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Reuters collection example (approximate

e 800,000 documents from the Reuters news feed

e 200 terms per document
e 400,000 unique terms

® number of postings 100,000,000
REUTERS B

¥You are here: Home = News = Science = Article
Gotoa Section: LS. International Business  Markets  Politics  Enterfainment  Technology  Sports Oddly Enoug

Extreme conditions create rare Antarctic clouds

Tue Aug 1, 2006 53:20am ET
Email This Article | Print This Article | Reprints

SYDMNEY (Reuters) - Rare, mother-of-pearl colored clouds ERLa
caused by extreme weather conditions above Antarctica are a
possible indication of global warming, Australian scientists said on

_ - Tuesday.

—

Known as nacreous clouds, the spectacular formations showing delicate
wisps of colors were photographed in the sky over an Australian

meteorological base at Mawson Station on July 25.
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disk seek time.
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e Sorting 100,000,000 records on disk is too slow because of

disk seek time.
e Parse and build posting entries one at a time
e Sort posting entries by term

® Then by document in each term
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Reuters collection example (approximate #'s)
e Sorting 100,000,000 records on disk is too slow because of
disk seek time.
Parse and build posting entries one at a time
Sort posting entries by term
® Then by document in each term
Doing this with random disk seeks is too slow

e.q. If every comparison takes 2 disk seeks and N items

need to be sorted with N log2(N) comparisons?
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100,000,000 records

Nlog2(N) is = 2,657,542,475.91 comparisons

2 disk seeks per comparison = 13,287,712.38 seconds x 2
= 26,575,424.76 seconds
= 442,9235.75 minutes
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Reuters collection example (approximate #'s)
e 100,000,000 records

Nlog2(N) is = 2,657,542,475.91 comparisons

2 disk seeks per comparison = 13,287,712.38 seconds x 2
= 26,575,424.76 seconds

= 442,9235.75 minutes

= 7,382.06 hours

= 307.59 days

= 84% of a year

= 1% fOUI‘ .




BSBI - Block sort-based indexing

Different way to sort index

12-byte records (term, doc, meta-data)

Need to sort T= 100,000,000 such 12-byte records by term

Define a block to have 1,600,000 such records

® can easily fit a couple blocks in memory

e we will be working with 64 such blocks

Accumulate postings for each block (real blocks are bigger)
Sort each block

Write to disk

han merge




BSBI - Block sort-based indexing

Different way to sort index

Block Block Merged Postings

(1998,www.cnn.com)
(1998,news.google.com)
(Every,www.cnn.com)
(Her,news.bbc.co.uk)
(Her,news.google.com)
(I,www.cnn.com)

T — (I'm,news.bbc.co.uk)

(Jensen's,www.cnn.com)

N

(1998,news.google.com)
(Her,news.bbc.co.uk)
(I,www.cnn.com)
(Jensen's,www.cnn.com)

(1998,www.cnn.com)
(Every,www.cnn.com)
(Her,news.google.com)
(I'm,news.bbc.co.uk)




BSBI - Block sort-based indexing

BlockSortBasedIndexConstruction

BLOCKSORTBASEDINDEXCONSTRUCTION( )

n <« (

while (all documents not processed)

do block «+— PARSEN:

s XTBLOCK()

BSBI-INVERT(block)
WRITEBLOCKTODISK(block, f,)

MERGEBLOCKS( f1, fa...,

fna fmefrged)




BSBI - Block sort-based indexing

Block merge indexing
® Parse documents into (TermID, DoclD) pairs until “block” is
full
Invert the block
e Sort the (TermID,DoclID) pairs
Write the block to disk

Then merge all blocks into one large postings file

¢ Need 2 copies of the data on disk (input then output)




BSBI - Block sort-based indexing

Analysis of BSBI
¢ The dominant term is O(NlogN)

® N is the number of TermlD,DocID pairs
e Butin practice ParseNextBlock takes the most time
e Then MergingBlocks

