Android Application
Fundamentals




Application Components

 Activities
— avisual user interface for one focused endeavor the user can undertake
* Services

— doesn't have a visual user interface, but rather runs in the background for an
indefinite period of time

* Broadcast Receivers
— receives and reacts to broadcast announcements

* Content Providers
— makes a specific set of the application's data available to other applications

“Android applications don't have a single entry point for everything in the
application (no main() function, for example). Rather, they have
essential components that the system can instantiate and run as needed.”




Activity Lifecycle
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*Entire lifetime: onCreate() — onDestroy()
*Visible lifetime: onStart() — onStop()
*Foreground lifetime: onResume() — onPause()

Once onPause is called, activity may be killed!
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Intents

abstract description of an operation to be performed

e asynchronous message that provides runtime binding between
application components (even across different applications)

* Main attributes:
— action (ACTION_VIEW, ACTION_IMAGE_CAPTURE)
— data (http://i.imgur.com/E5166.jpg, content://contacts/people/1)

* Intent resolution
— Explicit intents: specifies the exact component to be run

— Implicit intents: uses intent-filters to match components to intents
based on the attributes




Starting Activities

* Context.startActivity(Intent i)
— Intent i = new Intent(Class class)
— Intent i = new Intent(Action action)

e Context.startActivityForResult(Intent i)
— calling activity’s onActivityResult() is called after new activity exits

e Home Screen (Launcher)
— specified in AndroidManifest.xml

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

* All activities (all components actually) must be defined in manifest!




Service Lifecycle
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Using Services

e Services that expose an interface (which we connect to using
bindService()) can be local using direct method call, or remote using AIDL.

e Services do not run in a separate process or even thread!
— start a new thread in the onCreate() callback

* Painless threading:
— AsyncTask

* provides three callbacks
— onPreExecute()
— dolnBackground()

— onProgressUpdate()
— onPostExecute()

— IntentService
* each intent passed to startService() is handled in turn using a worker thread

* Wakelocks!!H!TIHITTT




Broadcast Receiver

Intents can be broadcast
— by the system (ACTION_BATTERY_LOW)
— by you (ACTION_MY_TASK_DONE)

Guess who receives broadcasts?

onReceive() is the only callback method
— runs with foreground priority
* must return within short period of time
— typically show a notification or start a service

* Receiver registration

— manifest (using intent-filters)
* can launch your app even if not currently running
* some system broadcasts can’t be registered for here!
— code (Context.registerReceiver())
* must manage registration manually (call unregisterReceiver())
* only works when component is active

Tip: setup Alarms that broadcast intents to do scheduled tasks (see AlarmManager)




Content Providers

* Android apps live in separate worlds
— seperate process
— seperate virual machine
— separate linux user id

* Files and data are only visible to owning app

e Use ContentProviders to share data with other applications

— Underlying data storage mechanism is irrelevant and invisible to
callers

— Provides an interface very similar to databases we are used to:
qguery, insert, update, delete

— These calls must be implemented in the ContentProvider




Data Storage

* Shared Preferences
— primitive key-value pairs (private)
* |nternal Storage
— private
* External Storage
— public
e Sqlite Database
— private
* Cloud

*See “Developing Android REST client applications” talk from
Google I/0 2010.




