Introduction to Information Retrieval

INF 141
Donald J. Patterson

Content adapted from Hinrich Schitze
http://www.informationretrieval.org

http://www.informationretrieval.org
http://www.informationretrieval.org

Reuters collection example (approximate

e 800,000 documents from the Reuters news feed

e 200 terms per document
e 400,000 unique terms

® number of postings 100,000,000
REUTERS B

¥You are here: Home = News = Science = Article
Gotoa Section: LS. International Business Markets Politics Enterfainment Technology Sports Oddly Enoug

Extreme conditions create rare Antarctic clouds

Tue Aug 1, 2006 53:20am ET
Email This Article | Print This Article | Reprints

SYDMNEY (Reuters) - Rare, mother-of-pearl colored clouds ERLa
caused by extreme weather conditions above Antarctica are a
possible indication of global warming, Australian scientists said on

_ - Tuesday.

—

Known as nacreous clouds, the spectacular formations showing delicate
wisps of colors were photographed in the sky over an Australian

meteorological base at Mawson Station on July 25.

Reuters collection example (approximate

Reuters collection example (approximate #'s)

e Sorting 100,000,000 records on disk is too slow because of

disk seek time.

Reuters collection example (approximate #'s)

e Sorting 100,000,000 records on disk is too slow because of

disk seek time.

e Parse and build posting entries one at a time

Reuters collection example (approximate #'s)

e Sorting 100,000,000 records on disk is too slow because of

disk seek time.

e Parse and build posting entries one at a time

e Sort posting entries by term

Reuters collection example (approximate #'s)

e Sorting 100,000,000 records on disk is too slow because of

disk seek time.
e Parse and build posting entries one at a time
e Sort posting entries by term

® Then by document in each term

Reuters collection example (approximate #'s)

e Sorting 100,000,000 records on disk is too slow because of

disk seek time.
e Parse and build posting entries one at a time
e Sort posting entries by term

® Then by document in each term

® Doing this with random disk seeks is too slow

Reuters collection example (approximate #'s)
e Sorting 100,000,000 records on disk is too slow because of
disk seek time.
Parse and build posting entries one at a time
Sort posting entries by term
® Then by document in each term
Doing this with random disk seeks is too slow

e.q. If every comparison takes 2 disk seeks and N items

need to be sorted with N log2(N) comparisons?

Reuters collection example (approximate #'s)
e Sorting 100,000,000 records on disk is too slow because of
disk seek time.
Parse and build posting entries one at a time
Sort posting entries by term
® Then by document in each term
Doing this with random disk seeks is too slow

e.q. If every comparison takes 2 disk seeks and N items

need to be sorted with N log2(N) comparisons?

506ish d&

Reuters collection example (approximate

Reuters collection example (approximate
e 100,000,000 records

Reuters collection example (approximate
e 100,000,000 records

® Nlog2(N) is = 2,657,542,475.91 comparisons

Reuters collection example (approximate #'s)
e 100,000,000 records

® Nlog2(N) is = 2,657,542,475.91 comparisons

e 2 disk seeks per comparison =13,287,712.38 seconds x 2

Reuters collection example (approximate #'s)
e 100,000,000 records

® Nlog2(N) is = 2,657,542,475.91 comparisons

e 2 disk seeks per comparison =13,287,712.38 seconds x 2

o =26,575,424.76 seconds

Reuters collection example (approximate #'s)
100,000,000 records

Nlog2(N) is = 2,657,542,475.91 comparisons

2 disk seeks per comparison = 13,287,712.38 seconds x 2
= 26,575,424.76 seconds
= 442,9235.75 minutes

Reuters collection example (approximate #'s)
e 100,000,000 records

Nlog2(N) is = 2,657,542,475.91 comparisons

2 disk seeks per comparison = 13,287,712.38 seconds x 2
= 26,575,424.76 seconds

= 442,9235.75 minutes

= 7,382.06 hours

Reuters collection example (approximate #'s)
e 100,000,000 records

Nlog2(N) is = 2,657,542,475.91 comparisons

2 disk seeks per comparison = 13,287,712.38 seconds x 2
= 26,575,424.76 seconds

= 442,9235.75 minutes

= 7,382.06 hours

= 307.59 days

Reuters collection example (approximate #'s)
e 100,000,000 records

Nlog2(N) is = 2,657,542,475.91 comparisons

2 disk seeks per comparison = 13,287,712.38 seconds x 2
= 26,575,424.76 seconds

= 442,9235.75 minutes

= 7,382.06 hours

= 307.59 days
= 84% of a year

Reuters collection example (approximate #'s)
e 100,000,000 records

Nlog2(N) is = 2,657,542,475.91 comparisons

2 disk seeks per comparison = 13,287,712.38 seconds x 2
= 26,575,424.76 seconds

= 442,9235.75 minutes

= 7,382.06 hours

= 307.59 days

= 84% of a year

= 1% fOUI‘ .