® Again, disk seeks times versus memory access times




BSBI - Block sort-based indexing
AnalyS|s of BSBI

12-byte records (term, doc, meta-data)
Need to sort T= 100,000,000 such 12-byte records by term

Define a block to have 1,600,000 such records

® can easily fit a couple blocks in memory

e we will be working with 64 such blocks

64 blocks * 1,600,000 records * 12 bytes = 1,228,800,000 bytes
Nlog2N comparisons is 5,584,577,250.93

2 touches per comparison at memory speeds (10e-6 sec) =

e 55,845.77 seconds = 930.76 min = 15.5 hours
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Single-Pass In-Memory Indexing

SPIMI
e BSBIlis good but,

® |t needs a data structure for mapping terms to termiDs
e this won't fit in memory for big corpora
e A lot of redundancy in (T,D) pairs

e Straightforward solution

¢ dynamically create dictionaries (intermediate postings)

® store the dictionaries with the blocks

® integrate sorting and merging




Single-Pass In-Memory Indexing

SPIMLINVERT (fokenStream) This is just data structure
output File +— NEWFILE() management

dictionary «— NEWHASH()
while (free memory available)
do token <« next(tokenStream)
if term(token) ¢ dictionary
then postingsList «+— ADDTODICTIONARY (dictionary, term(token))
else postingsList «— GETPOSTINGSLIST(dictionary, term(token)) ¥
if full(postingsList)
then postingsList «— DOUBLEPOSTINGSLIST(dictionary, term(token))
ADDTOPOSTINGSLIST(postingsList, docI D(token))
sortedTerms <— SORTTERMS(dictionary)
WRITEBLOCKTODISK(sortedT erms, dictionary, output File)
return outputF'ile

14. Final step is merging




Single-Pass In-Memory Indexing
e So what is different here?

e SPIMI adds postings directly to a posting list.
e BSBI first collected (TermID,DocID pairs)
e then sorted them
e then aggregated the postings
Each posting list is dynamic so there is no term sorting

Saves memory because a term is only stored once

Complexity is O(T) (sort of, see book)

Compression (aka posting list representation) enables

each block to hold more data




Single-Pass In-Memory Indexing

Large Scale Indexing

e Key decision in block merge indexing is block size
® |n practice, crawling often interlaced with indexing

e Crawling bottlenecked by WAN speed and other factors
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Distributed Indexing

e Web-scale indexing
e Must use a distributed computing cluster
e “Cloud computing”
¢ |ndividual machines are fault-prone
e They slow down unpredictably or fail
e Automatic maintenance
e Software bugs
¢ Transient network conditions

e A truck crashing into the pole outside

® Hardware fatigue and then fajlure




Distributed Indexing - Architecture

e The design of Google’s indexing as of 2004




Distributed Indexing - Architecture

e Use two classes of parallel tasks
e Parsing

® |nverting

e Corpus is split broken into splits

® Each splitis a subset of documents
® analogous to distributed crawling
e Master assigns a split to an idle machine
® Parser will read a document and sort (t,d) pairs

e |nverter will merge, create and write postings




Distributed Indexing - Architecture

e Use an instance of MapReduce
e An general architecture for distributed computing
e Manages interactions among clusters of
® cheap commodity compute servers
® akanodes

e Uses Key-Value pairs as primary object of computation

e An open-source implementation is “Hadoop” by

apache.org




Distributed Indexing - Architecture

e Use an instance of MapReduce
® There is a map phase

® This takes splits and makes key-value pairs

e thisis the “parse/invert” phase of BSBl and SPIMI

e The map phase writes intermediate files
e Results are bucketed into buckets indexed by key
® Thereis areduce phase

e This is the “merge” phase of BSBl and SPIMI

® There is one inverters for each bucket




Distributed Indexing - Architecture

Master

\ Parsers Inverters Postings

T







