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1 Overview

In the assignment, we studied on top 500K wiki-pages. We created the web graph of those pages, and
implemented an algorithm of finding dense clusters in that large web graph which was proposed in
[1]. In addition, We also proposed a map-reduce design approach which is best fit to the algorithm.
The experience on the created graph showed that algorithm works well and the its results provided
some interests of the top 500K pages.

2 Motivation

Considering the web graph of top 500k wiki pages, we were curious about groups of pages which are
clustered with the respect of some particular relationship such as finance, computer, math, travel,
etc. In term of graph, they may group together as strong connected subgraphs.

Finding dense subgraphs in a graph is a challenge, especially in a very large graph. It has been
studied well and solved in different definitions of density of a subgraph. We are very interested in
this opportunity to identify strong clusters from this large graph instance (500k wiki web graph).

Finding dense subgraphs should have some applications in social network, attacking spammer in
Google ads, etc. Assuming Facebook might be going to release some service or application which is
properly used in strongly-connected communities, we are to find those communities in their graph
which have 400 millions active users. As for Google adsense program, there are many bad publishers
trying to take advantage of the program to spread out their revenue. A well-known way to do is
that they create multiple accounts which advertise Google ads in their fake webpages generated
by bots which attempt to click on ads of the fake webgpages. Due to being created from a user
or group of users, those accounts may have some attributes in common and group together as a
strongly-connected subgraph in the whole graph of publishers in those attributes.

3 Project proposal

In this work, we fullfiled the following tasks:

• Create a web graph of top 500k wiki pages.

• Identify dense subgraphs from the created graph.

• Find some interests from the result.
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4 Creating web graph for top 500k wiki pages

For this step, we use the hadoop framework to create the web graph. With the support of a given
list of wikipage URLs, we can easily design a MapReduce algorithm to create the graph. As a
result, the MapReduce output is represented as adjacency list of the web graph.

More further, as from our view, it’s difficult to crawl all wiki pages or create the web graph of the
whole wikipages from a certain starting point.

4.1 Map reduce algorithm design

The mappers each takes input as a line containing (link, docid) retrieved from the URL list-file,
where docid is the ID of the webpage represented by the link. Each mapper fetches the webpage
of the link. The outputs of mappers are the collection of pairs (docid, docidi), where docidi is the
ID of the webpage whose link is found from the fected page.

The reducers each takes an input as an output of mappers which have a collection of pairs
docid, docidi. Each reducer enumerate all adjacency docidi, and output docid with the collection of
all docidi.

The algorithm design is figured in table 1.

4.2 Creating web graph

4.2.1 Statistics of web graph

The following stat gives us some information about the created graph.

• The number of nodes: 500,000 (including nodes with outlink degree 0).
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Table 1: MapReduce design for creating web graph from a given list of URLs
Mappers

(link1, docid1) ⇒ Mapper ⇒ {(docid1, docid11), (docid1, docid12), ...}
(link2, docid2) ⇒ Mapper ⇒ {(docid2, docid21), (docid2, docid22), ...}
(link3, docid3) ⇒ Mapper ⇒ {(docid3, docid31), (docid3, docid32), ...}

Reducer
{(docid1, docid11), (docid1, docid12, ...)} ⇒ (docid1, {docid11, docid12, ...})
{(docid2, docid21), (docid2, docid22, ...)} ⇒ Reducer ⇒ (docid2, {docid21, docid22, ...})
{(docid3, docid31), (docid3, docid32, ...)} ⇒ Reducer ⇒ (docid3, {docid31, docid32, ...})

• The max degree: 1,789.

• The min degree: 0.

• Average degree: 68.

• The number of nodes having degree more than 200: 29762.

• The number of nodes having degree more than 500: 3835.

4.2.2 Statistics of computation performance

We run the hadoop program with the configuration which is specified 400 mapper tasks and 400
reducer tasks. The running time was about 2 minutes.

We also implemented a linear program to create the web graph and it took more than a day to
finish.

5 Identify dense subgraphs from the created graph

5.1 Problem definitions

Given a large graph which is represented adjacency list, we are to find the strongly-connected
clusters in the graph. Before coming up with approaching to solve the problem, we need to know
several density definitions of a subgraph.

Let m be the number of edges in the subgraph, n be the number of nodes in the subgraph.

