario

Y-acceleration

Classifier t=s [t—sl=1 |Jt—s|>1
LDA 89.7+44 43.6+214 32.1 +£9.7
aLDA 86.3+29 628+132 494+118

IWLDA 890436 4146+243 23.0x6.1
aNCC 824+20 635+198 5944225

All features

Classifier t=s [t—sl=1 Jt—s|>1
LDA 953+34 46.1+£260 305+194
aLDA 944 +38 68.1+£19.7 53.0+20.6

IWLDA 90.5+10.7 4804323 323+£203

Adaptive LDA Adaptive LDA

08

06

0.4

0.2

5 6 1 5 6

3 4
Test Sensor

(b)

3 4
Test Sensor

(@)

Figure 4: Classification accuracy - HCI gesture scenario. Accu-
racy is encoded by grey levels. Each row denotes the sensor used
for training and each column represents the sensor used for testing
the algorithms. (a) y-acceleration. (b) All features.

using 10 bluetooth acceleration sensors located at the sub-
ject leg [8, 9]. As depicted in Figure 2(b) five of the sen-
sors were placed on the lower leg and the other five on the
thigh. the sensors were located equidistantly and roughly
with the same orientation to model only translation. During
the experiment, the subject watches five times a video of an
aerobic teacher and emulates the depicted movements. The
video contains all movement classes equally represented. It
should be noticed that in this type of applications sensor
displacement due to the fast movements is likely to occur in
real applications. For each sensor, the mean and variance of
the acceleration magnitude based on a sliding window with
two thirds of overlap is used as feature. As in the previ-
ous application, the data was divided into a training and a
testing set containing two thirds and one third of the data
respectively, and simulation parameters for aLDA were the
same as before. We tested separately the sensors located on
the different leg segment (i.e. thigh or lower leg), as prelim-
inary results show that little adaptation can be achieved for
location changes between different limb segments.

Contrasting with the previous scenario, in this case the
performance of the aLDA and IWLDA classifiers do not
significantly differ from the static LDA (c.f. Fig 5). A per-
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Figure 5: Classification accuracy - Fitness scenario. (Left) adap-

tive LDA. (Right) IWLDA

Table 3: Classification accuracy - Fitness scenario

Thigh
Classifier t=s t—sl=1 |t—s/>1
LDA 79.0£132 624+£11.6 502+£15.1
aLDA 726 +£11.8 62.0+£10.2 53.8+14.1
IWLDA 795+122 627+95 482+169
Lower leg
Classifier t=s t—sl=1 [|t—s]>1
LDA 88.8+4.0 76.6+8.1 52.7+£127
aLDA 88.8+4.0 751+93 532+£125
IWLDA 89.1+£44 77678 542+11.7
aNCC 82.8+£59 744+£99 495+94

formance increase is only observed when there is a large
change in the sensor location (|t — s| > 1) specially for sen-
sors located in the thigh. Indeed, as can be seen in the Ta-
ble 3 the performance decrease of the static LDA classifier
when tested in other locations is not as steep as in the HCI
scenario. The average performance of the static LDA when
testing in the closest sensor to the training one (|t — s| = 1)
is about 62% and 76% for sensors in the thigh and lower
leg respectively. Actually, the accuracy of the static LDA
is already higher than the reported accuracy of the adap-
tive NCC for the sensors in the lower leg. The aLDA per-
formance for each tested combination is shown in Fig 6, a
gradual degradation with respect to the sensor displacement
can be observed specially for the sensors on the lower leg.
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Figure 6: Classification accuracy - Fitness scenario. (a) Sensors
on the thigh. (b) Sensor on the lower leg.

4 Discussion

Robustness to sensor displacement is an important aspect
for practical applications using wearable sensors. At oper-
ation time, the exact placement of these sensors cannot be
ensured as they may slip or can be placed at slightly differ-
ent positions from one day to the next. In this work we pro-
posed an adaptive mechanism that is based on the unsuper-
vised, online tracking of the feature distribution. The pro-
posed method extends probabilistic Gaussian classifiers as-
suming that changes in the sensor location mainly results in
a shift of the overall feature distribution, without affecting
the conditional distribution of the classifier outputs (i.e. co-
variance shift). Given this assumption, unsupervised adap-
tation is achieved by estimating the features shift by means
of an online version of expectation maximisation using the
Levenberg-Marquardt algorithm.

