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Markov Chains

e Example:

® 3§ states

e (web pages or whatever)

e 8 by 8 transition prob. matrix

AT B|C|DJE|F] G |H
AT0| 0 [0] 0 [05/0]05]0
Bl0| 0 |[05/05|0]0] 0|0
Clo[ oo o [o]olo0]o
Do 0 o]0 [o0o[0] 00
E{0| 0 [10] 0 [0[|0] 0 |0
F10[033] 0 [033]00][033]0
Gl0[05[0] 0 |0|0| 0 |05
H{0[10[0]| 0 [0]|0] 0 |0
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Markov Chains

e Example:

® 3§ states

e 8 by 8 transition prob. matrix

¢ Handle Dead-Ends also
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Markov Chains

e Example:

® 3§ states

e 8 by 8 transition prob. matrix

¢ Handle Dead-Ends also

¢ Handle teleports

v

-

A B C D E F G H
A | 0.01 | 0.01 | 0.01 | 0.01 | 0.47 | 0.01 | 0.47 | 0.01
B | 0.01 | 001 | 047 | 047 | 0.01 | 0.01 | 0.01 | 0.01
C | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125
D | 0.125 ] 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125
E | 001 | 001 | 093 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01
F 1001 ] 032 001 | 032 | 001 | 0.01 | 0.32 | 0.01
G | 0.01 | 047 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.47
H | 0.0 0.93 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.0
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Markov Chain : The Game

® You may be in one state at a time
e Every tick you move one step
chosen randomly from the

transition probability matrix

A B C D E F G
0 0

0 0 0 0.5 0.5
0 0 0.5 0.5 0 0 0
0.125 0.125 | 0.125 0.125
0.125 0.125 | 0.125 0.125
0 1.0 0 0
0 0 0.33 0
0 . 0 0 0
0 0 0 0

| Qo | T Q| W] =~
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The Markov Property

e |t doesn’t matter where you came

from.

All information that you need to

take the next step comes from

your current state and the

transition probability matrix

History is irrelevant given your

current state
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PageRank

e PageRank is the long term visit

rate of a random walk on the

graph.
With teleports
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Long-Term visit rate
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Long-Term visit rate
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Long-Term visit rate
A: 5%
B: 21%
C:23%
D: 18%

E: 8%
F: 5%
G: 9%
H: 10%
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Some properties of Markov chains
® Ergodic:

o All states can reach all states
¢ What did we have to do to enable this for

a web graph?

® Steady State Theorem:

® Every ergodic markov chain has a steady

state -> has a PageRank
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Calculating PageRank

e Visual representation to math representation
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Calculating PageRank

e Take one step is multiplying state vector

times transition probability matrix

A B C
0 0 0

0 0 0.5
0.125 0.125
0.125 0.125

0 1.0
0 0
0 : 0
0 0

A
B
C
D
E
F
G
H
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Calculating PageRank

e Take one step is multiplying state vector

times trg E on probability matrix
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Calculating PageRank

e Take one step is multiplying state vector

times transition probaaility matrix
o™

A C D
0 0 0
0 ||=0=| 05 | 0.5
0.125 |0.129 | 0.125
0.125 ||0-125} | 0.125
0 ||=b=|| 1.0
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Calculating PageRank

e Take one step is multiplying state vector

times transition probability

A B

0 0
0 0

0.125

0.125
0

A
B
C
D
E
F
G
H

0
0
0

0

Thursday, February 18, 2010



Calculating PageRank

e Take one step is multiplying state vector

times transition probability matrix:
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Calculating PageRank

e Take one step is multiplying state vector

. . . . To P
times transition probability matrix \%ﬂ
o™
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Calculating PageRank

e Take one step is multiplying state vector

times transition probability matrix

A B C
0 0 0
0 0 0.5
0.125 0.125
0.125 0.125
0 1.0
0 0
0 : 0
0 0

A
B
C
D
E
F
G
H
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Calculating PageRank

e Take one step is multiplying state vector

times transition probability matrix

A B C
0 0 0

0 0 0.9
0.125 0.125
0.125 0.125

0
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Calculating PageRank

e Take one step is multiplying state vector

times transition probability matrix

A B C
0 0 0
0 0 0.5
0.125 0.125
0.125 0.125
0 1.0
0 0
0 : 0
0 0

A
B
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H
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Calculating PageRank

e Take one step is multiplying state vector

times transition probability matrix

A B C D

0 0 0 0
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Calculating PageRank

e Take one step is multiplying state vector

times transition probability matrix
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Calculating PageRank

e Take one step is multiplying state vector

times transition probability matrix
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Calculating PageRank

e Take one step is multiplying state vector

times transition probability matrix

QZ‘_iP — X9

lim(p—oo)Tn = PageRank
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Long-Term visit rate
A: 5%
B: 21%
C:23%
D: 18%

E: 8%
F: 5%
G: 9%
H: 10%
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