User Interaction: Intro to Location

Asst. Professor Donald J. Patterson INF 133 Fall 2010

Computing with Location

- Navigation
- Global Location
 - All things GPS
- Model-based localization vs. fingerprinting
 - Localization beyond GPS
- Beyond localization
 - Nomatic*IM context

Tools for Navigation

- Navigation Tools
 - Clocks
 - Odometer
 - Electronic Aids
 - Radio navigation aids
 - ground-based
 - space-based

Flickr:erica_marshall,darrenhester,maliciousmonkey

Tools for Navigation

Tools for Navigation

- Who calculates position?
 - User
 - 3rd party

Tools for Navigation

- Who calculates position?
 - User
 - 3rd party
- What's the impact?

- Latitude and Longitude
 - What are they?
 - Datum

Global Location GPS

- Current GPS
 - Fully operational
 - accurate, continuous, global 3-D position and velocity
 - also distributes universal coordinated time
 - 24 original satellites
 - 6 orbital places
 - 4 satellites per plane
 - not geosynchronous
 - world-wide monitoring stations

#visible sat = 9

- Current GPS
 - Based on
 - Time Of Arrival (TOA)
 - knowledge of satellite orbits
 - Satellites have atomic clocks on board
 - 2 frequencies
 - L1 1575.42 MHz
 - L2 1227.6 MHz

- Current GPS
 - Broadcasts
 - Time of transmission
 - Ephemeris: Precise satellite orbital info
 - Almanac: System health info, rough orbital info for all satellites

- Current GPS
 - Receiver requirements
 - Must have local clock
 - 3-D position requires four satellites
 - four unknowns (what are they?)
 - time or height reduces this

- Basic concept is based on the foghorn paradigm
 - but in 3-D

- Basic concept is based on the foghorn paradigm
 - but in 3-D

Global Location GPS

Flickr:mafleen, greenstorm, templarion

- The current and future of GPS
 - WAAS
 - Additional satellites in geosynchronous orbit
 - DGPS assistance from a land based receiver
 - Galileo
 - European competitor
 - GPS compatible
 - GLONASS

- The current and future of GPS
 - BeiDou
 - Chinese competitor
 - centralized system
 - Japanese Quasi-Zenith System

- GPS accuracy
 - 13 m 95% of the time horizontal
 - 22 m 95% of the time vertical system
 - 40 ns 95% of the time
 - How do you design for this?

- GPS accuracy
 - 13 m 95% of the time horizontal
 - 22 m 95% of the time vertical system
 - 40 ns 95% of the time
 - How do you design for this?
- Urban canyons
 - What are they?
 - Japanese response, European response

