Matrix Decomposition and Latent Semantic Indexing (LSI)

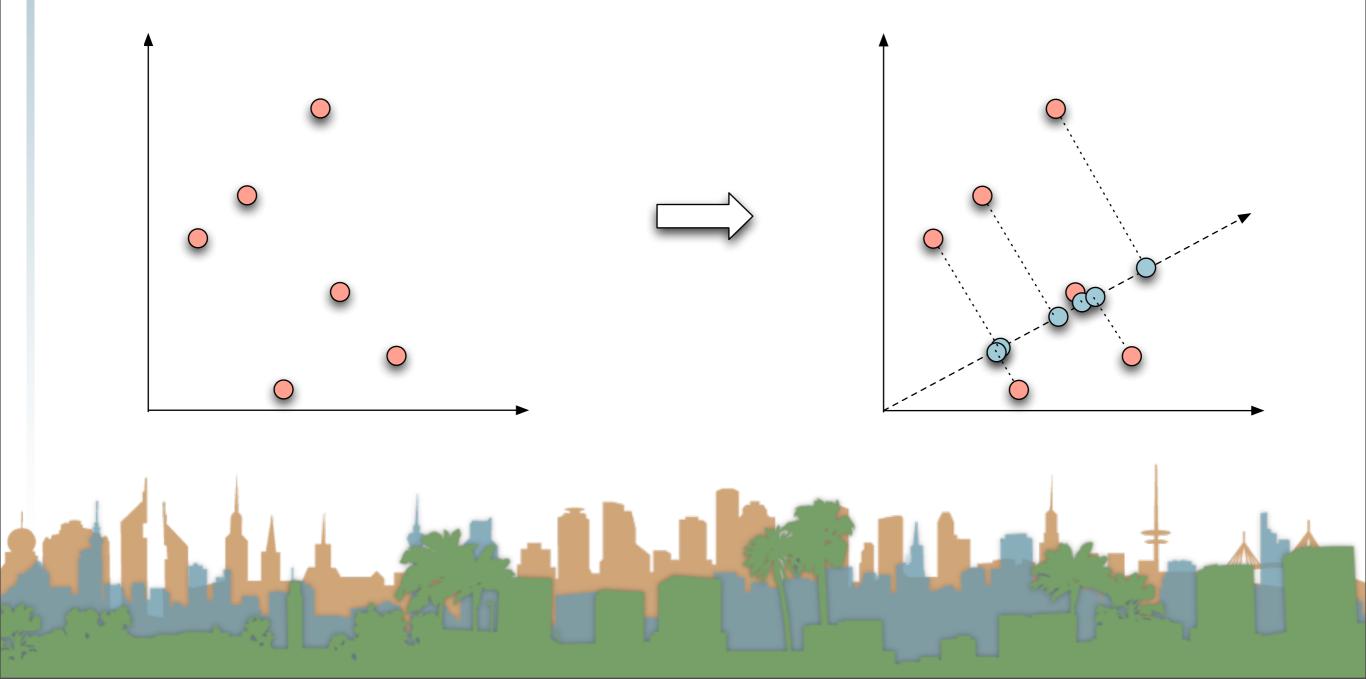
Introduction to Information Retrieval CS 221