The naive definition of the subgraph is m
n . This definition has disadvantage from our interest view

of finding strongly-connected subgraphs. We would prefer the subgraph of 10 nodes and 40 edges
to the subgraph of 1, 000, 000 nodes and 10, 000, 000 edges. That formula does not work for us in
this case.

The clique density definition should be fit to our interest. A clique subgraph is a fully-connected
subgraph. Its density is defined as 2m

n.(n−1) . We would mention that the problem of finding the
largest subgraph in a graph with respect to clique density definition is a NP-hard problem.

3



Another density definition is “neighborhood similarity” which does have an abstract definition.
The idea is originated from clique definition in which 2 nodes belonging to a clique share all nodes
in the clique. In this “neighborhood similarity” definition, 2 nodes sharing many adjacency nodes
have high probability of belonging to a dense subgraph. We use this definition in our work and
evaluate result using the clique definition with the parameter 1.8 which is 2m

n1.8 .

The diameter density of a subgraph is defined as its diameter in the subgraph. In this definition,
the subgraph should be connected and the diameter is defined as the max distance of all pair
distances between nodes in the subgraph. And problem is to find subgraphs with diamater less
than a threshold.

5.2 Algorithms

In this section, we showed the algorithm proposed by David Gibson in VLDB 2005.

5.2.1 The shingling algorithm

As mentioned above, we use the “neighborhood similarity” to find clusters. We consider how to
measure the similarity of 2 adjacency lists of 2 consided nodes.

A simple and natural measure of the similarity of two sets is the Jaccard coefficient, defined as the
size of the intersection of the sets divided by the size of their union: |A ∩ B|/|A ∪ B|. Formally,
if h is a random permutation of the elements in the ordered universe U from which A and B are
drawn, then it can be shown that:

Prh∈U{h−1(mina∈A(h(a))) = h−1(minb∈B(h(b)))} =
|A ∩B|
|A ∪B|

That is, the probability that the smallest element of A and B is the same, where smallest is
defined by the permutation h, is exactly the similarity of the two sets according to the Jaccard
coefficient. Using this observation, we compute the fingerprint of A by fixing a constant number
c of permutations h1, ..., hc of U , and producing a vector whose i-th element is mina∈Ahi(a). The
similarity of two sets is then estimated to be the number of positions of their respective fingerprint
vectors that agree.

This formulation is not yet sufficient for our needs; we require one generalization. The formulation
as given may be viewed as follows: consider every one element set contained entirely in A or B,
and measure agreement by the fraction of these one-element subsets that appear in both sets.
Generalizing, we may instead consider every s-element set contained entirely within either set,
and measure similarity by the fraction of these s-element subsets that appear in both. This is
identical to measuring the similarity of A and B by computing the Jaccard coefficient of two sets ,
where As = a1, a2, ..., as|ai ∈ A, and Bs is defined likewise. The same fingerprinting scheme applies
unchanged to As and Bs. We will refer to each of the s-element subsets as a shingle, and to the
algorithm that produces the set as an (s, c) shingling algorithm.

5.2.2 Algorithm of creating dense subgraphs in a graph

As designed in [1], we have 2 shingling steps.
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Algorithm 1 ShingleV alues({x1, x2, ..., xn}, s, c)
Input: Set of values {x1, x2, ..., xn};

s: number of “smallest” values collected per permutation.
c: number of permutation functions.

Output: Set of shingle values {z1, z2, ..., zc}
Let p be a large random prime.
// Permutation function hi(x) = (ai ∗ x + bi) mod p.
Let a1, b1, ..., ac, bc be random integers in [1...p]
Let H be a hash function from strings to integers.
for j = 1 to c do

for i = 1 to n do
Xi ← H(“xi”)
Yi ← (aj ∗Xi + bj) mod p

end for
Let w1, w2, ..., ws be s minimum elements of Y ’s
zj ← H(Concate(w1, w2, . . . , ws))

end for
return {z1, z2, ..., zc}

In the first one, we applied the shingling algorithm to the set of adjacency nodes of each node. We
would mention again that 2 nodes belonging a cluster have high probability of having many common
shingle values. Then we create the inverted list of each shingle value containing all nodes whose
their adjacency set each is applied to the shingling algorithm to generate that shingle value. For
example, after shingling the adjacency list of node1, node2, we have the corresponding c shingle
values (s11, s12, s13, ...s1c) for node1, and (s21, s22, s23, ...s2c) for node2. For easier explanation
later, we assume s11 = s21 = S1, and s13 = s22 = S2. Following up, We have the inverted lists
S1 = (node1, node2, ...), and S2 = (node1, node2, ...).

