Vector Space

Introduction to Information Retrieval
INF 141

Donald J. Patterson

Content adapted from Hinrich Schitze
http://www.informationretrieval.org

http://www.informationretrieval.org
http://www.informationretrieval.org

Vector Space Scoring

Alternatives to tf-idf

e Sublinear tf scaling

e 70 occurrences of “mole” does not indicate 20 times

the relevance

® This motivated the WTF score.
WTF(t, d)

]_ if tft,d — O
2 then return(0)
3 else return(l+ log(tfi.q))

® There are other variants for reducing the impact of

repeated terms

Vector Space Scoring : Alternatives to tf-idf

TF Normalization
e Normalize tf weights by maximum tf in that document

L
ntfiqa=a+ (1 —oz)t

® alphais a smoothing term from (0-1.0) ~0.4 in
practice
® This addresses a length bias.

e Take one document, repeat it, WTF goes up

Vector Space Scoring : Alternatives to tf-idf

TF Normalization

e Normalize tf weights by maximum tf in that document

L
ntfiqa=a+ (1 —oz)t

® achange inthe stop word list can change weights
drastically - hard to tune
e still based on bag of words model
® one outlier word, repeated many times might
throw off the algorithmic understanding of the

content

Vector Space Scoring : Alternatives to tf-idf

Laundry List

Term Frequency Document Frequency Normalization
n)atural tft.d (n)o 1 n)one 1
[

Jogarithm 14 log(tfi.q) (t)idf 109%}?8' c)osine \/w12+w2;+_,_+wm2

(
(
(a)ugmented o+ (1 — a)—L22 | (p)robidf max{0,log(lL2es =AY | () pivoted 1/u
(
(

tfmax(d) dft

b)oolean tfea>071:0 b)yte 1/CharLength®, a < 1
1+log(tfi,a)

1+log(avercq(tfi.q))

L)ogaverage

e SMART system of describing your IR vector algorithm
¢ ddd.ggq (ddd = document weighting) (ggq = query
weighting)
e firstis term weighting, second is document, then
normalization

Inclltc is what?

Vector Space Scoring

Efficient Cosine Ranking
¢ Find the k docs in the corpus “nearest” to the query
e the k largest query-doc cosines

e Efficient ranking means:

e Computing a single cosine efficiently

e Computing the k largest cosine values efficiently

e Can we do this without computing all n cosines?

® n =number of documents in corpus

Vector Space Scoring

Efficient Cosine Ranking
e Computing a single cosine

e Use inverted index
e At query time use an array of accumulators Aj to
accumulate component-wise sum

e Accumulate scores as postings lists are being

processed (numerator of similarity score)

Aj = Z(wq,twd,t)

t

Vector Space Scoring
Efficient Cosine Ranking
e Forthe web
® an array of accumulators in memory is infeasible
® so only create accumulators for docs that occur in
postings list

® dynamically create accumulators

e put the tf_d scores in the postings lists themselves

® |imit docs to non-zero cosines on rare words
® Or non-zero cosines on all words

® reduces number of accumlatars

¥

Vector Space Scoring

Efficient Cosine Ranking

COSINESCORE(q)
1 INITIALIZE(Scores|d € D))
INITIALIZE(M agnitude|d € D))
for each term(t € q)
do p «— FETCHPOSTINGSLIST(?)
df; «— GETCORPUSWIDESTATS(p)
a4 <+ WEIGHTINQUERY (¢, q, dft)
for each {d,tf:q} € p
do Scores|d] + = a4 - WEIGHTINDOCUMENT(t, q, df})
for d € Scores
do NORMALIZE(Scores|d], Magnitude|d))
return top K € Scores

2
3
4
D
6
7
3
9
0
1

1
1

Vector Space Scoring

Use heap for selecting the top K Scores
® Binary tree in which each node’s value > the values of

children
e Takes 2N operations to construct

e then each of k “winners” read off in 2logn steps

e Forn =1M, k=100 this is about 10% of the cost of sorting