Donald J. Patterson

Latent Semantic Indexing - Introduction

Mathematically speaking

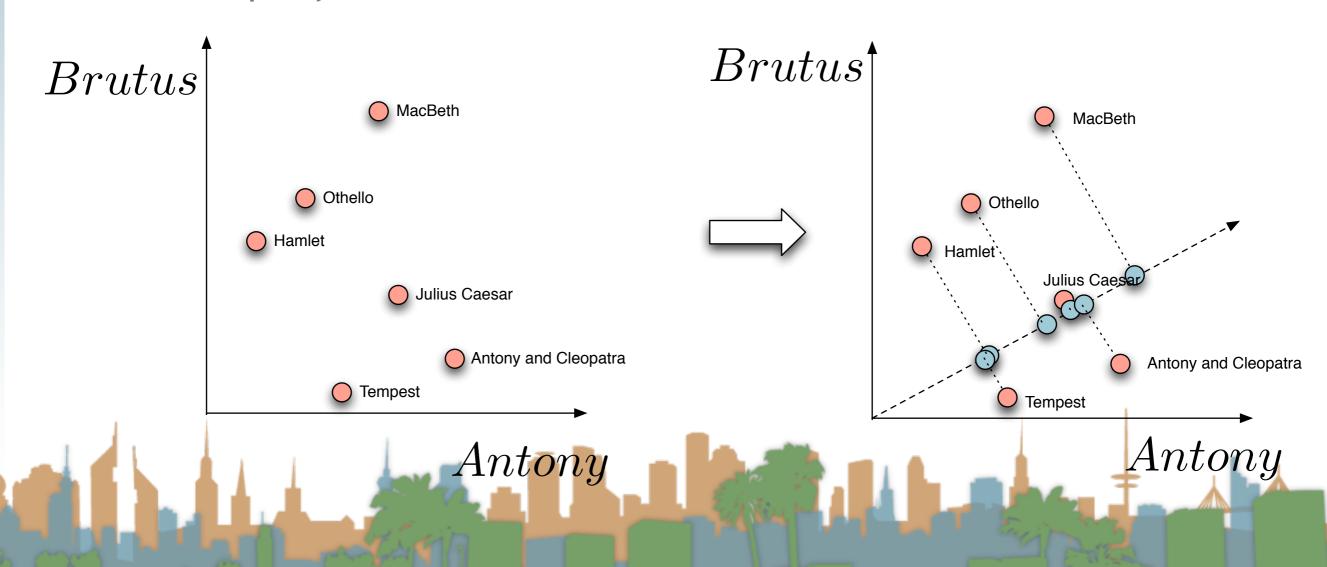
 Latent Semantic Indexing can project on an arbitrary axis, not just a principal axis



Latent Semantic Indexing - Introduction

Mathematically speaking

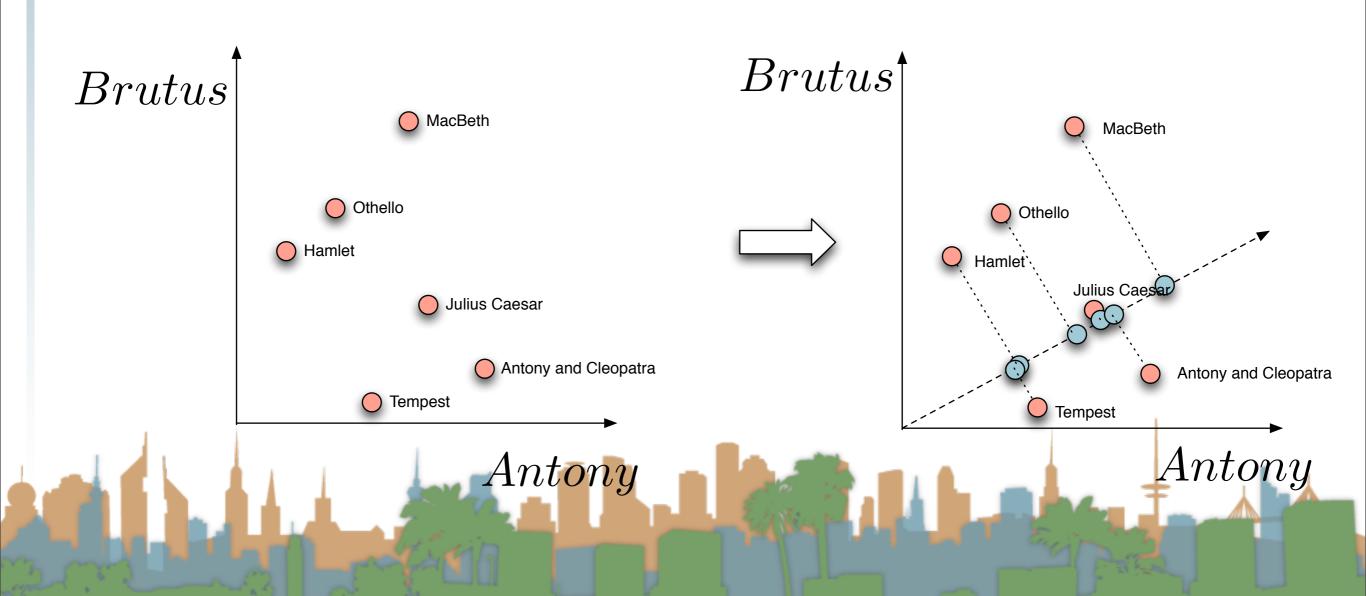
- Our documents were just points in an N-dimensional term space
- We can project them also



