- Input
 - Query
 - Posting List
- Output
 - List of 10 top ranked documents

- Remember what this is about
 - A query as a vector
 - A corpus as a term-document matrix
 - Where each document is a column in the matrix

$$sim(q,d) = \frac{\vec{V}(q) \cdot \vec{V}(d)}{|\vec{V}(q)||\vec{V}(d)|}$$

- We are not going to calculate the similarity score of a query with every document
 - That would be inefficient.
 - Many scores are zero.
- We are not going to actually create a term-document matrix
 - The posting list has all the information that we need to calculate the similarity scores

- We are going to calculate the cosine similarity score, but in a clever way.
- Here are some constants you will need in your posting list:
 - The number of documents in the posting list (aka corpus).
 - Figure this out when creating the corpus
 - The document frequency of a term
 - This should be the number of items in a row of the posting list. (each term has its own row)
- The term frequency of a term in a document.

 Different for every term document pair.

- Steps
 - Get a query from the user
 - Convert it to TF-IDF scores $tfidf(t,q) = WTF(t,q) * log \left(\frac{|corpus|}{df_{t,q}}\right)$

```
WTF(t,q)

1 if tf_{t,q} = 0

2 then return(0)

3 else return(1 + log(tf_{t,q}))
```

- "UCI Informatics Professors"
 - 3 terms {"UCI", "Informatics", "Professors"}
 - 3 TF-IDF scores
 - Size of the corpus comes from the posting list
 - The document frequency of "UCI" comes from the number of entries in the posting list for "UCI"
 - The term frequency is 1

$$tfidf("UCI", "UCI Informatics Professors") = (1 + log(1)) * log\left(\frac{|corpus|}{(df_{"UCI"} + 1)}\right)$$

- Steps
 - Get a query from the user
 - Convert it to TF-IDF scores
 - Use your binary posting list to create accumulator scores for the documents with the query words
 - For each term in the query
 - Get the posting list for the term
 - Scores[d] += TF-IDF(term, query) * TF-IDF(term, document)

- At the end of this we will have the data structure Scores
- Which for "UCI Informatics Professors" required looking up 3 posting lists
- Optionally the scores may be normalized so we have a mathematically meaningful comparison.
 - Create a new data-structure like Scores called Magnitude
 - For each term in the entire posting list
 - For each document represented in Scores
- Magnitude[document] += TF-IDF(term, document)^2

- Now we have Scores and Magnitude
- Now we calculate the highest rankings
- For each document in Scores
 - Double x = Scores[document]/sqrt(Magnitude[document])


```
CosineScore(q)
     Initialize(Scores[d \in D])
      Initialize (Magnitude[d \in D])
      for each term(t \in q)
          do p \leftarrow \text{FetchPostingsList}(t)
              df_t \leftarrow \text{GetCorpusWideStats}(p)
              \alpha_{t,q} \leftarrow \text{WeightInQuery}(t,q,df_t)
              for each \{d, tf_{t,d}\} \in p
                  do Scores[d] += \alpha_{t,q} \cdot \text{WeightInDocument}(t,q,df_t)
      for d \in Scores
          do Normalize(Scores[d], Magnitude[d])
 10
     return top K \in Scores
 11
```

Introduction to Information Retrieval CS 221
Donald J. Patterson

Content adapted from Hinrich Schütze http://www.informationretrieval.org

Outline

- Intro to Evaluation
- Standard Test Collections
- Evaluation of Unranked Retrieval
- Evaluation of Ranked Retrieval
- Assessing relevance
- Broader perspectives
- Result Snippets

- There are many implementation decisions to be made in an IR system
 - Crawler
 - Depth-first or breadth-first?
 - Indexer
 - Use zones?
 - Which zones?
 - Use stemming?
- Use multi-word phrases? Which ones?

- There are many implementation decisions to be made in an IR system
 - Query
 - Ranked Results?
 - PageRank?
 - Which formula do we use in the TF-IDF Matrix?
 - Should we use Latent Semantic Indexing?
 - How many dimensions should we reduce?

- There are many implementation decisions to be made in an IR system
 - Results
 - How many do we show?
 - Do we show summaries?
 - Do we group them into categories?
 - Do we personalize the rankings?
 - Do we display graphically?

Intro to Evaluation

How can we evaluate whether we made good decisions or not?