In the second shinging step, the inverted list of each shingle value is applied to shingling algorithm
to generate the second-level shingle values. We also create the inverted list of each second-level
shinge value containing all first-level shingle values whose their adjacency set each is applied to
the shingling algorithm to generate that second-level shingle value. For example, the inverted lists
of S1 and S2 are applied to generate (x11, x12, x13, ...x1c) for S1, and (x21, x22, x23, ...x2c) for S2,
where xij are the second-level shingle values. Assuming x11 = x21 = X1 and x12 = x22 = X2, we
have the inverted list of X1 as (S1, S2, ...) (which are the first-level shingle values), and of X2 as
(S1, S2, ...).

After these 2 shingling steps, we consider that all first-level shingle values in each inverted list of
each second-level shingle value are connected to each other. Here We accept indirect connectivity
which means that 2 first-level shingle values may not in the same inverted list but may be connected
indirectly. If A is connected to B, and B is connected to C, then so is A connected to C. We use
union-find algorithm to find all connectivity groups. Mentioning that each first-level shingle value
has an inverted list of graph nodes, and letting each inverted list as a subset, we union all subsets
of all first-level shingle values in each connectivity group. The results of the unions are the dense
clusters we look for.

For more detail, please take a look at the paper [1].
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Table 2: MapReduce design for 2 steps shingling
Mappers

(node1, adjacencylist1) ⇒ Mapper ⇒ {(S11, node1), (S12, node1), ...}
(node2, adjacencylist2) ⇒ Mapper ⇒ {(S21, node2), (S22, node2), ...}
(node3, adjacencylist3) ⇒ Mapper ⇒ {(S31, node3), (S32, node3), ...}

Reducer
{(S1, node11), (S1, node12, ...)} ⇒ (S1, {node11, node12, ...})
{(S2, node21), (S2, node22, ...)} ⇒ Reducer ⇒ (S2, {node21, node22, ...})
{(S3, node31), (S3, node32, ...)} ⇒ Reducer ⇒ (S3, {node31, node32, ...})

5.2.3 Map Reduce in algorithm

We proposed the MapReduce design which is best fit to the shingling algorithm. The first step
shingling is to generate shingle values from the adjacency list of each node. We design the input of
Mapper as the adjacency list. Mapper take the list, generate c shingle values, and return c pairs of
(shinglei, N), where shinglei is the generated shingle value, and N is the current node.

Due to the 2 shingling steps look generic, we can apply the MapReduce approach 2 times. And the
output of the first MapReduce is the input of the later MapReduce.

The algorithm design is figured in table 2.

5.2.4 Optimization

We proved that, in the first shingling step, if the inverted list of shingle value contains only one
element, that list can be removed without affecting losing any clusters. Because number of those
inverted lists is significantly large, if we remove them, it efficiently improve the computation cost
and storage. In our experiments, this optimization reduces the number of first-level shingles by 10
folds, and significantly reduce the storage and computation cost. This optimization also helps us
eliminate “noise clusters” which are very small in size and are not interesting.

5.2.5 Results

We found 5617 raw clusters which have many clusters with size less than 10. They are in our
interest. We put some constraints to filter for good clusters which are defined as the size greater
than 10, and the density greater than a certain threshold. Clique density is used with parameter
1.8. With the threshold 0.3, we have found 408 clusters. The largest cluster in density has 320
nodes with 80157 edges. Average degree is 250 and the density is 2.48.

We manually verified the clusters and they look very interesting. Due to being very strongly-
connected, pages in each clusters are common in some sense. They are about travel, finance, math,
distribution, a group of papers, KDE open source, MS product, radio station. The largest cluster
is about France.

The following pictures are shown as the demo of the largest cluster whose all pages almost are
about France.
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6 Conslusion

We have created the webgraph with respect to the top 500K wiki pages. We studied on the webgraph
and implemented the algorithm of finding dense clusters in the graph. We designed a MapReduce
approach which is best fit to the algorithm. I also proposed an optimization in the algorithm which
speed up the program 10 times faster. The found results showed that our assumption about the
strongly-connected clusters which have something in common is correct in some sense.

And we really enjoyed this assignment.
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