Latent Semantic Indexing - Introduction

Mathematically speaking

 Latent Semantic Indexing makes the claim that these new axes represent semantics - deeper meaning than just a term



Matrix Decomposition

- Singular Value Decomposition
 - Splits a matrix into three matrices
 - Such that
 - |f
 - then
 - and
 - and
 - also Sigma is almost a diagonal matrix

Matrix Decomposition

- Singular Value Decomposition
 - Splits a matrix into three matrices

 $U \quad \Sigma \quad V^T$

- Such that
 - |f
 - then
 - and
 - and
 - also Sigma is almost a diagonal matrix

Matrix Decomposition

- Singular Value Decomposition
 - Splits a matrix into three matrices

 $U \quad \Sigma \quad V^T$

Such that

 $C = U\Sigma V^T$

- If
- then
- and
- and
- also Sigma is almost a diagonal matrix

Matrix Decomposition

- Singular Value Decomposition
 - Splits a matrix into three matrices

$$U \quad \Sigma \quad V^T$$

Such that

$$C = U\Sigma V^T$$

If

C is (M by N)

- then
- and
- and
- also Sigma is almost a diagonal matrix

Matrix Decomposition

- Singular Value Decomposition
 - Splits a matrix into three matrices

$$U \quad \Sigma \quad V^T$$

Such that

$$C = U\Sigma V^T$$

• If

C is (M by N)

• then

U is (M by M)

- and
- and
- also Sigma is almost a diagonal matrix

Matrix Decomposition

- Singular Value Decomposition
 - Splits a matrix into three matrices

$$U \quad \Sigma \quad V^T$$

Such that

$$C = U\Sigma V^T$$

• |f

C is (M by N)

then

U is (M by M)

and

 Σ is $(M \ by \ N)$

- and
- also Sigma is almost a diagonal matrix

Matrix Decomposition

- Singular Value Decomposition
 - Splits a matrix into three matrices

- If
- then
- and
- and

$$U \quad \Sigma \quad V^T$$

$$C = U\Sigma V^T$$

$$U$$
 is $(M$ by $M)$

$$\Sigma$$
 is $(M \ by \ N)$

$$V^T$$
 is $(N \ by \ N)$

also Sigma is almost a diagonal matrix

Matrix Decomposition

- Singular Value Decomposition
 - ullet the columns of V are orthogonal eigenvectors of $\ C^T C$
 - ullet the columns of U are orthogonal eigenvectors of $\ CC^T$
 - V represents our "term space"
 - U represents our "document space"
 - We want to transform our vectors from or original term space

into our new term space

$$U^T C = U^T U \Sigma V^T$$

$$\Sigma^{-1}U^TC = \Sigma^{-1}\Sigma V^T$$

$$\Sigma^{-1}U^TC = V^T$$

Matrix Decomposition

Singular Value Decomposition

$$C = U\Sigma V^T$$

- ullet the columns of V are orthogonal eigenvectors of $\ C^TC$
- ullet the columns of U are orthogonal eigenvectors of $\ CC^T$
- V represents our "term space"
- U represents our "document space"
- We want to transform our vectors from or original term space

