
Index Construction
Introduction to Information Retrieval
INF 141
Donald J. Patterson

Content adapted from Hinrich Schütze
http://www.informationretrieval.org

http://www.informationretrieval.org
http://www.informationretrieval.org


Distributed Indexing - Architecture

Postings

A-F

Corpus

...

Master

A-F G-P Q-Z

A-F G-P Q-Z

A-F G-P Q-Z

Parsers

...

...

A-F G-P Q-Z

A-F G-P Q-Z

A-F G-P Q-Z

Inverters

G-P

Q-Z



• Parsers and Inverters are not separate machines

• They are both assigned from a pool

• It is separate software

• Intermediate files are stored on a local disk

• Part of the “merge” task is to talk to the parser machine 

and get the data. (master coordinates)

• MapReduce has different architectures for different data 

manipulation tasks besides this one.

Distributed Indexing - Architecture



• MapReduce/Hadoop in particular (hadoop.apache.org/core):

• Scalable: Hadoop can reliably store and process petabytes.

• Economical: It distributes the data and processing across 

clusters of commonly available computers. These clusters 

can number into the thousands of nodes.

• Efficient: By distributing the data, Hadoop can process it in 

parallel on the nodes where the data is located. This makes 

it extremely rapid.

• Reliable: Hadoop automatically maintains multiple copies of 

data and automatically redeploys computing tasks based 

on failures.

Distributed Indexing - Architecture



• Basic steps for running MapReduce on Hadoop:

• Get some computers

• Install Hadoop on all the computers

• Identify two masters

• NameNode

• Manages the distributed file system

• JobTracker

• Manages the MapReduce work

Distributed Indexing - Architecture



• Basic steps for running MapReduce on Hadoop:

• Identify slaves, which act as both

• DataNodes

• A piece of the distributed file system

• TaskTrackers

• A resource for running Map and Reduce jobs

• The JobTracker tells the TaskTrackers what to do

Distributed Indexing - Architecture



• Basic steps for running MapReduce on Hadoop:

• Job Configuation (aka, Define your work):

• Where and what is your input data?

• Where and what is your output data?

• Write a Map function:

• Takes chunks of input data and processes it in parallel

• Write a Reduce function:

• Takes output of Map function and aggregates it

Distributed Indexing - Architecture



• Doing Job Configuration

• Remember this works on <key,value> pairs

Distributed Indexing - Architecture

(Key 1,Value 1)

Input

(Key 2,Value 2)

Combine

(Key 2,Value 2)

Reduce (Key 3,Value 3)

Output

Map



• Doing Job Configuration

• WordCount

• http://hadoop.apache.org/core/docs/current/mapred_tutorial.html

Distributed Indexing - Architecture

public class WordCount {
public static class Map{
 public void map(Type1 key, Type2 value,OutputCollector 
output){

process key, value;
output.write(newKey, newValue)

}

public static class Reduce{
 public void reduce(Type3 key, Iterator<Type4> 
values,OutputCollector output)

process key and values;
output(newKey, newValue);

}
}

http://hadoop.apache.org/core/docs/current/mapred_tutorial.html
http://hadoop.apache.org/core/docs/current/mapred_tutorial.html
http://hadoop.apache.org/core/docs/current/mapred_tutorial.html


• Introduction

• Hardware

• BSBI - Block sort-based indexing

• SPIMI - Single Pass in-memory indexing

• Distributed indexing

• Dynamic indexing

• Miscellaneous topics

Overview

Index Construction



• Documents come in over time

• Postings need to be updated for terms already in 

dictionary

• New terms need to get added to dictionary

• Documents go away

• Get deleted, etc.

Dynamic Indexing



• Overview of solution

• Maintain your “big” main index on disk

• (or distributed disk)

• Continuous crawling creates “small” indices in memory

• Search queries are applied to both

• Results merged

Dynamic Indexing



• Overview of solution

• Document deletions

• Invalidation bit for deleted documents

• Just like contextual filtering,

• results are filtered to remove invalidated docs

• according to bit vector.

• Periodically merge “small” index into “big” index.

Dynamic Indexing



Dynamic Indexing

Small Indices

A-F

Inverters

G-P

Q-Z

Big Indices

A-F

G-P

Q-Z
Invalidation

Bits

Query

Filter

Result



• Issues with big *and* small indexes

• Corpus wide statistics are hard to maintain

• Typical solution is to ignore small indices when 

computing stats

• Frequent merges required

• Poor performance during merge

• unless well engineered

• Logarithmic merging

Dynamic Indexing




