
Vector Space
Scoring
Introduction to Information Retrieval
INF 141
Donald J. Patterson

Content adapted from Hinrich Schütze
http://www.informationretrieval.org

http://www.informationretrieval.org
http://www.informationretrieval.org

Alternatives to tf-idf

Vector Space Scoring

• Sublinear tf scaling

• 20 occurrences of “mole” does not indicate 20 times

the relevance

• This motivated the WTF score.

• There are other variants for reducing the impact of

repeated terms

WTF(t, d)
1 if tft,d = 0
2 then return(0)
3 else return(1 + log(tft,d))

TF Normalization

Vector Space Scoring : Alternatives to tf-idf

• Normalize tf weights by maximum tf in that document

• alpha is a smoothing term from (0 - 1.0) ~0.4 in

practice

• This addresses a length bias.

• Take one document, repeat it, WTF goes up

ntft,d = α + (1− α)
tft,d

tfmax(d)

TF Normalization

Vector Space Scoring : Alternatives to tf-idf

• Normalize tf weights by maximum tf in that document

• a change in the stop word list can change weights

drastically - hard to tune

• still based on bag of words model

• one outlier word, repeated many times might

throw off the algorithmic understanding of the

content

ntft,d = α + (1− α)
tft,d

tfmax(d)

Laundry List

Vector Space Scoring : Alternatives to tf-idf

Term Frequency Document Frequency Normalization
(n)atural tft,d (n)o 1 (n)one 1
(l)ogarithm 1 + log(tft,d) (t)idf log |corpus|

dft
(c)osine 1√

w12+w22+...+wm
2

(a)ugmented α + (1− α) tft,d

tfmax(d) (p)robidf max{0, log(|corpus|−dft
dft

) (u)pivoted 1/u

(b)oolean tft,d > 0?1 : 0 (b)yte 1/CharLengthα,α < 1
(L)ogaverage 1+log(tft,d)

1+log(avet∈d(tft,d))

• SMART system of describing your IR vector algorithm

• ddd.qqq (ddd = document weighting) (qqq = query

weighting)

• first is term weighting, second is document, then

normalization

• lnc.ltc is what?

Efficient Cosine Ranking

Vector Space Scoring

• Find the k docs in the corpus “nearest” to the query

• the k largest query-doc cosines

• Efficient ranking means:

• Computing a single cosine efficiently

• Computing the k largest cosine values efficiently

• Can we do this without computing all n cosines?

• n = number of documents in corpus

Efficient Cosine Ranking

Vector Space Scoring

• Computing a single cosine

• Use inverted index

• At query time use an array of accumulators Aj to

accumulate component-wise sum

• Accumulate scores as postings lists are being

processed (numerator of similarity score)

Aj =
∑

t

(wq,twd,t)

Efficient Cosine Ranking

Vector Space Scoring

• For the web

• an array of accumulators in memory is infeasible

• so only create accumulators for docs that occur in

postings list

• dynamically create accumulators

• put the tf_d scores in the postings lists themselves

• limit docs to non-zero cosines on rare words

• or non-zero cosines on all words

• reduces number of accumulators

Efficient Cosine Ranking

Vector Space Scoring

CosineScore(q)
1 Initialize(Scores[d ∈ D])
2 Initialize(Magnitude[d ∈ D])
3 for each term(t ∈ q)
4 do p← FetchPostingsList(t)
5 dft ← GetCorpusWideStats(p)
6 αt,q ←WeightInQuery(t, q, dft)
7 for each {d, tft,d} ∈ p
8 do Scores[d] + = αt,q · WeightInDocument(t, q, dft)
9 for d ∈ Scores

10 do Normalize(Scores[d],Magnitude[d])
11 return top K ∈ Scores

Use heap for selecting the top K Scores

Vector Space Scoring

• Binary tree in which each node’s value > the values of

children

• Takes 2N operations to construct

• then each of k “winners” read off in 2logn steps

• For n =1M, k=100 this is about 10% of the cost of sorting