Simulations using synthetic data shows that this method
is able to quickly estimate the features shift, and adapt the
classifier if the underlying assumption holds (c.f. Section
3.1). Although such an assumption is unlikely to fully
hold in real applications, experimental results on two ap-
plications using body-worn accelerometers show that this
method is able to compensate for strong performance de-
crease, as in the case of the gesture recognition application,
without compromising the performance when the original
classifier performs well, e.g. fitness scenario. We use an ex-
perimental setup using sensors located at different positions
of the upper and lower limbs, allowing to emulate sensor
displacement by testing the classifier in a sensor located at
a different position than the one used for training.

Moreover, we also compare the proposed method with
another technique based on the covariance shift assumption
(i.e. IWLDA) that uses calibration data to estimate the fea-
ture change based on the ratio between the distribution be-
fore and after the shift takes place. We also compared with
the performance of an adaptive version of the NCC classi-
fier (aNCC) previously reported on the same datasets [9].
In their study, Forster and colleagues use calibration data to
update the classifier and then keep it fixed for testing proce-



dures. Moreover, the aNCC requires a free parameter cor-
responding to the learning rate. In contrast, we apply our
method without a re-calibration phase and report the testing
performance while the adaptation process is taking place,
thus providing an estimation of the online performance of
the system.

In the gesture recognition scenario the performance of a
LDA classifier quickly drops after a change in the sensor
location, while the performance decrease for the adaptive
LDA is not as strong. In particular, aLDA performance re-
main particularly high (above 75% if using only features
from y-accelerometer) for sensor located close to the wrist .
Compared to the aNCC, the aL.DA classifier performs simi-
larly for small sensor displacements while having less vari-
ability across sensor combinations. However, the aNCC re-
lies on a calibration process and the classifier remains fixed
during the testing period. In contrast, the INLDA approach
fails to adapt to the changes in the feature distribution hav-
ing accuracies closer to the fixed classifier. For the fitness
scenario, the adaptive LDA does not perform significantly
better than the static classifier. This may be due to the fact
that the LDA classifier already seems robust to small sensor
displacements in this application—indeed, LDA outperforms
the adaptive NCC—thus leaving less opportunity for adapta-
tion. A similar performance pattern was observed for the
IWLDA, showing that our approach converges to the same
estimation than the calibration process of this method.

Several methods have been previously proposed to detect
changes in a particular sensor [18, 19]. Correspondingly the
proposed method, besides the adaptation process, the esti-
mated shift provides a measure of how much the current
feature distribution resembles the one used for training, and
can be used as an evaluation of the sensor reliability. Fig 7
shows how the estimated shift (average and mean over the
testing dataset) correlates with the change in performance
with respect to the original sensor location. In general larger
estimated shifts corresponds to a decrease in accuracy al-
though, in a few cases a performance decrease is observed
even though the estimated shift is small suggesting that in
these cases the covariate shift assumption is not satisfied.
This was mainly observed when sensors in the lower leg
were tested on locations closer to the knee joint.

The current technique can be extended to take into ac-
count more realistic assumptions on the feature distribution
change (e.g. allowing for scaling and rotations). Neverthe-
less, this may imply iterative processes relying on a larger
amount of data, thus compromising its application on wear-
able, runtime applications. Reported results show that the
simple covariate shift assumption already provides a sim-
ple mechanism to increase robustness to sensor displace-
ment while providing a way to assess the reliability of the
sensor during its online use. Furthermore, this is achieved
in an unsupervised manner without requiring a calibration
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phase and using only one free parameter (O) that can be
directly extracted from the available training data. More-
over, although the method has here been tested using ac-
celerometers, it can also be applied to any type of sensors
(e.g. textile sensors in smart clothing). Future work will be
devoted to test its performance on other setups, as well as to
assess whether the same approach can be used to increase
robustness to other types of changes such as sensor rotation
or changes in the actual motion patterns, e.g. as a result of
fatigue or towards adaptation to new users.
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