BSBI - Block sort-based indexing

Different way to sort index

12-byte records (term, doc, meta-data)

Need to sort T= 100,000,000 such 12-byte records by term

Define a block to have 1,600,000 such records

® can easily fit a couple blocks in memory

e we will be working with 64 such blocks

Accumulate postings for each block (real blocks are bigger)
Sort each block

Write to disk

han merge

BSBI - Block sort-based indexing

Different way to sort index

Block Block Merged Postings

(1998,www.cnn.com)
(1998,news.google.com)
(Every,www.cnn.com)
(Her,news.bbc.co.uk)
(Her,news.google.com)
(I,www.cnn.com)

T — (I'm,news.bbc.co.uk)

(Jensen's,www.cnn.com)

N

(1998,news.google.com)
(Her,news.bbc.co.uk)
(I,www.cnn.com)
(Jensen's,www.cnn.com)

(1998,www.cnn.com)
(Every,www.cnn.com)
(Her,news.google.com)
(I'm,news.bbc.co.uk)

BSBI - Block sort-based indexing

BlockSortBasedIndexConstruction

BLOCKSORTBASEDINDEXCONSTRUCTION()

n <« (

while (all documents not processed)

do block «+— PARSEN:

s XTBLOCK()

BSBI-INVERT(block)
WRITEBLOCKTODISK(block, f,)

MERGEBLOCKS(f1, fa...,

fna fmefrged)

BSBI - Block sort-based indexing

Block merge indexing
® Parse documents into (TermID, DoclD) pairs until “block” is
full
Invert the block
e Sort the (TermID,DoclID) pairs
Write the block to disk

Then merge all blocks into one large postings file

¢ Need 2 copies of the data on disk (input then output)

BSBI - Block sort-based indexing

Analysis of BSBI
¢ The dominant term is O(NlogN)

® N is the number of TermlD,DocID pairs
e Butin practice ParseNextBlock takes the most time
e Then MergingBlocks

® Again, disk seeks times versus memory access times

BSBI - Block sort-based indexing
AnalyS|s of BSBI

12-byte records (term, doc, meta-data)
Need to sort T= 100,000,000 such 12-byte records by term

Define a block to have 1,600,000 such records

® can easily fit a couple blocks in memory

e we will be working with 64 such blocks

64 blocks * 1,600,000 records * 12 bytes = 1,228,800,000 bytes
Nlog2N comparisons is 5,584,577,250.93

2 touches per comparison at memory speeds (10e-6 sec) =

e 55,845.77 seconds = 930.76 min = 15.5 hours

Index Construction

Overview

Introduction

Hardware

BSBI - Block sort-based indexing

SPIMI - Single Pass in-memory indexing
Distributed indexing

Dynamic indexing

Miscellaneous topics

Single-Pass In-Memory Indexing

SPIMI
e BSBIlis good but,

® |t needs a data structure for mapping terms to termiDs
e this won't fit in memory for big corpora
e A lot of redundancy in (T,D) pairs

e Straightforward solution

¢ dynamically create dictionaries (intermediate postings)

® store the dictionaries with the blocks

® integrate sorting and merging

Single-Pass In-Memory Indexing

SPIMLINVERT (fokenStream) This is just data structure
output File +— NEWFILE() management

dictionary «— NEWHASH()
while (free memory available)
do token <« next(tokenStream)
if term(token) ¢ dictionary
then postingsList «+— ADDTODICTIONARY (dictionary, term(token))
else postingsList «— GETPOSTINGSLIST(dictionary, term(token)) ¥
if full(postingsList)
then postingsList «— DOUBLEPOSTINGSLIST(dictionary, term(token))
ADDTOPOSTINGSLIST(postingsList, docI D(token))
sortedTerms <— SORTTERMS(dictionary)
WRITEBLOCKTODISK(sortedT erms, dictionary, output File)
return outputF'ile

14. Final step is merging

Single-Pass In-Memory Indexing
e So what is different here?

e SPIMI adds postings directly to a posting list.
e BSBI first collected (TermID,DocID pairs)
e then sorted them
e then aggregated the postings
Each posting list is dynamic so there is no term sorting

Saves memory because a term is only stored once

Complexity is O(T) (sort of, see book)

Compression (aka posting list representation) enables

each block to hold more data

Single-Pass In-Memory Indexing

Large Scale Indexing

e Key decision in block merge indexing is block size
® |n practice, crawling often interlaced with indexing

e Crawling bottlenecked by WAN speed and other factors

Index Construction

Overview

Introduction

Hardware

BSBI - Block sort-based indexing

SPIMI - Single Pass in-memory indexing
Distributed indexing

Dynamic indexing

Miscellaneous topics

Distributed Indexing

e Web-scale indexing
e Must use a distributed computing cluster
e “Cloud computing”
¢ |ndividual machines are fault-prone
e They slow down unpredictably or fail
e Automatic maintenance
e Software bugs
¢ Transient network conditions

e A truck crashing into the pole outside

® Hardware fatigue and then fajlure

Distributed Indexing - Architecture

e The design of Google’s indexing as of 2004

Distributed Indexing - Architecture

e Use two classes of parallel tasks
e Parsing

® |nverting

e Corpus is split broken into splits

® Each splitis a subset of documents
® analogous to distributed crawling
e Master assigns a split to an idle machine
® Parser will read a document and sort (t,d) pairs

e |nverter will merge, create and write postings

Distributed Indexing - Architecture

e Use an instance of MapReduce
e An general architecture for distributed computing
e Manages interactions among clusters of
® cheap commodity compute servers
® akanodes

e Uses Key-Value pairs as primary object of computation

e An open-source implementation is “Hadoop” by

apache.org

Distributed Indexing - Architecture

e Use an instance of MapReduce
® There is a map phase

® This takes splits and makes key-value pairs

e thisis the “parse/invert” phase of BSBl and SPIMI

e The map phase writes intermediate files
e Results are bucketed into buckets indexed by key
® Thereis areduce phase

e This is the “merge” phase of BSBl and SPIMI

® There is one inverters for each bucket

Distributed Indexing - Architecture

Master

\ Parsers Inverters Postings

T