- How can we evaluate whether we made good decisions or not?
 - Measure them

Measures for a search engine

- How fast does it index?
 - Number of documents per hour
 - Average document size
- How fast does it search
 - Latency as a function of index size
- Expressiveness of query language
 - Ability to express complex information needs
 - Speed on complex queries

Measures for a search engine

- We can measure all of these things:
 - We can quantify size and speed
 - We can make this precise
- What about user happiness?
 - What is this?
 - Speed of response/size of index are factors
 - But fast, useless answers won't make a user happy
- Need to quantify user happiness also.

Measuring user happiness

- Issue: Who is the user we are trying to make happy?
 - It depends.

- Issue: Who is the user we are trying to make happy?
 - Search engine:
 - The user finds what they want.
 - Measure whether or not they come back.

- Issue: Who is the user we are trying to make happy?
 - eCommerce Site
 - User finds what they want
 - Are we interested in the happiness of the site?
 - Are we interested in the happiness of the customer?
 - Measure the \$\$ of sales per user
 - Measure number of transactions per user
 - Measure time to purchase
 - Measure conversion rate (lookers -> buyers)

- Issue: Who is the user we are trying to make happy?
 - Enterprise site
 - Are the users "productive"?
 - Measure time savings when using site
 - Measure "things accomplished"
 - careful about confounding factors
 - Measure how much a user utilizes the site's features

Measuring stakeholder happiness

• Can we measure happiness?

- Can we measure happiness?
- Do we want to measure happiness?

- Can we measure happiness?
- Do we want to measure happiness?
- What are some proxies for happiness?

- Can we measure happiness?
- Do we want to measure happiness?
- What are some proxies for happiness?
 - Relevance of search results

- Can we measure happiness?
- Do we want to measure happiness?
- What are some proxies for happiness?
 - Relevance of search results
 - How do we measure relevance?

Measuring Relevance Instead

- What do we need to measure relevance?
 - A document collection, a test corpus
 - A set of queries, benchmark queries
 - A set of answers, a gold standard
 - i.e., Document, d, {is, is not} relevant to query q
 - Alternatives to binary exist, but atypical
 - Cross-validation methodology
 - Parameter tuning

Information need

- Remember the user has an information need
 - not a query
- Relevance is assessed in relation to the information need,
 not the query
 - e.g., I am looking for information on whether drinking red wine is more effective than eating chocolate at reducing risk of heart attacks
 - Query: red wine heart attack effective chocolate risk
 - Does the document address the need, not the query

Relevance benchmarks

- TREC National Institute of Standards and Testing (NIST)
 has run a large IR test bed for many years
- Reuters and other benchmark document collections
- Retrieval tasks which are specified
 - sometimes as queries
- Human experts mark, for each query and for each document
 - Relevant or Irrelevant

Unranked retrieval

- Precision:
 - Fraction of retrieved documents that are relevant
- Recall:
 - Fraction of relevant documents that are retrieved

Unranked retrieval

- Precision:
 - Fraction of retrieved documents that are relevant
- Recall:
 - Fraction of relevant documents that are retrieved

	Relevant	Not Relevant
Retrieved	TP	FP
Not Retrieved	FN	TN

Unranked retrieval

- Precision:
 - Fraction of retrieved documents that are relevant
- Recall:
 - Fraction of relevant documents that are retrieved

	Relevant	Not Relevant
Retrieved	TP	FP
Not Retrieved	FN	TN

?

?

Unranked retrieval

- Precision:
 - Fraction of retrieved documents that are relevant
- Recall:
 - Fraction of relevant documents that are retrieved

	Relevant	Not Relevant
Retrieved	TP	FP
Not Retrieved	FN	TN

?
$$Precision = \frac{TP}{TP + FP}$$

?

Unranked retrieval

- Precision:
 - Fraction of retrieved documents that are relevant
- Recall:
 - Fraction of relevant documents that are retrieved

	Relevant	Not Relevant
Retrieved	TP	FP
Not Retrieved	FN	TN

?
$$Precision = \frac{TP}{TP + FP}$$

?
$$Recall = \frac{TP}{TP + FN}$$

- The difficulty with measuring "accuracy"
 - In one sense accuracy is how many judgments you make correctly

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

	Relevant	Not Relevant
Retrieved	TP	FP
Not Retrieved	FN	TN

Exercise

Documents A - F, Query q

Document	Relevant(q)	$Not \ Relevant(q)$
A		
$\mid B \mid$		$\sqrt{}$
C		$\sqrt{}$
D	$\sqrt{}$	
$\mid E \mid$		
$\mid F \mid$		

• If my system returns A,C,D,E to query q....

