Android Application
Fundamentals

Application Components

 Activities
— avisual user interface for one focused endeavor the user can undertake
* Services

— doesn't have a visual user interface, but rather runs in the background for an
indefinite period of time

* Broadcast Receivers
— receives and reacts to broadcast announcements

* Content Providers
— makes a specific set of the application's data available to other applications

“Android applications don't have a single entry point for everything in the
application (no main() function, for example). Rather, they have
essential components that the system can instantiate and run as needed.”

Activity Lifecycle

Activity
starts

" User navigates
back to the

___activity)

" Other applications’
need memory

Key Loops:

I

onCreate()
onStart() onRestart() |
onResume()
Activity is " The activity
running comes to the
_foreground
" Another activity comes’
_ in front of the activity |
v " The activity
comes to the
onPause() __foreground

—

(The activity is no longer visible)

Y

*Entire lifetime: onCreate() — onDestroy()
*Visible lifetime: onStart() — onStop()
*Foreground lifetime: onResume() — onPause()

Once onPause is called, activity may be killed!

onStop()

——

onDestroy()

Intents

abstract description of an operation to be performed

e asynchronous message that provides runtime binding between
application components (even across different applications)

* Main attributes:
— action (ACTION_VIEW, ACTION_IMAGE_CAPTURE)
— data (http://i.imgur.com/E5166.jpg, content://contacts/people/1)

* Intent resolution
— Explicit intents: specifies the exact component to be run

— Implicit intents: uses intent-filters to match components to intents
based on the attributes

Starting Activities

* Context.startActivity(Intent i)
— Intent i = new Intent(Class class)
— Intent i = new Intent(Action action)

e Context.startActivityForResult(Intent i)
— calling activity’s onActivityResult() is called after new activity exits

e Home Screen (Launcher)
— specified in AndroidManifest.xml

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

* All activities (all components actually) must be defined in manifest!

Service Lifecycle

startService():
runs until someone stops it or
it stops itself

bindService():

is operated programmatically
using an interface it defines
and exports (can also start
the service)

Service is
started by
startService()

onCreate()

—

onStart()

—T—

Service is
running

" The service
is stopped

(no callback) .

| onDestroy() |

Service is
created by

bindService()

onCreate()

{

onBind()

!

(Client interacts with the service)

onRebind()

onUnbind()

onDestroy()

Bl

Using Services

e Services that expose an interface (which we connect to using
bindService()) can be local using direct method call, or remote using AIDL.

e Services do not run in a separate process or even thread!
— start a new thread in the onCreate() callback

* Painless threading:
— AsyncTask

* provides three callbacks
— onPreExecute()
— dolnBackground()

— onProgressUpdate()
— onPostExecute()

— IntentService
* each intent passed to startService() is handled in turn using a worker thread

* Wakelocks!!H!TIHITTT

Broadcast Receiver

Intents can be broadcast
— by the system (ACTION_BATTERY_LOW)
— by you (ACTION_MY_TASK_DONE)

Guess who receives broadcasts?

onReceive() is the only callback method
— runs with foreground priority
* must return within short period of time
— typically show a notification or start a service

* Receiver registration

— manifest (using intent-filters)
* can launch your app even if not currently running
* some system broadcasts can’t be registered for here!
— code (Context.registerReceiver())
* must manage registration manually (call unregisterReceiver())
* only works when component is active

Tip: setup Alarms that broadcast intents to do scheduled tasks (see AlarmManager)

Content Providers

* Android apps live in separate worlds
— seperate process
— seperate virual machine
— separate linux user id

* Files and data are only visible to owning app

e Use ContentProviders to share data with other applications

— Underlying data storage mechanism is irrelevant and invisible to
callers

— Provides an interface very similar to databases we are used to:
qguery, insert, update, delete

— These calls must be implemented in the ContentProvider

Data Storage

* Shared Preferences
— primitive key-value pairs (private)
* |nternal Storage
— private
* External Storage
— public
e Sqlite Database
— private
* Cloud

*See “Developing Android REST client applications” talk from
Google I/0 2010.