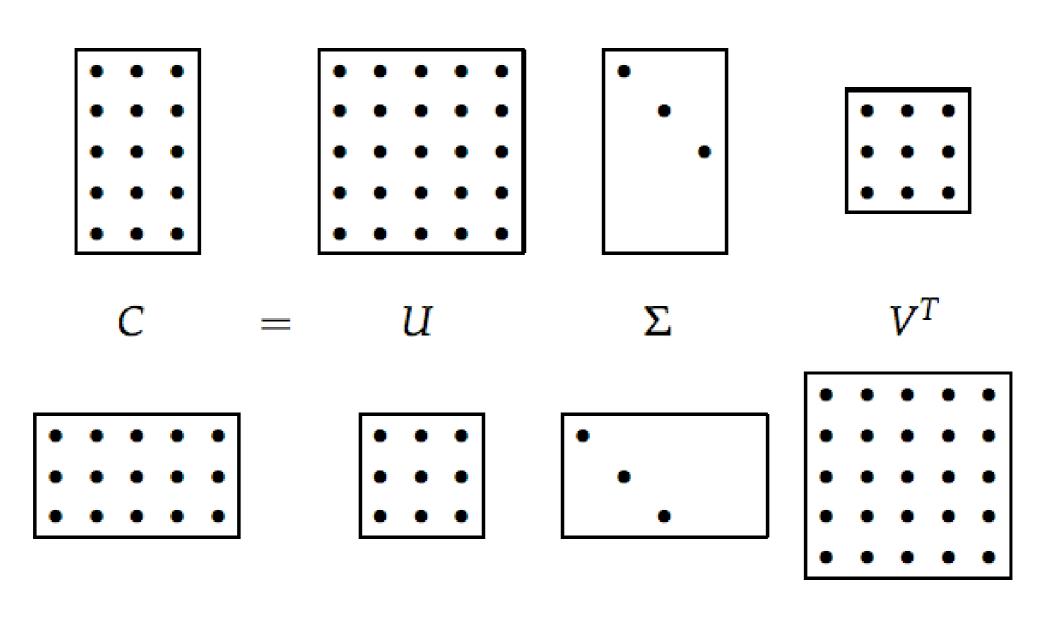
into our new term space

$$U^T C = U^T U \Sigma V^T$$

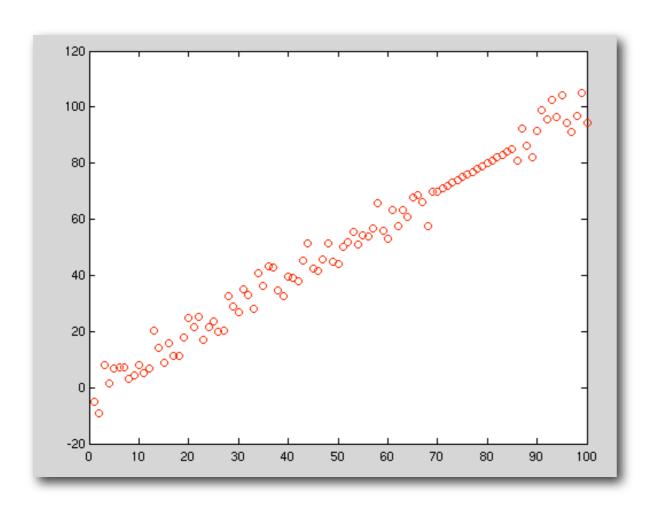
$$\Sigma^{-1}U^TC = \Sigma^{-1}\Sigma V^T$$

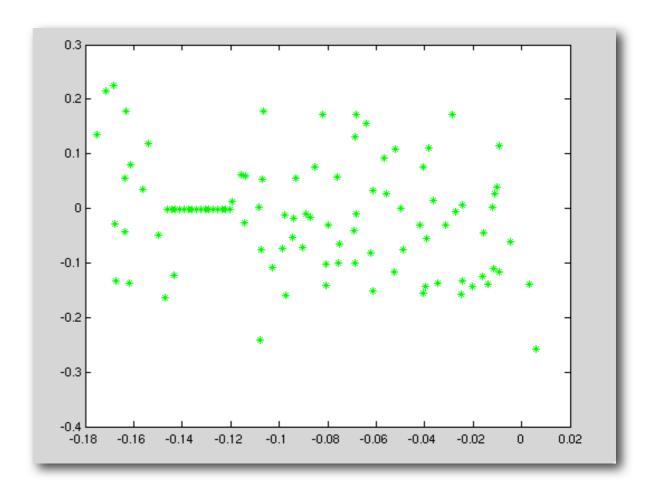
$$\Sigma^{-1}U^TC = V^T$$

Matrix Decomposition



Matrix Decomposition





Matrix Decomposition

Singular Value Decomposition

$$\begin{vmatrix} SVD_{dim_1} \\ SVD_{dim_2} \\ SVD_{dim_3} \end{vmatrix} = \begin{vmatrix} a & b & c & d \\ a' & b' & c' & d' \\ a'' & b'' & c'' & d'' \end{vmatrix} * \begin{vmatrix} td_{dim_1} \\ td_{dim_2} \\ td_{dim_3} \\ td_{dim_4} \end{vmatrix}$$

$$SVD_{ConceptSpace} = M * query_{TermSpace}$$

$$M = \Sigma_k^{-1} U_k^T$$

$$query_{ConceptSpace} = \Sigma_k^{-1} U_k^T query_{TermSpace}$$

next... LUCI