Exercise

Document	Relevant(q)	$oxed{Not \ Relevant(q)}$
A		
B		
C		
D	$\sqrt{}$	
$\mid E \mid$		$\sqrt{}$
$oxed{F}$	$\sqrt{}$	

	Relevant	Not Relevant
Retrieved	TP	FP
Not Retrieved	FN	TN

Exercise

Document	Relevant(q)	$oxed{Not \ Relevant(q)}$
A		
B		
C		
D	$\sqrt{}$	
$\mid E \mid$		$\sqrt{}$
$oxed{F}$	$\sqrt{}$	

	Relevant	Not Relevant
Retrieved	TP	FP
Not Retrieved	FN	TN

Exercise

Document	Relevant(q)	$oxed{Not \ Relevant(q)}$
A		
B		$\sqrt{}$
C		$\sqrt{}$
D		
E		
F	$\sqrt{}$	

	R	Relevar	nt	Not Relevant
Retrieved		TP		FP
Not Retrieved		\overline{FN}		TN

Exercise

Document	Relevant(q)	$oxed{Not \ Relevant(q)}$
A		
B		
C		
D	$\sqrt{}$	
$\mid E \mid$		$\sqrt{}$
$oxed{F}$	$\sqrt{}$	

	Relevant	Not Relevant
Retrieved	TP	FP
Not Retrieved	FN	TN

Exercise

Document	Relevant(q)	$Not \ Relevant(q)$
A		
B		
C		
D	$\sqrt{}$	
$\mid E \mid$		
$oxed{F}$	$\sqrt{}$	

	Relevant	Not	Relev	ant
Retrieved	TP		FP	
Not Retrieved	FN		\overline{TN}	

Exercise

Document	Relevant(q)	$oxed{Not \ Relevant(q)}$
A		
B		
C		
D	$\sqrt{}$	
$\mid E \mid$		$\sqrt{}$
$oxed{F}$	$\sqrt{}$	

	Relevant	Not Relevant
Retrieved	TP	FP
Not Retrieved	FN	TN

Exercise

Document	Relevant(q)	$oxed{Not \ Relevant(q)}$
A		
B		$\sqrt{}$
C		$\sqrt{}$
D	$\sqrt{}$	
E		
$oxed{F}$		

	R	Relevant	Not Relevant
Retrieved		TP	FP
Not Retrieved		FN	TN

Exercise

Document	Relevant(q)	$oxed{Not \ Relevant(q)}$
A		
B		
C		
D	$\sqrt{}$	
$\mid E \mid$		$\sqrt{}$
$oxed{F}$	$\sqrt{}$	

	Relevant	Not Relevant
Retrieved	TP	FP
Not Retrieved	FN	TN

Exercise

Document	Relevant(q)	$oxed{Not \ Relevant(q)}$
A		
B		
C		
D	$\sqrt{}$	
$\mid E \mid$	·	
$oxedsymbol{F}$	$\sqrt{}$	·

	Relevant	Not Relevant
Retrieved	TP	FP
Not Retrieved	FN	TN

Exercise

Document	Relevant(q)	$oxed{Not \ Relevant(q)}$
A		
B		
C		
D	$\sqrt{}$	
$\mid E \mid$		$\sqrt{}$
$oxed{F}$	$\sqrt{}$	

	Relevant	Not Relevant
Retrieved	TP	FP
Not Retrieved	FN	TN

Exercise

• What is our precision?

• What is our recall?

 $egin{array}{|c|c|c|c|} TP & 2 \\ FP & 2 \\ FN & 1 \\ TN & 1 \\ \hline \end{array}$

What is our accuracy?

Exercise

• What is our precision?

$$Precision = \frac{TP}{TP + FP}$$

• What is our recall?

 $egin{array}{c|c} TP & 2 \ FP & 2 \ FN & 1 \ TN & 1 \ \end{array}$

What is our accuracy?

Exercise

• What is our precision?

$$Precision = \frac{TP}{TP + FP}$$

• What is our recall?

$$Recall = \frac{TP}{TP + FN}$$

 $egin{array}{c|c} TP & 2 \ FP & 2 \ FN & 1 \ TN & 1 \ \end{array}$

What is our accuracy?

Exercise

• What is our precision?

$$Precision = \frac{TP}{TP + FP}$$

• What is our recall?

$$Recall = \frac{TP}{TP + FN}$$

$$egin{array}{c|c} TP & 2 \ FP & 2 \ FN & 1 \ TN & 1 \ \end{array}$$

• What is our accuracy? $\frac{TP + TN}{Accuracy} = \frac{TP + TN}{TP + FP + FN + TN}$

Exercise

• If my system returns A,C,D,E to query q....

Document	Relevant(q)	$Not \ Relevant(q)$
A		
$\mid B \mid$		$\sqrt{}$
$\mid C$		$\sqrt{}$
$\mid D$	$\sqrt{}$	
$\mid E \mid$	Í	$\sqrt{}$
$\mid F \mid$	$\sqrt{}$	·

 $egin{array}{c|c} Precision & rac{1}{2} \ Recall & rac{2}{3} \ Accuracy & rac{1}{2} \ \end{array}$

• What do I want Precision to be?

Exercise

• If my system returns A,C,D,E to query q....

Document	Relevant(q)	$Not \ Relevant(q)$
A		
$\mid B \mid$		$\sqrt{}$
$\mid C \mid$		$\sqrt{}$
D	$\sqrt{}$	
$\mid E \mid$		$\sqrt{}$
$\mid F \mid$	$\sqrt{}$	·

Precision	$\frac{1}{2}$
Recall	$\frac{2}{3}$
Accuracy	$\frac{1}{2}$

What do I want Precision to be?

	Relevant	Not Relevant
Retrieved	TP	FP
Not Retrieved	FN	TN

$$Precision = \frac{TP}{TP + FP}$$

Exercise

• If my system returns A,C,D,E to query q....

Document	Relevant(q)	$Not \ Relevant(q)$
A		
$\mid B \mid$		$\sqrt{}$
$\mid C \mid$		$\sqrt{}$
D	$\sqrt{}$	
$\mid E \mid$		$\sqrt{}$
$\mid F \mid$	$\sqrt{}$	·

Precision	$\frac{1}{2}$
Recall	$\frac{2}{3}$
Accuracy	$\frac{1}{2}$

What do I want Recall to be?

Exercise

• If my system returns A,C,D,E to query q....

Document	Relevant(q)	$Not \ Relevant(q)$
A		
$\mid B \mid$		
C		
$\mid D$	$\sqrt{}$	
$\mid E \mid$		$\sqrt{}$
$\mid F \mid$	$\sqrt{}$	·

$\frac{1}{2}$
$\frac{2}{3}$
$\frac{1}{2}$

What do I want Recall to be?

	Relevant	Not Relevant
Retrieved	TP	FP
Not Retrieved	FN	TN

$$Recall = \frac{TP}{TP + FN}$$

Exercise

• If my system returns A,C,D,E to query q....

Document	Relevant(q)	$Not \ Relevant(q)$
A		
$\mid B \mid$		
$\mid C$		$\sqrt{}$
$\mid D$	$\sqrt{}$	
$\mid E \mid$		$\sqrt{}$
$\mid F \mid$	$\sqrt{}$	

 $egin{array}{c} Precision & rac{1}{2} \ Recall & rac{2}{3} \ Accuracy & rac{1}{2} \ \end{array}$

What do I want Accuracy to be?

Exercise

• If my system returns A,C,D,E to query q....

Document	Relevant(q)	$Not \ Relevant(q)$
A		
$\mid B \mid$		$\sqrt{}$
C		$\sqrt{}$
D	$\sqrt{}$	
$\mid E \mid$	·	$\sqrt{}$
F	$\sqrt{}$	·

Accuracy

Precision	$\frac{1}{2}$
Recall	$\frac{2}{3}$
Accuracy	$\frac{1}{2}$

What do I want Accuracy to be?

	Relevant	Not Relevant
Retrieved	TP	FP
Not Retrieved	FN	TN

$$\frac{TP + TN}{TP + FP + FN + TN}$$

Unranked retrieval - Accuracy

Welcome to my search engine

- Welcome to my search engine
 - I guarantee a 99.9999% accuracy.

- Welcome to my search engine
 - I guarantee a 99.9999% accuracy.
 - Bring on the venture capital

- Welcome to my search engine
 - I guarantee a 99.9999% accuracy.
 - Bring on the venture capital

- Welcome to my search engine
 - I guarantee a 99.9999% accuracy.
 - Bring on the venture capital

Unranked retrieval - Accuracy

- Welcome to my search engine
 - I guarantee a 99.9999% accuracy.
 - Bring on the venture capital

PITTERPATTERSONFINDER Search for: 0 matching results found

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

$$Accuracy = \frac{0+\uparrow}{0+0+\epsilon+\uparrow}$$

Unranked retrieval - Accuracy

Most people want to find something and can tolerate some junk

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

$$Accuracy = \frac{0+\uparrow}{0+0+\epsilon+\uparrow}$$

